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Abstract

In this paper we give a uniqueness and existence result for minimal discs with some non-
compact, U-shaped boundaries in a slab of R3.

1 Introduction and preliminaries

Minimal surfaces containing straight lines have special properties that distinguish them from the rest
of minimal surfaces. In this article, we emphasize Schwarz’s reflection principle. Examples of this type
were well studied during the last two centuries.

Recently, in [11], F.J. López and F. Wei obtained an existence and uniqueness theorem for properly
immersed minimal discs whose boundaries consist of two disjoint straight lines and a segment which
meets the lines orthogonally.

Following this, López and the second author of this paper have constructed a deformation of López-
Wei discs which consists of properly embedded minimal discs bounded by straight lines and contained
in a wedge of a slab (see [9], [10]). Essentially, the deformation modifies the angle formed by the
two halfplanes containing the connected components of the boundary. The surfaces that appear in
this deformation for angle zero correspond to some Jenkins-Serrin graphs (see [6]). The López-Mart́ın
examples have nice geometric properties such as the convex hull property. These examples are a
solution to Plateau’s problem for a polygonal non-compact boundary consisting of a double U shaped
contour (see Fig. 1). These surfaces can be used as a new type of barrier for the maximum principle
application ([8, 9]). Examples of this kind are also closely related to minimal surfaces with helicoidal
ends ([15]).

In this paper, we obtain all the solutions to the aforementioned Plateau problem with non-compact
polygonal boundary, which are contained in the slab, but not lie necessarily in the convex hull of their
boundary (see Fig. 2). To be more precise, we deal with the study of properly embedded minimal
surfaces whose boundary Γθ d consists of the following configuration of straight lines:

Fix θ ∈ [0, π] and d ≥ 0, and consider two half-lines r+1 and r−1 in R3, meeting at an angle of θ.
If θ = 0 this means that the straight lines are parallel. Let q+1 and q−1 be two points in r+1 and r−1 ,
respectively, such that they are symmetric with respect the inner bisector of this half-lines. We choose
q+1 and q−1 in such a way that either q+1 = q−1 or the half-lines �+1 and �−1 on r+1 and r−1 starting at q+1
and q−1 , respectively, do not intersect. Write d = dist(q+1 , q

−
1 ).

Let Π1 be the plane determined by �+1 and �−1 , Π2 a plane parallel and distinct to Π1 and let S
denote the slab determinated by Π1 and Π2. Let �+2 and �−2 be the orthogonal projections to Π2 of �+1
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and �−1 , respectively. Denote q+2 (resp. q−2 ) as the orthogonal projection to Π2 of q+1 (resp. q−1 ), and
label �+0 (resp. �−0 ) as the segment [q+1 , q

+
2 ] (resp. [q−1 , q

−
2 ]). Finally, we define

Γ+
θ d =

2⋃
i=0

(
�+i
)
, Γ−

θ d =
2⋃

i=0

(
�−i
)
, Γθ d = Γ+

θ d ∪ Γ−
θ d .

We consider the following generalized Plateau problem:

Figure 1: The curve Γθ d.

Problem 1 Determine a properly immersed minimal surface X : M → R3 satisfying:

(1) M is homeomorphic to the closed unit disc D minus two boundary points E1 and E2, that we call
the ends of M .

(2) X(∂(M)) = Γθ d.

(3) If d > 0, X is an embedding.

(4) In the limit case �+0 = �−0 (i.e., d = 0), the maps X |M−γ+ and X |M−γ− are injective, where γ+

and γ− are the two connected components of ∂(M).

(5) X(M) lies in a slab that contains S.

Observe that if (5) is satisfied then it is easy to prove (see Lemma 2.1 in [13]) that X(M) lies in the
slab S. Then the condition (5) is equivalent to

(5) X(M) lies in S.

We have proved the following:

Main Theorem

If 0 < θ < π there exist dθ and d′θ with 0 < d′θ < dθ such that:

(i) If d > dθ there are no solutions of Problem 1.

(ii) If d = dθ, Problem 1 has a unique solution.

(iii) If d ∈]d′θ, dθ[ or d = 0, Problem 1 has two solutions.

(iv) If d = d′θ, Problem 1 has three solutions.

(v) If d ∈]0, d′θ[, Problem 1 has four solutions.
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If θ = π there exist dπ with 0 < dπ such that:

(i) If d > dπ there are no solutions of Problem 1.

(ii) If d = 0 or d = dπ, Problem 1 has a unique solution.

(iii) If d ∈]0, dπ[, Problem 1 has two solutions.

If θ = 0 there exist d′0 with 0 < d′0 < dist(Π1,Π2) such that:

(i) If d ≥ dist(Π1,Π2) there are no solutions of Problem 1.

(ii) If d = 0 or d ∈]d′0, dist(Π1,Π2)[, Problem 1 has a unique solution.

(iii) If d = d′0, Problem 1 has two solutions.

(iv) If d ∈]0, d′0[, Problem 1 has three solutions.

López and Wei proved in [11] that there exists a unique solution of Problem 1 when θ = π and d = 0.
Therefore, we always omit this case in our discussions.

Figure 2: The four solutions in case θ = π
2 , d = dist(Π1,Π2)

2 . The first and second one on the left
corresponds to López-Mart́ın examples.

The aim of this paper is to prove the uniqueness and existence of the solutions stated in the main
theorem. The paper is set out as follows:

In Section 2, we obtain the uniqueness result stated in the above theorem. For the sake of clarity
we divide the proof in several subsections. In the first one, we shall see that if M is a solution of our
Plateau problem then M is conformally equivalent to a twice punctured closed disc with piecewise
analytic boundary and its meromorphic data extend to the closed disc. Among the results obtained in
this subsection, we emphasize the following proposition:
Proposition 1 Assume X : M −→ R3 is a solution of Problem 1 for 0 ≤ θ < π and denote by E(Γθ d)
the convex hull of Γθ d. Then X(M) lies either in E(Γθ d) or in (S \ E(Γθ d)) ∪ Γθ d. If θ = π, then
X(M) lies in one of the half-slabs determinated by the strip E(Γπ d).

Roughly speaking, the above proposition asserts that if 0 ≤ θ < π, then the solutions of our
problem lie either in the interior of the convex hull of the boundary or in the exterior of it. Subsection
2.2 is devoted to proving that M inherits the horizontal symmetry of its boundary and also the
vertical symmetry in case d = 0. Finally, in Subsection 2.3, taking into account the preceding steps,
we determine a model of the complex structure and Weierstrass representation of any solution of
Plateau’s problem above. As a consequence, we obtain that, in the general case, a solution of our
Plateau problem also inherits the vertical symmetry of its boundary.

The existence part of the main theorem can be found in Section 3. We prove that the Weierstrass
data obtained in Sect. 2 really correspond to solutions of our problem.
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As we mentioned before, López-Mart́ın examples can be used as barriers in order to prove non
existence results for minimal surfaces with planar boundaries in a wedge of a slab. Furthermore, they
extended the family of minimal surfaces satisfying the convex hull property. To state these results
we need some notation. Define L = {(0, 0, t) ∣∣ − 1

2 < t < 1
2} and W = {(x1, x2, x3) ∈ R3

∣∣
− 1

2 ≤ x3 ≤ 1
2}. For θ ∈ [0, π], we also write Wθ = L ∪ {(x1, x2, x3) ∈W \ L ∣∣ Arg((x1, x2)) ∈ [0, θ]

}
and Σθ = L ∪ {(x1, x2, x3) ∈Wπ \ L ∣∣ Arg((x1, x2)) = θ

}
. Using this notation López and the second

author have proved the following:

Theorem 1 ([10]) Let M be a connected properly immersed minimal surface in a wedge W2π−ε for
some 0 < ε < 2π. Then one has:

(i) If ∂(M) ⊂ Σ0, then M is a planar region in Σ0.

(ii) If ∂(M) ⊂Wθ, for θ ∈]0, π[, then M lies in the convex hull of its boundary.

Finally, we would like to mention that the Main Theorem and Proposition 1 are announced in the
proccedings of the conference Differential Geometry Valencia 2001 ([5]).

Acknowledgements. We would like to thank professor F.J. López for helpful conversations.

2 Conformal structure and Weierstrass representation

As we mentioned before, this section is devoted to study the underlying complex structure and Weier-
strass data of the solutions of our problem.

Throughout this paper (x1, x2, x3) denote a set of Cartesian coordinates such that:

• �+0 and �−0 have the direction of x3-axis

• {x3 = 1
2} and {x3 = − 1

2} are the equations of planes Π1 and Π2, respectively

• the origen is the middle point between q+
1 +q+

2
2 and q−

1 +q−
2

2

• the x2-axis is the inner bisector of the orthogonal projection of �+i and �−i to the plane x3 = 0,
i = 1, 2, and

• Γ+
θ d ⊂ {x1 ≥ 0}.

Along this section, X : M −→ R3 denote a proper conformal minimal immersion satisfying the
conditions (1)-(5) of Problem 1. For the sake of simplicity, we use Γ, Γ+ and Γ− instead of Γθ d,
Γ+

θ d and Γ−
θ d. Taking into account that X(M) ⊂ S and the maximum principle, we deduce that

Πi ∩X(M) ⊂ Πi ∩ Γ, for i = 1, 2.
As we announced, we shall divide the study of conformal structure in several subsections.

2.1 Conformal type of M .

The conformal type of M can be easily determined using a global result on conformal structure of
properly immersed minimal surfaces by P. Collin, R. Kusner, W.H. Meeks and H. Rosenberg (see [4]).
From Theorem 3.1 of [4] we obtain that M is parabolic and hence, taking into account the topological
type of M , M is conformally equivalent to the closed unit disc D minus two boundary points E1 and
E2, where the biholomorphism extends piecewise analytically to the boundary.

Next, we prove that the Gauss map and Weierstrass data extend continously to the ends. To obtain
this, we need some additional results.

Let U(Ei), i = 1, 2, be two open disjoint neighbourhoods of the ends of M and let Ca denote the
catenoid given by the equation x2

1 +x2
2 = a2 cosh2

(
x3
a

)
, where a ∈ R+. Define σa = X−1(X(M)∩Ca),

for a > 0. With this notation we shall prove the following:
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Lemma 1 There exists a0 > 0 such that for a ≥ a0, σa = σ1
a ∪ σ2

a, where σ1
a and σ2

a are two disjoint
simple compact analytic curves such that σi

a ⊂ U(Ei), for i = 1, 2.

Proof : Clearly, since X(M) ∩ Ca is compact and X is proper, we have that σa is compact for a > 0.
Furthermore, σa is a set of properly immersed analytic lines, because it is the intersection of distinct
minimal surfaces. Denote by Int(Ca) and Ext(Ca), the interior and exterior connected component of
R3 \ Ca, respectively.

Note that we can consider a1 sufficiently large to insure the following: �+0 ∪ �−0 ⊂ Int(Ca) and
S ∩ Int(Ca) ⊂ S ∩ Int(Ca′) if a1 ≤ a ≤ a′. As Ca and X(M) are transverse along

⋃2
i=1 �

+
i ∪ �−i , for

a ≥ a1, we can assert that only one curve lying in σa approaches to each one of the four points in
σa ∩ ∂(M).

Moreover, since σa1 is compact, we can find U ′(Ei), connected neigbourhoods of Ei such that
U ′(Ei) ⊂ U(Ei) and X(U ′(Ei)) ⊂ Ext(Ca1). Consider now a0 > a1 such that σa0 ⊂ U ′(E1) ∪ U ′(E2).

Therefore, if a ≥ a0 we deduce that σa = σ1
a ∪ σ2

a, with σi
a ⊂ U ′(Ei), i = 1, 2 and σ1

a ∩ σ2
a = ∅.

Now, we must prove that σi
a are simple curves for i = 1, 2. Suppose that there exists a disc Ω in

U ′(Ei) bounded by an arc of σi
a. In this case, either X(Ω) ⊂ Ext(Ca) or X(Ω) ⊂ Int(Ca). In the

first case, we have that X(Ω) ⊂ Ext(Ca) ∩ Int(Ca2), for some a ≤ a2. Hence, using the family of
catenoids {Ct}a≤t≤a2 and the maximum principle, we obtain that X(Ω) is contained in the catenoid
Ca, which is contrary to our assumptions. Moreover, since a0 ≤ a we can assert that X(Ω) ⊂ Ext(Ca1).
Consequently, if X(Ω) ⊂ Int(Ca) we may consider the family of catenoids {Ct}a1≤t≤a. The maximum
principle gives again a contradiction. �

Label γ+
i = X−1(Γ+

i ) and γ−i = X−1(Γ−
i ), for i = 1, 2. Consider also γ+

0 = X−1(�+0 ∪ �−0 ) ∩ γ+ and
γ−0 = X−1(�+0 ∪ �−0 ) ∩ γ−.

Concerning the boundary behaviour we have, up to relabellings, three possibilities:

case 1.- X(γ+) = Γ+, X(γ−) = Γ− and γ+
i ∪ γ−i diverges to Ei, for i = 1, 2 (see Fig. 3.(1)).

case 2.- X(γ+) = Γ+, X(γ−) = Γ−, γ+
1 ∪ γ−2 diverges to E1 and γ+

2 ∪ γ−1 diverges to E2 (see Fig.
3.(2)).

case 3.- When d = 0 we have also the case X(γ+) = �+1 ∪ �0 ∪ �−2 , X(γ−) = �−1 ∪ �0 ∪ �+2 and γ+
i ∪ γ−i

diverges to Ei, for i = 1, 2, where �0 = �+0 = �−0 (see Fig. 3.(3)).

Figure 3:

Now, we shall prove that if d = 0 then the case 2 and case 3 do not occur.

Lemma 2 Assume d = 0. Then the boundary of X : M −→ R3 is as in case 1.
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Proof : Note that if d = 0 and the boundary is either as in case 2 or as in case 3, X(M) contains
a Möbius strip. Let us define tρ as the translation of vector (0, 0, ρ) and consider N the topological
surface of R3 given by N =

⋃
n∈Z

tn(X(M)). Since X(M) ⊂ S we have that N is a connected embedded

topological surface in R3. A well-known topological result asserts that then N must be orientable, but
this is absurd because N contains Möbius strips. �

Denote 	a2 = (0, 1, 0). Observe that 	a2 is the unitary vector in the direction of the inner bisector of �+2
and �−2 pointing to E(Γ). At this point we can prove:

Proposition 1 If 0 ≤ θ < π, then X(M) lies either in E(Γ) or in (S \E(Γ))∪Γ. If θ = π, then X(M)
lies in one of the half-slabs determinated by the strip E(Γ).

Proof : Assume 0 ≤ θ < π. In accordance to Lemma 2 we have that the boundary behaviour is either as
in case 1 or as in case 2. Consider β = X−1(X(M)∩{x2 = 0}). Since β is a nodal set of an harmonic
function we have that β is a set of properly immersed analytic lines. Using the maximum principle we
obtain that there are no compact connected regions of M bounded by curves in β. Furthermore, as
we are assuming 0 ≤ θ < π, the theorem of the order of contact (see [12, §437]) gives us that there are
no curves in β approaching to either γ+

i or γ−i , for i = 1, 2. Now, we consider the following half-strips

B+ = {(x1, 0, x3) | x1 ≥ d
2 ,

−1
2 ≤ x3 ≤ 1

2} , B− = {(x1, 0, x3) | x1 ≤ −d
2 ,

−1
2 ≤ x3 ≤ 1

2} .

First, we shall prove that if there exists a curve in β starting at either γ+
0 or γ−0 and diverging

to one end, then there are no curves starting at the same vertical segment and diverging to the same
end. Assume that β′ and β′′ are two curves starting at γ+

0 and diverging to E1. The other cases can
be treated in the same way. Clearly, if d > 0 we have X(β′) ∪ X(β′′) ⊂ B+. Suppose that d = 0
and X(β′) and X(β′′) are contained in different half-strips. Then we can consider, taking a piece of
γ+
0 if necessary, a piecewise analytic curve β̂ that diverge to E1 and contains β′ and β′′. It is not

difficult to see that there is an angle between the curves in β̂, Θ, that goes by X to an angle greater
or equal than 2Θ. Since X : M −→ R3 is conformal this is a contradiction. Then we conclude that in
both cases X(β′) and X(β′′) are contained in the same half-strip. Therefore, we can find a connected
component, Ω, of M \β such that X(Ω) is contained in one of the half-slabs determinated by {x2 = 0}
and X(∂(Ω)) is in a half-strip. Consequently, applying statement (i) in Theorem 1 we obtain that
X(Ω) is a planar domain of {x2 = 0} which contradicts our assumptions.

Moreover, we shall prove that there are no compact curves in β \ (γ+
0 ∪ γ−0 ) starting at γ+

0 and
ending at γ−0 . Assume there exists τ such a curve. As there are no compact regions of M \ β, we infer
that τ is the unique curve that starts at γ+

0 and ends at γ−0 . Taking into account the above paragraph
and the fact that Γ+ and Γ− are in the same half-slab of S determinated by {x2 = 0} we conclude that
must exist a pair of curves, τ1 and τ2 starting at γ+

0 and γ−0 , respectively and diverging to either E1

or E2. We assert that both curves must diverge to the same end. Indeed, if τ1 and τ2 diverge each one
to one different end, then there exists a curve τ3 diverging to both ends. But this curve τ3 intersects
τ transversally in a odd number of points while X(τ3) intersects X(τ) transversally in a even number
of points.

Without loss of generality, we can assume that τ1 and τ2 diverge to E1. Now, we may consider,
taking pieces of γ+

0 and γ−0 if necessary, a piecewise analytic curve τ ′ from E1 to E1 that encloses
a disk Ω of M \ β. If X(τ1) and X(τ2) are contained in the same half-strip, the domain Ω verifies
the conditions of statement (i) in Theorem 1 and we obtain a contradiction. Assume that X(τ1) and
X(τ2) are contained in different half-strips. Note that then there is an angle between the curves in τ ′,
Θ, that goes by X to an angle greater or equal than 2Θ. Using again that X : M −→ R3 is conformal
we get a contradiction.
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Consequently, β \ (γ+
0 ∪ γ−0 ) consists of curves starting at γ+

0 ∪ γ−0 and diverging to one end and
divergent curves. Next we prove that there are no curves diverging to only one end. As before we have
that one of these curves would be contained either in B+ or in B−. Otherwise, in each of these cases
it is possible to find a connected component, Ω, of M \ β such that X(Ω) is contained in a half-slab
of S and X(∂(Ω)) is contained in a half-strip of {x2 = 0}. Consequently, applying statement (i) in
Theorem 1 we obtain that X(Ω) is a planar domain of {x2 = 0} which contradicts our assumptions.
Furthermore, using again that Γ+ and Γ− are in one of the half-slabs determinated by {x2 = 0} we
deduce that if there exists a curve that starts at γ±0 and diverge to one end, then there exists a curve
that starts at γ±0 and diverge to the other end. All these facts allows us to assert that in β \ (γ+

0 ∪ γ−0 )
either there are no curves starting at γ+

0 ∪γ−0 , or there are a pair starting at γ+
0 or γ−0 and diverging to

different ends or there are four curves, a pair starting at γ+
0 and diverging to different ends and another

pair starting at γ−0 and diverging to different ends. Moreover, we may find curves in β \ (γ+
0 ∪ γ−0 )

diverging to the two ends. Note that then the number of curves diverging to E1 is the same as the
number of curves diverging to E2. It is not hard to see, using statement (i) in Theorem 1, that two
consecutive curves diverging to the same end have to be in different half-strips, it is to say, if one is
in B+ the other one is in B− and that all divergent curves are disjoint. Assume that there are more
than two curves in β diverging to E1 and consider the compact curves σi = σi

a, for i = 1, 2 and a ≥ a0

given in Lemma 1.
Now, we analyze each of the possibilities for the boundary separately.

case 1.
Denote p+

1 = γ+
1 ∩ σ1 and p−1 = γ−1 ∩ σ1. Then, denoting p3 : R

3 −→ {x3 = 0} as the orthogonal
projection over the plane {x3 = 0} we deduce that p3(X(σ1)) is a curve in {x3 = 0} such that
| arg(p3(X(p−1 ))) − arg(p3(X(p+

1 )))| > 2π. Since X3(p+
1 ) = X3(p−1 ) = 1

2 we infer that X(σ1) has self-
intersections, which is contrary to our assumptions. As a consequence, there is at most two curves in
β diverging to E1 and the same for E2.

case 2.
Denote p+

1 = γ+
1 ∩σ1, p−2 = γ−2 ∩σ1, p+

2 = γ+
2 ∩σ2 and p−1 = γ−1 ∩σ2 and suppose that σ1 has been

parametriced so that it starts at p+
1 and ends at p−2 and σ2 has been parametriced so that it starts at p−1

and ends at p+
2 . Using the same notation as above we can see that p3(X(σi)) are curves in {x3 = 0}

satisfying | arg(p3(X(p−2 ))) − arg(p3(X(p+
1 )))| > 2π and | arg(p3(X(p+

2 ))) − arg(p3(X(p−1 )))| > 2π.
Moreover, p3(X(σ1)) and p3(X(σ2)) rotates around (0, 0, 0) in reverse sense, it is to say, if p3(X(σ1))
rotates clockwise then p3(X(σ2)) rotates counterclockwise, and vice versa. Since X3(p+

i ) = X3(p−i )
for i = 1, 2 we infer that X(σ1) and X(σ2) intersect each other. This contradicts our assumptions and
therefore there is at most two curves diverging to each end in β.

The same argument used in both cases proves that if β \ (γ+
0 ∪ γ−0 ) consists of two curves, τ1 and

τ2, diverging to the two ends such that X(τ1) ⊂ B+ and X(τ2) ⊂ B−, then the boundaries of the three
connected components of M \ β are γ+ ∪ τ1, τ1 ∪ τ2 and γ− ∪ τ2.

Taking into account this and the fact that Γ+ ∪ Γ− is in one of the half-slabs determinated by
{x2 = 0} we have that either β \ (γ+

0 ∪ γ−0 ) is empty or it consists of:

1. two curves diverging to the two ends (see Fig. 4.(1)),

2. a curve starting at γ+
0 and diverging to E1, a curve starting at γ+

0 and diverging to E2 and a
curve diverging to the two ends (see Fig. 4.(2)),

3. a curve starting at γ−0 and diverging to E1, a curve starting at γ−0 and diverging to E2 and a
curve diverging to the two ends (see Fig. 4.(3)),

4. a curve starting at γ+
0 and diverging to E1, a curve starting at γ+

0 and diverging to E2, a curve
starting at γ−0 and diverging to E1 and a curve starting at γ−0 and diverging to E2 (see Fig.
4.(4)).
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Figure 4:

Clearly, if β\(γ+
0 ∪γ−0 ) is empty we obtain that X(M) is contained in the half-slab {x2 ≥ 0}. Therefore

X(M) satisfies the conditions of the statement (ii) in Theorem 1 and so X(M) ⊂ E(Γ).
Assume that we have one of the other possibilities. Then we shall prove that X(M) ⊂ (S\E(Γ))∪Γ.

Note that it is sufficient to study the connected components of M \ β whose image is contained in the
half-slab {x2 ≥ 0}. Note that these connected components are those whose contains any of the curves
γ+

i or γ−i , for i = 1, 2. At this point, it can be easily check that each of these connected components
have the boundary contained in one of the following wedges

(S\
◦

E(Γ)) ∩ {(x1, x2, x3) | x1 ≥ 0, x2 ≥ 0, −1
2 ≤ x3 ≤ 1

2} ,
(S\

◦
E(Γ)) ∩ {(x1, x2, x3) | x1 ≤ 0, x2 ≥ 0, −1

2 ≤ x3 ≤ 1
2} .

Using again assertion (ii) of Theorem 1, we conclude that the image of these connected components is

contained entirely in the correspondent wedge. Summarizing, we have prove that X(M) ⊂ (S\
◦

E(Γ)).
Now the Proposition is an easy consequence of the maximum principle.

Next, we analyze the case θ = π, d > 0. Let us define ∆ = X−1(X(M) ∩ {x1 = d
2}). It is well-

known that ∆ is a nodal set of an harmonic function and so it is a set of properly immersed analytic
lines. Using the maximum principle we obtain that there are no compact connected regions of M
bounded by curves in ∆. Then, ∆ \ γ+

0 consists of a set of divergent curves. Since Γ+ ⊂ {x1 ≥ d
2}

and Γ− ⊂ {x1 ≤ d
2}, we infer that if there exist a curve in ∆ starting at γ+

0 and diverging to one end,
then another curve starting at γ+

0 and diverging to the other end must exist. Reasoning as in case
0 ≤ θ < π, d = 0 we can see that the image of such a pair of curves is contained in one of the following
half-strips

C+ = {(d
2 , x2, x3) | x2 ≥ 0, −1

2 ≤ x3 ≤ 1
2} , C− = {(d

2 , x2, x3) | x2 ≤ 0, −1
2 ≤ x3 ≤ 1

2} .

and if two curves in ∆ diverge to the same end there must be one of them with the image contained
in C+ and the other one with the image in C−. Therefore, adapting to this situation the argument
presented above for the two different possibilities of the boundary, it is not hard to see that there is
at most a curve diverging to each end. And then ∆ \ γ+

0 consists of either a curve diverging to the
two ends or a pair of curves starting at γ+

0 and diverging to different ends. Note that in both cases
X(∆) is contained either in C+ or C−. In order to conclude the proposition it is sufficient to apply
statement (ii) in Theorem 1 to each of connected components of M \ ∆. �

Remark 1 Assume that T is a plane in R3 and that the divergent curves in X−1(X(M)∩ T ) verifies
that two consecutive divergent curves are in different half-strips of T . Then reasoning as in the proof
of Proposition 1 we can see that there are at most two curves diverging to each end.

Corollary 1 The boundary of the immersion X is as in case 1.
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Proof : Assuming that 0 ≤ θ < π and taking into account Proposition 1 we have that either X(M) ⊂
E(M) or X(M) ⊂ (S \ E(Γ)) ∪ Γ. Suppose that the boundary behaviour is as in case 2 and consider
the compact curves σi = σi

a, i = 1, 2 given in Lemma 1 for some a ≥ a0. Clearly, X(σ1) starts at �+1
and ends at �−2 and X(σ2) is a curve starting at �−1 and ending at �+2 . Since both curves lie either in
Ca ∩ E(Γ) or in Ca ∩ ((S \ E(Γ)) ∪ Γ), they intersect, which contradicts our assumptions. �

Taking the above corollary into account and the fact that X3 is a bounded harmonic function one has
the following:

Corollary 2 The function X3 : M −→ R3 extends continously to the ends.

Let us consider δt = X−1(X(M) ∩ {x3 = t}) for t ≥ − 1
2 . Concerning δt we can prove:

Corollary 3 The set δt is compact and consists of a simple arc, for all t ∈] − 1
2 ,

1
2 [. Moreover, the

Gauss map g of X omits the points 0 and ∞.

Proof : Clearly, from Corollary 2, we deduce that δt is compact. Since δt is the nodal set of a harmonic
function we have that δt is a one-dimensional proper real analytic subvariety of M . Then, taking
into account the maximum principle we deduce that there are no regions in M bounded by curves in
X−1(δt). Therefore, δt is a regular simple curve in M starting at �+0 and ending at �−0 . Moreover,
the theorem of the order of contact (see [12, §437]) gives that there are no points in M with vertical
normal vector. �

In the case 0 ≤ θ < π the uniqueness of solutions X : M −→ R3 of the Problem 1 satisfying
X(M) ⊂ E(M) were completely studied by F.J. López and F. Mart́ın in [9]. Henceforth, in the
remainder of the section we assume that X(M) ⊂ (S \ E(Γ))∪Γ. Furthermore, we always assume that
X(M) ⊂ {x2 ≤ 0} in the case θ = π. With this assumptions, we can prove:

Lemma 3 We have the following possibilities for the set τ0 = X−1(X(M) ∩ {x1 = 0}):
i) If d > 0, τ0 consists of a curve diverging to both ends, E1 and E2.

ii) If d = 0, τ0 \ (γ+
0 ∪γ−0 ) either consists of a curve diverging to both ends or τ0 \ (γ+

0 ∪γ−0 ) = τ1
0 ∪τ2

0 ,
where τ i

0 are curves starting at γ+
0 or γ−0 and diverging to Ei, for i = 1, 2.

Proof : Since τ0 is the nodal set of a harmonic function we have that τ0 is a set of properly immersed
analytic curves in M . Observe that τ0 
= ∅. If not, applying statement (ii) in Theorem 1 we obtain that
X(M) are two planar domains. Moreover, by the maximum principle, there are no compact connected
regions in M \ τ0 bounded by curves in τ0. Clearly, taking into account that X(M) ∩ {x1 = 0} ⊂
{(x1, x2, x3) | x1 = 0, x2 ≤ 0,− 1

2 ≤ x3 ≤ 1
2} and statement (i) in Theorem 1 we obtain i).

Assume now that d = 0. In this case we have γ+
0 ∪ γ−0 ⊂ τ0. Since Γ+ ⊂ {x1 ≥ 0} and Γ− ⊂

{x1 ≤ 0}, we infer that if there exists a curve in τ0 starting at γ±0 and diverging to one end, then there
exist another curve which starts at γ±0 and diverges to the other end. Then reasoning as in the above
paragraph we obtain ii). �

Proposition 2 Counting multiplicities [N−1(−	a2,	a2)] ≤ 5 and [N−1(−	a2,	a2) ∩ (M \ ∂(M))] ≤ 3,
where N : M −→ S2 is the Gauss map of X. Furthermore, if 0 < θ < π we have [N−1(−	a,	a)] ≤
5 , ∀	a ∈ S2 ∩ {x3 = 0}.

Proof : We prove the first assertion in Proposition 2. The second assertion can be proved using similar
arguments. Let us consider βt = X−1(X(M) ∩ {x2 = t}), for t ∈ R. Note that βt is a set of properly
immersed analytic lines, because it is the nodal set of a harmonic function. Hence, using the maximum
principle, we infer that there are no compact domains in M bounded by curves in βt, for all t ∈ R.
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Therefore, any two curves in βt do not intersect in more than one point. If not, we can find a compact
domain of M \ βt bounded by curves in βt.

We start with the case t < 0. Observe that in this case βt is a non empty set of divergent
curves, converging to a unique end or to the two ends. If βt = ∅ for some t < 0 we deduce that
X(M) ⊂ {x2 ≥ 0} and applying statement (ii) in Theorem 1 we obtainX(M) ⊂ E(Γ) which contradicts
our assumption.

Let α̃1 and α̃2 be a pair of arcs in βt diverging to Ei such that α̃1 ∩ α̃2 
= ∅. Therefore, there exists
Ui, a neighbourhood of Ei, verifying that:

• Ui \ (Ui ∩ τ0) has two connected components, U+
i and U−

i , where τ0 was defined in Lemma 3.

• α̃1 ∩ Ui ⊂ U+
i and α̃2 ∩ Ui ⊂ U−

i .

If not, one can find a neighbourhood of Ei, Ui, verifying the first condition and such that either
(α̃1 ∪ α̃2) ∩ Ui ⊂ U+

i or (α̃1 ∪ α̃2) ∩ Ui ⊂ U−
i . Hence, we deduce that X((α̃1 ∪ α̃2) ∩ Ui), i = 1, 2

are contained in a half strip of {x2 = t} and so there is a connected component in M \ βt, Ω, whose
boundary is in a half-strip of {x2 = t}. Therefore, we can apply statement (i) in Theorem 1 to conclude
that X(Ω) is a planar domain in {x2 = t}, which is a contradiction.

Let us prove that if α1 and α2 are two curves in βt diverging to Ei, then they are disjoint. Indeed,
if α1 and α2 intersect then we have four arcs {α̃i}4

i=1 in βt diverging to Ei and α̃j ∩ α̃l 
= ∅. But this
contradicts the above result.

Assume now that α1 is a curve diverging to Ei and that α2 is a curve diverging to the two ends. If
α1 and α2 intersect each other then we have three arcs {α̃i}3

i=1 in βt diverging to Ei and α̃j ∩ α̃l 
= ∅.
But, again this contradicts the above result.

As a consequence, only curves diverging to the two ends can intersect. Now, we shall prove that
there are at most two of these curves whose intersection is not empty. Assume there exist αi for
i = 1, 2, 3 curves in βt diverging to the two ends such that α1 ∩ αi 
= ∅, for i = 2, 3. Then, by
considering apropriate arcs in αi, for i = 1, 2, 3 and using the assertion proved above about arcs
diverging to one end, we can find a connected component of M \ βt that satisfies the conditions of
statement (i) in Theorem 1 and then X(Ω) must be a planar domain in {x2 = t}, which contradicts
our assumptions. Moreover, it is clear that if α1 and α2 are two curves in βt diverging to the two ends
whose intersection is not empty then α1 ∩ α2 is a unique point.

Lastly, if we have two curves in βt diverging to the two ends whose intersection is not empty, then
there are no more intersections in βt′ for any t′ < 0, t′ 
= t. If not, using again the above assertion ,
we deduce that the pair of divergent curves in βt intersect the pair of divergent curves in βt′ . Since βt

and βt′ are contained in parallel planes, this is a contradiction.
Now, we tackle the case t > 0. Observe that this case only have sense if 0 ≤ θ < π and that

βt∩∂(M) = p+
1 ∪p+

2 ∪p−1 ∪p−2 where p+
i ∈ γ+

i and p−i ∈ γ−i , for i = 1, 2. Since X(M) ⊂ (S \E(M))∪Γ
we deduce that connected curves in βt are contained in a half-strip of {x2 = t}. Therefore, there are
no curves in βt diverging to one end. Indeed, we have a connected component of M \ βt satisfying the
conditions in statement (i) in Theorem 1 and so we get a contradiction. Hence, it is clear that curves
in βt diverging to two ends are disjoint and moreover a divergent curve starting at ∂(M) and a curve
diverging to the two ends can not intersect each other. Then, α1 ∩ α2 
= ∅ only in two situations

i) when α1 is a curve starting at γ+
1 and diverging to E2 and α2 is a curve starting at γ+

2 and diverging
to E1

ii) when α1 is a curve starting at γ−1 and diverging to E2 and α2 is a curve starting at γ−2 and diverging
to E1.

Moreover, we observe that if there exist a pair of curves as in i) for t0 > 0, this pair is unique. It is to
say, {x2 = t} ∩ {x1 ≥ 0} ∩X(N−1({−	a2,	a2})) = ∅ for t > 0, t 
= t0. And the same occurs for a pair
of curves as in ii). Therefore, we have at most two points in δt ∩N−1({−	a2,	a2}) for t > 0.
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We recall that the set β0 = β was studied in the proof of Proposition 1. Since we are assuming
X(M) ⊂ (S \ E(Γ)) ∪ Γ the possibilities for β0 are those described in 1, 2, 3 and 4. We also point
out that the case 2 is not compatible with the case i) analyzed in the case t > 0, the case 3 is not
compatible with the case ii) analyzed in the case t > 0 and so the case 4 is not compatible with neither
i) or ii). Therefore, there exist at most five points of ordinary contact in M and only three of them
can lie in M \ ∂(M). �

Lemma 4 For any p ∈ γ+
1 ∪ γ−1 ∪ γ+

2 ∪ γ−2 , counting multiplicities, one has [g−1(g(p)) ∩ ∂(M)] < 6.

Proof : Assume X(p) ∈ �+1 . The proofs of the other possibilities are similar.
Label Σ as the tangent plane to X(M) at X(p) and let us consider Λ = X−1(Σ ∩X(M)). Since Λ

is the nodal set of a harmonic function, then Λ is a set of properly immersed analytic curves. Using
the interior maximum principle we also deduce that there are no compact simply connected region of
M bounded by curves in Λ.

First, we study the case 0 ≤ θ < π. In this case �+1 ⊂ Σ and since X(M) ⊂ (S \ E(Γ)) ∪ Γ, it is
straightforward to prove that Λ ∩X−1(Γ − �+1 ) = ∅. Hence, taking into account the reasoning at the
beginning of the proof and that M is simply connected, we have that if λ is a curve in Λ starting at
γ+
1 , then λ diverges to an end and when two curves in Λ originates from γ+

1 , they do not intersect.
If [g−1(g(p)) ∩ ∂(M)] ≥ 6 then, using once again the theorem of the order of contact (see [12,

§437]), there are at least 6 curves in Λ starting at γ+
1 . Observe that then there exist at least three

curves diverging to the same end. Consider this set of diverging curves. If there is a pair of consecutive
curves in this set contained in the same half-strip of Σ then the connected component between them,
that we call Ω, satisfies the conditions of statement (i) in Theorem 1 and then X(Ω) must be a planar
domain in Σ, which contradicts our assumptions. On the contrary, if each pair of consecutive curves
are in different half-strips, we can use Remark 1 and obtain so a new contradiction.

Finally, we analyze the case θ = π. Observe that in this case Λ ∩ ∂(M) = γ+
1 ∪ γ−1 . Suppose

[g−1(g(p)) ∩ ∂(M)] ≥ 6. We note that in this case compact curves starting at γ+
1 and ending at γ−1

can appear in Λ. Otherwise, we can only have one of these curves, because if there exist two or more
curves of this type in Λ we would get a compact domain, Ω, in M \ Λ satisfying X(Ω) ⊂ Σ, and this
is a contradiction. Either there exists a compact curve in Λ or Λ consists only of divergent curves
starting at γ+

1 ∪ γ−1 , it is not hard to see, using statement (i) in Theorem 1, that there are at least a
set of three curves (counting the curve γ+

1 ) diverging to the same end in Λ such that two consecutive
curves in this set are in different half-strips of Σ. Then we can conclude as in the former case. �

Using the above lemmas we can now prove:

Proposition 3 The map g extends continously to the ends. In particular, the total curvature of M is
finite. Furthermore, the limit tangent plane to M at Ei is πi, i = 1, 2.

Proof : We shall prove that the map g extends to E1. The same argument can be used for E2. Taking
into account Lemma 4 it is not difficult to prove that the following limits exist:

lim
p→ E1

p ∈ γ+

g(p) , lim
p→ E1

p ∈ γ−

g(p) , i = 1, 2 . (1)

For the proof of this fact see Claim 3.15 in [9].
Since M is conformally equivalent to a sector Sθ1 = {reiΘ | r > 0,Θ ∈ [0, θ1]}, a truncated sector

Sθ1(R) = Sθ1 \ D(0, R) can be seen as a neighbourhood of E1 in M . Furthermore, we can assume
that R is sufficiently large so that X(reiθ1) ∈ �+1 for r > R. According to Schwarz Principle we can
consider the reflection respect to �+1 of X(Sθ1(R)). Taking into account Proposition 2 we deduce that
the Gauss map N on the truncated sector S2θ1(R) = {reiΘ | r > 0,Θ ∈ [0, 2θ1]} \D(0, R), assumes the
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values 	a2 and −	a2 a finite number of times. Then it is possible to choose R′ > R sufficiently large so
that g restricted to S2θ1(R

′) omits the values −1 and 1.
At this point, we need the following technical result:

Let α < γ < β, S(R) = {reiΘ | r > 0,Θ ∈]α, β[} \ D(0, R), for R > 0 and let f be
holomorphic in S(R) and for some complex c satisfy limr→+∞ f(reiγ) = c. Suppose that
there are two distinct complex number absent from the range of f . Then limr→+∞ f(reiΘ) =
c for every Θ ∈]α, β[.

We refer to reference book [1, pp. 441-445].
This theorem and (1) imply that g extends continuously to E1. Finally, since M ⊂ S we have that

the limit tangent plane at Ei coincides with πi, i = 1, 2. �

Consider again the compact curves σi
a given in Lemma 1 for i = 1, 2 and a ≥ a0 sufficiently large. Let

us denote by U i
a the connected component of M \ (σ1

a ∪ σ2
a) that contains the end Ei, i = 1, 2. With

this notation we can prove the following useful result.

Corollary 4 For a sufficiently large, X(U i
a) is a graph over the plane πi, i = 1, 2.

Proof : Take a ≥ a0 sufficiently large so that g(U i
a) does not intersect the equator {z ∈ C | |z| = 1}.

Taking into account that X(M) ⊂ (S \ E(Γ))∪Γ and the definition of U i
a, it is not hard to see that

p3|X(Ui
a) is a local diffeomorphism onto Ωi

a, where Ωi
a is the exterior unbounded domain in the plane

{x3 = 0} determined by the curve p3(�+i ) ∪ p3(�−i ) ∪ p3(σi
a). As X is proper, the same occurs for the

map p3 ◦X |Ui
a
. So, p3 ◦X |Ui

a
is a covering map, and taking into account that Ωi

a is simply connected
we deduce that p3 ◦X |Ui

a
is one-to-one. This concludes the proof. �

2.2 The symmetries of the surface.

The method for proving that {x3 = 0} is a plane of symmetry of X(M) is based on the well-known
Alexandrov’s reflection method and consists of a generalization of Schoen’s ideas (see [14]) to our
particular case of non-compact boundary. For a precise presentation of our result the following notation
is required. Recall that δt = X−1(X(M) ∩ {x3 = t}). We also denote for t ≥ −1/2:

M+(t) = {(x1, x2, x3) ∈ X(M) / x3 ≥ t}, M−(t) = {(x1, x2, x3) ∈ X(M) / x3 ≤ t},
A thorough reading of the paragraph 3.2.2 of [9] will convince the readers that, sharpening some
arguments, the proof of Theorem 3.24 still works in the case X(M) ⊂ (S \ E(Γ)) ∪ Γ. Then, we have:

Proposition 4 X(M) is symmetric with respect the plane {x3 = 0}. Furthermore, M+(0) \ (�+0 ∪ �−0 )
and M−(0) \ (�+0 ∪ �−0 ) are graphs over {x3 = 0}.
Now, we recover two consequences of the above proposition that we need in what follows.

Corollary 5 There are only two branch points R+
0 ∈ γ+ and R−

0 ∈ γ− of g along γ+
0 ∪ γ−0 , g has

multiplicity two at these points and R+
0 ,R−

0 ∈ δ0. Furthermore, the set G consists of γ+
0 ∪ γ−0 ∪ δ0.

Corollary 6 The limit normal vectors at the ends are opposite.

In the remainder of the paper and without loss of generality, we assume that

g(E1) = 0, g(E2) = ∞. (2)

Next we prove that if d = 0 then {x1 = 0} is a plane of symmetry of X(M). As in the horizontal
symmetry case, the proof is inspired on Alexandrov’s reflection method. However, the argument
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exhibited here is slightly different from classical Alexandrov’s technique which uses a family of parallel
planes. In this case we use the pencil of vertical planes that contains the vertical segment �0 = �+0 = �−0 .

For the sake of simplicity, in this paragraph we consider a new set of Cartesian coordinates obtained
from the old one by a rotation of −π

2 around the x3-axis. Observe that in the new coordinate the
x1-axis is the inner bisector of the orthogonal projection of �+i and �−i to the plane {x3 = 0}, i = 1, 2,
and Γ+ ⊂ {x2 ≥ 0}. Moreover, we need to introduce some notation. For ξ ∈ [0, π − θ

2

]
, t ∈ ] −∞, 0]

and a set A ⊂ R
3 we define:

Hξ = {(x1, x2, x3) ∈ R
3 | Arg(x1 + ix2) = ξ} , Hξ,t = Hξ + (t, 0, 0) ,

Pξ = {(x1, x2, x3) ∈ R
3 | Arg(x1 + ix2) = ξ − π

2 } , Pξ,t = Pξ + (t, 0, 0) ,

H+
ξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) ∈

[
ξ, π − θ

2

]} ,
H−

ξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) ∈
[−π + θ

2 , ξ
]} ,

δ(ξ) = X(M) ∩Hξ , A+(ξ) = A ∩H+
ξ , A−(ξ) = A ∩H−

ξ ,

δ(ξ, t) = X(M) ∩Hξ,t , A+(ξ, t) = A ∩ (H+
ξ + (t, 0, 0)) , A−(ξ, t) = A ∩ (H−

ξ + (t, 0, 0)) ,

where Arg : C\ ] −∞, 0] −→ R denotes the principal argument. Note that Hξ ⊥ Pξ. In addition we
label sξ : R3 −→ R3 and sξ,t : R3 −→ R3 as the orthogonal symmetries respect to the planes containing
Hξ and Hξ,t, respectively. In the same way, we label pξ : R

3 −→ Hξ as the orthogonal projection.
With this definitions we denote A∗

+(ξ) = sξ(A+(ξ)) and A∗
+(ξ, t) = sξ,t(A+(ξ, t)). In particular we

denote M+(ξ) = X(M)+(ξ), M+(ξ, t) = X(M)+(ξ, t), M−(ξ) = X(M)−(ξ), M−(ξ, t) = X(M)−(ξ, t)
and ∆ξ = M∗

+(ξ) ∩M−(ξ). If ξ ∈ [π
2 , π − θ

2

]
we also consider ∆ξ,t = M∗

+(ξ, t) ∩M−(ξ, t).
Since the following argument is valid for all ξ ∈ [π

2 , π − θ
2

]
and t ∈ ]−∞, 0] we omit the parameters

ξ and t in the description of the different sets.
With the above notations, it is not difficult to see that

∆ ∩ (Γ∗
+ ∪ Γ−) = δ ∩ Γ . (3)

From Proposition 3 and Corollary 4 we can also consider a1 sufficiently large so that a1 ≥ a0, X(U i) =
X(U i

a1
) is a graph over the plane {x3 = 0}, i = 1, 2 and x3|X(U1) > 0 and x3|X(U2) < 0, where a0 is as

in Lemma 1 and U i
a1

is defined in Subsection 2.1.
Now, we can prove the following assertion.

Claim 1 : If X−1(∆ \ δ) ⊂ U1 ∪ U2, then ∆ = δ.

The proof of this claim is similar to the proof of claim 3.19 in [9]. We refer the reader to [9] for
details.

Now we define the set

I =
{
ξ1 ∈ [0, π − θ

2

] ∣∣ [M∗
+(ξ) ∩ {x3 ≥ 0}] � [M−(ξ) ∩ {x3 ≥ 0}] , π − θ

2 ≤ ξ ≤ ξ1
}
.

Our objective is to prove that I =
[
0, π − θ

2

]
. We divide the proof of this fact in several points:

Claim 2 :
]

π
2 , π − θ

2

] ⊂ I.

Let A,B ⊂ R3, we say that A ≥ξ B provided for every x ∈ R3 for which p−1
ξ ({x}) ∩ A 
= ∅ and

p−1
ξ ({x})∩B 
= ∅, we have that the orthogonal coordinate to Hξ,t of any point in p−1

ξ ({x})∩A is equal
to or greater than the respective orthogonal coordinate of any point in p−1

ξ ({x}) ∩B.
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Given ξ ∈ ]π
2 , π − θ

2

]
, we define the set

Iξ =
{
t ∈] −∞, 0] | M+(ξ, t) is a graph over Hξ,t and M∗

+(ξ, t) ≤ξ M−(ξ, t)
}
.

Our purpose is to show that Iξ =]−∞, 0], for all ξ ∈ ]π
2 , π − θ

2

]
. Note that this fact implies

]
π
2 , π − θ

2

] ⊂
I.

First, we are going to see that Iξ 
= ∅. To do this, let t′ < 0 such that X−1(M+(ξ, t)) ⊂ U1 ∪ U2,
where U i are defined as above, ∀t ≤ t′ (observe that X−1(∆ξ,t) ⊂ U1 ∪ U2). Hence from Claim 1,
∆ξ,t = δξ,t, t ≤ t′.

Then, it is clear that X−1(M+(ξ, t)) consists of two simply connected components, one of them in
U1 and the other one in U2, ∀t ≥ t′, and thus M+(ξ, t) is the union of two disjoint graphs G1

+(ξ, t)
and G2

+(ξ, t) over the same simply connected domain G+(ξ, t) in the plane {x3 = 0}.
From the definition of U1 and U2, we have that pξ(G1

+(t′)) ∩ pξ(G2
+(t′)) = ∅.

Let us see that M+(ξ, t) is a graph over the halfplane Hξ,t, t ≤ t′.
First, observe that pξ is injective on δξ,t, t ≤ t′. Indeed , note that δξ,t ⊂ Hξ,t is a graph over a

connected piece of a straight line, and so the pξ is injective.
Moreover, a similar argument gives that the set Pξ,s∩M+(ξ, t′) is a connected curve, for sufficiently

large s. Furthermore, the function x3 is monotone over Pξ,s ∩M+(ξ, t′). Otherwise, there would exist
some points in M+(ξ, t′) whose normal vector lie in {x1 = 0} ∩ S2. Thus, we could take t ≤ t′ in such
a way that δt contains a point with normal vector in Pξ ∩ S2. Hence, from the theorem of the order of
contact (see [12, §437]) and taking into account that X(U i) are graphs over the plane x3 = 0, i = 1, 2,
we deduce that ∆ξ,t − δξ,t 
= ∅, which is contrary to Claim 1.

This proves that M+(ξ, t′) is a graph over the plane Hξ, and so the same holds for M+(ξ, t), t ≤ t′.
Taking into account that ∆ξ,t = δξ,t, for t ≤ t′ and X(M) ∈ (S \ E(M)) ∪ Γ, we deduce that

M∗
+(ξ, t) ≤ξ M−(ξ, t), t ≤ t′. Thus, ] −∞, t′] ⊂ Iξ.
It is obvious that Iξ is closed in ] −∞, 0].
Next, we shall see that 0 = Maximum(Iξ). We proceed by contradiction. Assume t0 = Maximum(Iξ) <

0. Let K = X(M \(U1∪U2)). Since t0 ∈ Iξ, K+(ξ, t0) is a graph over the plane Hξ. Using the interior
maximum principle and the maximum principle at the boundary, it is not hard to see that there exists
ε > 0 such that K+(ξ, t) is a graph over Hξ and ∆ξ,t ∩K = δξ,t ∩K for t ∈]t0, t0 + ε](for details, see
claim 3.21 in [9]). Hence, using Claim 1, we deduce that ∆ξ,t = δξ,t. However, the maximality of t0
leads us to ∆ξ,t \ δξ,t 
= ∅, which is absurd. This finishes the proof of the claim.

Claim 3 : The set I is closed in
[
0, π − θ

2

]
and its minimum is 0.

Obviously, I is closed. To prove Minimum(I) = 0 we proceed by contradiction. Let us assume that
Minimum(I) = ξ0 > 0. As in the preceding claim, we consider K = X(M \ (U1 ∩ U2)). Taking into
account that ξ0 ∈ I we have[

M∗
+(ξ0) ∩ {x3 ≥ 0}] � [M−(ξ0) ∩ {x3 ≥ 0}] . (4)

Hence, sinceK+(ξ0) is compact, there exists ε0 > 0 sufficiently small so that
[
K∗

+(ξ0 − ε) ∩ {x3 ≥ 0}] �
[K−(ξ0 − ε) ∩ {x3 ≥ 0}], for all 0 ≤ ε ≤ ε0. Otherwise, we could find sequences {ξn} ↗ ξ0, with
ξn ∈ [0, ξ0[, and {xn}, {yn} in K, fulfilling the following conditions:

i) xn ∈ K+(ξn), yn ∈ K−(ξn) and sξn(xn) = yn, ∀n ∈ N.

ii) {xn} → x ∈ K+(ξ0), {yn} → y ∈ K−(ξ0).

From i) and ii) we deduce that sξ0(x) = y. On the other hand, (3) implies that any point lying in
∆ξ0 \ δξ0 is an interior point of contact between M∗

+(ξ0) and M−(ξ0). Assume ∆ξ0 \ δξ0 
= ∅. Then,
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making use of the interior maximum principle we deduce M∗
+(ξ0) = M−(ξ0), which is absurd because,

since ξ0 > 0, Γ is not symmetric with respect to the plane Hξ0 .
Therefore x = y ∈ K ∩ δξ0 . Hence, taking into account i) and ii), we have that N(X−1(x)) =

sξ0(N(X−1(x))) and so N(X−1(x)) is parallel to Hξ0 . Therefore, by the theorem of the order of contact
(see [12, §437]) we have that x ∈ K ∩ (δξ0 \ (δξ0 ∩ �0)) and x 
∈ {q+1 = q−1 , q

+
2 = q−2 }. From this fact and

taking into account (4), the maximum principle at the boundary can be applied to a neighbourhood
of the point x. We get M∗

+(ξ0) = M−(ξ0), which is as above a contradiction.
By the preceding reasoning, we have ∆ξ \ δξ ⊂ X(U1 ∪ U2) for ξ ≥ ξ0 − ε0. From Claim 1 we

conclude that ∆ξ = δξ for ξ ≥ ξ0 − ε0. Clearly this implies
[
M∗

+(ξ) ∩ {x3 ≥ 0}] � [M−(ξ) ∩ {x3 ≥ 0}]
for ξ ≥ ξ0 − ε0 and so ξ0 − ε0 ∈ I, which contradicts that ξ0 is a minimum.

Summarizing we have
[
M∗

+(0) ∩ {x3 ≥ 0}] � [M−(0) ∩ {x3 ≥ 0}]. We can repeat the above argu-
ment starting from Γ− instead of Γ+ and obtain

[
M∗

−(0) ∩ {x3 ≥ 0}] � [M+(0) ∩ {x3 ≥ 0}] and so
X(M) ∩ {x3 ≥ 0} is symmetric respect to the plane {x2 = 0}. Finally, by the horizontal symmetry
mentioned in 2.2 we have that X(M) is symmetric respect to the plane {x2 = 0}.

2.3 Determination of conformal structure and Weierstrass data of M

This subsection is devoted to determining the Weierstrass data associated to the minimal immersion
X : M −→ R3. We define n = 2π

3π−θ . Observe that n ∈ [23 , 1]. As M is simply-connected, the map
(−ig)

n
2 has a well-defined branch on M . Let f be the branch of (−ig)

n
2 such that Arg(f(p)) = 0,

whenever −ig(p) ∈ R+.
As before, Q+

j = γ+
0 ∩ γ+

j , Q−
j = γ−0 ∩ γ−j , j = 1, 2. Observe that f(Q+

j ) = i and f(Q−
j ) = −i,

j = 1, 2. Moreover, since X(M) ⊂ (S \ E(Γ)) ∪ Γ it is easy to see that f(p) 
= f(Q±
j ) for all p ∈ γ±j ,

j = 1, 2. Then, taking into account that g(E1) = 0 and g(E2) = ∞, one has:

f(γ−1 ) = s−1 = {λi | λ ∈ [−1, 0[} , f(γ−2 ) = s−2 = {λi | λ ∈] −∞,−1]} ,

f(γ+
1 ) = s+1 = {λi | λ ∈]0, 1]} , f(γ+

2 ) = s+2 = {λi | λ ∈ [1,∞[} .
Using Corollary 5, we deduce that f |[Q±

j ,R±
0 ] are injective for j = 1, 2. Hence, if we write f(R+

0 ) = ei
t0
2

and f(R−
0 ) = ei

t1
2 , it is not hard to check that

f(γ−0 ) = s−0 =
{

ei t
2 | t ∈ [−π, t1]

}
, f(γ+

0 ) = s+0 =
{
ei t

2 | t ∈ [t0, π]
}
. (5)

Using again that X(M) ⊂ (S \ E(Γ)) ∪ Γ, the fact that there are at most two points on γ±0 where the
Gauss map achieves the values ±	a2 (see the proof of Proposition 1) and Corollary 5, one deduces that
−π < t1 < 0 < t0 < π.

Let Λ denote the connected component of C \ (f(∂(M)) ∪ {0}) containing the point {1} (see Fig.
5). We have the following result:

Lemma 5 The map f : M → C fulfills that:(i) f(M \ ∂(M)) = Λ and (ii) f |M\∂(M) : M \ ∂M → Λ
is a biholomorphism.

Proof : In order to prove (i) we note that f is holomorphic and non constant, and so f(M \ ∂(M))
is an open subset of C∗ (note that no points in M have vertical normal vector). On the other hand,
taking into account that M = M ∪ {E1, E2} is compact, f(M) is a closed subset of C. Therefore the
set W = f(M \ ∂(M)) ∩ (C \ (f(∂(M)) ∪ {0})) = f(M) ∩ (C \ (f(∂(M)) ∪ {0})) is a closed subset
of C \ (f(∂(M)) ∪ {0}). Then, either W = C \ (f(∂(M)) ∪ {0}) or W is a connected component of
C \ (f(∂(M)) ∪ {0}). To see that the first possibility does not occur we proceed by contradiction.
Assume W = C \ (f(∂(M)) ∪ {0}). Observe that f(p) ∈ S1 if and only if g(p) ∈ S1. Hence, taking
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into account Corollary 5 and (5) we infer that {ei t
2 , t ∈ [t1, t0] ∪ [π

2 ,
3π
2 ]} ⊂ f(δ0). Moreover, since

there are no ramification points in δ0 \ {R+
0 , R

−
0 }, we deduce that Arg(f) is a monotone function in

δ0 and f(δ0) = S1. Since {1, e 1
2nπi, enπi, e

3
2nπi} ⊂ S1, we have that there are at least four points in

δ0 ∩N−1({	a2,−	a2}). But it is contrary to Proposition 2. Since f(γ+
0 ) and f(γ−0 ) lie in the boundary

of W , we easily obtain that W = Λ and so f(M \ ∂(M)) = Λ.
The same argument presented above gives us that f(δ0) = {ei t

2 | t ∈ [t1, t0]} and f |δ0 : δ0 −→ {ei t
2 |

t ∈ [t1, t0]} is a one-to-one function.
To finish the proof, we define γ = ∂(M). Since M is conformally a closed disk with piecewise

analytic boundary, then γ is a piecewise analytic curve homeomorphic to S1. Note that since g|M
has no poles and g extends continously to M , we can assert the same for f . Then, we know that
for any w ∈ Λ = f(M \ ∂(M)), 

(
f−1(w)

)
= 1

2πi

∫
γ

df
f−w ∈ Z. Thus, if we define h : Λ −→ Z by

h(w) = (f−1(w)), the function h is continuous on Λ, and so it is constant. From the above arguments
we have that h(w) = 1, ∀w ∈ f(δ0 \ {R+

0 , R
−
0 }) and this concludes the proof. �

Let N t1
t0 the following four-punctured torus:

N t1
t0 = {(u, v) ∈ C

∗ × C | v2 = (u− ei
t0
2 )(u+ e−i

t0
2 )(u− ei

t1
2 )(u + e−i

t1
2 )} .

Consider U t1
t0 ⊂ N t1

t0 as the connected component of u−1(C \ f(∂(M))) containing the point P0 =(
1, 2

√
− sin( t0

2 ) sin( t1
2 )
)
. Define N ′ = U t1

t0 . At this point we prove the following proposition.

Proposition 5 M is biholomorphic to N ′. Furthermore, the Weierstrass data are given on N ′ by

g(u) = iu
2
n , Φ3 = λ

du

v
,

where λ ∈ R+ and we choose the branch of u
2
n satisfying 1

2
n = 1.

Proof : Consider f : M \ ∂(M)−→Λ, the biholomorphism defined in Lemma 5. Observe that the u-
projection is a biholomorphism from N ′ \ ∂(N ′) onto Λ and so F = f−1 ◦ u : N ′ \ ∂(N ′)−→M \ ∂(M)
is a biholomorphism. Since N ′ \ ∂(N ′) and M \ ∂(M) are conformally equivalent to Jordan regions in
C, a well-known result of complex analysis asserts that F can be extended to a biholomorphism from
N ′ onto M . For the sake of simplicity, in what follows we identify M with N ′.

Now, we consider the holomorphic function ω = Φ3v
du on N ′. Let p0 ∈ s+0 ∪s−0 and {p1

0, p
2
0} = u−1(p0).

Since the surface is symmetric respect to the plane {x3 = 0} (see 2.2), we have that Φ3(p1
0) = −Φ3(p2

0).
But this is also the behaviour of v. Consequently, ω̃ = ω ◦u−1 is a holomorphic function in Λ that can
be extended to s+0 ∪ s−0 .

As Φ3 and v extends to the punctured in a natural way, ω̃ can be seen as a holomorphic function on
{z ∈ C | Re(z) ≥ 0}. Furthermore, ω̃ is real on {z ∈ C | Re(z) = 0} and so, using Schwarz Principle, ω̃
extends to the whole C. Then, ω̃ is a holomorphic function on C without zeroes or poles and therefore
ω̃ = λ ∈ C∗. Finally, using again that ω̃ is real on {z ∈ C | Re(z) = 0} we deduce λ ∈ R∗. Observe
that, up to a rigid motion, we can assume that λ ∈ R+. �

As we announced, we now prove that X(M) also inherits the vertical symmetry of its boundary
when d > 0.

Proposition 6 In the above setting, t1 = −t0.

Proof : First of all, observe that the result about the vertical symmetry proved in paragraph 2.2 implies
t1 = −t0 if d = 0. We shall see that this fact suffices to prove the general case.

16



Since X : M −→ R3 is a solution of Problem 1 we have that X1(R−
0 ) = − d

2 and X1(R+
0 ) = d

2 .
Thus

d = X1(R+
0 ) −X1(R−

0 ) = Re
∫

δ

Φ1 ,

where δ̂ is the lift to M of the curve ei t
2 , t1 ≤ t ≤ t0, in the u-plane. Taking into account the expressions

for g and Φ3 given in Proposition 5, it is not difficult to obtain that

d =
λ

4
f1(t0, t1) =

λ

4

∫ t0

t1

cos( t
n )

v(t, t0, t1)
dt ,

where v(t, t0, t1) =
√(

sin( t0
2 ) − sin( t

2 )
) (

sin( t
2 ) − sin( t1

2 )
)
. Furthermore, we have that X2(R+

0 ) =

X2(R−
0 ). Thus

X2(R+
0 ) −X2(R−

0 ) = Re
∫

δ

Φ2 = 0 .

A direct computation using again the expressions of g and Φ3 given in Proposition 5 gives

Re
∫

δ

Φ2 =
λ

4
f2(t0, t1) =

λ

4

∫ t0

t1

sin( t
n )

v(t, t0, t1)
.

From the definitions of the functions f1 and f2 we have

f1(t0, t1) = f1(−t1,−t0) , f2(t0, t1) = −f2(−t1,−t0) , (6)

for all (t0, t1) ∈ [0, π[×] − π, 0]. Observe that if X : M −→ R3 is the solution of Problem 1 given in
Proposition 5, then (t0, t1) must satisfy f1(t0, t1) ≥ 0 and f2(t0, t1) = 0 . From the properties of f1
and f2 given in (6), it suffices to study the zeros of the functions f1 and f2 in the triangle given by
T = {(t0, t1) ∈ [0, π[×] − π, 0] | t0 ≤ −t1} .

Let us denote by L1 = {0}× [−π, 0], L2 = {(t0, t1) ∈ [0, π]× [−π, 0] | t0 = −t1} and L3 = [0, π]×{0}
the sides of the triangle T . We also define the sets C1 = {(t0, t1) ∈ T | f1(t0, t1) = 0}, C2 = {(t0, t1) ∈
T | f2(t0, t1) = 0}. It is clear from (6) that L2 ⊂ C2. Furthermore, by the vertical symmetry proved
in paragraph 2.2 we deduce that C1 can only intersect C2 in points of L2. For the sake of clarity, we
divide the rest of the proof in several steps.

Step 1: The objective of this step is to show that Ci is a set of analytic curves in T , for i = 1, 2.

Consider the meromorphic 1-form given by Φ = u
2
n

v du. Note that −f2 and f1 are the real and
imaginary part of 4

∫
δ Φ. By deriving, one has

L(Φ) =
∂2Φ
∂t20

+
∂2Φ
∂t21

+ a1
1

∂Φ
∂t0

+ a2
1

∂Φ
∂t1

+ a0
0Φ = d(F ) , (7)

where

a1
1 =

cos(t0) + sin( t0
2 ) sin( t1

2 )
2 cos( t0

2 )(sin( t0
2 ) − sin( t1

2 ))
, a2

1 = − cos(t1) + sin( t0
2 ) sin( t1

2 )
2 cos( t1

2 )(sin( t0
2 ) − sin( t1

2 ))
, a0

0 =
4 − n2

4n2

and F is the following meromorphic function:

F =
u

2
n +1(au4 + bu3 + cu2 + du+ e)

4nv3
,

where a = 2+n, b = −i(4+n)(sin( t0
2 )+sin( t1

2 )), c = −4(1+2 sin( t0
2 ) sin( t1

2 )), d = −i(−4+n)(sin( t0
2 )+

sin( t1
2 )) and e = 2 − n.
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Integrating by parts in (7), we have that f1 and f2 are zeroes of the second order elliptic operator
given by L. As C1 and C2 are the nodal sets of f1 and f2, respectively, we can assert (see [2]) that Ci

is a set of regular curves and the critical points on the nodal lines are isolated. Furthermore, when the
nodal lines meet, they form an equiangular system. Moreover, by the Maximum Principle for elliptic
operators, Ci cannot contain closed curves.

Step 2: The purpose of the present step is to study the behaviour of the curves in C1 at the boundary
of the triangle T . We shall see that C1 ∩L1 = (0, t̃1), C1 ∩L2 = (t̃0,−t̃0) and that there are no curves
in C1 approaching L3.

First, we shall prove that ∂f1
∂t1

(t0, t1) > 0, for all (t0, t1) ∈ T . It is not difficult to see that

∂

∂t1

(
cos( t

n )
v(t, t0, t1)

)
=

cos( t
n ) cos( t1

2 ) − cos( t
2 ) cos( t1

n )
4v(t, t0, t1)(sin( t

2 ) − sin( t1
2 ))

− cos( t1
n )

sin( t0
2 ) − sin( t1

2 )
d

(
sin( t0

2 ) − sin( t
2 )

v(t, t0, t1)

)
.

Thus integrating by parts in the above equality we obtain

∂f1
∂t1

(t0, t1) =
∫ t0

t1

cos( t
n ) cos( t1

2 ) − cos( t
2 ) cos( t1

n )
4v(t, t0, t1)(sin( t

2 ) − sin( t1
2 ))

, (8)

In order to prove ∂f1
∂t1

(t0, t1) > 0 we shall see that the function

h(t, n) = cos
(

t
n

)
cos
(

t1
2

)− cos
(

t
2

)
cos
(

t1
n

) ≥ 0 ,

for t ∈ [t1, t0]. Since h(−t, n) = h(t, n) and t0 ≤ −t1, it suffices to prove that h(t, n) ≥ 0 for t ∈ [t1, 0].
Moreover, taking into account h(t1, n) = 0, it is enough to see that ∂h

∂t (t, n) = − 1
n sin( t

n ) cos( t1
2 ) +

1
2 sin( t

2 ) cos( t1
n ) ≥ 0 for t ∈ [t1, 0].

Assume first t1 ∈ [−nπ
2 , 0]. As n ∈ [ 23 , 1] we have 0 ≤ − sin( t

2 ) ≤ − sin( t
n ) and 0 ≤ cos( t1

n ) ≤
cos( t1

2 ). Hence ∂h
∂t (t, n) ≥ 0.

If t1 ∈ [−nπ,−nπ
2 ], the study of the signs in the expression of ∂h

∂t gives directly that this partial is
non negative.

Finally, we consider the case t1 ∈ [−π,−nπ]. As in the former case, studying the signs in the
expression of ∂h

∂t we obtain that ∂h
∂t (t, n) ≥ 0 for t ∈ [−nπ, 0]. Otherwise, it is not difficult to see that

∂2h
∂n∂t (t, n) ≥ 0 for t ∈ [t1,−nπ]. As ∂h

∂t (t, 2
3 ) = 2 cos( t1

2 ) sin( t
2 )
(−2 cos( t

2 )2 + (cos( t1
2 )2 − cos( t

2 )2)
) ≥ 0

for t ∈ [t1,−nπ], we conclude that ∂h
∂t (t, n) ≥ 0.

Our next objective is to prove that f1(0,−nπ) < 0. Indeed, making the change of variable s =
t+ nπ/2 one has:

f1(0,−nπ) =
∫ n π

2

−n π
2

sin( s
n )√

− sin(−n π+2 s
4 )

(
sin(n π

2 ) + sin(−n π+2 s
4 )

)ds =

∫ nπ
2

0

sin
( s
n

) √(sin(n π
2 ) − sin(n π+2 s

4 )
)

sin(n π+2 s
4 ) −

√(
sin(n π

2 ) − sin(n π−2 s
4 )

)
sin(n π−2 s

4 )√(
sin(n π

2 ) − sin(n π−2 s
4 )

)
sin(n π−2 s

4 )
√(

sin(n π
2 ) − sin(n π+2 s

4 )
)

sin(n π+2 s
4 )

ds.

An easy computation gives us that the numerator in the last integral is always non positive, and then
f1(0,−nπ) < 0. From the definition of f1 we also have f1(0,−nπ

2 ) > 0. Then, taking into account that
∂f1
∂t1

(0, t1) > 0, we have that there exists a unique t̃1 ∈] − nπ,−nπ
2 [ such that f1(0, t̃1) = 0.

We now consider the function f̃1(t0) = f1(t0,−t0), that is the function f1 restricted to the side L2.
Taking into account (6) one has

∂f̃1
∂t0

(t0) =
∂f1
∂t0

(t0,−t0) − ∂f1
∂t1

(t0,−t0) = −2
∂f1
∂t1

(t0,−t0) < 0 . (9)
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According to the definition of f1 we have f̃1(nπ
2 ) = f1(nπ

2 ,−nπ
2 ) > 0. Our next purpose is to see

that f̃1(nπ) = f1(nπ,−nπ) < 0. Note that

f̃1(nπ) = 2
√

2
∫ 0

−nπ

cos( t
n )√

cos(t) − cos(nπ)
.

A direct computation gives

f̃1(nπ) = 2
√

2
∫ nπ

2

0

sin( s
n )(
√

cos(s+ nπ
2 ) − cos(nπ) −√cos(s− nπ

2 ) − cos(nπ))√
cos(s+ nπ

2 ) − cos(nπ)
√

cos(s− nπ
2 ) − cos(nπ)

.

It is not hard to see that the numerator in the above integrand is non positive, in particular f̃1(nπ) < 0.
Therefore there exists t̃0 ∈]nπ

2 , nπ[ such that f1(t̃0,−t̃0) = 0, f1 is positive in {(t0,−t0) ∈ T | 0 <
t0 < t̃0} and negative in {(t0,−t0) ∈ T | t̃0 < t0 < π}.

Now, we prove that limt1→−π f1(t0, t1) = −∞. In order to do this we consider a new set of
parameters

s(t0, t1) = sin( t0
2 ) , r(t0, t1) = sin( t1

2 ) . (10)

Note that r(t0,−π) = −1. Our next objective is to see that limr→−1 f1(s, r) = −∞. In order to do
this, we derive again the 1-form Φ defined in the former step and we obtain the following equality

∂4Φ
∂r4

+ b3
∂3Φ
∂r3

+ b2
∂2Φ
∂r2

+ b1
∂Φ
∂r

+ b0Φ = d(ϕ) , (11)

where

b3 =
2(5r3 + 2s− 8r2s+ r(−2 + 3s2))

(−1 + r2)(r − s)2
, b2 =

−16(r − s)2 + n2(−8 + 99r2 − 116rs+ 25s2)
4n2(−1 + r2)(r − s)2

,

b1 =
(−48 + 57n2)r + (48 − 39n2)s

4n2(−1 + r2)(r − s)2
, b0 =

3(n2 − 4)
4n2(−1 + r2)(r − s)2

and ϕ is the following meromorphic function:

ϕ(u) =
u

2
n +1(a′u4 + b′u3 + c′u2 + d′u+ e′)(u2 − 1 − 2siu)

1
2

4n2(−1 + r2)(r − s)2(u2 − 1 − 2riu)
7
2

,

with a′ = −3n(2 + n), b′ = −3in((−4 + 3n)r − (4 + 5n)s), c′ = 12n(1 + 2rs), d′ = −3in((4 + 3n)r +
(4− 5n)s) and e′ = 3n(n− 2). Integrating by parts in (11), we have that f1 is a solution of the fourth
order ordinary differential equation given by

∂4f1
∂r4

+ b3
∂3f1
∂r3

+ b2
∂2f1
∂r2

+ b1
∂f1
∂r

+ b0f1 = 0 (12)

Observe that this equation presents a regular singular point in r = −1 and then we can use the
Frobenius method to compute the limit of f1 when r tends to −1 (see §4.8 in [3]). Taking into account
the coefficients of the equation (12) and the aforementioned method, we deduce that

f1(s, r) = c1 log(1 + r) φ1(s, r) + c2 φ2(s, r) + c3(r + 1) φ3(s, r) + c4(r + 1)2φ4(s, r) ,

where ci ∈ R, φ1(s,−1) 
= 0 and φi are analytic at the points (s,−1), i ∈ {1, 2, 3, 4}. A direct
computation using (8) and (10) proves that limr→−1

∂f1
∂r = +∞. Thus c1 
= 0 and limr→−1 f1(s, r) =

−∞.
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Step 3: With regard to C2, we shall check that C2 ∩ {(0, t1) ∈ T | t̃1 ≤ t1 < 0} = ∅ and that if
(t̂0,−t̂0) is a critical point of C2 in L2, then t̂0 > t̃0.

Clearly, from the definition of f2 one has f2(0, t1) < 0 for t1 ∈ [−nπ, 0[. Thus we obtain the first
assertion in the present step.

In order to prove the second one we need an apropriate expression for ∂f2
∂t0

. Observe that

∂Φ
∂t0

= u2/nτ − 2a
n
u2/n−1ψ du+ a d

(
u2/nψ

)
,

where

τ =
−i
(
−1 + ei

t0
2 u
)

4
(
1 + ei

t0
2 u
) du

v
, ψ =

(
u+ e−i

t1
2

) (
u− ei

t1
2

)
v

, a =
1

4
(
sin( t1

2 ) − sin( t0
2 )
) .

Integrating by parts once again in the above equality and computing the real part, we get:

∂f2
∂t0

(t0, t1) =
∫ t0

t1

(
cos( t

n ) sin( t
2 )

nv(t, t0, t1)
(
sin( t0

2 ) − sin( t1
2 )
) +

sin( t
n ) tan( t+t0

4 )
4v(t, t0, t1)

)
dt−

sin( t1
2 )

n
(
sin( t0

2 ) − sin( t1
2 )
)f1(t0, t1) .

In particular, if t1 = −t0 one has that the integral of the first summand vanishes, and so

∂f2
∂t0

(t0,−t0) =
∫ t0

−t0

sin( t
n ) tan( t+t0

4 )
4v(t, t0, t1)

dt+
1
2n
f1(t0,−t0) .

Taking into account that t̃0 < nπ, it is not difficult to see that
∫ t0
−t0

sin( t
n ) tan(

t+t0
4 )

4v(t,t0,t1)
dt > 0, for 0 < t0 ≤ t̃0,

and so ∂f2
∂t0

(t0,−t0) is positive in the points where the function f1 is non negative. This concludes the
assertion.

By Steps 1, 2 and 3 we deduce that there are no points (t0, t1) in T with f1(t0, t1) ≥ 0 and
f2(t0, t1) = 0 apart from the points {(t0,−t0) | 0 ≤ t0 ≤ t̃0}. �

Corollary 7 M is invariant under the antiholomorphic involution Sv(u) = u which corresponds to
the reflection in the plane {x1 = 0}.

3 The existence results

In the former section we have seen that if X : M −→ R
3 is a solution of Problem 1 satisfying

X(M) ⊂ ((S \ E(Γθ d)) ∪ Γθ d) then M is biholomorphic to N ′ = U−t0
t0 and their Weierstrass data are

given by

g = iu
2
n , Φ3 = λ

du

v
, v =

√
u4 − 2u2 cos(t0) + 1 , n ∈ [23 , 1] .

At this point, we observe that, up an easy conformal transformation, the above Weierstrass data
for n ∈ [1, 2[ correspond to a López-Mart́ın example, it is to say, solutions of Problem 1 verifying
X(M) ⊂ E(Γθ d). For the existence of this examples we refer the reader to [10].

Moreover, if n = 2 then the surface is a Jenkins-Serrin graph. Extension by Schwarz reflection
of these surfaces gives embedded doubly periodic examples with two orthogonal planes of symmetry
between adjacent saddle towers. These examples were studied by H. Karcher in [7].
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Figure 5: a) The domain u(M). b) The surface M .

Therefore, to complete the existence part of the Main Theorem it suffices to prove that indeed
for n ∈ [23 , 1] the above conformal representation leads to a solution of Problem 1 which lies in the
exterior of the convex hull of its boundary and this is the purpose of the present section.

In what follows we denote M = N ′ and γ+
i = u−1(s+i ), γ−i = u−1(s−i ), i = 0, 1, 2, where s+i and

s−i are those defined in Sect. 2 corresponding to t1 = −t0 for i = 0, 1, 2 (see Fig. 5). Moreover, we
label γ+ = ∪2

i=0γ
+
i and γ− = ∪2

i=0γ
−
i . We use the notation �±i introduced in Sect. 1 for the half-lines

in the polygonal Γθ d. Furthermore, recall that the set of Cartesian coordinates was introduced at the
beginning of Sect. 2.

Now, we consider the curve γ+
0 which consists of two copies, δ+1 and δ+2 , of s+0 . We can assume

that δ+1 (t) and δ+2 (t) are the two lifts to M of the curve ei t
2 , t ∈ [t0, π], in the u-plane, satisfying

δ+1 (π) ∈ γ+
1 and δ+2 (π) ∈ γ+

2 , respectively. Define h̃ :]0, π[−→ R as h̃(t0) = 2Re
(∫

δ+
2
τ
)
, where τ = du

v .

A direct computation gives h̃(t0) =
√

2
2

∫ π

t0
dt√

cos(t0)−cos(t)
> 0 . As we are assuming that the immersion

X : M −→ R3 is normalized so that the distance between the planes π1 and π2 is 1, we have λ = 1

h(t0)
.

As usual, we define (Φ1,Φ2,Φ3) = 1
2

(
−i(u−

2
n + u

2
n ), u−

2
n − u

2
n , 1
)

Φ3 . Since M is homeomor-

phic to a closed disc minus two boundary points, we have that X : M −→ R
3 given by X(p) =∫ p

p0
(Φ1,Φ2,Φ3) is a well-defined conformal minimal immersion verifying condition i) in the statement

of Problem 1. Let us see that (M, g,Φ3) fulfill also the other conditions.
Denote Sh, Sv the antiholomorphic transformations on M given by Sh((u, v)) = (1/u, v/u2),

Sv((u, v)) = (u, v). Observe that the point P0 = (1, 2 sin( t0
2 )) is invariant under Sh and Sv. Moreover,

we have

g ◦ Sh = 1/g , g ◦ Sv = −g , S∗
h(φ3) = −φ3 , S∗

v (φ3) = φ3 . (13)

Hence elementary arguments imply that Sh (resp. Sv) induces on X(M) a symmetry with respect to
the plane {x3 = 0} (resp. {x1 = 0}).

First, notice that

Sv(γ+
i ) = γ−i , i = 0, 1, 2 (14)

Sh(γ+
1 ) = γ+

2 , Sh(γ−1 ) = γ−2 , Sh(γ+
0 ) = γ+

0 , Sh(γ−0 ) = γ−0 . (15)

It is straightforward to check that the conditions on the boundary are satisfied. Actually, we have:

Lemma 6 The maps X |γ+, X |γ− are injective, X(γ+
i ) = �+i and X(γ−i ) = �−i , for i = 0, 1, 2, it is to

say, X(∂(M)) = Γθ d for θ = (3n− 2)π/n.
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Taking into account Lemma 6, the expression of the oriented distance d :]0, π[−→ R between �+0 and �−0
is d(t0) = Re

(∫
δ
Φ1

)
, where now δ̂ is the lift of the oriented curves ei t

2 , t ∈ [−t0, t0], in the u-plane. Since
(Sh)∗(δ̂) = δ̂, (Sv)∗(δ̂) = −δ̂ and taking into account (13) we deduce that

∫
δ Φ1 =

∫
δ Φ1 = λ

4 f̃1(t0),

where, as in Sect. 2, Φ = u
2
n

v du and f̃1(t0) = f1(t0,−t0). Hence we have

d(t0) =
1
4
f̃1(t0)

h̃(t0)
. (16)

A thoughtful study of the function d will be very useful in order to prove the rest of the conditions on
the immersion X : M −→ R3. In this context we shall see:

Lemma 7 The function d :]0, π[→ R satisfies:

1. It vanishes at only one point t̃0 ∈]nπ
2 , nπ[. Furthermore, d is positive in ]0, t̃0[ and negative in

]t̃0, π[.

2. lim
t0→0

d(t0) = 0. In particular, d is bounded in ]0, t̃0[.

3. It has only a critical point t′0 ∈]0, t̃0[ which is a maximum. In particular, 
[
d−1({x})] = 2, ∀x ∈

]0, d(t̃0)[.

Proof : We had seen (see Step 2 in Proposition 6) that there exists a unique t̃0 ∈]nπ
2 , nπ[ such that

f̃1(t̃0) = 0, f̃1(t0) > 0 in ]0, t̃0[ and f̃1(t0) < 0 in ]t̃0, π[. Note that this proves the first assertion.
In order to prove the second statement, observe that

lim
t0→0

f̃1(t0) = lim
t0→0

√
2
∫ 1

−1

t0 cos( t0s
n )√

cos(t0s) − cos(t0)
ds = 2

∫ 1

−1

ds√
1 − s2

= 2π , (17)

Moreover, it is clear that 0 ≤√cos(t0) − cos(t) ≤√1 − cos(t), t ∈ [t0, π], then h̃(t0) ≥
√

2
2

∫ π

t0
dt√

1−cos(t)
=

− log
[
tan

(
t0
4

)]
, and so

lim
t0→0

h̃(t0) ≥ lim
t0→0

(− log
[
tan

(
t0
4

)])
= +∞. (18)

Both (17) and (18) give Assertion 2. Concerning Assertion 3, we shall prove that the functions f̃1,
h̃ satisfy the following differential equations:

f̃1
′′
(t0) + cot(t0)f̃1

′
(t0) + 4−n2

4n2 f̃1(t0) = 0 , (19)

h̃′′(t0) + cot(t0)h̃′(t0) − 1
4 h̃(t0) = 0 . (20)

The above ordinary differential equations can be obtained from the following equalities integrating by
parts:

∂2Φ
∂t20

+ cot(t0)
∂Φ
∂t0

+
4 − n2

4n2
Φ = d(G̃) ,

∂2τ

∂t20
+ cot(t0)

∂τ

∂t0
− 1

4
τ = d(H̃) ,

where G̃(u) =
u

2+n
n (n (−1+u4)+2 (1+u4)−4 u2 cos(t0))

4 n (1+u4−2 u2 cos(t0))
3
2

and H̃(u) =
u (−1+u4)

4 (1+u4−2 u2 cos(t0))
3
2
.

Let t′0 a critical point of d in ]0, t̃0[. This implies that d′(t′0) = 0 and so (f̃1
′
h̃ − f̃1h̃

′)(t′0) = 0.
Therefore we have the following expression for the second derivative of d at the point t′0:

d′′(t′0) =
1
4
f̃1

′′
h̃− f̃1h̃

′′

h̃2
(t′0) .
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Hence, using (19) and (20), we obtain that d′′(t′0) = − cot(t0)d′(t′0)− 1
n2 d(t′0) < 0. Consequently, there

exists only one critical point of d, t′0, in ]0, t̃0[ and it is a maximum. Obviously, d(t′0) = Maximum{d(t0) |
t0 ∈]0, t̃0[}.

Hence, it is clear that 
[
d−1({x})] ≥ 2, ∀x ∈]0, d(t′0)[. If 

[
d−1({x})] > 2, for some x ∈]0, d(t′0)[,

then it implies the existence of a local minimum of d in ]0, t̃0[, which is absurd. This concludes the
proof. �

Remark 2 For each n ∈ [23 , 1], we denote either by dn or by d′θ the maximum of the distance function
d(t0), t0 ∈]0, t̃0]. Observe that the function d(n, t0) is a differentiable function on [23 , 1]×]0, π[. Let us
check that ∂d

∂n > 0.
Taking into account that t̃0 < nπ and the definition of the function f̃1, we obtain

∂d

∂n
=

1

4h̃

∂f̃1
∂n

=
√

2

4n2h̃

∫ t0

−t0

t sin( t
n )√

cos(t) − cos(t0)
> 0 .

Then n→ dn is a continuous increasing function in [23 , 1], equivalently the function θ → d′θ is increasing
in [0, π]. Therefore, d′θ0

< d′θ1
for 0 ≤ θ0 < θ1 ≤ π.

At this point, we recall that the distance function for the examples which lies in the convex hull of
their boundary coincides with our function d for n ∈ [1, 2] (see [10]). As ∂d

∂n > 0 we have that dn0 < dn1

for 2
3 ≤ n0 < n1 ≤ 2. Hence, we infer that d′θ < dθ, for θ ∈ [0, π], where dθ is the maximum of the

distance function for the López-Mart́ın examples (see Remark 4 in [10]).

From the asymptotic expansion of the Weierstrass data we have that X can be expressed locally around
E1 as

X(u) = (X1(u), X2(u), X3(u)) =
(
−i

nλ

2(2 − n)
u1− 2

n (1 +O1(u) + iO2(u)) , O3(u)
)
, (21)

where Oi(u)/|u| is a bounded function in a neighbourhood of E1, i = 1, 2, 3. Using this fact and
Lemma 2.1 in [13] it is not difficult to prove the following lemma.

Lemma 8 The minimal immersion X : M → R3 is proper and X(M) is contained in the slab S.

Let us consider M1 = {(u, v) ∈ M | |u| ≤ 1} and M2 = {(u, v) ∈ M | |u| ≥ 1}. We recall
that we had denoted by δ̂ and δ+i the lifts to M of the curves of u(M) given by ei t

2 , for t ∈ [−t0, t0]
and t ∈ [t0, π], respectively satisfying δ+i (π) ∈ γ+

i , i = 1, 2. Clearly, the surfaces M1 and M2 are
topologically a closed disk minus one boundary point. Moreover, M = M1 ∪M2, M1 ∩M2 = δ̂ and
∂(M1) = δ̂ ∪ γ+

1 ∪ γ−1 ∪ δ+1 ∪ δ−1 , ∂(M2) = δ̂ ∪ γ+
2 ∪ γ−2 ∪ δ+2 ∪ δ−2 , where δ−i = Sv(δ+i ) for i = 1, 2.

Our next objective is to prove the following assertion:

Claim 4 X |δ is injective and X(δ̂) ⊂ {x2 ≤ 0, x3 = 0}.

Proof : To see this we observe that X2(δ̂(t)) = X2(δ̂(t)) − X2(δ̂(−t0)) = −√
2
∫ t

−t0

sin(s/n)√
cos(s)−cos(t0)

ds.

Since 0 < t0 ≤ nπ we have that X2 ◦ δ̂ is a non positive decreasing function for t ∈ [−t0, 0]. This fact
and the vertical symmetry Sv prove the assertion. �

Let us denote M+ = {(u, v) ∈ M | Im(u) ≥ 0} and M− = {(u, v) ∈ M | Im(u) ≤ 0}, and
define ρ as the lift to M of the divergent curve ]0,+∞[ in the u-plane. We parametrize ρ as follows:
ρ(t) = u−1(t), t ∈]0,+∞[.

Obviously, the surfaces M+ and M− are topologically a closed disk minus two boundary points.
Furthermore,M = M+∪M−, M+∩M− = ρ and ∂(M+) = ρ∪γ+

1 ∪γ+
2 ∪γ+

0 , ∂(M−) = ρ∪γ−1 ∪γ−2 ∪γ−0 .
Next we prove that
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Claim 5 X(ρ(t)) ⊂ {(x1, x2, x3) | x1 = 0, x2 ≤ −ε,− 1
2 < x3 <

1
2}, where ε = −X2(P0) > 0.

Proof : By the symmetry Sh, it suffices to prove the assertion for X(ρ(]0, 1])). From the Weierstrass

data we deduce that X2(ρ(t)) = −ε−∫ 1

t
s− 2

n −s
2
n√

s4−2 cos(t0)s2+1
ds. Using Claim 4 we have ε = −X2(P0) > 0.

So X2 ◦ ρ is decreasing and non positive in ]0, 1]. �

Moreover, taking (21) and the symmetry Sh into account, we obtain that

lim
t→0

X2(ρ(t)) = lim
t→+∞X2(ρ(t)) = −∞ .

At this point we can prove the following lemma.

Lemma 9 The minimal immersion X : M −→ R3 verifies:

1. X(M) ⊂ ((S \ E(Γθ d)) ∪ Γθ d).

2. The surfaces X(M1 \ (δ+1 ∪ δ−1 )) and X(M2 \ (δ+2 ∪ δ−2 )) are graphs on the plane {x3 = 0}.
3. d > 0 implies that X is an embedding. If d = 0, then X |M\γ+ and X |M\γ− are injective.

Proof : As in Sect. 2 denote by p3 the orthogonal projection on the plane {x3 = 0}. Using (21) once
again and the symmetries, it is not hard to see that X(M+) and X(M−) are contained in a wedge of
the slab S. Then we can apply statement (ii) in Theorem 1 to conclude that X(M+) and X(M−) lies
in the convex hull of their boundary.

In case d = 0, taking into account Lemma 6, Claim 5 and the interior maximum principle we have
the proof of Assertion 1. Moreover, in this case the interior maximum principle also gives us that
X(M+) ∩ {(x1, x2, x3) ∈ R

3 | x1 = 0,−ε < x2 < 0} = ∅ , and so, taking into account the symmetry
Sv, we deduce that

p3(X(M)) ∩ {(x1, x2, x3) ∈ R
3 | x1 = 0,−ε < x2 < 0} = ∅ . (22)

In case d > 0 the above reasoning implies

X(M) ⊂ S \ {(x1, x2, x3) ∈ R
3 | x1 = 0, x2 > 0} . (23)

Next, we prove Assertion 1 for d > 0 and Assertion 2. In what follows we denote α = p3(∂(X(M1))).
We also introduce the following notation:
(A) If d = 0, W0 will denote the bounded connected component of R2 \α, whereas W1 will denote the
unbounded connected component which is disjoint from p3(E(Γθ d)).
(B) If d > 0, observe that α is a connected simple curve. In this case we denote W0 as the connected
component of R2 \ α containing the point (0, 0) and W1 the other one. In both cases p3(M1) ⊂
W0 ∪W1 ∪ α. Since p3(X(∂(M1))) = α and p3 ◦X is proper on M1 (see Lemma 8), then p3 ◦X(M1 \
∂(M1))∩W0 is closed in W0. Furthermore, g(M1 \ ∂(M1))∩ S1 = ∅ and so (p3 ◦X)|M1\∂(M1) is a local
diffeomorphism. In particular, p3 ◦X(M1 \ ∂(M1)) ∩W0 is an open set of W0. Hence we deduce that
either p3 ◦X(M1 \ ∂(M1)) ∩W0 = ∅ or p3 ◦X(M1 \ ∂(M1)) ∩W0 = W0. According to (22) and (23)
we have that p3 ◦X(M1 \ ∂(M1)) ∩W0 = ∅. A similar argument yields p3(X(M1)) ∩W1 = W1, i.e.,
p3(X(M1)) = W1 ∪α. Hence, using the symmetry Sh and the interior maximum principle we conclude
the proof of Assertion 1.

From the above reasoning we have that p3 ◦ X : M1 \ (δ+1 ∪ δ−1 ) −→ W1 ∪ α is a proper local
diffeomorphism and so p3 ◦ X is a covering map. Since (p3 ◦ X)|γ+

1
is one-to-one we obtain that

X(M1 \ (δ+1 ∪ δ−1 )) is a graph on the plane {x3 = 0}.

24



Using that ∂(X(M1)) ⊂ {(x1, x2, x3) ∈ R3 | 0 ≤ x3 ≤ 1
2} and Lemma 2.1 in [13] we infer that

X(M1) ⊂ {(x1, x2, x3) ∈ R
3 | 0 ≤ x3 ≤ 1

2
} . (24)

Then, taking into account the symmetry Sh, we obtain Assertion 2.
Finally, Assertion 2 and (24) give us Assertion 3. �

The main theorem is a consequence of the following results: Propositions 1, 5, and 6, Lemmas 7,
8, and 9, Remark 2, Theorem 4 in [10] and Theorem 3.32 in [9].
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