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Abstract

The paper deals with the study of flat fronts in the hyperbolic 3-space,
H3. We characterize when an analytic curve of H3 is in the singular set
of some flat front with prescribed cuspidal edges and swallowtails singu-
larities. We also prove every complete flat front with a non degenerate
analytic planar singular set must be rotational.
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1 Introduction

Many results about Monge-Ampère equations have important geometric ap-
plications, see the recent survey [17]. In particular, the unimodular Hessian
equation

φxxφyy − φ2
xy = 1

admits a complex resolution in terms of holomorphic data. This fact can be
applied to obtain conformal representations of two classical families of surfaces
(maybe with some kind of singularities): flat surfaces (fronts) in H3 and im-
proper affine spheres (maps) in R3, see [4, 6] (and [13, 14]).

In both cases, the surfaces can be represented by using a pair of holomorphic
1-forms, (ω, θ) and the points where |θ| = |ω| 6= 0 give non-degenerate singu-
larities that, locally, can be parameterized by smooth curves. Generically, the
image of these curves are singular curves with cuspidal edges and swallowtails,
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see [11, 12] and the KRSUY criterion in the next section. However, the image
can be constant and provide isolated singularities. Conversely, as an analytic
application of the conformal representations, one can solve the corresponding
Cauchy problem and prove that the singular set may determine uniquely the
corresponding surfaces, see [1, 8].

The paper is organized as follows. In Section 2 we review the theory of flat
surfaces (fronts) in H3 together with their associated conformal representations
in [6, 13], and the criterion for singular points in [12].

In Section 3 we characterize when an analytic curve in H3 is a singular curve
of some flat front with prescribed cuspidal edges and swallowtails.

In Section 4 we classify embedded complete flat fronts with a non degenerate
analytic planar singular set and complete flat fronts whose singular set is a finite
number of isolated singularities.

Finally, in Section 5 we show how, using the singular set, it is possible to
describe, explicitly, a local correspondence between flat fronts and improper
affine maps.

2 Conformal representation of flat fronts in H3

We consider a 2-manifold Σ and a flat immersion ψ : Σ −→ H3. Then,
from the Gauss equation, the second fundamental form dσ2 is definite and so
Σ is orientable and it inherits a canonical Riemann surface structure. This fact
provides a conformal representation for the immersion ψ that let to recover any
flat surface in H3 in terms of holomorphic data (see [6] and [13] for the details).

Actually, for any p ∈ Σ, there exist G(p), G∗(p) ∈ C∞ distinct points in the
ideal boundary such that the oriented normal geodesic at ψ(p) is the geodesic in
H3 starting from G∗(p) towards G(p). The maps G,G∗ : Σ −→ C∞ are called
the hyperbolic Gauss maps and it is proved in [6] that they are holomorphic
when we regard C∞ as the Riemann sphere.

Later, Kokubu, Umehara and Yamada obtained in [13] how to recover flat
immersions with some admissible singularities (flat fronts) in terms of the hy-
perbolic Gauss maps.

Here, we explain this representation in the Hermitian model of the hyperbolic
space. That is, we identify the Lorentz-Minkowski 4-space L4 with the set of
2× 2 Hermitian matrices by means of

(x0, x1, x2, x3) ∈ L4 ←→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2). (2.1)

Thus, the Minkowski metric

〈, 〉 = −dx2
0 + dx2

1 + dx2
2 + dx2

3, (2.2)

is identified to 〈X,X〉 = −det(X) for X ∈ Herm(2), and H3 can be realized as

H3 = {X ∈ Herm(2) : det(X) = 1, trace(X) > 0}
= {ΦΦ∗ : Φ ∈ SL(2,C)}, (2.3)
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where Φ∗ = Φ
t
.

We say that a map ψ : Σ −→ H3 is a flat front if the curvature of ψ vanishes
identically at every regular point and there exists a map η : Σ −→ S3

1 = {X ∈
Herm(2); det(X) = −1}, called the Gauss map of ψ, such that

〈ψ, η〉 = 0 = 〈dψ, η〉 and 〈dψ, dψ〉+ 〈dη, dη〉 6= 0 (2.4)

at every point.
On the other hand, we say that a holomorphic map F : Σ −→ SL(2,C) is a

Legendrian curve if there are holomorphic 1-forms θ, ω on Σ such that

F−1dF =
(

0 θ
ω 0

)
. (2.5)

Theorem 2.1 ([6], [13]). If F : Σ −→ SL(2,C) is a holomorphic Legendrian
curve, then ψ = FF ∗ : Σ −→ H3 is a flat front whose Gauss map is given by

η = F

(
1 0
0 −1

)
F ∗. (2.6)

Conversely, every simply-connected flat front can be described in this way and
F is given by the hyperbolic Gauss maps as

F =
(
G/ξ ξG∗/(G−G∗)
1/ξ ξ/(G−G∗)

)
, ξ = c exp

(∫ dG

G−G∗

)
, (2.7)

c ∈ C \ {0}. In particular, from (2.5) and (2.6), one has

dψ = F

(
0 θ + ω

ω + θ 0

)
F ∗, dη = F

(
0 −θ + ω

ω − θ 0

)
F ∗ (2.8)

and the fundamental forms of ψ can be written as:

ds2 = 〈dψ, dψ〉 = (θ + ω)(ω + θ),
dσ2 = −〈dψ, dη〉 = |θ|2 − |ω|2 ≥ 0, (2.9)

〈dψ, dψ〉+ 〈dη, dη〉 = 2(|θ|2 + |ω|2) > 0.

Consequently, from (2.4) and (2.9), if we take a conformal parameter z re-
spect dσ2, then

〈ψz, ηz〉 = 0 = 〈ψz, ψz〉+ 〈ηz, ηz〉 (2.10)

and the following expression holds:

ψz = iψ × η × ηz, (2.11)

where 〈ψ × η × ηz, x〉 is the determinant [ψ, η, ηz, x] for all x ∈ L4.
Hence, the second fundamental form is given by

dσ2 = 2ρdzdz, ρ = −〈ψz, ηz〉 = −i[ψ, η, ηz, ηz] = −i[ψ, η, ψz, ψz] ≥ 0 (2.12)
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and z0 ∈ Σ is a non-degenerate singular point of ψ if and only if

ρ(z0) = 0, (|θ(z0)| = |ω(z0)| 6= 0), dρ
∣∣
z0
6= 0. (2.13)

In this case, the singular set of ψ around z0 becomes a regular curve γ : I ⊂
R −→ Σ and one has the following criterion for the singular curve β = ψ ◦ γ :
I −→ H3.

Theorem 2.2 ([12]). If ν is a vector field along γ, with ν(s) 6= 0 in the kernel
of dψγ(s) for any s in the interval I, then the following hold.

1. γ(0) = z0 is a cuspidal edge if and only if det(γ′(0), ν(0)) 6= 0, where det
denotes the determinant of 2× 2 matrices and prime indicates differenti-
ation with respect to s.

2. γ(0) = z0 is a swallowtail if and only if det(γ′(0), ν(0)) = 0 and

d

ds

∣∣∣
s=0

det(γ′(s), ν(s)) 6= 0.

3 Prescribed singular curves

In this section we characterize when an analytic curve in H3 is a non-
degenerate singular curve of some flat front and its points are either cuspidal
edge or swallowtail singularities.

Motivated by (2.4), we say that a pair of analytic maps β : I −→ H3 and
V : I −→ S3

1 is a pair of initial data if

〈β, V 〉 = 〈β′, V 〉 = 0 and (β′, V ′) 6= (0, 0) (3.1)

hold on the interval I. These necessary conditions are also sufficient in the
following sense:

Theorem 3.1 ([8]). If {β, V } is a pair of initial data, then there exists a unique
flat front ψ = FF ∗ : Ω ⊂ C −→ H3, such that β(s) = ψ(s, 0) and V (s) = η(s, 0)
for all s ∈ I ⊂ Ω. Moreover, F is given by (2.7) by taking

G(z) =
N1(z) + iN2(z)
N0(z)−N3(z)

, G∗(z) =
L1(z) + iL2(z)
L0(z)− L3(z)

, (3.2)

where N (z) and L(z) are holomorphic extensions of N (s) = β(s) + V (s) and
L(s) = β(s)− V (s).

As in [8] the real parameter s ∈ I extends to the complex parameter z =
s+ it ≡ (s, t) ∈ Ω and γ(s) = (s, 0), ∀s ∈ I. Thus, the criterion in Theorem 2.2
only depends of the second coordinate of ν(s) and a natural question is when
the flat front determined by {β, V } has β as a singular curve with prescribed
cuspidal edges and swallowtails.
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Of course, from (2.10) and (2.12), we obtain

−2ρ = 〈ψs, ηs〉 = 〈ψt, ηt〉, 〈ψs, ηt〉 = 0 = 〈ψt, ηs〉 (3.3)

in Ω. Then, β(I) is contained in the set of singularities of ψ if and only if

〈β′, V ′〉 = 0 (3.4)

along I. Equivalently, from (2.8) and (2.13), we get

ψz dz =
+θ
ω

ψz dz =
+ω
θ

ψz dz, ηz dz =
−θ
ω

ηz dz =
−ω
θ

ηz dz

in I = {z ∈ Ω; z = z} and

i(ω − θ)ψs = (ω + θ)ψt, i(ω + θ)ηs = (ω − θ)ηt. (3.5)

Moreover, from (2.4),
(β′, V ′) = (ψs, ηs) 6= (0, 0). (3.6)

Proposition 3.2. If β(I) lies in a hyperbolic plane (or equivalently, V is a
constant η0), then β must be regular in I and every non-degenerate point of ψ
in β(I) is a cuspidal edge.

Proof. Because V (.) = η(., 0) = η0 is a constant, then

ηs(s, 0) = 0 = ψt(s, 0), in I,

and from (3.6), β : I −→ H3 must be a regular curve.
Moreover, the kernel of dψ at γ(s) = (s, 0) is spanned by ν(s) = (0, 1) and,

from Theorem 2.2, all the non-degenerate singularities of ψ in β(I) are cuspidal
edges.

Remark 1. In the hypothesis of the above Proposition we have that θ = ω
along I, and the Hopf differential, Q = ωθ, may be written as

Q = ωω = θθ in I.

In general, we get the following non-degenerate condition for regular curves.

Theorem 3.3. A regular analytic curve β : I −→ H3 is a non-degenerate
singular curve of some flat front ψ if and only if

(β × β′ × β′′)(s) 6= 0, ∀s ∈ I. (3.7)

Moreover, all the points of β(I) must be cuspidal edges.

Proof. As in [8], we take a complex parameter z = s + it ∈ Ω, such that
β(s) = ψ(s, 0), for all s ∈ I ⊂ Ω.

Now, if β(I) is contained in the set of singularities of ψ, then, from (3.1) and
(3.4), we have

β × β′ × β′′ = ‖β × β′ × β′′‖V, (3.8)
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where V (s) = η(s, 0), s ∈ I.
From the regularity of β, (2.11), (3.3) and (3.5), we obtain

ψt(s, 0) = f(s)ψs(s, 0), ηs(s, 0) = −f(s)ηt(s, 0) = f(s)β(s)× V (s)× β′(s)

with f : I −→ R an analytic function and the non-degenerate condition is
written as

0 6= d

dt

∣∣∣
(s,0)

(−2ρ) =
d

dt

∣∣∣
(s,0)
〈ψs, ηs〉 =

(
〈ψts, ηs〉 − 〈ψss, ηt〉

)
(s, 0)

= −(f2 + 1)〈ψss, ηt〉 = −(f2 + 1)‖β × β′ × β′′‖.

Moreover, from Theorem 2.2, we conclude that β(s) is a cuspidal edge, be-
cause the kernel of dψ at γ(s) = (s, 0) is spanned by ν(s) = (−f(s), 1), for all
s ∈ I.

Conversely, from (3.7), (3.8) and Theorem 3.1, it is clear that the flat front
ψ is determined by β. Actually, V is given by the following expression:

V =
β × β′ × β′′

‖β × β′ × β′′‖
.

Corollary 3.4. Let β : I −→ H3 be a non-constant analytic curve contained in
a hyperplane through the origin orthogonal to η0 ∈ S3

1.
If β is a non-degenerate singular curve of a flat front ψ, then β must be a

locally convex regular curve, its points are cuspidal edges and the Gauss map η
of ψ along β is the binormal η0 of β.

Proof. From the above theorem, it is clear that β × β′ × β′′ 6= 0 and

η =
β × β′ × β′′

‖β × β′ × β′′‖
= η0,

at the regular points of β, that is, in a dense subset of I. Hence, η(s, 0) = η0,
for all s ∈ I and the proof follows from (3.6).

As a consequence, we also know that swallowtails only appear when β′ has
isolated zeros. Actually, we may prove the following result:

Theorem 3.5. Let β : I −→ H3 an analytic curve satisfying

(β × β′ × β′′)(s) 6= 0, ∀s ∈ I − {0}.

Then, β is a non-degenerate singular curve of some flat front ψ and β(0) is a
swallowtail if and only if 0 ∈ I is a zero of β′, ‖β × β′ × β′′‖ and [β, β′, β′′, β′′′]
of order 1, 2 and 3, respectively.
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Proof. As in Theorem 3.3, V is given by (3.8) and ψ is determined by β. In
particular, we obtain

[β, β′, β′′′, β′′] = ‖β × β′ × β′′‖〈V ′, β′′〉. (3.9)

However, if β(0) is a swallowtail, then β′(0) = 0 and we have, around s = 0,

ψs(s, 0) = g(s)ψt(s, 0), g(s)ηs(s, 0) = −ηt(s, 0) = β(s)× V (s)× β′(s)

and
g〈V ′, β′′〉 = [β, V, β′, β′′] = ‖β × β′ × β′′‖, (3.10)

where g :]− ε,+ε[⊂ I −→ R is an analytic function, with g(0) = 0 and ε > 0.
Thus, the non-degenerate condition gives

0 6= d

dt

∣∣∣
(s,0)

(−2ρ) =
d

dt

∣∣∣
(s,0)
〈ψs, ηs〉 =

(
〈ψts, ηs〉 − 〈ψss, ηt〉

)
(s, 0)

= −
( 1
g2

+ 1
)
〈ψss, ηt〉 = −

( 1
g2

+ 1
)
‖β × β′ × β′′‖.

Now, using that the kernel of dψ at γ(s) = (s, 0) is spanned by ν(s) = (1,−g(s))
and Theorem 2.2, g and β′ have a zero of order 1 at 0. Thus, from the above
expression ‖β × β′ × β′′‖ must have a zero of order 2 at 0.

From (3.9) and (3.10), we conclude that 0 is a zero of 〈V ′, β′′〉 and [β, β′, β′′, β′′′]
of order 1 and 3, respectively.

Conversely, we can apply Theorem 3.1, with β′(0) = 0, because the hypoth-
esis give V ′(0) 6= 0. In fact, we have β′(s) = s b′(s), for an analytic curve
b : I −→ L4, with [β, b′, b′′, b′′′](0) 6= 0 and 〈V ′(0), b′′(0)〉 6= 0.

Remark 2. As in [5, 16], if we consider an analytic curve with singular curva-
ture

κ(s) =
‖β × β′ × β′′‖
‖β′‖3

(s) ∈ R− {0}, ∀s ∈ I − {0},

and singular torsion

τ(s) =
[β, β′, β′′, β′′′]
‖β × β′ × β′′‖2

(s) ∈ R, ∀s ∈ I − {0},

then β(0) is a swallowtail of some flat front if and only if 0 is a zero of order 1
of β′ and

lims→0‖β′‖κ 6= 0, lims→0‖β′‖τ 6= 0.

Remark 3. By using Ribaucour transformations on rotational flat fronts, see
[3], one can describe explicitely many examples of complete flat fronts with any
even number of swallowtails as in Figures 1 and 2.
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Figure 1: Flat front with only two swallowtails and its singular set.

Figure 2: Flat front with only four swallowtails and its singular set.

Remark 4. When the holomorphic data (ω, θ) satisfy∫
ω =

θ

ω
,

ψ can be described using Airy’s functions. In this case, see also [9], we have a
flat front with three ends and three swallowtails (see Figure 3).

Figure 3: Flat front with only three swallowtails.
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Remark 5. From (3.5) and (3.6), we observe that θ = −ω along I, if and only
if β(I) = a ∈ H3 and V : I −→ S3

1 is a regular analytic curve. In this case, the
Hopf differential Q = ωθ verifies

Q = −ωω = −θθ.

For the case of isolated singularities we obtain a new proof of the following
result in [8]:

Theorem 3.6. Let V : I −→ S3
1 ∩ {a}⊥ be a regular analytic curve satisfying

(V × V ′ × V ′′)(s) 6= 0, ∀s ∈ I.

Then there exists a unique flat front ψ, such that ψ(s, 0) = a is an isolated
singularity and η(s, 0) = V (s), for all s ∈ I.

Proof. It follows because the pair of initial data {a, V } determines a flat front
ψ, with

ψs(s, 0) = 0 = ηt(s, 0), ψt(s, 0) = −a× V (s)× V ′(s)

and

d

dt

∣∣∣
(s,0)

(−2ρ) =
d

dt

∣∣∣
(s,0)
〈ψs, ηs〉 = −〈ψt, ηss〉(s, 0) = ‖V × V ′ × V ′′‖(s) 6= 0.

4 Global Results

The aim of this section is to determine the global behavior of embedded
complete flat fronts such that any connected component of its singular set is
mapped on a hyperplane through the origin and those with only a finite number
of isolated singularities.

4.1 Embedded complete flat fronts with finitely many
isolated singularities.

In [2, 7] is proved the existence of embedded complete flat surfaces with
any finite number of isolated singularities, see Figure 4. The situation is totally
different for complete flat fronts, in fact from the generalized symmetry principle
one has, [8, Corollary 16], any flat front must be symmetric with respect to point
reflection in H3 through any isolated embedded singularity.
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Figure 4: Complete flat surfaces with isolated singularities

As immediate consequence we have

Theorem 4.1. Any embedded complete flat front whose singular set is a finite
number of isolated singularities must be rotational, see Figure 5.

Proof. An easy application of the Maximum Principle let us to see that any
embedded complete flat front with only one isolated singularity must be rota-
tional (another proof of this fact can be found in [7]). Consequently, it is enough
to prove that if a complete flat front ψ : Σ −→ H3 has two different isolated
singularities p1 and p2, then it has infinitely many isolated singularities.

In fact, having in mind that ψ(Σ) is symmetric with respect the reflections,
s1 and s2, in H3 through the points p1 and p2, respectively, we get that

s1(p2), s2(p1), s2 ◦ s1(p2), s1 ◦ s2(p1), s1 ◦ s2 ◦ s1(p2), · · ·

also are isolated singularities of the front.

Figure 5: Hourglass flat front
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4.2 Embedded complete flat fronts with a planar singular
set

We shall prove the following result:

Theorem 4.2. Let ψ : Σ −→ H3 be an embedded complete flat front with a
non-degenerate analytic singular set S ⊂ Σ such that ψ(S) lies in a hyperplane
through the origin of L4. Then ψ is a snowman rotational flat front (see Figure
6)

Figure 6: Snowman flat front.

First, we recall some well-known facts about the Beltrami-Klein model. The
standard Euclidean 3-space E3 may be realized as

E3 = {y ∈ L4 :< y, e >= 0}, e = (1, 0, 0, 0),

with the induced metric from L4 and the Beltrami-Klein model of the hyperbolic
3-space is given by the open unit ball B3 of E3 via the diffeomorphism

K : H3 −→ B3, K(x) := −x+ < x, e > e

< x, e >
. (4.1)

Geometrically, K = π ◦ Pe, where π : L4 −→ E3, is the usual vertical projection
π(x) = x+ < x, e > e and Pe : H3 −→ Πe is the central projection from the
origin onto the hyperplane Πe = {x ∈ L4 : < x, e >= −1}. Moreover, K
extends in a smooth way to the ideal boundary S2

∞, which is mapped onto the
spherical boundary of the ball.

Since the geodesics of the hyperboloid model are the intersection with planes
through the Minkowski origin, they are mapped into straight lines in B3, that
is, K is a geodesic map and it preserves convexity.

Thus, in the hypothesis of Theorem 4.2, K ◦ ψ(Σ) is locally convex (also in
the Euclidean sense) at every regular point.

Up to congruence in H3, we may assume that K◦ψ(S) ⊂ Π0 = {(y1, y2, y3) ∈
B3 : y3 = 0} and, from Corollary 3.4, K ◦ ψ(S) is a finite number of disjoint
convex Jordan curves in Π0. Moreover Π0 is the tangent plane K ◦ ψ(Σ) along
K ◦ ψ(S).
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Lemma 4.3. Consider Σ+ a connected component of {K ◦ ψ(Σ)} \ {K ◦ ψ(S)}.
Then Σ+ is an embedded complete surface lying on the boundary of a convex
body in B3 and its boundary, ∂Σ+, is a convex Jordan curve in Π0.

Proof. Let K ⊂ Σ be a compact containing S in its interior. Thanks to a

classical result of Huber, [10], Σ \
◦
K is conformally a compact Riemann surface

with compact boundary and finitely many points removed which are the ends
of ψ.

But ψ is an embedding, then each end has to be regular and asymptotic to
one of rotational type (see [6, 18]). Thus, the ends go to a finite number of
points in the boundary S2 of B3 and K ◦ ψ(Σ) is extends to these points as a
locally convex surface.

From Corollary 3.4, adding to Σ+ ∪ ∂Σ+ the ends and the planar bounded
regions determined by the convex Jordan curves of its boundary, we get a glob-
ally convex surface Σ̃+ homeomorphic to a sphere which lies in the boundary of
a convex body in B3 ∪ S2. Which concludes the proof.

Lemma 4.4. Σ+ is a rotational flat surface.

Proof. It is clear than Σ+ has at least one end, otherwise adding its reflexion
respect the plane Π0 we get a compact flat front without boundary, which is
impossible by Proposition 3.6 in [13].

Consider (ω+, θ+) the holomorphic data associated to Σ+ and denote by Σ+
∗

the corresponding flat surface with holomorphic data (−ω+, θ+), then Σ+
∗ has

the following properties:

1. From (3.5), (3.6), Remark 1, Remark 5 and Lemma 4.3, the boundary of
Σ+
∗ is a singular point a ∈ H3.

2. Having in mind that any embedded complete end is of rotational type, see
[6], any end of Σ+

∗ is also embedded and complete, moreover Σ+
∗ has the

same number of ends as Σ+.

In other words, Σ+
∗ ∪ {a} is a non compact complete flat surface with only one

isolated singularity. An easy application of the Maximum Principle says it must
be rotational and, consequently, Σ+ is also rotational.

Proof. (Theorem 4.2). It follows directly from Lemmas 4.3 and 4.4.

Flat fronts with a planar singular set also are symmetric. Actually, we have

Proposition 4.5. Any flat front containing an analytic singular curve lying in
a hyperbolic plane Π must be symmetric with respect to the plane Π in H3.

Proof. The proof can be done as application of the generalized symmetry prin-
ciple ( [8, Theorem 7]), we show here how it works.

Let ψ : Σ −→ H3 the flat front determined by the pair of initial data {β, V }
and assume β(I) ⊂ Π0 ≡ {x3 = 0}, that is,

β(s) = (β0(s), β1(s), β2(s), 0), V (s) = (0, 0, 0, 1), s ∈ I.
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From (3.2), the hyperbolic Gauss maps of ψ may be written as

G(z) =
β1 + iβ2

β0 − 1
(z), G∗(z) =

β1 + iβ2

β0 + 1
(z)

in Ωε = {z ∈ C : Re(z) ∈ I, −ε ≤ Im(z) ≤ ε}. Thus, from the Riemann-
Schwarz symmetry principle and (2.7), we have the following symmetry prop-
erties must be satisfy

G(z)G∗(z) = 1, ξ(z) =
ξ∗(z)
G∗(z)

, z ∈ Ωε, (4.2)

where
ξξ∗ = G−G∗.

From Theorem 2.1 and by a straightforward computation , we conclude ψ(Ωε)
is symmetric respect to the plane Π0 in H3.

Using this fact, and in a similar way to the proof of Theorem 4.1, we can
generalize the Theorem 4.2 as follows:

Theorem 4.6. Let ψ : Σ −→ H3 be an embedded complete flat front with a
non-degenerate analytic singular set S ⊂ Σ such that any connected component
of ψ(S) lies in a hyperplane through the origin of L4. Then ψ is a snowman
rotational flat front.

5 The correspondence with improper affine maps

It is well-known that flat fronts in H3 and definite improper affine maps
in R3 are related with the Hessian one equation. Actually, their conformal
representations can be obtained because one can solve this equation in terms of
holomorphic data, see [4, 6].

In fact, we have an interesting correspondence between flat fronts with a
prescribed curve β : I −→ H3 of singularities and improper affine maps with
the same kind of singularities.

In particular, from Theorem 3.1, if β is an analytic convex curve in H3

contained in the hyperbolic plane x3 = 0, we deduce the corresponding flat
front ψ, with ψ(s, 0) = β(s) and η(s, 0) = (0, 0, 0, 1), can be described by the
hyperbolic Gauss maps

G(z) =
β1 + iβ2

β0 − 1
(z) and G∗(z) =

β1 + iβ2

β0 + 1
(z), z = s+ it.

That is, ψ is determined by the holomorphic extension of β and it inherits
the symmetry properties described in (4.2). Moreover, from Section 2, the
holomorphic data θ and ω are given by

ω = −dG
ξ2
, θ =

dG∗
ξ2∗

, (5.1)
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and from (4.2) and (5.1), they must satisfy the following symmetry condition:

ω(z) = θ(z), z ∈ Ωε. (5.2)

Now, from [4, 14], we remind that for any holomorphic curve, (f, g) : Ω ⊆ C −→
C2, the data (ω = dg, θ = df) define a definite improper affine map Φ given by

Φ =
(
g + f,

|g|2 − |f |2

2
+ Re(

∫
gdf − fdg)

)
whose affine conormal map, N , and its affine metric, h, may be written as

N =
(
f − g, 1

)
, h := |ω|2 − |θ|2, (5.3)

respectively.
From the above, if ψ : Ωε −→ H3 is the flat front whose singular set contains

the analytic curve β : I −→ H3, β(I) ⊂ {x3 = 0}, then the holomorphic data
(ω, θ) satisfies (5.2) and, from (5.3), the affine conormal is constant along the
curve α(s) = Φ(s), s ∈ I, that is, α is also a planar curve in R3 which determines
uniquely the improper affine map (see [15]).

Example 5.1. The flat front determined by the analytic curve β : R −→ H3,
given by

β(s) = (a, b cos(s), b sin(s), 0), a ∈ R \ {0}, a2 − b2 = 1,

is a snowman (see Figure 6) and the corresponding improper affine map is ro-
tational (see Figure 7). It is determined by the curve:

α(s) =
b

a
(cos(as),− sin(as), 0).

Figure 7: Rotational improper affine map with cuspidal edges singularities.

Example 5.2. If the holomorphic data (ω, θ) satisfy∫
ω =

θ

ω
,

14



then, the flat front has three swallowtails, see Figure 3. The corresponding
improper affine map also have a singular set with three swallowtails, (see Figure
8), determined by the analytic curve:

α(s) =
(

cos(s) +
1
2

cos(2s), − sin(s) +
1
2

sin(2s),
1
6

cos(3s)
)

Figure 8: Improper affine map with three swallowtails
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