DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD DE GRANADA

Ecuaciones Diferenciales. Primer Parcial, 17-02-2005.

EJERCICIO 1. Se considera la ecuación diferencial

$$(x^4 - 3t^2)x' = -tx.$$

Se pide:

- i) Determina el valor de $\alpha \in \mathbb{R}$ para que el cambio de variable $x=y^{\alpha}$ trasforme la ecuación anterior en una ecuación homogénea.
- ii) Encuentra la solución que cumple x(1) = 1. ¿Dónde está definida dicha solución?

EJERCICIO 2. Demuestra el siguiente teorema de comparación de Sturm: "Dadas $p \in C^1(a, b)$ y $q_i \in C(a, b)$, i = 1, 2, con $q_1(t) < q_2(t)$, $\forall t \in (a, b)$, $-\infty \le a < b \le +\infty$, se consideran las ecuaciones

(1)
$$(p(t)x')' + q_1(t)x = 0,$$

(2)
$$(p(t)x')' + q_2(t)x = 0.$$

Entonces, entre cada dos ceros de una solución de la ecuación (1), se anula toda solución de la ecuación (2)."

EJERCICIO 3. Se considera la ecuación diferencial lineal

$$x' = \begin{pmatrix} -2 & 3 \\ 1 & -4 \end{pmatrix} x + \begin{pmatrix} \sin t \\ 0 \end{pmatrix}.$$

Se pide:

- i) Estudia la acotación y convergencia de la ecuación homogénea asociada y dibuja el correspondiente diagrama de fases.
- ii) Demuestra que la ecuación completa tiene una única solución 2π -periódica a la cual convergen el resto de las soluciones.

EJERCICIO 4. Se considera la ecuación de Chebyshev

$$(1-t^2)x'' - tx' + p^2x = 0, p \in \mathbb{R}.$$

Se pide:

- a) Clasifica sus puntos singulares.
- b) Decide, de forma razonada, si esta ecuación admite soluciones analíticas en $t_0 = 0$. En caso afirmativo, ¿qué se puede decir sobre el radio de convergencia de su serie de potencias?
- c) Determina para qué valores de $p \in \mathbb{R}$ la ecuación anterior admite como solución un polinomios de Chebyshev).
- d) Determina, previo rebajamiento de orden, la solución general de la ecuación para p=0.