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Abstract

In this paper we give a characterization of complete embedded ends of singly-periodic
improper affine spheres in terms of their conformal representation.
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1 Introduction

The study of locally strongly convex improper affine spheres is locally equivalent (see [2], [3]) to
the study of convex solutions of the Monge-Ampère equation

det
(

∂2f

∂xi∂xj

)
= 1 (1)

on a planar domain. Since the underlying almost-complex structure of (1) is integrable, a conformal
representation in terms of two meromorphic functions can be given for improper affine spheres (see
Sect. 2). Indeed, a pair of meromorphic functions on a Riemann surface produce an immersion
of an improper affine sphere in R

3, provided certain compatibility conditions are satisfied, one of
which refers to the multi-valuation of the immersion. This paper is motivated by the existence
of examples of improper affine spheres given by multi-valued immersions. These examples are all
invariant under a translation and a family of screw motions (see Sect. 3).

The purpose of this paper is to study a class of improper affine spheres that contains the
aforementioned examples. We shall call an improper affine sphere singly-periodic if it is connected
and invariant under an infinite cyclic group of equiaffine transformations of R

3 that acts freely
on R

3. Our last objective is to describe the complete embedded ends of singly-periodic improper
affine spheres. In this context we obtain the following classification result:

A complete embedded end of a singly-periodic improper affine sphere is asymptotic to a
half elliptic paraboloid, a surface Ea (see Sect. 3) or to a surface Ma0,t (see Sect. 4).

The paper is organized as follows. In Sect. 2 we recall some basic facts about improper affine
spheres, emphasizing the conformal representation.

In Sect. 3 we introduce complete ends of singly-periodic improper affine spheres and give a
first family of examples.

∗Research partially supported by DGICYT grant number PB97-0785.
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Finally, Sect. 4, 5, 6 and 7 are devoted to give a characterization of the different types of those
complete embedded ends.

2 Preliminaries

We refer the reader to [3], [4] and [10] for more details about locally strongly convex affine surfaces.
Let x : M−→R

3 be an oriented immersed locally strongly convex improper affine sphere with a
differentiable boundary (possibly empty). We shall denote by (x1, x2, x3) a rectangular coordinate
system in R

3. By using an equiaffine transformation if necessary, we can assume that the affine
normal vector of M is ξ = (0, 0, 1). Then the projection on Π ≡ {x3 = 0} parallel to ξ, pξ : M−→Π,
is an immersion and M is, locally, the graph of a convex solution f : B−→R of (1) on a bounded
convex domain B in Π. That is, in a neighbourhood of each point, M is given by

x(x1, x2) = (x1(x1, x2),x2(x1, x2),x3(x1, x2)) = (x1, x2, f(x1, x2)) , (2)

where (x1, x2) ∈ B. Moreover, it is easy to prove that the affine metric and the affine conormal
map of the improper affine sphere are given on this neighbourhood by

ds2 =
2∑

i,j=1

fijdxidxj , (3)

N = (N1, N2, N3) =
(
− ∂f

∂x1
,− ∂f

∂x2
, 1
)

, (4)

where we denote by fij = ∂2f
∂xi∂xj

, for i, j = 1, 2. Conversely, the graph of a convex solution of (1)
is an improper affine sphere with affine normal vector field ξ = (0, 0, 1) and affine metric given by
(3).

Using standard notation of complex analysis (see [1]), one can define the functions F, G : B−→C

given by

G(x1, x2) =
(

x1 +
∂f

∂x1

)
+ i
(

x2 +
∂f

∂x2

)
, (5)

F (x1, x2) =
(

x1 − ∂f

∂x1

)
+ i
(
−x2 +

∂f

∂x2

)
, (6)

with (x1, x2) in the former convex domain B. Taking into account (2), (4), (5) and (6), the functions
F and G can be written

G = (x1 − N1) + i (x2 − N2) , (7)
F = (x1 + N1) − i (x2 + N2) , (8)

and thus, F and G are globally defined on M . From the above considerations, it is possible to give
the following conformal representation for improper affine spheres (see [5], [6]).

Theorem 1 (Conformal representation)

i) Let x : M−→R
3 be an improper affine sphere with affine normal ξ = (0, 0, 1) and consider on M

the structure of Riemann surface induced by its affine metric. Then there exist holomorphic func-
tions F and G on M such that dG does not vanish on M , |dF | < |dG| and M can be represented,
up a vertical translation, by the immersion

x =
(

G + F

2
,
1
8
|G|2 − 1

8
|F |2 +

1
4
Re(GF ) − 1

2
Re
∫

FdG

)
. (9)
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Moreover, the affine metric and the affine conormal map are given by

ds2 =
1
4
(|dG|2 − |dF |2) , (10)

N =
(

F − G

2
, 1
)

. (11)

ii) Conversely, let M be a Riemann surface, F and G two holomorphic functions on M such that
dG does not vanish on M and |dF | < |dG|. Then (9) defines an improper affine sphere with affine
normal (0, 0, 1) and with affine metric and affine conormal map given by (10) and (11), respectively.
Moreover, x is singly-valued if and only if FdG does not have real periods.

The pair (F, G) is called a conformal representation of the improper affine sphere M . This confor-
mal representation, analogously to Weierstrass data in the theory of minimal surfaces, has become
a powerful tool in the study of improper affine spheres (see [5], [6]). Furthermore, we can consider
the holomorphic function Ψ : M−→D = {z ∈ C | |z| < 1} given by Ψ = dF

dG that is known as the
Gauss map of M . Taking into account (10), it is easy to prove that the expression of the affine
Gauss curvature as a function of F and G is

κ =
8|G′′F ′ − F ′′G′|2
(|G′|2 − |F ′|2)3 .

Thus, the affine Gauss curvature of an improper affine sphere is always non negative.
Now, let g be an equiaffine transformation on R

3 such that dg preserves the vector (0, 0, 1).
Then, g can be written as

g

 x1

x2

x3

 =

 a b 0
c d 0

α1 α2 1

 x1

x2

x3

+

 β1

β2

β3

 , (12)

where ad − bc = 1.
Clearly, if x : M−→R

3 is an improper affine sphere with affine normal vector ξ = (0, 0, 1), then
g ◦ x : M−→R

3 is also an improper affine sphere with affine normal vector ξ = (0, 0, 1). Given
(F, G) the conformal representation of x : M−→R

3, we are interested in obtaining the conformal
representation (F̃ , G̃) of g ◦ x : M−→R

3.
In order to do this we consider a neighbourhood in M given as in (2). Then, its image under

g is the graph of the function f̃ : g1(B)−→R given by f̃ = (f + α1p1 + α2p2 + β3) ◦ g−1
1 , where g1

is the equiaffine transformation in R
2 given by g1(x1, x2) = (ax1 + bx2 + β1, cx1 + dx2 + β2) and

pi : R
2−→R

2 are the standard projections. Therefore, taking into account (4), the affine conormal
map Ñ of g(M) is given by

Ñ(g(p)) =

 d −c −dα1 + cα2

−b a bα1 − aα2

0 0 1

N(p) , (13)

for all p ∈ M . Thus, from (7), (8), (12) and (13) we have the following expression for G̃ and F̃

G̃(z) =
1
2

[(a + d − i(b − c))G(z) + (a − d + i(b + c))F (z)] + (14)

β1 + dα1 − cα2 + i(β2 − bα1 + aα2) ,

F̃ (z) =
1
2

[(a − d − i(b + c))G(z) + (a + d + i(b − c))F (z)] + (15)

β1 − dα1 + cα2 − i(β2 + bα1 − aα2) .

3



Moreover, if we also assume that the equiaffine transformation g has no fixed points, then it is an
elementary exercise to prove the following result.

Proposition 1 Let g : R
3−→R

3 be an equiaffine transformation without fixed points satisfying
dg(0, 0, 1) = (0, 0, 1), then there exists an equiaffine transformation T : R

3−→R
3 with dT (0, 0, 1) =

(0, 0, 1) such that g̃ = T ◦ g ◦ T−1 can be written as follows:

I) I.1)

g̃

 x1

x2

x3

 =

 1 0 0
t 1 0
0 α2 1

 x1

x2

x3

+

 β1

0
β3

 ,

with t �= 0 and α2, βi ∈ R, for i = 1, 3 such that g̃ has no fixed points.

I.2)

g̃

 x1

x2

x3

 =

 −1 0 0
t −1 0
0 0 1

 x1

x2

x3

+

 0
0
β3

 ,

with t �= 0 and β3 �= 0.

II)

g̃

 x1

x2

x3

 =

 1 0 0
0 1 0
α1 α2 1

 x1

x2

x3

+

 0
β2

β3

 ,

with β2, β3, α1 and α2 ∈ R such that g̃ has no fixed points.

III)

g̃

 x1

x2

x3

 =

 cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

 x1

x2

x3

+

 0
0
β3

 ,

with t ∈]0, 2π[ and β3 �= 0.

IV)

g̃

 x1

x2

x3

 =

 t 0 0
0 t−1 0
0 0 1

 x1

x2

x3

+

 0
0
β3

 ,

with t �∈ {0, 1,−1} and β3 �= 0.

We say that g is of type I.1, I.2, II, III or IV if there exists g̃ of this type verifying the conditions
of Proposition 1.

3 Complete ends of singly-periodic improper affine spheres

As we mentioned in Sect. 1, we say that an improper affine sphere is singly-periodic if it is connected
and invariant under an infinite cyclic group of equiaffine transformations of R

3 that acts freely on
R

3. The aim of this section is to introduce the study of complete ends of singly-periodic improper
affine spheres.

Let x : M−→R
3 be an improper affine sphere invariant under an equiaffine transformation

g : R
3−→R

3 that acts freely on R
3. Notice that then g is as in Proposition 1. Moreover, there

exists an isometry α : M−→M of the affine metric such that x ◦ α = g ◦ x. Thus, if as before we
consider on M the structure of Riemann surface induced by the affine metric, we can consider the
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Riemann surface M/〈α〉. Since the affine metric is invariant under 〈α〉, it projects to a Riemannian
metric on M/〈α〉. We are interested in understanding the singly-periodic improper affine spheres
such that M/〈α〉 is homeomorphically A = {z ∈ C | 1

r1
≤ |z| < r1} with 1 < r1 < ∞ and the

projected metric is complete.

Definition 1 If x : M−→R
3 is as before we say that M is a complete end of a singly-periodic

improper affine sphere.

Regarding the conformal structure of these improper affine spheres we can state the following
result.

Lemma 1 Let x : M−→R
3 be a complete end of a singly-periodic improper affine sphere and

α : M−→M its associated isometry. Then M/〈α〉 is conformally the puncture disk D∗ = {z ∈ C |
0 < |z| ≤ 1}.

Proof : Suppose that M/〈α〉 is conformally A and the projected Riemannian metric on M/〈α〉 is
written on A as

h(z) = λ(z)|dz| ,

with λ > 0. Hence we can introduce in Ã = {z ∈ C | 1
r1

< |z| < r1} the metric

ĥ(z) = λ(z)λ (1/z) |dz| .

Then one verifies easily that this metric is a complete Riemannian metric on Ã. Moreover, taking
into account that the affine Gauss curvature is non negative, it is not difficult to prove that the
Gauss curvature of the metric ĥ is also non negative. Since ĥ is a complete Riemannian metric
with non negative Gauss curvature on Ã, a result by A. Huber (see Theorem 15 in [8]) says that
Ã must be parabolic, but this is a contradiction. �

Throughout we always suppose that M/〈α〉 = D∗ and the complete end is given by x : C
−−→R

3

where C
− = {z ∈ C | Re(z) ≤ 0}. Moreover, since α : C

−−→C
− is an isometry without fixed

points, α has to be a translation and so we can assume that α(z) = z +2πi. Finally, the projection
p : C

−−→D∗ is given by p(z) = exp(z). Furthermore, denoting the conformal representation of
the complete end by (F, G) and using (14) and (15) we have the following conditions on F and G

G(α(z)) =
1
2

[(a + d − i(b − c))G(z) + (a − d + i(b + c))F (z)] + (16)

β1 + dα1 − cα2 + i(β2 − bα1 + aα2) ,

F (α(z)) =
1
2

[(a − d − i(b + c))G(z) + (a + d + i(b − c))F (z)] + (17)

β1 − dα1 + cα2 − i(β2 + bα1 − aα2) .

examples of singly-periodic improper affine spheres

1. The elliptic paraboloid, given by the graph of the function f(x1, x2) = x2
1+x2

2
2 , is invariant

under the following family of transformations of type II

g

 x1

x2

x3

 =

 1 0 0
0 1 0
α1 α2 1

 x1

x2

x3

+

 α1

α2
α2

1+α2
2

2

 ,

with αi ∈ R, i = 1, 2.
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2. Consider the following functions

G(τ) =
1
τ

, Fa(τ) = aτ , (18)

with a ∈ C, that are holomorphic functions in the domain Ω = {τ ∈ C | 0 < |τ | < |a|− 1
2 }

satisfying the conditions in Theorem 1. From (9) the improper affine spheres with conformal
representation (Fa, G), that we denote Ea, are given by the parametrization

xa(r, θ) =
(

1
2

(
1
r

cos θ + a1r cos θ − a2r sin θ

)
,
−1
2

(
1
r

sin θ + a1r sin θ + a2r cos θ

)
,

1
8r2

− |a|2r2

8
+

a1

4
+

a1

2
log r − a2

2
θ

)
,

where a = a1 + ia2 and τ = reiθ ∈ Ω.

From (10) and (18), Ea is clearly a complete end of an improper affine sphere. Moreover,
Ea is embedded since the intersection of Ea with a vertical cylinder is a helix over the
cylinder. We also observe that Ea is invariant under the vertical translation (type II) of
vector (0, 0, a2mπ), for all m ∈ Z. Finally, a direct computation proves that Ea is also
invariant under all the screw motions (type III) g = tw ◦ σ, where σ is a rotation of angle
φ around the axis {x1 = x2 = 0} and tw is a translation of vector w = (0, 0, a2

2 φ), for any
φ ∈ R.

Observe that the immersion xa is singly-valued if and only if a2 = 0. In this case the
immersion describes an improper affine sphere of revolution with logarithmic growth rate a1

(see [5]). On the other hand, if a2 �= 0 the immersion xa is multi-valued and we obtain a
family of examples of complete ends of singly-periodic improper affine spheres (see Fig. 1
and Fig. 2). As before, a1 will be called the logarithmic growth rate of the end Ea.

Figure 1: Surface Ea for a = i. Figure 2: Surface Ea for a = −i.
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4 Complete embedded ends of type I

Let x : C
−−→R

3 be a complete embedded end invariant under an equiaffine transformation
g : R

3−→R
3 as in I.1 and let (F, G) be its conformal representation. Then using (16) and (17) we

have

G(α(z)) =
(

1 + i
t

2

)
G(z) + i

t

2
F (z) + β1 − tα2 + iα2 , (19)

F (α(z)) = −i
t

2
G(z) +

(
1 − i

t

2

)
F (z) + β1 + tα2 + iα2 . (20)

Thus, the holomorphic one-form η = dG + dF passes to the quotient D∗, namely, there exists η̃
a holomorphic one-form on D∗ verifying exp∗ η̃ = η. Since η never vanishes on C

− we can also
consider the holomorphic function H : C

−−→C given by

H(z) =
dG − dF

η
− t

2π
z (21)

and the holomorphic one-form

ω =
2(G′′dF − F ′′dG)

(G′ + F ′)2
.

From (19) and (20) it is easy to check that H and ω also pass to the quotient D∗ and then there
exist a holomorphic function H̃ and a holomorphic one-form ω̃ on D∗ verifying H̃ ◦ exp = H and
exp∗ ω̃ = ω. From the definition of ω we also have

ω = d

(
dG − dF

η

)
. (22)

Hence we obtain that
dG − dF = f η ,

where f =
∫

ω. Hence, taking into account the definition of η, we can write

dG =
1
2

(1 + f ) η , dF =
1
2

(1 − f ) η . (23)

Then, using (9) and (23), the immersion can be expressed as follows

x = (x1,x2,x3) =
(

1
2

Re
∫

η,
1
2

Im
∫

f η,
1
4

Re
∫

η Re
∫

f η − 1
4

Re
∫ (∫

η

)
f η

)
. (24)

Hence a multi-valued parametrization of the end is given by

x̃ = (x̃1, x̃2, x̃3) =
(

1
2

Re
∫

η̃,
1
2

Im
∫

f̃ η̃,
1
4

Re
∫

η̃ Re
∫

f̃ η̃ − 1
4

Re
∫ (∫

η̃

)
f̃ η̃

)
, (25)

where f̃ =
∫

ω̃.

Definition 2 The pair (η̃, ω̃) will be called the conformal representation of this type of ends.

The results of this section can be summarized in the following theorem.
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Theorem 2 Let x : C
−−→R

3 be a complete embedded end of an improper affine sphere invariant
under an equiaffine transformation as in I.1 and let (η̃, ω̃) be its conformal representation. Then
t < 0, β1 �= 0, and η̃ and ω̃ are holomorphic one-forms on D∗ with a pole at zero of order one,
Res0(η̃) = 1

π (α2 − iβ1) and Res0(ω̃) = t
2π .

Conversely, if η̃ and ω̃ are holomorphic one-forms on D∗ with a pole at zero of order one,
Im(Res0(η̃)) �= 0 and Res0(ω̃) a negative real number, then the immersion given in (25) contains
a complete embedded subend invariant under an equiaffine transformation g of type I.1 with α2 =
πRe(Res0(η̃)), β1 = −πIm(Res0(η̃)) and t = 2πRes0(ω̃).

Furthermore, there exist no complete embedded ends invariant under an equiaffine transforma-
tion as in I.2.

Proof of Theorem 2: For the sake of clarity, we develop the proof in different steps.

Step 1: We assert:

a) If t > 0 then ds cannot be a Riemannian metric.

b) If t < 0 and the end is complete then η̃ has a pole at 0 of order k + 1 ≥ 1 and Res0(η̃) =
1
π (α2 − iβ1) and ω̃ has a pole at 0 of order one and Res0(ω̃) = t

2π .

From (21) and (22) we have

ω̃ =
t

2πτ
dτ + dH̃ , (26)

where τ = exp(z). Then, taking into account (23) and (26), we have the following expression for
the projected metric on D∗:

ds2 =
1
4
Re(f̃) |η̃|2 =

1
4

(
t

2π
log r + Re(H̃)

)
|η̃|2 , (27)

with τ = reiθ and τ ∈ D∗. In order that ds can be a Riemannian metric, it is necessary that
the harmonic function t

2π log r + Re(H̃) > 0 on D∗. Then it is not difficult to prove that H̃ has
a removable singularity at τ = 0 (see [1]) and so, using (26), we conclude that ω̃ is as in b).
Furthermore, if t > 0 then t

2π log r + Re(H̃) tends to −∞ when |τ | tends to 0, and so there are
points where ds is not a Riemannian metric.

Henceforth we suppose t < 0. Thus, for r sufficiently small we have the following inequalities

t

2π
log r + Re(H̃) ≤ t

2π
log r + C0 ≤ t − 1

2π
log r ≤ 1 − t

2π
|τ |−2 , (28)

where C0 is a constant. Finally, from (27) we obtain

ds2 ≤ 1 − t

8π
|τ−1η̃|2 ,

Since x : C
−−→R

3 is a complete end and τ−1η̃ is a holomorphic one-form without zeros in D∗,
a well-known result (see Lemma 9.6 in [11]) says us that τ−1η̃ has a pole at 0 of order k + 2 ≥ 1.
In fact, one can prove that k > −1 and then η̃ has a pole at 0 of order k + 1 ≥ 1. We proceed by
contradiction. Suppose k = −1 and consider on D∗ the divergent curve γ(r) = r with r ∈]0, r0]
and r0 sufficiently small so that inequalities in (28) are satisfied for r ≤ r0. Then from (27) and
(28) the length of the curve γ respect to the affine metric satisfies∫

γ

ds ≤ 1
2

∫
γ

(
t − 1
2π

log r

) 1
2

|η̃| ≤ C1

2

(
1 − t

2π

) 1
2
∫ r0

0

(− log r)
1
2 dr ,
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where C1 is a positive constant. Since the integral on the righthand side converges, we conclude
that γ has finite length, which is a contradiction. Finally, from (19), (20) and the definition of η̃
we have Res0(η̃) = 1

π (α2 − iβ1).

Step 2: We claim that if t < 0 and k > 0, then the end cannot be embedded. Then η̃ has a pole
at zero of order one and Im(Res0(η̃)) �= 0.

For the sake of clarity, throughout this step we consider the parametrization given by (24). We
shall prove our claim by finding two disjoint curves on C

− whose image by x intersect each other.
The ideas of this proof and the proof of Step 3 in Sect. 5 are inspired in the works [7] and [9].

Assume that η̃ has a pole at 0 of order k + 1 > 1 and ω̃ is as in statement b) of Step 1. We
distinguish two cases, the case β1 �= 0 and the case β1 = 0.

CASE β1 �= 0.
In this case, it is easy to prove that there exists an equiaffine transformation g̃ as in I.1 with

t < 0, β1 �= 0, β3 = 0 and such that g and g̃ are conjugate. From the above conditions, η̃ and ω̃
can be written on D∗ as follows

η̃ =

( ∞∑
λ=−k−1

âλτλ

)
dτ , ω̃ =

(
t

2πτ
+

∞∑
λ=0

b̂λτλ

)
dτ , (29)

with âλ, b̂λ ∈ C, â−1 = 1
π (α2 − iβ1) and â−k−1 �= 0. Therefore we get the following expression for

the holomorphic one-form η

η =

( ∞∑
λ=−k−1

âλeλz

)
ezdz =

( ∞∑
λ=−k

aλeλz

)
dz , (30)

where aλ = âλ−1, a0 = 1
π (α2 − iβ1) and we recall a−k �= 0. Hence∫

η = a0z +
∞∑

λ=−k

a′
λeλz , (31)

where a′
λ = aλ

λ for λ �= 0 and a′
0 ∈ C. Moreover, from (24) and (31), the first component of the

immersion x is given by

x1(z) =
1
2

{
α2

π
x +

β1

π
y +

∞∑
λ=−k

|a′
λ| cos(θλ + λy)eλx

}
, (32)

where z = x + iy and θλ = arg(a′
λ). According to (29) and (30) we can write

f η =

(
t

2π
z

∞∑
λ=−k

aλeλz +
∞∑

λ=−k

bλeλz

)
dz , (33)

with bλ ∈ C. Using (24) and (33), we have the following expression for the second component of x

x2(z) =
1
2
Im(

t

4π
a0z

2 + b0z +
t

2π
z

∞∑
λ = −k
λ �= 0

a′
λeλz − t

2π

∞∑
λ=−k

a′′
λeλz +

∞∑
λ=−k

b′λeλz) (34)

=
1
2
{ t

2π

∞∑
λ = −k
λ �= 0

|a′
λ|(x sin(θλ + λy) + y cos(θλ + λy))eλx +

∞∑
λ=−k

|b′λ| sin(γλ + λy)eλx

− t

2π

∞∑
λ=−k

|a′′
λ| sin(θλ + λy)eλx +

t

4π2

(
β1(y2 − x2) + 2α2xy

)
+ Re(b0)y + Im(b0)x} ,
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where a′′
λ = a′

λ

λ , b′λ = bλ

λ , a′′
0 , b′0 ∈ C and γλ = arg(b′λ). In a similar way, we deduce from (24), (31)

and (33) that the asymptotic behaviour of x3 in this case is given by

x3(z) =
t

16k2π
|a−k|2xe−2kx(1 + h(x, y)) , (35)

where h(x, y) denotes a function such that ∀y ∈ R, lim
x→−∞h(x, y) = 0.

Now, we shall study the intersection of the end with the plane x2 = 0. Denote by Il the interval
Il =]a1

l , a
2
l [=

]
θ−k+πl

k ,
θ−k+π(l+1)

k

[
, for l ∈ Z. From (34) the second component of the immersion

on the points z = x0 + iy for a fixed x0 < 0 verifies

2x2(x0, y) ≤ t

2π
(x0 − |y|)

∞∑
λ = −k
λ �= 0

|a′
λ|eλx0 − t

2π

∞∑
λ=−k

|a′′
λ|eλx0 +

∞∑
λ=−k

|b′λ|eλx0

+
t

4π2

(
β1(y2 − x2

0) + 2α2x0y
)

+ Re(b0)y + Im(b0)x0 .

Since the series
∑∞

λ=−k a′
λτλ,

∑∞
λ=−k a′′

λτλ and
∑∞

λ=−k b′λτλ represent the Laurent series of holo-
morphic functions on D∗, we have that they converge absolutely at each point of D∗ and so the
series in the above inequality converge. Hence we have for y > 0

2x2(x0, y) ≤ t

4π2
β1y

2 + C2y + C3 , (36)

where Ci are constants for i = 2, 3. Assume β1 > 0. From (36), there exists y0 > 0 such that
x2(x0, y) < 0 for y ≥ y0.

Moreover, if we fixed y ∈ Il for an odd l we obtain from (34) limx→−∞ x2(x, y) = +∞.
Therefore if y ≥ y0 and y ∈ Il for and odd l, there exists x1 such that x2(x1, y) = 0. We
consider and odd l0 ∈ N so that a1

l0
≥ y0. Thus, if l is an odd integer satisfying l ≥ l0, we have

Al =] −∞, 0[×Il ∩ x−1
2 (0) �= ∅ and then Al is a union of analytic curves. Furthermore, from (34)

we have

sin(θ−k − ky) = − 2π

t|a′
−k|

x−1ekx{ t

2π
x

∞∑
λ = −k + 1

λ �= 0

|a′
λ| sin(θλ + λy)eλx (37)

+
t

2π
y

∞∑
λ = −k
λ �= 0

|a′
λ| cos(θλ + λy)eλx − t

2π

∞∑
λ=−k

|a′′
λ| sin(θλ + λy)eλx

+
∞∑

λ=−k

|b′λ| sin(γλ + λy)eλx +
t

4π2

(
β1(y2 − x2) + 2α2xy

)
+ Re(b0)y + Im(b0)x} .

As consequence, we deduce the following parametrization of two arcs in Al

Γ1
l (x) = x + iy1

l (x) , x ∈] −∞, al[
Γ2

l (x) = x + iy2
l (x) , x ∈] −∞, al[

where yj
l are defined by equation (37) and al < 0. Moreover, deriving in (37) we obtain yj

l (x) =
aj

l + O(x−1) for j = 1, 2 where by O(xm) we denote a function such that x−mO(xm) is bounded
as x → −∞ (see Fig. 3).

10



Figure 3:

Hence, taking into account (32), we deduce

lim
x→−∞x1(Γ1

l (x)) = −∞ ,

lim
x→−∞x1(Γ2

l (x)) = +∞ ,

lim
x→−∞x1(Γ1

l0+2kn(x)) − x1(Γ1
l0(x)) = nβ1 ,

for n ∈ N and l an odd integer satisfying l ≥ l0 . According to (35), we also have

lim
x→−∞x3(Γ

j
l (x)) = +∞ .

Moreover, since β3 = 0 we have x3(x + i(y + 2πn)) = x3(x + iy), for all n ∈ N and then

x3(Γ1
l0+2kn(x)) = x3(Γ1

l0(x) + i(2πn + O(x−1))) ∼ x3(Γ1
l0(x) + 2πni)) = x3(Γ1

l0(x)) .

Then, the curve x(Γ1
l0+2kn(x)) is asymptotic to the curve x(Γ1

l0
(x))+(nβ1, 0, 0) and so there exists

n sufficiently large so that x(Γ1
l0+2kn) cuts the curve x(Γ2

l0
) (see Fig. 4) and consequently the end

is not embedded.
If β1 < 0 a similar argument with slight changes allows us to finish as before.

CASE β1 = 0.
We observe from the expression of the equiaffine transformation g, that if β1 = 0 then α2 = 0 in

order that g has no fixed points. Thus, Res0(η̃) = 0 and then, after a conformal reparametrization
of a subend, we can assume the following expressions for η and ω

η = −ke−kwdw , ω =

(
t

2π
+

∞∑
λ=1

bλeλw

)
dw , (38)

where bλ ∈ C and w ∈ C
−
R = {z ∈ C | Re(z) ≤ R} for some R ≤ 0. According to (24) and (38)

the expression of x1 is

x1(w) =
1
2
Re(e−kw) =

1
2
e−ku cos(kv) .

11



Figure 4:

where w = u + iv. Thus, the intersection of the end with the plane x1 = 0 can be parametrized
by the rays, γl(u) = u + iΘl, where u ≤ R and Θl = l π

k − π
2k , l ∈ Z. We denote by Ωl =

] −∞, R[×]Θl−1, Θl[. Given δ > 0 sufficiently large, the level set x−1
1 (δ) ∩ Ωl for odd |l| consists

of a connected arc γδ,l that can be parametrized as

γδ,l(v) = u(v) + iv = −1
k

log
(

2δ

cos(kv)

)
+ iv , v ∈]Θl−1, Θl[ .

Notice that the curve γδ,l is asymptotic to the rays γl−1 and γl (see Fig. 5). Taking into account

Figure 5:

(24) and (38), it is not hard to see that the asymptotic behaviour of x2 is as follows

x2(γδ,l(v)) =
t

4π
u(v)e−ku(v)(1 + h1(v)) ,

12



when v → Θl−1 and h1 is a function such that limv→Θl−1 h1(v) = 0. Furthermore, if v → Θl we
get

x2(γδ,l(v)) = − t

4π
u(v)e−ku(v)(1 + h2(v)) ,

where h2 is a function such that limv→Θl
h2(v) = 0. Similarly, from (35) and (38) we have

x3(γδ,l(v)) =
t

16π
u(v)e−2ku(v)(1 + h3(v)) ,

when v tends to the extremes of the interval ]Θl−1, Θl[ and h3 is a function such that limv→Θl−1 h3(v) =
limv→Θl

h3(v) = 0.
Moreover we have

g(x(γδ,l)) = g(δ,x2(γδ,l),x3(γδ,l)) = (δ,x2(γδ,l) + tδ,x3(γδ,l) + β3) .

Thus, g is a translation of vector (0, tδ, β3) on the curve x(γδ,l). From the properties of the curves
x(γδ,l) it is clear that the curve g(x(γδ,l)) cuts the curve x(γδ,l) and then the end cannot be
embedded (see Fig. 6).

Figure 6:

Consequently, k = 0 and therefore η̃ has a pole at zero of order one. Moreover, Im(Res0(η̃)) =
−β1

π �= 0. If not, since g has not fixed points α2 = 0 and Res0(η̃) = 0.

Step 3: We claim that if η̃ and ω̃ are as in Theorem 2, then the multi-valued parametrization X̃
given by (25) contains a complete embedded subend invariant under an equiaffine transformation
g of type I.1.

Assume that η̃ and ω̃ are as in Theorem 2. Since η̃ has a pole at 0 of order one and Res0(η̃) =
1
π (α2 − iβ1) we can assume, after a conformal reparametrization of a subend, that the expression
of η̃ is as follows

η̃ =
a0

ζ
dζ , (39)

where a0 = 1
π (α2 − iβ1) �= 0 and ζ ∈ D∗

ε = {z ∈ C | 0 < |z| < ε} for some 0 < ε ≤ 1. We recall
that β1 �= 0. From (39) we obtain ∫

η̃ = a0 log(ζ) . (40)

Furthermore, since ω̃ has a pole at 0 of order one and Res0(ω̃) = t
2π we can write

ω̃ =

(
t

2πζ
+

∞∑
λ=0

bλ+1ζ
λ

)
dζ , (41)
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with bλ ∈ C. Hence we obtain

f̃ η̃ =
ta0

2π

log(ζ)
ζ

+
b0

ζ
+

∞∑
λ=0

b′λζλ , (42)

with b′λ = a0bλ+1
λ+1 for λ > 0 and b0 ∈ C. From (19), (23), (40) and (42) it is easy to see that

b0 = it
2 a0. Clearly, from (39) and (41), the affine metric given in (27) is a complete Riemannian

metric on D∗
ε0

, for some 0 < ε0 ≤ ε.
Now, we shall show that for ε0 sufficiently small the subend is also embedded. Indeed, we prove

that this subend is a graph over the plane x3 = 0.
From (25), (40) and (42) we get

x̃1(ζ) =
1
2
Re(a0 log(ζ)) =

1
2π

(α2 log r + β1θ) , (43)

x̃2(ζ) =
1
2
Im

(
t

4π
a0 log(ζ)2 + b0 log(ζ) +

∞∑
λ=0

b′′λζλ

)
=

1
2
{Re(b0)θ + Im(b0) log r (44)

+
t

4π2

(
β1(θ2 − (log r)2) + 2α2θ log r

)
+

∞∑
λ=0

|b′′λ| sin(θλ + λθ)rλ

}
,

where b′′λ = b′λ
λ for λ > 0, b′′0 ∈ C and θλ = arg(b′′λ). Then the intersection of the end with the plane

x1 = δ for δ a real constant can be parametrized on D∗
ε0

by the curve

γδ(r) = r exp
(
−α2

β1
log r +

2πδ

β1

)
,

with r ≤ ε0. Substituting in (44) we obtain

x̃2(γδ(r)) =
1
2

{
−|a0|2t

4β1
(log r)2 +

(
Im(b0) − α2

β1
Re(b0)

)
log r +

δ2t

β1
+

2πδ

β1
Re(b0)

+
∞∑

λ=0

|b′′λ| sin
(

θλ + λ

(
−α2

β1
log r +

2πδ

β1

))
rλ

}
,

Hence we deduce
d x̃2

dr
(γδ(r)) = −|a0|2t

4β1
r−1 log r + O(r−1) ,

where O(rm) denotes a function such that r−mO(rm) is bounded (independently of δ) as r → 0.
Therefore there exists 0 < ε1 ≤ ε0 such that x̃2 ◦ γδ :]0, ε1]−→R is a one-to-one function for all
δ ∈ R. Consequently, x̃(γδ(]0, ε1])) is a graph over the line {x1 = δ, x3 = 0} and so the subend
x̃ : D∗

ε1
−→R

3 is also a graph over the plane x3 = 0.

Step 4: We claim that there exist no complete embedded ends invariant under an equiaffine
transformation g as in I.2.

We shall deduce this fact using the former steps. Observe that if x : C
−−→R

3 is an end
invariant under g, then the end is also invariant under the equiaffine transformation g2 given by

g2

 x1

x2

x3

 =

 1 0 0
t′ 1 0
0 α′

2 1

 x1

x2

x3

+

 β′
1

0
β′

3

 =

 1 0 0
−2t 1 0
0 0 1

 x1

x2

x3

+

 0
0

2β3

 .
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Thus, g2 is an equiaffine transformation of type I.1 with α′
2 = β′

1 = 0. But, according to the above
steps there exist no complete embedded ends invariant under such a transformation and therefore
neither exist complete embedded ends invariant under g.

Remark 1 Obviously, when we use the parametrization (25) to give an immersion x̃ invariant
under an equiaffine transformation g of type I.1 the integration constants must be chosen according
to g.

Remark 2 We denote by Ma0,t the complete embedded end given by Theorem 2 and the meromor-
phic one-forms η̃ = a0

ζ
, ω̃ = t

2πζ
with a0 ∈ C such that Im(a0) �= 0, t < 0 and ζ ∈ D∗ (see Fig.

7). Notice that a generic end as in Theorem 2 is asymptotic to an end Ma0,t.

Figure 7:

5 Complete embedded ends of type II

Let x : C
−−→R

3 be a complete end invariant under an equiaffine transformation g : R
3−→R

3 as
in II. Then using (16) and (17) we have

G(α(z)) = G(z) + α1 + i(β2 + α2) , F (α(z)) = F (z) − α1 − i(β2 − α2) . (45)

Thus, we have that dG and dF pass to the quotient D∗, namely, there exist ω̃1 and ω̃2 holomorphic
one-forms on D∗ verifying exp∗ ω̃1 = dG and exp∗ ω̃2 = dF . Taking into account (10) we have the
following expression for the projected metric on D∗

ds2 =
1
4
(|ω̃1(τ)|2 − |ω̃2(τ)|2) ≤ 1

4
|ω̃1(τ)|2 , (46)

15



with τ = exp(z) and τ ∈ D∗. Since x : C
−−→R

3 is a complete end and ω̃1 is a holomorphic
one-form without zeros in D∗, we have (see Lemma 9.6 in [11]) that ω̃1 has a pole at 0 of order
k + 1 ≥ 1. Therefore as |ω̃2| < |ω̃1|, we deduce that ω̃2 has at most a pole at 0 of order less or
equal that k + 1.

Denote G0 =
∫

ω̃1 and F0 =
∫

ω̃2 that are not singly-valued functions in general. Notice that
G0 and F0 are also defined by the equalities G0 ◦exp = G and F0 ◦exp = F . From these definitions
we can give a multi-valued parametrization of the end on D∗ as follows

x̃ = (x̃1, x̃2, x̃3) =
(

1
2
(G0 + F0),

1
8
(|G0|2 − |F0|2) +

1
4
Re(G0F0) − 1

2
Re
∫

F0 ω̃1

)
. (47)

Definition 3 The pair (ω̃1, ω̃2) will be called the conformal representation of this type of ends.

The following result is a characterization, in terms of ω̃1 and ω̃2, of the complete embedded ends
invariant under an equiaffine transformation of type II.

Theorem 3 Let x : C
−−→R

3 be a complete embedded end of an improper affine sphere invariant
under an equiaffine transformation as in II and let (ω̃1, ω̃2) be its conformal representation and
F0 as before. Then we have one of the following situations:

i) If k > 0, then up an equiaffine transformation, the equiaffine transformation is a vertical trans-
lation of vector (0, 0, β3), ω̃1 has a pole at zero of order k + 1 and Res0(ω̃1) = 0, ω̃2 has a
zero at zero of order k − 1 and Im (Res0(F0ω̃1)) = β3

π .

Conversely, if ω̃1 and ω̃2 are as above the multi-valued parametrization x̃ : D∗−→R
3 given

by (47) contains a complete embedded subend invariant under a vertical translation of vector
(0, 0, π Im (Res0(F0ω̃1)).

ii) If k = 0, then up an equiaffine transformation, the equiaffine transformation writes as

g̃

 x1

x2

x3

 =

 1 0 0
0 1 0
0 α2 1

 x1

x2

x3

+

 0
α2

0

 , (48)

with α2 �= 0, ω̃1 has a pole at zero of order one and Res0(ω̃1) = α2
π , ω̃2 is a holomorphic

one-form on D and Im (Res(F0ω̃1)) = −α2
2

2π .

Conversely, if ω̃1 and ω̃2 are as above the multi-valued parametrization x̃ : D∗−→R
3 given

by (47) contains a complete embedded subend invariant under an equiaffine transformation
as in (48) with α2 = π Res0(ω̃1).

Remark 3 Observe that in both cases of Theorem 3, F0 is a well defined holomorphic function on
D and then it makes sense to consider Res0(F0ω̃1).

Proof of Theorem 3: Let G0 and F0 be defined as before. From the conditions on ω̃1 and ω̃2 we
have the following expressions for G0 and F0

G0(τ) =
∞∑

λ=−k

a′
λτλ + A log(τ) , F0(τ) =

∞∑
λ=p

b′λτλ + B log(τ) , (49)

where k ≥ 0, A �= 0 if k = 0 and p is an integer number such that −p ≤ k. Moreover, from (45) it
is easy to see that A = 1

2π (α2 + β2 − iα1) and B = 1
2π (α2 − β2 + iα1).

We recall that if we consider an equiaffine transformation T : R
3−→R

3 as in (12) the functions
G0 and F0 of the new singly-periodic improper affine sphere T ◦ x̃ : D∗−→R

3 can be obtained from
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the equations (14) and (15). Hence taking into account (49) it is possible to find a transformation
T of the form

T

 x1

x2

x3

 =

 a′ 0 0
c′ d′ 0
0 0 1

 x1

x2

x3

 ,

with a′d′ = 1, so that the Gauss map satisfies Ψ(0) = ω̃2

ω̃1
(0) = 0 for the improper affine sphere

T ◦x̃ : D∗−→R
3. It is easy to check that the condition on the Gauss map is equivalent to −p < k if

k > 0 and B = 0 if k = 0 in (49). For the sake of simplicity, we assume this when necessary. Observe
that the new improper affine sphere is invariant under the equiaffine transformation T ◦ g ◦ T−1

that is of the same type as g.
We distinguish two cases, the case k > 0 and the case k = 0.

CASE k > 0.
Now, we consider a new coordinate ζ given by

ζ = τH0(τ)−
1
k = τ

( ∞∑
λ=0

a′
λ−kτλ

)− 1
k

,

with ζ ∈ D∗
ε , 0 < ε ≤ 1. Since a′

−k �= 0, we can insure that H0 has a k-th holomorphic root on D∗
ε

for ε sufficiently small. From (49), we can write G0 and F0 in the new coordinate as

G0(ζ) =
1
ζk

+ A log(ζ) + AH1(ζ) , F0(ζ) =
∞∑

λ=p

bλζλ + B log(ζ) + BH1(ζ) , (50)

where bλ ∈ C and H1 denotes a holomorphic function on Dε = {z ∈ C | |z| < ε}.
As before, taking into account (50) we can consider an equiaffine transformation T : R

3−→R
3

of the form

T

 x1

x2

x3

 =

 1 0 0
0 1 0
α′

1 α′
2 1

 x1

x2

x3

+

 β′
1

β′
2

0

 ,

so that b0 = 0 in the expression of the corresponding F0 of the improper affine sphere T ◦ x̃ :
D∗−→R

3. Observe that the new improper affine sphere is invariant under the equiaffine transfor-
mation T ◦ g ◦ T−1 that is of the same type as g. Then we can assume b0 = 0 in the expression of
F0 given in (50).

Our objective in this case is to prove that the end can not be embedded either p < k or
(A, B) �= (0, 0). Some steps in the proof of this fact are analogous to the proof by E. Toubiana for
singly-periodic minimal surfaces invariant under a translation (see Lemma 2 in [13]). Thereby, we
shall insist in the points in which our proof is different and refer the reader to [13] for more details.

The argument of Toubiana’s proof is very geometric. We consider a cylinder and represent by
(θ, h) a point on it, where θ and h are its argument and its hight, respectively. Our aim is to
prove that if certain conditions on p, A and B are satisfied, then it is possible to construct a curve
α(t) in the intersection of the end and the cylinder such that θ(t) is a monotone function. If there
exist three points on the curve (θ, h1), (θ + 2επn, h2) and (θ + 2επm, h3) with 0 < n < m natural
numbers, ε = ±1 and h1 < h2 and h3 < h2 the curve could not be embedded and neither is the
end.

As the study of this case is rather long, we shall divide it in several steps.

Step 1: p < 0.
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Denote by ζ = reiθ. Taking into account (50), we have the following expression for the two first
components of the multi-valued parametrization given by (47):

x̃1 + ix̃2(r, θ) =
1
2
ζ−k(1 + f(r, θ)) , (51)

where f(r, θ) is a function such that ∀θ ∈ R, lim
r→0

f(r, θ) = 0. Similarly, from (47) and (50) we
deduce

x̃3(r, θ) =
1
8
r−2k + r(−k+p)

(
− k + p

4(k − p)
|bp| sin(θp + (k − p)θ) + t(r, θ)

)
, (52)

where θp = arg
(
ibp

)
and t(r, θ) is a real function such that ∀θ ∈ R, lim

r→0
t(r, θ) = 0.

Since −k < p < 0 we have 0 < − p
k < 1 and then it is possible to find σ0 ∈ ]−θp

k−p ,
−θp+π

k−p [ and

n0, n ∈ N such that σ0 − 2πp
k(k−p) ∈ ]−θp+π

k−p ,
−θp+2π

k−p [ and σ0 − 2πpn0
k(k−p) ∈ ]−θp+2πn

k−p ,
−θp+π(2n+1)

k−p [ .
Thus, using (52) we have for ζ ∈ D∗

ε , 0 < ε < 1, that

x̃3

(
r, σ0 +

2π

k

)
− x̃3 (r, σ0) > 0 ,

x̃3

(
r, σ0 +

2π

k

)
− x̃3

(
r, σ0 +

2πn0

k

)
> 0 .

In order to conclude that the end is not embedded it is sufficient to prove that there exist three
points ζ1, ζ2, ζ3 ∈ D∗

ε such that (x̃1 + ix̃2)(ζ1) = (x̃1 + ix̃2)(ζ2) = (x̃1 + ix̃2)(ζ3) and whose
third coordinate fulfill the inequalities x̃3(ζ2) − x̃3(ζ1) > 0 and x̃3(ζ2) − x̃3(ζ3) > 0. Taking into
account (51), this part of the argument follows from Toubiana’s paper.

Step 2: 0 < p < k, |A| �= |B|.
Suppose |A| < |B|. As before, the first components of the immersion are given by (51). However,

from (47) and (50) the third coordinate of the immersion (47) is given by

x̃3(r, θ) =
r−2k

8
+

|A − B|
4

cos(γ1 − kθ)r−k log r +
|A|2 − |B|2

8
θ2 + θ(C + t̃1(r, θ)) (53)

+ r−k

( |A + B|
4

θ sin(γ2 − kθ) + C′ + t̃2(r, θ)
)

,

where γ1 = arg
(
A − B

)
, γ2 = arg

(
A + B

)
, C, C′ ∈ R, t̃i(r, θ) are real functions such that t̃i(r, θ) =

t̃i(r, θ + 2π) and ∀θ ∈ R, lim
r→0

t̃i(r, θ) = 0 for i = 1, 2. Consider σ1 ∈ R such that sin(γ2 − kσ1) = 0.

From (53), we have for m ∈ N sufficiently large and r sufficiently small

x̃3 (r, σ1) − x̃3 (r, σ1 − 2πm) = πm

( |A|2 − |B|2
2

(−πm + σ1) + 2C + 2t̃1(r, σ1)
)

> 0 ,

x̃3 (r, σ1) − x̃3 (r, σ1 + 2πm) = πm

( |A|2 − |B|2
2

(−πm − σ1) − 2C − 2t̃1(r, σ1)
)

> 0 ,

Since we have σ1 − 2πm < σ1 < σ1 + 2πm, we can use again Toubiana’s argument to conclude
that in our assumptions, 0 < p < k and |A| < |B|, the improper affine sphere is not embedded.
Reasoning in a similar way we obtain the same conclusion when |A| > |B|.
Step 3: 0 < p < k, |A| = |B| �= 0.

Since |A| = |B|, from the expressions of A and B we have that either α2 = 0 or β2 = 0. If
β2 = 0, taking into account that the equiaffine transformation g has no fixed points, we deduce
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α1 = α2 = 0. But, then A = B = 0, contrary to our assumption. Therefore α2 = 0, β2 �= 0 and
A = 1

2π (β2 − iα1) = −B. Furthermore, it is not hard to see that, up an equiaffine transformation,
we can assume β3 = 0. Our next purpose is to prove that if A �= 0 the immersion is neither an
embedding. Assume A �= 0.

From (50) we observe that G0 + F0 can be written as

(G0 + F0)(ζ) = ζ−k
(
1 + Ĥ(ζ)

)
,

where Ĥ is a holomorphic function in Dε. Thus, we can consider

ζ̃ = ζ
(
1 + Ĥ(ζ)

)− 1
k

,

with ζ̃ ∈ D∗
ε0

, 0 < ε0 < ε. Observe that for ε0 sufficiently small ζ̃ is a new holomorphic coordinate.
Hence we can write G0 and F0 as

G0(ζ̃) =
1

ζ̃
k

+ A log(ζ̃) + Ĥ1(ζ̃) , F0(ζ̃) = −A log(ζ̃) − Ĥ1(ζ̃) , (54)

where Ĥ1 is a holomorphic function on Dε0 . Therefore if we denote ζ̃ = seiΘ, from (54) we have
the following expressions for the components of the immersion (47)

x̃1(s, Θ) =
1
2
s−k cos(kΘ) , (55)

x̃2(s, Θ) =
1
2
s−k (− sin(kΘ) + t1(s, Θ)) , (56)

x̃3(s, Θ) =
1
8
s−2k (1 + t2(s, Θ)) , (57)

where by ti(s, Θ) we denotes a function such that ∀Θ ∈ R, lim
s→0

ti(s, Θ) = 0 for i = 1, 2. From

(55) we have that the intersection curves of the end with the plane x1 = 0 are a family of curves
parametrized on D∗

ε0
by the 2k rays {ζ̃ = seiΘl | 0 < s < ε0} where Θl = l π

k − π
2k , l = 1, ..., 2k.

Denote by
Γi(s) = x̃

(
seiΘi

)
,

with 0 < s < ε0 and i = 1, 2. From (56) and (57) these two planar curves have the following
expansions

Γ1(s) =
(

0,
1
2
s−k (−1 + O(s)) ,

1
8
s−2k (1 + O(s))

)
, (58)

Γ2(s) =
(

0,
1
2
s−k (1 + O(s)) ,

1
8
s−2k (1 + O(s))

)
, (59)

where the expression O (sn) will be used to indicate a term which is bounded in absolute value by
a constant times sn for s small. As the end is invariant under an equiaffine transformation g of
the type II we have that the image under gq for any q ∈ Z of the curves Γi is also on the end.
Moreover, taking into account that α2 = β3 = 0 in the expression of g in II, it is easy to see that

gq (Γi(s)) = Γi(s) + (0, qβ2, 0) ,

it is to say, gq|Γi
is a translation in the direction of (0, 1, 0). From (58) and (59) it is clear that

the curves Γi are asymptotic to a parabola. Thus, we can find a suitable q such that gq (Γ1(s))
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Figure 8:

intersects the curve Γ2 and then the end is not embedded (see Fig. 8).
Step 4: 0 < p < k, A = B = 0.

From (50) the expressions of G0 and F0 become

G0(ζ) =
1
ζk

, F0(ζ) =
∞∑

λ=p

bλζλ .

As in the Step 1 we have the immersion given by (51) and (52). Therefore the same argument
presented there, with slight changes, proves that the end is not embedded.

Consequently, if the end is embedded is necessary that p ≥ k and A = B = 0. Then, g must
be a vertical translation of vector (0, 0, β3) and from (50) the functions G0 and F0 write as follows

G0(ζ) =
1
ζk

, F0(ζ) =
∞∑

λ=k

bλζλ . (60)

Hence ω̃1 and ω̃2 are as in i). Finally, the expression for the third component of (47) is given by

x̃3(r, θ) =
r−2k

8
+

k

2
(Re(bk) log r − Im(bk)θ) + C + t̃(r, θ) ,

where C ∈ R and t̃(r, θ) is as in Step 2. Hence Im (Res0(F0ω̃1)) = −k Im(bk) = β3
π .

Step 5: The purpose of this step is to prove that if ω̃1 and ω̃2 are as in i), the end given by the
multi-valued parametrization (47) has a complete embedded subend invariant under the vertical
translation of vector (0, 0, π Im (Res0(F0ω̃1)). Suppose that ω̃1 and ω̃2 are as in i). Then up an
equiaffine transformation and a conformal reparametrization of a subend, we can assume that G0

and F0 are as in (60). Clearly, from (46) and (60) the metric given in (3) is a complete Riemannian
metric on D∗

ε .
Now, taking into account (60), the multi-valued immersion (47) is given by

x̃1(r, θ) =
1
2
r−k cos(kθ)(1 + t̃1(r, θ)) ,

x̃2(r, θ) =
1
2
r−k sin(kθ)(−1 + t̃2(r, θ)) , (61)

x̃3(r, θ) =
1
8
r−2k +

k

2
(Re(bk) log r − Im(bk)θ) + C + t̃3(r, θ) ,
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where C ∈ R and t̃i(r, θ) are as in Step 2. Clearly, x̃(D∗) is invariant under the vertical translation
of vector (0, 0, β3) = (0, 0,−kπIm(bk)). Thus, we have

∂x̃1
∂r (r, θ) = −k

2 r−k−1 cos(kθ)(1 + t̃4(r, θ)) ,

∂x̃2
∂r (r, θ) = k

2 r−k−1 sin(kθ)(1 + t̃5(r, θ)) ,

∂x̃1
∂θ (r, θ) = −k

2 r−k sin(kθ)(1 + t̃6(r, θ)) ,

∂x̃2
∂θ (r, θ) = −k

2 r−k cos(kθ)(1 + t̃7(r, θ)) ,

where the functions t̃i(r, θ) are as before. Hence it is easy to see that (x̃1, x̃2) is a one-to-one
function on Ωl,εl

=]0, εl[×]Θl−1, Θl[, where Θl = l 2π
k and l ∈ Z and so we obtain that on Ωl,εl

the
immersion is a graph over the plane {x3 = 0}. Furthermore, if l = 1, ..., k + 1 from (61) we deduce
that x̃(Ωl,εl

) is asymptotic to tvl
(x̃(Ω1,ε1)), where tvl

is the translation of vector vl = (0, 0,−π(l−
1)Im(bk)). Then, there is ε′ such that x̃(Ωl1,ε′)∩x̃(Ωl2,ε′) = ∅ for all l1, l2 ∈ {1, ..., k+1}. Therefore
x̃ is an embedding on ]0, ε′[×[0, 2π

k + 2π[. Since x̃(r, θ + 2πm) = x̃(r, θ) + (0, 0, mβ3), we conclude
that x̃ is an embedding on ]0, ε′[×R.

CASE k = 0.
From the reasoning at the beginning of the proof we can assume B = 0 in (49). Hence, taking

into account that A �= 0 we have α2 = β2 �= 0 and α1 = 0. Furthermore, up an equiaffine
transformation, we can also assume β3 = 0. Therefore, up an equiaffine transformation, g writes
as in (48) and the expressions of G0 and F0 given in (49) are as follows

G0(τ) = A log(τ) + H2(τ) , F0(τ) = H3(τ) ,

where A = α2
π and Hi are holomorphic functions in Dε for i = 2, 3. Thus, we deduce that ω̃1 has

a pole at zero of order one and Res0(ω̃1) = α2
π and ω̃2 is a holomorphic one-form on Dε.

We consider now a new coordinate given by

ζ = τ exp
(

1
A

(H2 − H3)
)

.

Clearly, ζ is a holomorphic coordinate defined in D∗
ε0

for some ε0 > 0. In the new coordinate we
have

G0(ζ) = A log(ζ) +
∞∑

λ=0

bλζλ , F0(ζ) =
∞∑

λ=0

bλζλ , (62)

with bλ ∈ C. Thus, we have the following expression for the multi-valued parametrization (47) in
the new coordinate

x̃1(ζ) =
A

2
log r +

∞∑
λ=0

|bλ| cos(θλ + λθ)rλ , (63)

x̃2(ζ) =
A

2
θ , (64)

x̃3(ζ) =
A2

8
((log r)2 + θ2) +

A

2
Im(b0)θ + C + t̃(r, θ) , (65)

where ζ = reiθ, θλ = arg(bλ), C ∈ R and t̃(r, θ) is a real function such that t̃(r, θ) = t̃(r, θ+2π) and
∀θ ∈ R, lim

r→0
t̃(r, θ) = 0. Hence, using (48), (64) and (65) it is easy to see that Im (Res0(F0ω̃1)) =

α2
π Im(b0) = −α2

2
2π .
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Next, we shall prove that if ω̃1 and ω̃2 are as in ii) then the end contains a complete embedded
subend. Suppose that ω̃1 and ω̃2 are as in ii). Then up a conformal reparametrization of a subend,
we can assume that G0 and F0 are as in (62) and hence there exists ε1 > 0 such that the metric
given in (10) is a complete Riemannian metric on D∗

ε1
. Moreover, the immersion is given by (63),

(64) and (65) and then the intersection of the end with the plane x2 = δ for δ a real constant can
be parametrized on D∗

ε1
by the curve

γδ(r) = rei 2δ
A ,

with r < ε1. Substituting in the expression of x̃1 we obtain

x̃1(r) =
A

2
log r +

∞∑
λ=0

|bλ| cos
(

θλ + λ
2δ

A

)
rλ .

Hence we deduce
dx̃1

dr
(r) =

A

2r
(1 + O(r)) ,

where O(rm) denotes a function such that r−mO(rm) is bounded (independently of δ) as r → 0.
Therefore there exists 0 < ε2 < ε1 such that x̃1|γδ

:]0, ε2]−→R is a one-to-one function for all
δ ∈ R. Consequently, x̃(γδ(]0, ε2])) is a graph over the line {x2 = δ, x3 = 0} and so the end is also
a graph over the plane x3 = 0 (see Fig. 9 ).

Figure 9:

Remark 4 Notice that the complete embedded end given by (61) is asymptotic to the end Ea with
a = bk = − 1

kRes0(F0ω̃1). As before the real number a1 = Re(bk) will be called the logarithmic
growth rate of the end.
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On the other hand, it is easy to see that the complete embedded end given by (63), (64) and
(65) is asymptotic to a half elliptic paraboloid (see Fig. 9).

6 Complete embedded ends of type III

Let x : C
−−→R

3 be a complete end invariant under an equiaffine transformation g : R
3−→R

3 as
in III. Then using (16) and (17) we have

G(α(z)) = eitG(z) , F (α(z)) = e−itF (z) . (66)

Consider a ∈]0, 1[ such that eit = e2πia. Then, from (66) we have

G(α(z)) = e2πiaG(z) , F (α(z)) = e−2πiaF (z) . (67)

Hence it is easy to check that the holomorphic one-forms given by

ω1 = e−azdG , ω2 = eazdF , (68)

pass to the quotient, namely, there exist ω̃1 and ω̃2 holomorphic one-forms on D∗ satisfying
exp∗ ω̃1 = ω1 and exp∗ ω̃2 = ω2. Thus, from (68) we have the following inequalities for the
affine metric given in (10)

ds2 ≤ 1
4
|dG|2 =

1
4
|eazω1|2 =

1
4
|τ |2a|ω̃1|2 ≤ 1

4
|ω̃1|2 , (69)

where τ = reiθ = exp(z), τ ∈ D∗. Observe that ω̃1 is always different from zero. Therefore the
same argument presented in Sect. 5 proves that ω̃1 has a pole at 0 of order k + 1 ≥ 1. Moreover,
as |dF | < |dG|, from (68) we obtain the following inequality

|ω̃2| < |τ |2a|ω̃1| .

Consequently, if a ∈]0, 1
2 ] then ω̃2 has at most a pole at 0 of order k and if a ∈]12 , 1[ then ω̃2 has at

most a pole at 0 of order k − 1. Hence ω̃1 and ω̃2 write as

ω̃1 =

( ∞∑
λ=−k−1

âλτλ

)
dτ , ω̃2 =

 ∞∑
λ=p−1

b̂λτλ

 dτ , (70)

with âλ, b̂λ ∈ C, â−k−1 �= 0 and p ∈ Z such that −p ≤ k−1 if a ∈]0, 1
2 ] and −p ≤ k−2 if a ∈]12 , 1[.

Now we can prove that k + 1 ≥ 2. We proceed by contradiction. Suppose k = 0 and consider on
D∗ the divergent curve γ(r) = r with r ∈]0, r0[ and r0 ∈]0, 1[. Then from (69) and (70) the length
of the curve γ respect to the affine metric satisfies∫

γ

ds ≤ 1
2

∫
γ

|τ |a|ω̃1| ≤ 1
2

∫ r0

0

∞∑
λ=−1

|âλ|rλ+adr =
1
2

∞∑
λ=−1

|âλ|
λ + 1 + a

rλ+1+a
0 ,

Hence we conclude that γ has finite length, which is a contradiction.
Denote by G0 = G ◦ exp−1 and F0 = F ◦ exp−1 that are not singly-valued on D∗ in general.

Then, taking into account (68) and (70), we have the following expressions for G0 and F0

G0 =
∞∑

λ=−k

a′
λτλ+a + a0 , F0 =

∞∑
λ=p

b′λτλ−a + b0 , (71)
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where a′
λ = âλ−1

λ+a , b′λ = b̂λ−1
λ−a , a0, b0 ∈ C and τ ∈ D∗. From (67) we deduce that τ−aG0 and τaF0

are singly-valued holomorphic functions on D∗ and then a0 = b0 = 0 in (71). Clearly η̃1 = dG0
G0

is
a well defined holomorphic one-form on D∗ with a pole of order one at 0 and η̃2 = F0dG0 is a well
defined holomorphic one-form on D∗ with at most a pole at 0 and the functions G0 and F0 can
be obtained from these forms by G0 = exp

(∫
η̃1

)
and F0 = exp

(− ∫ η̃1

)
η̃2

η̃1
. Hence, taking into

account (9), we can give the following multi-valued parametrization of the end

x̃ = (x̃1, x̃2, x̃3) =
(

1
2
(G0 + F0),

1
8
(|G0|2 − |F0|2) +

1
4
Re
(

η̃2

η̃1

)
− 1

2
Re
∫

η̃2

)
. (72)

Definition 4 The pair (η̃1, η̃2) will be called the conformal representation of this type of ends.

Then, we can prove the following result that is a characterization, in terms of η̃1 and η̃2, of complete
embedded ends invariant under a screw motion as in III.

Theorem 4 Let x : C
−−→R

3 be a complete embedded end of an improper affine sphere invariant
under an equiaffine transformation of type III and let (η̃1, η̃2) be its conformal representation.
Then, up an equiaffine transformation, the holomorphic one-forms η̃1 and η̃2 have a pole at zero of
order one, Res0(η̃1) = −k+a, where k is a positive integer number and a = t

2π , and Im (Res0(η̃2)) =
β3
π .

Conversely, if η̃1 and η̃2 are as above the multi-valued parametrization x̃ : D∗−→R
3 given

by (72) contains a complete embedded subend invariant under a screw motion as in III of angle
t = 2πa and vector (0, 0, π Im (Res0(η̃2)).

Proof of Theorem 4: From the above reasoning we have the following expressions for G0 and F0

G0 =
∞∑

λ=−k

a′
λτλ+a , F0 =

∞∑
λ=p

b′λτλ−a . (73)

We recall that if a �= 1
2 then −p + a < k − a. On the other hand, if a = 1

2 and p = −k + 1 we can
consider, as in Sect. 5, an equiaffine transformation T : R

3−→R
3 such that Ψ(0) = dF0

dG0
(0) = 0,

or equivalently the coefficient of the term τ−k+ 1
2 in the expression of the function F0 associated

to the end T ◦x : C
−−→R

3 is zero. Observe that T ◦ g ◦ T−1 = g. Then, we can assume that G0

and F0 can be written as in (73) with −p + a < k − a.
In order to study whether the end is an embedding, we consider a new holomorphic coordinate

ζ = τH4(τ)
1

−k+a = τ

( ∞∑
λ=0

a′
λ−kτλ

) 1
−k+a

,

with ζ = reiθ ∈ D∗
ε , 0 < ε < 1. We can insure that H

1
−k+a

4 is a holomorphic function on D∗
ε for ε

sufficiently small. In the new coordinate G0 and F0 write

G0 = ζ−k+a , F0 =
∞∑

λ=p

bλζλ−a .

where as before −p + a < k − a. Then, substituting these expressions in (72) we obtain

(x̃1 + ix̃2)(r, θ) =
1
2
ζ−k+a(1 + f(r, θ)) ,
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x̃3(r, θ) =
r2(−k+a)

8
+ r(−k+p)

(
−k + p − 2a

4(k − p)
|bp| sin(θp + (k − p)θ) + t̃(r, θ)

)
(74)

+
k − a

2
(Re(bk) log r − Im(bk)θ) , (75)

where f(r, θ), θp and t̃(r, θ) are as in Sect. 5. Now, our objective is to prove that the end can not
be embedded if p < k. Assume p < k, then taking into account that 0 < |p−a|

k−a < 1 and reasoning
as in Steps 1 and 4 of Sect. 5 we deduce that if the end is embedded then p ≥ k and so, the
functions G0 and F0 write as follows

G0(ζ) = ζ−k+a , F0(ζ) =
∞∑

λ=k

bλζλ−a . (76)

Hence η̃1 and η̃2 have a pole at zero of order one and Res(η̃1) = −k + a. Finally, from (74) we
obtain Im (Res0(η̃2)) = (−k + a) Im(bk) = β3

π .
Suppose now that η̃1 and η̃2 are as in Theorem 4. Then after a conformal reparametrization of

a subend, G0 and F0 are as in (76) and the immersion (72) can be expressed as follows

x̃1(r, θ) =
1
2
r−k+a cos((k − a)θ)(1 + t̃1(r, θ)) ,

x̃2(r, θ) =
1
2
r−k+a sin((k − a)θ)(−1 + t̃2(r, θ)) ,

x̃3(r, θ) =
1
8
r−2k +

k − a

2
(Re(bk) log(r) − Im(bk)θ) + C + t̃3(r, θ) ,

where C ∈ R and t̃i(r, θ)) are as before. Therefore, using the reasoning presented in Step 5 of
Section 5, we obtain that on Ωl,εl

=]0, εl[×]Θl−1, Θl[ the immersion is a graph over the plane
{x3 = 0}, where now Θl = l 2π

k−a and l ∈ Z. Consider a natural number l0 such that l0 > k + 1− a.
Observe that if l = 1, ..., l0 from (61) we deduce that x̃(Ωl,εl

) is asymptotic to tvl
(x̃(Ω1,ε1)), where

tvl
is the translation of vector vl = (0, 0,−π(l − 1)Im(bk)). Then, there is ε′ such that x̃(Ωl1,ε′) ∩

x̃(Ωl2,ε′) = ∅ for all l1, l2 ∈ {1, ..., l0}. Therefore x̃ is an embedding on ]0, ε′[×[0, l0
π

2(k−a) [. Since

x̃(r, θ + 2πm) = g(x̃(r, θ)), we conclude that x̃ is an embedding on ]0, ε′[×R.

Remark 5 Observe that the complete embedded end described above is also asymptotic to the
surface Ea with a = 1

−k+aRes0(η̃2).

7 Nonexistence of ends of type IV

The purpose of this section is to prove that there exist no ends invariant under an equiaffine
transformation of this type. We proceed by contradiction. Suppose that there exists x : C

−−→R
3

an improper affine sphere invariant under an equiaffine transformation g : R
3−→R

3 as in IV with
t > 0. Then using (16) and (17) we have

G(α(z)) =
t + t−1

2
G(z) +

t − t−1

2
F (z) , F (α(z)) =

t − t−1

2
G(z) +

t + t−1

2
F (z) .

Hence we obtain

(dG + dF )(α(z)) = t(dG + dF )(z) , (dG − dF )(α(z)) = t−1(dG − dF )(z) . (77)
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Consider a ∈ R, a �= 0 such that t = e2aπ. Then, from (77) it is easy to check that the following
holomorphic one-forms

ω1 = eiaz(dG + dF ) , ω2 = e−iaz(dG − dF ) , (78)

pass to the quotient, namely, there exist ω̃1 and ω̃2 holomorphic one-forms on D∗ satisfying
exp∗ ω̃1 = ω1 and exp∗ ω̃2 = ω2.

Taking into account |dF | < |dG| and (78) we deduce that the holomorphic one-forms ω̃1 and
ω̃2 have no zeros or poles on D∗. Then, ω̃1 and ω̃2 can be written as

ω̃1 = τmeP1(τ)dτ , ω̃2 = τneP2(τ)dτ , (79)

where τ = exp(z), m, n ∈ Z and Pi are holomorphic functions on D∗ with at most a pole at zero
(a proof of this fact can be found in Theorem 1.1 of [12]). According to (79) we have

ω1 = exp ((m + 1)z + P1(ez)) dz , ω2 = exp ((n + 1)z + P2(ez)) dz . (80)

Thus, taking into account (78) and (80) we can give the following expression for the affine metric

ds2 =
1
4
(|dG|2 − |dF |2) =

1
4
Re
(
exp(−iaz) exp(iaz)ω1ω2

)
=

1
4
Re
(
exp((m + 1 + ia)z + (n + 1 + ia)z + (P1 + P2)(ez))

) |dz|2

=
1
4

exp((m + n + 2)x + Re(P1 + P2)(ez)) cos(h(x, y))|dz|2 ,

where z = x+ iy and h(x, y) = 2ax+ y(−m + n)+ Im(−P1 + P2)(ez). Clearly, the function h(x, y)
is not bounded for any a ∈ R, a �= 0. Therefore the affine metric cannot be a Riemannian metric
on D∗

ε for all 0 < ε < 1 and this leads to a contradiction.
Observe that if x : C

−−→R
3 is an improper affine sphere invariant under an equiaffine trans-

formation g of type IV with t < 0, then it is also invariant under the equiaffine transformation g2

given by

g2

 x1

x2

x3

 =

 t2 0 0
0 t−2 0
0 0 1

 x1

x2

x3

+

 0
0

2β3

 .

But, according to the above reasoning there exist no locally strongly convex ends invariant under
such a transformation and therefore neither exist ends invariant under g.
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