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Abstract

The aim of this paper is to study the moduli space of solutions of the Dirichlet
problem associated to the equation of Monge-Ampère type, det

(
∂2f

∂xi∂xj

)
= 1, on

an exterior planar domain. We prove that this moduli space is either empty or
a differentiable manifold of dimension five.

1 Introduction

Some recent progresses in differential geometry and partial differential equations are
based on the theory of moduli spaces. In this context we remark the equation associated
to the minimal surfaces and the works of R. Böhme, F. Tomi, J. Tromba and B. White,
([BT], [TT], [W]), for compact minimal surfaces; and the study of J. Pérez and A. Ros
([PR]) for the non-compact case.

The aim of this paper is to study, in a similar way, the following unimodular Hessian
equation,

det

(
∂2f

∂xi∂xj

)
= 1 in Ω , (1)

where Ω is a planar domain and f is in the usual Hölder space C2,α(Ω). Without loss
of generality we shall consider only locally convex solutions of (1).
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This equation arises in the context of an affine differential geometric problem as the
equation of a parabolic affine sphere in the unimodular affine real 3-space (see [C], [CY]
and [LSZ]). Contrary to the case of smooth bounded domains, little is known about
solutions of (1) when the domain is unbounded. Here, we recall the famous result of
K. Jörgens which asserts that all solutions of (1) on Ω = R

2 are quadratic polynomials
(see [J]).

Recently, the authors proved in [FMM2] that the behaviour at infinity of a solution
of (1) depends on five real numbers which give the shape and the logarithmic growth
of the solution at infinity. This behaviour is presented in a brief way in Sect. 2.

In Sect. 3 we introduce the space of solutions of

det

(
∂2f

∂xi∂xj

)
= 1 in Ω , f|∂Ω = ϕ , (2)

when Ω is the exterior of a plane Jordan curve of class C∞ and ϕ ∈ C∞(∂Ω). By using
a transformation of Ω onto a bounded domain we show that a solution of (2) has a
singularity at the origin which is described by the five aforementioned real numbers,
then classical results for linear elliptic operators and the Implicit Function Theorem
are used in order to prove that the moduli space of solutions of (2) is either empty or a
5-dimensional differentiable manifold (consequently, the infinitesimal deformations of
the solutions are described by the variation of the numbers describing the singularity
at the origin).

2 Preliminaries

Throughout we use standard notation of complex analysis (see [A]). In particular we
use � and � to denote real and imaginary part, respectively. As we mentioned in the
introduction when Ω is the exterior of a plane Jordan curve γ, it is possible to give a
good description of the solutions of (1) at infinity. The purpose of this section is to
present this description. We refer the reader to [FMM1] and [FMM2] for more details.

Let f : Ω−→R be a solution of (1) on Ω and let Mf = {(x1, x2, f(x1, x2)) | (x1, x2) ∈
Ω} be its graph. Then it is known (see [C], [CY] and [LSZ]) that Mf is a parabolic
affine sphere with affine normal vector ξ = (0, 0, 1) and affine metric given by

ds2 =
2∑

i,j=1

∂2f

∂xi∂xj
dxidxj . (3)

Moreover, the transformation Lf : Ω−→C given by

z = Lf (w) = w + 2
∂f

∂w
, (4)
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with w = x1 + ix2, is a global diffeomorphism from Ω̂ ⊂ Ω onto ΩR ( the exterior
of a disk of radius R). This transformation allows to define a holomorphic function

F : Lf (Ω̂)−→C as

F (z) = w − 2
∂f

∂w
, (5)

where z = Lf(w). Furthermore, this function can be written on ΩR as

F (z) = µz + ν +

∞∑
n=1

an

zn
, (6)

where µ, ν, an ∈ C for n ≥ 2, a1 ∈ R and |µ| < 1. From (4) and (5), w and the
derivative of f are

w =
1

2

(
z + F (z)

)
,

∂f

∂w
=

1

4
(z − F (z)) . (7)

Thus, the original function f can be recovered as

f(w) =
1

8
|z|2 − 1

8
|F (z)|2 +

1

4
�(zF (z)) − 1

2
�

∫ z

z0

F (ζ)dζ . (8)

By using (4), (5), (6) and (8) we obtain

f(w) =
1

2

(
x1

∂f

∂x1

+ x2
∂f

∂x2

)
− ν1

4

(
x1 +

∂f

∂x1

)
+

ν2

4

(
x2 +

∂f

∂x2

)
− (9)

− a1

4
log(|z|2) + O(1) ,

where ν = ν1 + iν2. The expression O(|w|n) will be used to indicate a term which is
bounded in absolute value by a constant times |w|n for |w| large. Since lim|z|→∞(F (z)−
µz) = ν, from (4) and (5) one has,

∂f

∂x1
=

1

1 − |µ|2{(1 + |µ|2 − 2µ1)x1 + 2µ2x2 + a − (1 − µ1)R1 + µ2R2}, (10)

∂f

∂x2
=

1

1 − |µ|2{(1 + |µ|2 + 2µ1)x2 + 2µ2x1 + b + (1 + µ1)R2 − µ2R1}, (11)

where µ = µ1+iµ2, a = −ν1+µ1ν1+µ2ν2, b = ν2−µ2ν1+µ1ν2 and R1 = �(F (z)−µz−ν)
and R2 = �(F (z) − µz − ν). Moreover, since F is a holomorphic function of z, from
(7) one has,

f11 =
(1 − r1)

2 + r2
2

1 − r2
1 − r2

2

, f22 =
(1 + r1)

2 + r2
2

1 − r2
1 − r2

2

, f12 =
2r2

1 − r2
1 − r2

2

, (12)
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where r1 = �
(

∂F
∂z

)
, r2 = �

(
∂F
∂z

)
and fij = ∂2f

∂xi∂xj
.

Finally, with the above notations and using (9), (10) and (11) we obtain that f is
given, on the exterior of some plane Jordan curve, by the expression

f(w) = E(f)(w) − a1

4
log(|z|2) + O(1) , (13)

where

E(f)(w) =
1

2(1 − |µ|2)
{(

1 + |µ|2 − 2µ1

)
x2

1 +
(
1 + |µ|2 + 2µ1

)
x2

2

}
+ (14)

+
1

1 − |µ|2

{
2µ2x1x2 + ax1 + bx2 +

ν2b − ν1a

4

}
.

Definition 1 When k is a large positive number, from (13) and (14), the ellipse Ek ≡
E (f) (w) = k , gives the shape of Mf at infinity. The ellipse Ek will be called the
ellipse at infinity associated to f .

The real number a1 that appears in the expression (13) is known as the logarithmic
growth rate of the function f and it will be denoted by log(f). One can observe that
log(f) indicates how much the graph of f moves away from the elliptic paraboloid.

As Lf is known as the transformation of Lewy (see [S], pp. 167) , the function F
given by (5) will be called the Lewy function of f .

3 The space of solutions

In this section we shall study the moduli space of solutions of (2) in C2,α(Ω), when Ω
is the exterior of a plane Jordan curve γ of class C∞ and ϕ ∈ C∞(∂Ω). Clearly, we can
suppose, up a translation, that the origin is not in Ω ∪ γ.

Firstly, by using regularity results about Monge-Ampère equation (see [Au], [GT])
we can observe that if f is a C2,α(Ω) solution of (2), then f ∈ C∞(Ω). Therefore,
throughout we denote by M the set of solutions of (2) of class C∞. Moreover, on M
we consider the C∞-compact topology. The sequential convergence in this topology is
the uniform convergence of the function and all of its derivatives on each compact.

Consider f ∈ M and let Lf and F be the Lewy transformation and the Lewy
function associated to f . From (6), F can be written as

F (z) = µz + ν +

∞∑
n=1

an

zn
,

on the exterior of a disk, with the same notations as before. Consider now the uni-
modular affine transformation Aµ,ν : R

2−→R
2 given by

Aµ,ν(x1, x2) = (1 − |µ|2)− 1
2 ((1 − µ1)x1 + µ2x2 − ν1, µ2x1 + (1 + µ1)x2 + ν2) , (15)
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where (x1, x2) ∈ R
2, µ = µ1 + iµ2 and ν = ν1 + iν2. Then, there exist positive

real numbers R1 and R2 (depending on µ and ν) with R1 < R2 and an embedding
Lµ,ν : R

2−→R
2 such that

Lµ,ν =

{
Aµ,ν on ΩR2 = {(x1, x2) ∈ R

2 | x2
1 + x2

2 > R2
2} ,

Id on BR1(0) ,

where we denote by Id the identity transformation on R
2 and by BR1(0) the disk

of radius R1 and center 0 in R
2. We take R1 and R2 large enough in order to get

∂Ω ⊆ BR1(0) and BR1(0) ⊂ Int(Aµ,ν(∂BR2(0)). Thus, we have Lµ,ν(Ω) = Ω. Let T
be the inversion, namely, T (w) = 1

w
. We label ζ = (T ◦ Lµ,ν)(w) the new coordinate

and B the simply connected bounded domain in C given by B = T (Ω) ∪ {0}. From
(4), (10) and (11), we have |z|2 = r−2t(ζ) for large |z|, where r = |ζ| and t is a non

vanishing regular function on B. Then from (13) and (14), f̃ = f ◦ Lµ,ν
−1 ◦ T can be

written as

f̃(ζ) =
1

2r2
+

a1

2
log(r) + h(ζ) , (16)

for some function h ∈ C∞(B).
For any planar domain D and any function β ∈ C∞(∂D) we are going to label

Ck,α
β (D) = {f ∈ Ck,α(D)| f = β in ∂D} ,

Ck,α
β (D \ {0}) = {f ∈ Ck,α(D \ {0})| f = β in ∂D} ,

C∞
β (D) = {f ∈ C∞(D)| f = β in ∂D} ,

C∞
β (D \ {0}) = {f ∈ C∞(D \ {0})| f = β in ∂D}.

For the former domain B, there exist a positive real number ε and a radial function
δ ∈ C∞(B), such that Bε(0) ⊂ B, δ(r) = 0, for 0 ≤ r ≤ ε

2
, and δ(r) = 1, for r ≥ ε.

Moreover, we shall denote by Ua the function Ua ∈ C2,α
0 (B \ {0}) given by

Ua(ζ) = a
(1 − δ(r))

2
log(r) , (17)

for a ∈ R. Taking (16) and the above definitions into account, f̃ has the following
expression on B

f̃(ζ) =
1 − δ(r)

2r2
+ Ua1(ζ) + h̃(ζ) , (18)

where h̃ ∈ C∞
ϕ (B). If for a ∈ R we denote

Φa(ζ) =
1

2r2
+

a

2
log(r) , (19)
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then f̃ can be also expressed as

f̃(ζ) = (1 − δ(r))Φa1(ζ) + h̃(ζ) . (20)

Notice that in this expression δ · Φa1 ∈ C∞(B) by the properties of δ.
By taking g∗

f , the pull-back of the affine metric ds2 given in (3) by the transformation

Lµ,ν
−1 ◦T , we obtain a Riemannian metric on B \ {0}. Furthermore, when |w| is large,

from (6), (7) and (12), we have

f11 =
1 + |µ|2 − 2µ1

1 − |µ|2 + O(|w|−1) , f22 =
1 + |µ|2 + 2µ1

1 − |µ|2 + O(|w|−1),

f12 =
2µ2

1 − |µ|2 + O(|w|−1).

From here it is easy to see that gf = r4g∗
f is a well-defined Riemannian metric on B.

Now, we consider for functions f ∈ C2,α(Ω), the Hessian operator given by Hess(f) =
det (∇2f) − 1 , where ∇2f denotes the Hessian matrix associated to the metric |dw|2.
Clearly, this is an elliptic operator on the set M. This allows us to define an elliptic
operator acting on functions f̃ ∈ C2,α(B \ {0}) given by

H(f̃ ) = Hess(f̃ ◦ T ) ◦ T = r6
{
r2 det

(
∇2

0f̃
)
− 2

〈
ζ ,∇0f̃

〉 (
D11f̃ − D22f̃

)
−(21)

− 4
(
uD2f̃ + vD1f̃

)
D12f̃ − 4

∣∣∣∣∣∣∇0f̃
∣∣∣∣∣∣2} − 1 ,

where ∇2
0f̃ and ∇0f̃ denote the Hessian matrix and the gradient associated to the

metric |dζ|2, respectively; ζ = u + iv and D1f̃ = ∂f̃
∂u

, D2f̃ = ∂f̃
∂v

, D11f̃ = ∂2f̃
∂u∂u

, D12f̃ =
∂2f̃
∂u∂v

and D22f̃ = ∂2f̃
∂v∂v

are the corresponding derivatives of f̃ .
A straight calculation using (21) gives the following result,

Lemma 1 Let a ∈ R, and for k ≥ 2 let f̃ ∈ Ck,α(B \ {0}) be a function of the type

f̃ = Φa + Ψ + h̃ where h̃ ∈ Ck,α
ϕ (B) and Ψ ∈ C∞(B) depend analytically on a. Then

1
r4 H is a Ck−2,α(B)-valued operator of the type

1

r4
H

(
f̃

)
= r4 det

(
∇2

0h̃
)

+

2∑
i,j=1

Aij

(
ζ, a,∇0h̃

)
Dijh̃ + B

(
ζ, a,∇0h̃

)
,

which depends analytically on a ∈ R,∇0h̃ and ∇2
0h̃.

As we announced we have the following result,
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Theorem 1 Let M be the set of solutions of (2). If M is not empty, then it is a
5-dimensional differentiable manifold.

Proof: We can consider the map t : B1(0) × C × R × C2,α
ϕ (B)−→C2,α

ϕ (Ω) , given by

t(µ, ν, a, h̃) = f̃a,h ◦T ◦Lµ,ν where f̃a,h(ζ) = (1− δ(r))Φa(ζ)+ h̃(ζ). With this notation
we define, for each k ≥ 5, the map

H : B1(0) × C × R × Ck,α
ϕ (B)−→Ck−2,α(B) ,

given by

H(µ, ν, a, h̃)(ζ) =
1

r4
Hess(f)(w) ,

where f = t(µ, ν, a, h̃) and w = (Lµ,ν
−1 ◦ T )(ζ). It is easy to prove that H is a

differentiable map of {µ, ν, a, h̃}. Furthermore, H(µ, ν, a, h̃) ∈ Ck−2,α(B \ {0}). Then
it suffices to prove H is well-defined in a neighbourhood of ζ = 0. But near ζ = 0 we
have Lµ,ν

−1 ◦ T = A−1
µ,ν ◦ T and since Aµ,ν is an unimodular affine transformation we

have

H(µ, ν, a, h̃)(ζ) =
1

r4

(
det

(
∇2(f̃a,h ◦ T )

)
(T (ζ)) − 1

)
=

1

r4
H

(
f̃a,h

)
(ζ) .

Thus, using the Lemma 1, we obtain that H is well-defined.
We shall denote by N the set N = H−1(0) (observe that this set is the same for all

k). In order to prove that N is a submanifold of B1(0)×C×R×Ck,α
ϕ (B) we shall compute

the differential of H at a point (µ, ν, a, h̃) ∈ N . Given (
µ, 
ν,
a,
h) ∈ C
2 × R × Ck,α

0 (B),

let β be the curve β(t) = (µ, ν, a, h̃) + t(
µ, 
ν,
a,
h), with t ∈ [−t0, t0] and t0 a positive
real number, then we have

d

dt

∣∣∣∣
t=0

(H ◦ β)(t)(ζ) =
1

r4

d

dt

∣∣∣∣
t=0

det
(
∇2f(t)

)
(w(t)) ,

where we denote by w(t) = (L−1
µ(t),ν(t) ◦ T )(ζ), f(t) = t(β(t)) = f̃(t) ◦ T ◦ Lµ(t),ν(t),

f̃(t) = (1−δ)Φa+t�a + h̃+ t
h, µ(t) = µ+ t
µ and ν(t) = ν + t
ν. We observe that f(0) = f

and f̃(0) = f̃a,h. Since the function f(t) is a differentiable function of t we have the
following expression for it

f(t) = f + tf̂ + t2f t , (22)

where f̂ = d
dt

∣∣
t=0

f(t) and f t ∈ Ck−2,α(B). Then, using (17), (19), (20) and (22), the
differential of H is

dH(µ,ν,a,h)(
µ, 
ν,
a,
h)(ζ) =
1

r4

d

dt

∣∣∣∣
t=0

det
(
∇2

(
f + tf̂ + t2f t

))
(w(t)) =
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=
1

r4

d

dt

∣∣∣∣
t=0

(
det(∇2f) + t∆f f̂ + t2lt

)
(w(t)) =

=
1

r4

(
∆f f̂

)
(w) = ∆f (f̂ ◦ Lµ,ν

−1 ◦ T )(ζ) ,

where ∆f and ∆f denote the Laplace-Beltrami operator associated to the affine met-
ric ds2 of Mf given by (3) and the Riemannian metric gf , respectively, and lt is a
differentiable function of t.

Furthermore, f̃(t) can be written as

f̃(t) = f̃a,h + t 
f , (23)

where 
f = U�a + 
h. Hence we obtain the following expression for the differential of H

dH(µ,ν,a,h)(
µ, 
ν,
a,
h) = ∆f(
f + Γ
(�µ,�ν)

(µ,ν,a,h)
) , (24)

where Γ
(�µ,�ν)

(µ,ν,a,h)
= d

dt

∣∣
t=0

(f̃a,h ◦ T ◦ Lµ(t),ν(t)) ◦ Lµ,ν
−1 ◦ T .

From (24) we have that ∆f(U�a + Γ
(�µ,�ν)

(µ,ν,a,h)
) ∈ Ck−2,α(B). Then, given φ ∈ Ck−2,α(B),

we know, (see [GT]), that there exists a unique function 
h ∈ Ck,α(B) such that{
∆f


h = −∆f(U�a + Γ
(�µ,�ν)

(µ,ν,a,h)
) + φ on B ,


h = 0 on ∂B ,

and dH(µ,ν,a,h) is a surjective map. Moreover, if we denote by 
h
(�µ,�ν,�a)

(µ,ν,a,h)
the unique

solution of the above problem for φ = 0, then

Ker
(
dH(µ,ν,a,h)

)
=

{(

µ, 
ν,
a,
h

(�µ,�ν,�a)

(µ,ν,a,h)

)
| (
µ, 
ν,
a) ∈ C

2 × R

}
(25)

and thereby Ker
(
dH(µ,ν,a,h)

)
splits and so H is a submersion on N .

If N is not empty, from the Implicit Function Theorem, we have that N is a 5-
dimensional differentiable submanifold of B1(0) × C × R × Ck,α

ϕ (B), for each k ≥ 5,

whose tangent space at a point (µ, ν, a, h̃) ∈ N is given by (25). Furthermore, by using
the Maximum Principle at infinity (see [FMM2]) and (25), it is not difficult to prove

that the map Ψ : N−→R
5 given by Ψ(µ, ν, a, h̃) = (µ, ν, a) is an embedding for each

of the former manifold structures on N . Then any two of them are diffeomorphic and
the topology associated to these structures is the topology that N has as a subset of
B1(0) × C × R × C∞

ϕ (B), where on C∞
ϕ (B) we consider the C∞ topology, that is, the

topology of the uniform convergence of the function and all of its derivatives. Thereby,
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if we consider on M = t(N ) the topology T such as the map t is an homeomorphism,
we have that (M, T ) is a 5-dimensional differentiable manifold. In the following result
we shall prove that the topology T and the C∞-compact topology are equivalent on M
and thus the proof of the Theorem 1 will be concluded.

Proposition 1 Let {fn} ⊂ M and f0 ∈ M, then the following assertions are equiva-
lent:
a) {fn} converges to f0 in the topology T .
b) {fn} converges to f0 in the C∞-compact topology.

Proof : It is clear that a) implies b).
Conversely, we assume the assertion b) holds. The functions fn can be written as

fn = t(µn, νn, an, h̃n) , for n ≥ 0. We denote by zn = Lfn(w) and by Fn the Lewy
function of fn given in (4) and (5) for n ≥ 0. From expression (6) we can compute the
numbers {µn, νn, an} by means of integrals of the function Fn along a suitable curve,
for n ≥ 0. Using (4) and (5) again, these integrals can be given in terms of ∂fn

∂xi
and

∂2fn

∂xi∂xj
, for i, j = 1, 2. Since {fn} converges to f0 in Ck on each compact of Ω for all

k ≥ 0, we have that
{

∂fn

∂xi

}
and

{
∂2fn

∂xi∂xj

}
converge to ∂f0

∂xi
and ∂2f0

∂xi∂xj
, respectively in Ck

on each compact of Ω for all k ≥ 0 and i, j = 1, 2. Hence {µn} −→ µ0, {νn} −→ ν0

and {an} −→ a0.
Now we define, for k ≥ 5, the map

G : B1(0) × C × R × Ck,α
ϕ (B) −→ B1(0) × C × R × Ck−2,α(B) ,

given by

G(µ, ν, a, h̃) =
(
µ, ν, a,H(µ, ν, a, h̃)

)
.

As before G is a differentiable map on its variables {µ, ν, a, h̃} and taking (24) into
account, its differential is given by

dG(µ,ν,a,h)(
µ, 
ν,
a,
h) =
(

µ, 
ν,
a, dH(µ,ν,a,h)(
µ, 
ν,
a,
h)

)
=

=
(

µ, 
ν,
a, ∆f

(

h + U�a + Γ

(�µ,�ν)

(µ,ν,a,h)

))
,

with the former notations. Hence, it is easy to check that G is a local diffeomorphism
at each point (µ, ν, a, h̃) ∈ N . From the convergence of the sequences {µn}, {νn}
and {an}, we have that G(µn, νn, an, h̃n) = (µn, νn, an, 0) lies in a neighbourhood W
of (µ0, ν0, a0, 0) in B1(0) × C × R × Ck−2,α(B) where the map G is a diffeomorphism.
Moreover, from the Maximum Principle at infinity for solutions of (2) (see [FMM2]),

there exists only one pre-image of (µn, νn, an, 0). Therefore (µn, νn, an, h̃n) ∈ G−1(W ),

and then {h̃n} converges to h̃0 in Ck for all k ≥ 0. Thus, one obtains a). �
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