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ABSTRACT. In this paper we deal with properly immersed maximal surfaces with non
empty boundary and singularities in the 3-dimensional Minkowski space. We use max-
imum principle and scaling arguments to obtain non existence results for these surfaces
when the boundary is planar. We also give sufficient conditions in order that such surfaces
satisfy the convex hull property.

1. INTRODUCTION

In the last years, maximal hypersurfaces in a Lorentzian manifold have been a focus
of considerable interest. These are spacelike submanifolds of codimension one with zero
mean curvature. Such hypersurfaces, and in general those having constant mean curvature,
have a special significance in classical Relativity (see [17]).

When the ambient space is the flat Minkowski space Ln+1, Calabi [2] (n ≤ 3) and
Cheng and Yau [3] (for arbitrary dimension) proved that a complete maximal hypersurface
is necessarily a spacelike hyperplane. The preceding result is valid if we substitute the
hypothesis of completeness for the one of properness (see [7]).

Therefore, it does not make any sense to consider global problems on regular maximal
hypersurfaces in Ln+1. Interesting problems are then, those that deal with hypersurfaces
with non empty boundary or having certain type of singularities. In this line, Bartnik
and Simon [1] obtained results on the existence and regularity of spacelike solutions to
the boundary value problem for the mean curvature operator in L n+1 and Kobayashi [14]
investigated such surfaces with conelike singularities. In [6] Estudillo and Romero de-
fined a class of maximal surfaces with singularities of other type and studied criteria for
such surfaces to be a plane. On the other hand, Klyachin and Mikyukov [12] tackle the
problem of existence of solutions to the maximal hypersurface equation in L n+1 with pre-
scribed boundary conditions and a finite number of singularities. It should be remarked
that Fernández, López and Souam [9] proved that a complete embedded maximal surface
with a finite set of singularities is an entire graph over any spacelike plane and that this
family of maximal graphs has a structure of moduli space. Finally, we would like to men-
tion the paper [22] where topological obstructions to the existence of this type of surfaces
are given by Umehara and Yamada.

Maximal surfaces in L3 and minimal surfaces in the Euclidean space are closely re-
lated. Firstly, both families are solutions of variational problems: local maxima (minima)
for the area functional and both admit a Weierstrass representation (see [13] for maximal
surfaces). Moreover, the maximal surface equation as well as the minimal surface equa-
tion are quasilinear elliptic equations and therefore we have a maximum principle for them.
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Otherwise, contrarily to the minimal case, solutions to the maximal surface equation can
have isolated singularities, that is to say, points where the solution is not differentiable.
These points correspond to possible degeneracy of the ellipticity of the maximal surface
equation. Geometrically at these singular points the Gauss curvature blows up, the Gauss
map has no well-defined limit and the surface is asymptotic to the light cone.

Moreover, in the minimal case, the maximum principle has been used by Schoen [21],
Hoffman-Meeks [11], Meeks-Rosenberg [18], López-Martı́n [16], among others, to obtain
remarkable results. In this paper we apply maximum principle and scaling arguments to
properly immersed maximal surfaces with non empty boundary and isolated singularities
in L3. We get two types of results: non existence results for properly immersed maximal
surfaces with singularities and planar boundary contained in a timelike or lightlike plane
and results that generalize the convex hull property for such surfaces. Recall that a surface
satisfies the convex hull property if and only if it lies in the convex hull of its boundary.
Although it is well-known that compact maximal surfaces in L3 verify the convex hull
property, just for having non positive Euclidean Gauss curvature (see [20]), this is not the
general case. We give sufficient conditions so that a properly immersed maximal surface
(not necessarily compact and with singularities) verifies the convex hull property.

The present paper is laid out as follows. Section 2 contains the notations and defini-
tions we need in the paper. In this section we also describe the behavior of maximal sur-
faces around an isolated singularity and present the maximal surfaces we use as barriers:
Lorentzian catenoids, Riemann type maximal surfaces, Scherk’s type maximal surfaces as
well as spacelike planes. We finish the section giving a first generalization of the convex
hull property to compact maximal surfaces with singularities.

In Section 3 we obtain non existence results for properly immersed maximal surfaces
with singularities and boundary contained in a timelike plane. In particular, if C + =
{(x1, x2, x3) ∈ R3 | x2

1 + x2
2 − x2

3 ≤ 0, x3 ≥ 0} we show that:

Theorem A. There does not exist a connected properly immersed maximal surface M
such that M ⊂ {(x1, x2, x3) ∈ R3 | x2 ≥ 0,− tan(θ)x2 + x3 ≥ 0} and ∂(M) ⊂
C+ ∩ {(x1, x2, x3) ∈ R3 | x2 = 0}, for θ ∈ ] − π

4 , π
4 [ .

The preceding theorem holds even if we allow certain singularities (see Theorem 3.5).
Section 4 is devoted to study properly immersed maximal surfaces whose boundary is

contained in a spacelike plane. Let us consider V (θ, δ, δ ′) = {(x1, x2, x3) ∈ R
3 | x3 ≥

0,− tan(θ)x2 + x3 ≤ 0, x1 − cot(δ)x2 + cot(θ)(cot(δ) − cot(δ′)) ≥ 0}, for θ ∈ ]0, π
4 [

and δ, δ′ ∈]0, π[ (see Fig. 6). Our main result of this section is:

Theorem B. Let M be a connected properly immersed maximal surface such that M ⊂
V (θ, δ, δ′) and ∂(M) is contained in a spacelike plane. Then M is a planar region.

As in the previous theorem, Theorem B holds even if we allow certain singularities (see
Theorem 4.2 and Corollary 4.3). We would like to emphasize that in the proof of the
above theorem a barrier surface is constructed ad hoc using the aforementioned Bartnik
and Simon existence result. Moreover, the previous theorem is valid if we substitute the
region V (θ, δ, δ′) for C+ (see Proposition 4.4).

Finally, in Sect. 5 we exploit the results obtained in the preceding sections to give non
existence results for properly immersed maximal surfaces with the boundary on a lightlike
plane and to state the following convex hull property:
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Proposition C. Any connected properly immersed maximal surface with singularities con-
tained either in V (θ, δ, δ′) or C+ lies in the convex hull of its boundary and some of its
singularities.

We refer the reader to Propositions 5.3 and 5.4 for a precise formulation of this result.

Acknowledgments: We are indebted to F. Martı́n, I. Fernández and specially to F.J. López
for helpful conversations during the preparation of this work. This paper was carried out
during the second author’s visit to the IME, Universidade de São Paulo (Brasil). The sec-
ond author is grateful to the people at the institute for their hospitality. The authors would
also like to thank the referee for valuable suggestions.

2. PRELIMINARIES

We denote by L3 the three dimensional Lorentz-Minkowski space (R3, 〈 , 〉), where
〈 , 〉 = dx2

1 + dx2
2 − dx2

3. A vector v ∈ R3 − {(0, 0, 0)} is called spacelike, timelike or
lightlike if 〈v, v〉 is positive, negative or zero, respectively. The vector (0, 0, 0) is consid-
ered a spacelike vector. We say that a plane in L3 is spacelike, timelike or lightlike if the
induced metric is Riemannian, non degenerate and indefinite or degenerate, respectively.
We also say that an affine plane in L3 is spacelike, timelike or lightlike if it is parallel to a
spacelike, timelike or lightlike vectorial plane.

The light cone at y = (y1, y2, y3) ∈ L3 is defined as

C(y) = {x ∈ L
3 | 〈x − y, x − y〉 = 0} .

We also denote C+(y) = C(y) ∩ {x3 ≥ y3} and C−(y) = C(y) ∩ {x3 ≤ y3}. Observe
that lightlike vectors in L

3 lie in the light cone C((0, 0, 0)).
Let us denote by H2 = H2

+ ∪ H2
−, where H2

+ = {x ∈ L3 | 〈x, x〉 = −1} ∩ {x3 ≥ 0}
and H2

− = {x ∈ L3 | 〈x, x〉 = −1} ∩ {x3 ≤ 0}.
Consider σ : C − {|z| = 1} → H2 the stereographic projection for H2 given by

(2.1) σ(z) =
(

2
(z)
|z|2 − 1

,
2�(z)
|z|2 − 1

,
|z|2 + 1
|z|2 − 1

)
,

where C = C∪{∞}, σ(∞) = (0, 0, 1) and 
 and � stands for the imaginary and real part
of the complex numbers.

An immersion X : M → L3 is spacelike if the tangent plane at any point is spacelike.
If X is spacelike M is orientable, that is to say, the Gauss Map N is globally well defined
and N(M) lies in one of the components of H2.

A maximal immersion is a spacelike immersion X : M → L
3 such that its mean

curvature vanishes. In this case X(M) is said to be a maximal surface in L3. Using
isothermal parameters compatible with a fixed orientation N : M → H2, M has in a
natural way a conformal structure, and the map g = σ−1 ◦ N is meromorphic. Moreover,
there exists a holomorphic 1-form Φ3 on M such that the 1-forms

(2.2) Φ1 =
i

2

(
1
g
− g

)
Φ3 , Φ2 = −1

2

(
1
g

+ g

)
Φ3

are holomorphic, and together with Φ3, have no real periods on M and no common zeros.
Up to a translation, the immersion is given by

(2.3) X = �
∫

(Φ1, Φ2, Φ3) .
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The induced Riemannian metric ds2 on M is given by ds2 = λ(du2 + dv2), where z =

u+ iv is a conformal parameter and λ = 1
2 (|Φ1|2 + |Φ2|2−|Φ3|2) =

(
|Φ3|
2

(
1
|g| − |g|

))2

.

Since M is spacelike, we have |g| �= 1 on M and we can assume |g| < 1.
Conversely, let M , g and Φ3 be a Riemann surface, a meromorphic map on M and a

holomorphic 1-form on M . If |g(p)| �= 1, ∀p ∈ M and the 1-forms Φ j , j = 1, 2, 3, defined
as above are holomorphic, have no real periods and no common zeros then the conformal
immersion X defined in (2.3) is maximal and its Gauss map is σ ◦ g. We call (M, g, Φ3)
the Weierstrass representation of X . For more details see [13].

2.1. The maximum principle for maximal surfaces. A maximal surface in L
3 can be

represented locally as a graph x3 = u(x1, x2) of a smooth function u with u2
x1

+ u2
x2

< 1,
satisfying the equation

(2.4) (1 − u2
x1

)ux2x2 + 2ux1ux2ux1x2 + (1 − u2
x2

)ux1x1 = 0 .

The maximum principle for elliptic quasilinear equations then gives the following maxi-
mum principle for maximal surfaces:

Maximum principle. Let S1 and S2 be two maximal surfaces in L3 which intersect tan-
gentially at a point p ∈ S1∩S2. Suppose that ui, for i = 1, 2 denotes the function defining
Si around p and that u1 ≥ u2 (we say S1 is above S2 or S2 is below S1). Then S1 = S2

locally around p.

2.2. Maximal surfaces with singularities. If in a maximal immersion X : M → L3 we
allow points q ∈ M where the induced metric is not Riemannian we say that X (respec-
tively, X(M)) has singularities and q (respectively, X(q)) is called a singular point. The
different kind of isolated singularities of maximal surfaces as well as the behavior of max-
imal surfaces around these points are well-known (see [14], [5], [19] and [9]). We need to
recall some aspects of this behavior and go deeply into some of them.

Let D be an open disc and X : D → L3 a maximal immersion with a singular point in
q ∈ D. There are two possibilities: either N extends continuously to q (q is a spacelike
singular point) or not (q is a lightlike singular point).

In the second case D − {q} with the induced metric is conformally equivalent to {z ∈
C, 0 < r < |z| < 1} and X extends to a conformal map X : Ar → L3 with X(S1) =
X(q) = p, where Ar = {z ∈ C, r < |z| ≤ 1} and S1 = {z ∈ C, |z| = 1}. Denote
by J(z) = 1

z the inversion about S1. Then Schwarz reflection allows us to assert that
X extends analytically to Br = {z ∈ C, r < |z| < 1

r} and satisfies X ◦ J = −X +
2p. Therefore if (g, Φ3) are the Weierstrass data of the extended immersion we have that
J∗(Φk) = −Φk for k = 1, 2, 3, where by J ∗(Φk) we denote the pullback of Φk under
J , more precisely if Φk = fkdz then J∗(Φk) = −1

z2 (fk ◦ J)dz. Thus g ◦ J = 1
g and

consequently |g| = 1 on S1. Let Π be a spacelike plane containing p = X(S1) and label
π : L3 → Π as the Lorentzian orthogonal projection. If n (always even) and m denote the
number of zeros of Φ3 on S1 and the degree of the map g : S1 → S1, respectively, it can
be proved

Lemma 2.1. ([9]) There exists a small closed disc U in Π centered at p such that (π ◦
X)−1(p) ∩ V = S

1 and (π ◦ X) : V − S
1 → U − {p} is a covering of m + n

2 sheets,
where V is the annular connected component of (π ◦ X)−1(U) containing S1.

As a consequence, X is an embedding around q if and only if m = 1 and n = 0. In this
case the point p = X(S1) is said to be a conelike singularity of the maximal surface X(D).
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Moreover, for r0 close enough to 1 , X(Ar0) is the graph of a function u over Π. Locally,
conelike singularities are points where the function defining the graph is not differentiable
and correspond to possible degeneracy of the equation (2.4). Moreover, the graph of u is
either above Π and asymptotic to C+(p) or below Π and asymptotic to C−(p), and the
point p is called a downward or upward pointing conelike singularity, respectively.

FIGURE 1. Different types of isolated singularities: Figures a), b) and c)
correspond to lightlike singularities while d) is an example of a spacelike
singularity. More precisely: a) A downward pointing conelike singular-
ity (m = 1, n = 0), b) a downward pointing lightlike singularity with
m = 2, n = 0, c) a lightlike singularity with m = 1, n = 2 and d) a
spacelike singularity with n = 2.

Furthermore, we can also prove:

Lemma 2.2. Let D be an open disc and X : D → L3 a maximal immersion with a
lightlike singular point in q ∈ D and denote p = X(q). Then, the neighborhoods U and
V of Lemma 2.1 can be chosen to verify:

i) If p is a lightlike singularity with n = 0, then X(V ) is either over Π and asymp-
totic to C+(p) or below Π and asymptotic to C−(p) (see Fig. 1.a) and 1.b)).

ii) On the contrary, if p is a lightlike singularity with n > 0, there exist points of
X(V ) in both sides of the plane Π. In particular there exist a pair of curves α, β
in V starting at q such that X(α) − {p} is over Π and asymptotic to C+(p) and
X(β) − {p} is below Π and asymptotic to C−(p) (see Fig. 1.c)).

Proof: Up to a Lorentzian isometry we can assume Π = {x3 = 0} and p = (0, 0, 0).
Let X : Ar → R3 be a conformal reparametrization of the maximal immersion with
X(S1) = p and consider U , V as in Lemma 2.1. A thoughtful reading of the proof of
Lemma 2.1 in [9] will convince the reader that the same arguments prove i).

For the proof of assertion ii) we use again the ideas of the Lemma 2.1 in [9]. Observe
that the Weierstrass data can be written on a neighborhood of S 1 as

(2.5) g(z) = zm , Φ3(z) = i

∏n
j=1(z − aj)

z
n
2 +1

f(z)dz ,
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where a1, . . . , an are the zeros of Φ3 on S1 (each zero appears as many times as its mul-
tiplicity) and f is a non-vanishing holomorphic function. Recall that the multiplicity of
the zero of Φ3 at ai coincides with the number of nodal curves of the harmonic function
x3 meeting at ai minus one. By the maximum principle there are no domains bounded by
nodal curves and x3 changes sign when crossing a nodal curve. Note that since n ≥ 2 there
are points of X(V ) in both sides of Π and there exist at least a pair of domains Γ, Γ ′ ⊂ V
bounded by a pair of nodal curves of x3, a piece of ∂V − S1 and a point or a piece of S1,
such that x3(X(Γ)) > 0 and x3(X(Γ′)) < 0.

In order to finish the assertion ii) we shall prove that the image of all the curves ρ θ(s) =
seiθ for θ ∈ K = [0, 2π]−{arg(a1), . . . , arg(an)} is asymptotic to the cone C(p). Taking
into account (2.5) we can write

X(ρθ(s)) = �
∫ s

1

i
∏n

j=1(te
iθ − aj)

t
n
2 +1(eiθ)

n
2

f(teiθ)
(

i

2
(
e−imθ

tm
− tmeimθ),−1

2
(
e−imθ

tm
+ tmeimθ), 1

)
dt .

As J∗(Φ3) = −Φ3, we deduce 

(

i
∏n

j=1(eiθ−aj)

(eiθ)
n
2

f(eiθ)
)

= 0. Using this it is straight-

forward to see

lim
s→1

∥∥∥∥ X(ρθ(s))
x3(X(ρθ(s)))

− (sin(mθ),− cos(mθ), 1)
∥∥∥∥

1

= 0 ,

where ‖ · ‖1 is the C1 norm in C1(K, R3). Therefore, we can consider a pair of curves
α ∈ Γ and β ∈ Γ′ satisfying the requirements of statement ii). �

Definition 2.3. If the point p is as in the statement i) of Lemma 2.2 we say that p is a
downward or upward pointing lightlike singularity, respectively. We also name both types
of singularities general conelike singularities.

If D is an open disc and X : D → L
3 a maximal immersion with a spacelike singular

point in q ∈ D, the local behavior at the singularity is similar to the case of minimal
surfaces in R3 (see [4], [6] and [9]): X is not a topological embedding, D − {q} with
the induced metric is conformally equivalent to {z ∈ C, 0 < |z| < 1}, the Weierstrass
data (g, Φ3) extend analytically to q, |g(q)| < 1 and Φ = (Φ1, Φ2, Φ3) has a zero at q.
Furthermore, up to a Lorentzian isometry we can assume that the tangent plane of X(D)
at p = X(q) is Π = {x3 = 0} and p = (0, 0, 0). Observe that the Weierstrass data of the
immersion can be written as

g(z) = zmf(z) , Φ3(z) = zm+ndz ,

where m > 0, n is the zero order of Φ at q and f is a holomorphic function with f(0) �= 0.
Furthermore, up to a rotation around the axis x3, we can assume 
(f(0)) = 0. From here
it is easy to obtain that the asymptotic behavior of the immersion around the singularity is
in polar coordinates

(2.6) X(seiθ) =
(

−sn+1

2f(0)(n+1) sin((n + 1)θ) + O(sn+2),

−sn+1

2f(0)(n+1) cos((n + 1)θ) + O(sn+2), sm+n+1

m+n+1 cos((m + n + 1)θ)
)

,

where by O(sn+2) we denote a function such that s−n−2O(sn+2) is bounded as s → 0.
Therefore, it is clear that X has a branch point at q of order n in the sense of Gulliver-
Osserman-Royden ([10]). From Lemma 2.12 in [10] we have
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Lemma 2.4. Let X : D → L3 be a maximal immersion with a spacelike singular point
in q ∈ D, p = X(q) and S an embedded surface in L3 with p ∈ S. Suppose that for
a neighborhood V of q, X(V ) lies on one side of S. Then the tangent plane to S at p
coincides with the tangent plane to X(D) at p.

Remark 2.5. In the case of spacelike singularities, we always assume that the immersion
X : D → L3 is not a branched covering of an embedded surface, it is to say that q is not
a false branch point (see [10]).

Finally, we like to mention a well known property of maximal surfaces with singularities
(see for example [8]).

Lemma 2.6. Let X : M → L3 be a maximal immersion with isolated singularities. Then
for all q ∈ M there exists a neighborhood V , such that X(V ) − {X(q)} is contained in
the exterior of C(X(q)).

Remark 2.7. Let S be an embedded surface and p ∈ S. If the tangent plane of S at p is
spacelike then S can be written in a neighborhood of p as the graph of a function h on a
domain Ω of the plane {x3 = 0}. Let M be another surface (possibly with singularities)
and denote by π the orthogonal projection on {x3 = 0}. In this context, we say that M is
above (below) S in a neighborhood of p if x3(p′) ≥ h(x1, x2) (x3(p′) ≤ h(x1, x2)) for all
p′ ∈ M ∩ π−1(x1, x2), (x1, x2) ∈ Ω.

2.3. Maximal surfaces with boundary. Let S ′ be a maximal surface with possibly iso-
lated singularities. Consider S ⊂ S ′ such that the topological boundary of S in S ′ is not
empty and at least piecewise C1. Then S will be called a maximal surface with boundary,
the topological boundary of S in S ′ is said to be the boundary of S and it will be denoted
as ∂(S). We also denote Int(S) = S − ∂(S) and we refer to Int(S) as the interior of S.
Moreover, S is said a properly immersed maximal surface with boundary if S ′ is a maximal
surface properly immersed in L3. Note that from our definition, some of the singularities
could be on the boundary of S.

At this point, we would like to mention that if S is a maximal surface with boundary,
since the components of a maximal immersion are harmonic functions, we deduce that the
intersection of S with any plane Π containing ∂(S) in one of the half spaces determinated
by Π, is a union of piecewise analytic curves and therefore each connected component of
S − (S ∩ Π) is a maximal surface with boundary.

2.4. Parabolicity of maximal surfaces. In [7] I. Fernández and F.J. López proved the
following result

Theorem (Fernández-López) Let M be a properly immersed maximal surface with bound-
ary such that, except for a compact set, it is contained in the region {x ∈ L3 | 〈x, x〉 ≥ ε},
for ε > 0. Then M is relative parabolic, it is to say, bounded harmonic functions on M are
determined uniquely by their values at the boundary and the interior isolated singularities.

An immediate consequence of this theorem is

Corollary 2.8. Let M be a connected properly immersed maximal surface with boundary
such that M ⊂ {(x1, x2, x3) ∈ R3 | 0 ≤ x3 ≤ k} and the boundary and the singularities
are contained in {(x1, x2, x3) ∈ R3 | x3 = k}, for k > 0. Then M is a planar region.

We would like to mention that in [7] the definition of a maximal surface with boundary
is more general than in this paper.
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2.5. Our barriers. Let us introduce some notation. For any v ∈ R 3 − {(0, 0, 0)} and
y ∈ R3 we define

H(y, v) = {x ∈ R
3 | 〈v, x − y〉e = 0} ,

H+(y, v) = {x ∈ R
3 | 〈v, x − y〉e ≥ 0} ,

H−(y, v) = {x ∈ R
3 | 〈v, x − y〉e ≤ 0} ,

where 〈·, ·〉e denotes the Euclidean metric of R
3.

Furthermore, for θ ∈ [− π
4 , π

4 ] and t ∈ R, we introduce the following terminology

Πθt = H((0, 0, t), (0,− tan(θ), 1)) .

Π+
θt = H+((0, 0, t), (0,− tan(θ), 1)) .

Π−
θt = H−((0, 0, t), (0,− tan(θ), 1)) .

In particular we denote by Πθ = Πθ0, Π+
θ = Π+

θ0 and Π−
θ = Π−

θ0.
We also consider for α ∈ ] − π

4 , π
4 [

Σα = H((0, 0, 0), (0, 1,− tan(α))) .

Σ+
α = H+((0, 0, 0), (0, 1,− tan(α))) .

Σ−
α = H−((0, 0, 0), (0, 1,− tan(α))) .

Observe that Π π
4 t and Π−π

4 t are lightlike planes while Πθt are spacelike planes for
θ ∈ ] − π

4 , π
4 [. Furthermore, for all θ ∈ ] − π

4 , π
4 [ it is always possible to consider an

orthochronous hyperbolic rotation fs of L3 of the form

fs

 x1

x2

x3

 =

 1 0 0
0 cosh(s) sinh(s)
0 sinh(s) cosh(s)

 x1

x2

x3


that preserves the forward (backward) light cone C +((0, 0, 0)) (C−((0, 0, 0))) and verifies
fs(Πθ) = Π0. Analogously, for θ ∈ ]− π

4 , π
4 [ we can always consider f̃s an orthochronous

isometry of L3, consisting of the orthochronous hyperbolic rotation f s composed with a
vertical translation, such that f̃s(Π+

θt) = Π+
0 and f̃s(Π−

θt) = Π−
0 (and so f̃s(Πθt) = Π0).

On the other hand, Σα are timelike planes and as before we can find always an or-
thochronous hyperbolic rotation fs of L3 that preserves the forward (backward) light cone
C+((0, 0, 0)) (C−((0, 0, 0))) and such that fs(Σα) = Σ0. For more details about these
isometries of L3 we refer the reader to [8].

Now we present the examples of maximal surfaces that we use as barriers.

2.5.1. Lorentzian catenoids. Consider C = {Ca, a ∈]0,∞[} the family of vertical Lorentzian
catenoids, it is to say, Ca is the maximal surface given on D−{0} = {z ∈ C | 0 < |z| ≤ 1}
by the Weierstrass data g = z and Φ3 = adz

z (see Fig. 2).
Lorentzian catenoids can be also seen as graphs of the radially symmetric functions

u(r) = −
∫ r

0

a√
t2 + a2

dt , r > 0 .

It is worth mentioning that Lorentzian catenoids have already been used as barriers for
maximum principle application in [1] and [5].



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 9

FIGURE 2. Lorentzian catenoid for a = 1.

2.5.2. Riemann type maximal surfaces. In [15], R. López, F.J. López and R. Souam stud-
ied the set of maximal surfaces in L3 that are foliated by pieces of circles. Between them,
we emphasize the one-parameter family of Riemann type maximal surfaces. This is a fam-
ily of singly-periodic maximal surfaces that plays the same role that Riemann’s minimal
examples play in the euclidean space and whose fundamental piece is a graph over any
spacelike plane, has one planar end and two conelike singularities (see Fig. 3).

FIGURE 3. A Riemann type maximal example.

Let us recall briefly the Weierstrass representation of half fundamental piece of these
Riemann type maximal surfaces.

Consider for r ∈ ]1,∞[ the four punctured torus

N = {(z, w) ∈ C
∗ × C | w2 = z(z2 + 2rz + 1)}

and define in the z-plane

s0 = {z ∈ C | |z| = 1} , s1 = [r1, 0[×{0} , s2 =] −∞, r2] × {0} ,

where r1 = −r +
√

r2 − 1 and r2 = −r − √
r2 − 1. Observe that r2 < −1 < r1 < 0.

Then we label N ⊂ N as the connected component of z−1(C − ∪2
i=0si) containing the

point
(

1
2 ,
√

1
2 (5

4 + r)
)

. Finally we define M = N , where N means the closure of N in

N .
For the sake of brevity, when z(z 2 + 2rz + 1) ∈ R+, we denote:

z+ = (z, +
√

z(z2 + 2rz + 1)) , z− = (z,−
√

z(z2 + 2rz + 1)) .

On M we consider the Weierstrass data g = z and Φ3 = dz
w and the 1-forms Φj ,

j = 1, 2 given by (2.2). Define γ the lift to M of s0. Observe that γ generates H1(M, Z).
It is not difficult to see that Φ1 is exact and that Φ2, Φ3 have no real periods on γ and so
we can consider the maximal immersion X = (X1, X2, X3) = � ∫ z

z0
(Φ1, Φ2, Φ3).

Denote by γ1 the lift to M of s1. It is not hard to prove that X(γ1) is a straight line
parallel to {x2 = x3 = 0}. We also observe that the set of singularities of the immersion
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is the trace of the curve γ and the image of these points by the immersion X is a unique
point that we label P r. Moreover, z0 can be chosen so that X(γ1) = {x2 = x3 = 0} and
P r = (0, P r

2 , P r
3 ).

Let be Θ(r) ∈ [−π, π[ the angle such that cos(Θ(r)) = P r
2√

(P r
2 )2+(P r

3 )2
, sin(Θ(r)) =

P r
3√

(P r
2 )2+(P r

3 )2
, it is to say, the angle that forms (0, 1, 0) and the vector P r. In order to use

the surfaces of this family as barriers, we need to study the function Θ(r).
First of all, observe that Θ(r) = arctan

(
h(r)
d(r)

)
, where

h(r) = X3(−1−) − X3(r1) = X3(1+) − X3(0) , d(r) = X2(−1−) − X2(r1) .

From here we have

(2.7) h(r) = �
∫ −1−

r1

Φ3 =
∫ r1

−1

dt√
t(t2 + 2rt + 1)

,

(2.8) h(r) = �
∫ 1+

0

Φ3 =
∫ 1

0

dt√
t(t2 + 2rt + 1)

,

(2.9) d(r) = �
∫ −1−

r1

Φ2 = −1
2

∫ r1

−1

(1 + t2)dt

t
√

t(t2 + 2rt + 1)
.

Note that h as well as d are positive functions and so Θ(r) ∈ ]0, π
2 [. Moreover, we observe

that

(2.10) d(r) = rh(r) + I(r) ,

where

(2.11) I(r) =
1
2

∫ r1

−1

√
t(t2 + 2rt + 1)dt

t2
.

Using (2.10) and (2.11) it is not hard to see that

lim
r→1

Θ(r) = 1 , lim
r→+∞Θ(r) = 0 .

Moreover, from (2.8) we observe that

(2.12) h′(r) =
∫ 1

0

−t2dt

(t(t2 + 2rt + 1))
3
2

.

On the other hand, from (2.10) and (2.11) the derivative of d respect to r is given by

(2.13) d′(r) = rh′(r) +
3
2
h(r) .

According to (2.10) and (2.13) we have

Θ′(r) =
h′(r)d(r) − h(r)d′(r)

h(r)2 + d(r)2
=

I(r)h′(r) − 3
2h(r)2

h(r)2 + d(r)2
.

Therefore, taking into account (2.11) and (2.12) we obtain that Θ ′(r) < 0 and so Θ is a
one-to-one function Θ :]1,∞[→]0, π

4 [.
For convenience of notation, for δ ∈ ]0, π

4 [ we shall denote by Rδ the maximal surface
with boundary defined in L3 by the above immersion for r = Θ−1(δ) (see Fig. 4). We
also denote by R = {Rδ | θ ∈ ]0, π

4 [}.
Finally, we need to prove that Rδ ⊂ Π−

δ ∩ {x3 ≥ 0}. It is not difficult to see that the
point {0} is a planar end of the surface asymptotic to the plane {x3 = 0}. Therefore, X3
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FIGURE 4. Rδ for δ = 0.595881.

is bounded on M . From Corollary 2.8 we deduce that R δ ⊂ {x3 ≥ 0}. Moreover, from
the above facts there exists t > 0 such that Rδ ⊂ Π−

δt. The maximum principle allows us
to assert that Rδ ⊂ Π−

δ .

2.5.3. Scherk’s type maximal surfaces. Now, we describe the one-parameter family of
Scherk’s type maximal surfaces. This family of singly-periodic maximal surfaces was
studied in depth by I. Fernández and F.J. López in [8], although an example of this type of
maximal surfaces appeared already in [14]. For b ∈]0, 1[ we denote by S b the maximal sur-
face given on D−{b,−b} by the Weierstrass data g(z) = iz and Φ3(z) = zdz

(z2−b2)(b2z2−1) .

FIGURE 5. A Scherk’s type maximal surface.

The surface Sb is a graph over any spacelike plane, it is invariant under the transla-
tion along the vector (0, π

2b(b2+1) , 0) and each fundamental piece of this singly-periodic
maximal surface has a conelike singularity. Up to translation we can assume one of these
singularities is the point (0, 0, 0) and then the set of all conelike singularities lie on the line
{x1 = x3 = 0}. Moreover, it is not difficult to see that the ends are asymptotic to the
totally geodesic horizontal half cylinder ∂(Wδ), where

Wδ = {(x1, x2, x3) ∈ R
3 | − tan(δ)x1 + x3 ≥ 0, tan(δ)x1 + x3 ≥ 0} ,

for δ = arctan
(

2b
1+b2

)
∈ ]0, π

4 [ and using Corollary 2.8 we obtain that the surface S b lies

on the region Wδ .
For the sake of simplicity, we denote Sδ the Scherk’s type maximal surface that is

asymptotic to ∂(Wδ).

2.6. The convex hull property. The objective of this subsection is to prove that a compact
maximal surface, even with isolated singularities, satisfies the convex hull property, it is to
say, the surface lies in the convex hull of its boundary and singularities.

Let τt denote the translation along the vector (0, 0, t), t ∈ R. In order to demonstrate the
convex hull property we need the following version of the maximum principle for maximal
surfaces with singularities. We would like to point out that the proof is inspired in the work
[10].
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Proposition 2.9. Let X : D → L3 be a maximal immersion with an isolated singular
point in q ∈ D, p = X(q) and S an embedded maximal surface (without singularities) in
L3 with p ∈ S. Then we have:

i) If X(D) is above S, then p must be a downward pointing lightlike singularity.
ii) If X(D) is below S, then p must be an upward pointing lightlike singularity.

Proof: We shall prove assertion i). Statement ii) can be proved in a similar way. Sup-
pose first that p is a lightlike singularity but not a downward pointing lightlike singularity.
Denote by Π the tangent plane to S at p that is a spacelike plane. From Lemma 2.2 we
obtain a curve in X(D) asymptotic to C−(p). Since S is asymptotic to Π in a neigh-
borhood of p we deduce that there are points of X(D) below S and this contradicts our
assumptions.

Now assume p is a spacelike singularity. According to Lemma 2.4 we have that the
tangent plane to X(D) at p and the tangent plane to S at p coincide. Denote Π this plane
and π the Lorentzian orthogonal projection on Π. Up to a Lorentzian isometry we can
suppose that p = (0, 0, 0) and Π = Π0. Consider a disk ∆ in Π centered at (0, 0) such
that S is the graph of a function h on ∆ and ∆ ⊂ π(X(D)). Denote M = X(V ), where
V is the connected component of (π ◦ X)−1(∆) containing q. If ∂(M) ∩ h(∆) �= ∅,
we have an interior regular point in X(D) ∩ S. By applying the maximum principle we
obtain M = h(∆) and then h(∆) must contain a spacelike singularity. Taking into account
Remark 2.5 we infer that this is a contradiction. Suppose then that ∂(M) is strictly above
h(∆). Then there exists θ ∈] − π

4 , 0[ sufficiently small and f an hyperbolic rotation in L3

such that f(Π) = Πθ and f(∂(M)) remains strictly above h(∆). Note that the tangent
plane to the maximal surface f(M) at (0, 0, 0) is Πθ and thus we can assert that there are
points of f(M) below h(∆). Translating in the positive x3-direction, we find a last contact
point with h(∆) which must be an interior regular point. As in the previous case by using
the maximum principle we obtain that h(∆) and τ t0(f(M)) coincide for some t0 > 0.
From Lemma 2.6 we have that π−1(0, 0, 0)∩τt0(f(M)) = (0, 0, t0). Then we can deduce
that (0, 0, t0) = (0, 0, 0) but this contradicts t0 > 0. �

The above result allows us to prove the following proposition.

Proposition 2.10. Let M be a compact maximal surface with isolated singularities. Then
M lies in the convex hull of ∂(M) and its general conelike singularities.

Proof: Denote by A the set of general conelike singularities. If M is contained in a
plane the result is obvious. Assume then that M is not flat and consider v ∈ S2 and y ∈ R3

such that (∂(M) ∪ A) ⊂ H+(y, v). We have to prove that M ⊂ H+(y, v) too.
We proceed by contradiction, and suppose that M∩(H −(y, v) − H(y, v)) �= ∅. Let M ′

be a connected component of M ∩ H−(y, v). Observe that M ′ does not contain general
conelike singularities.

First, assume v is a timelike vector, it is to say H(y, v) is a spacelike plane. Then, there
exists an interior point p ∈ M ′ such that M ′ is contained in the slab determinated by the
parallel planes H(p, v) and H(y, v). Therefore, we can use Proposition 2.9 to infer that p
is a regular point of M ′. Thus, by using the maximum principle we find M ′ = H(p, v)
which is a contradiction.

Analogously, if v is either spacelike or lightlike, it is to say, if H(y, v) is a timelike or
a lightlike plane, we can deduce the existence of an interior point p ∈ M ′ such that M ′ is
contained in the slab determinated by the parallel planes H(p, v) and H(y, v). If p were a
spacelike singularity, from Lemma 2.4 we have that H(p, v) would be the tangent plane to
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M ′ at p, contradicting that |g(q)| < 1. Assume now that p is a lightlike singularity. Up a
Lorentzian isometry we can assume p = (0, 0, 0) and

• H(p, v) = Σθ and M ′ ⊂ Σ−
α if v is spacelike,

• H(p, v) = Ππ
4

and M ′ ⊂ Π+
π
4

if v is lightlike.

By Lemma 2.6 we have that M ′ is in the exterior of C((0, 0, 0)). Consider now π the
Lorentzian orthogonal projection on Π0. It is easy to prove that the preceding conditions
imply that π(M ′) ⊂ (Π0 − {(0, y, 0) | y ∈ R}) in a neighborhood of (0, 0, 0). This
contradicts Lemma 2.1. Therefore, since p is not a singular point we infer that H(y, v)
is the tangent plane to M ′ at p and so we obtain a contradiction with the fact that M is
spacelike. �
Remark 2.11. Observe that the Proposition 2.10 holds even if M cannot be extended to
an open maximal surface M ′.

3. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A TIMELIKE PLANE

FIGURE 6

We recall that

C+ = {(x1, x2, x3) ∈ R
3 | x2

1 + x2
2 − x2

3 ≤ 0, x3 ≥ 0} .

Furthermore, for θ ∈ ]0, π
4 [ and δ, δ′ ∈ ]0, π[ we had denoted by V (θ, δ, δ ′) the convex

region

V (θ, δ, δ′) = Π+
0 ∩ Π−

θ ∩ H+((0, 0, 0), (1,− cot(δ), cot(θ)(cot(δ) − cot(δ′)))) .

We note that the region V (θ, δ, δ ′) is the convex hull of the half lines with origin in (0, 0, 0)
and directions (1, 0, 0), (cot(δ), 1, 0) and (cot(δ ′), 1, tan(θ)) (see Fig. 6).

Proposition 3.1. For any α ∈] − π
4 , π

4 [, there does not exist a connected properly im-
mersed maximal surface M without downward pointing lightlike singularities in the inte-
rior, provided M ⊂ Π+

π
4
∩ Σ+

α , ∂(M) ⊂ Σα and there is a point p0 ∈ ∂(M) verifying

x3(p0) ≤ x3(p), for all p ∈ ∂(M).

Proof: First of all, observe that up an orthochronous hyperbolic rotation f s of L3 we
can assume α = 0.

Suppose that there exists such an M and define t̂ = x3(p0). For any θ ∈ [0, π
4 [ we can

consider the set
Iθ = {t ∈ [0, t̂ ] | M ⊂ Π+

θt} .

Since 0 ∈ Iθ we have Iθ �= ∅. We shall prove that Iθ = [0, t̂ ]. If t̂ = 0 this fact is obvious.
Thus, assume t̂ > 0. Clearly Iθ is closed.
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Let us see that it is open. Observe that if t ∈ Iθ then [0, t] ⊂ Iθ . Now we claim that
if t ∈ Iθ ∩ [0, t̂[ then there exists ε > 0 such that [t, t + ε[⊂ Iθ . If not, we have two
possibilities

• There is p, an interior point of M , in the plane Πθt or
• M is asymptotic at infinity to Πθt.

Note that in the former case, from our assumptions on the singularities and assertion i)
in Proposition 2.9 we deduce that the point p is not a singularity. Then, from the interior
maximum principle follows that M and Πθt coincide. But it leads us to a contradiction
with x3(p0) = t̂ > t. Now we shall demonstrate that the second case is not possible either.

Suppose that M is asymptotic to Πθt. In this case we can assume M ∩Πθt = ∅. If not,
there exists an interior point of M in Πθt and then we may apply the previous argument.
Consider f an orthochronous isometry of L3 such that f(Πθt) = Π0 and f(Π+

θt) = Π+
0 .

Denote M̃ = f(M). Then we have a properly immersed maximal surface M̃ ⊂ Π+
0 ,

asymptotic to Π0 with M̃ ∩ Π0 = ∅.
Since the immersion is proper and (0, 0, 0) �∈ M̃ we can find ε > 0 sufficiently small

so that B((0, 0, 0), ε) ∩ M̃ = ∅, where B((0, 0, 0), ε) = {x ∈ R3 | 〈x, x〉e < ε2}. Hence,
there exists ε′ ∈ ]0, ε[ and a0 > 0 small enough such that τε′(Ca0) ⊂ B((0, 0, 0), ε)∪Π−

0 .
Now we define

A = {a ∈ ]0, a0] | τε′(Ca) ∩ M̃ = ∅} .

Clearly, a0 ∈ A and we can consider a′ = Infimum(A). We claim a′ = 0. Assume on
the contrary that a′ > 0. Then as τε′(Ca) and M̃ do not have a contact at infinity, we
infer that there is p an interior point of M̃ in τε′(Ca′ ). Furthermore, taking into account
our assumptions and statement i) in Proposition 2.9, we can assert that p is a regular point
of M̃ . Therefore, by applying the maximum principle, we obtain M̃ = τε′(Ca′ ) which
contradicts the fact that ∂(M̃) ⊂ Σ0 ∩ Π+

0 .
Therefore Iθ is open and Iθ = [0, t̂ ]. As a consequence we have M ⊂ Π+

θt̂
for all

θ ∈ [0, π
4 [ and thus M ⊂ Π+

π
4 t̂

.

Then we have two possibilities:

• p0 is not a singular point in ∂(M),
• p0 is a singularity.

Assume that the first case occurs. Then, as p0 ∈ ∂(M) ∩ Ππ
4 t̂ and M ⊂ Π+

π
4 t̂

∩ Σ+
0 the

tangent plane at the point p0 would be lightlike of timelike, which is a contradiction. In the
second case, according to Lemma 2.6 we have that around p 0 the surface is in the exterior
of C(p0), which contradicts again M ⊂ Π+

π
4 t̂

. �

Corollary 3.2. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior such that M ⊂ C+ ∩ Σ+

α

and ∂(M) ⊂ Σα, for any α ∈] − π
4 , π

4 [.

Proof: The corollary follows immediately from Proposition 3.1. �

Corollary 3.3. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior such that M ⊂ C+ and
∂(M) lies in the intersection of C+ with a timelike plane P .

Proof: Assume that there exists such a maximal surface and consider M ′ a connected
component of M − (M ∩ P ). Up to an elliptic rotation and a translation we can assume
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the timelike plane is the plane Σα, for α ∈ ] − π
4 , π

4 [, M ′ ⊂ C+ ∩ Σ+
α and ∂(M ′) ⊂ Σα.

An immediate application of Corollary 3.2 to M ′ leads to a contradiction. �

Theorem 3.4. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior such that M ⊂ Wδ ∩ Σ+

α

and ∂(M) ⊂ Σα ∩ C+, for δ ∈]0, π
4 [, α ∈] − π

4 , π
4 [ .

Proof: First of all we consider the isometry fε of L3 with tanh(ε) = tan(π
8 ). It is not

difficult to see that fε(M) ⊂ Π+
π
8
∩ Wδ′ ∩ Σ+

α′ and ∂(fε(M)) ⊂ Σα′ ∩ C+, where

tan(α′) =
tan(α) + tan(π

8 )
tan(π

8 ) tan(α) + 1
,

tan(δ′) = min{tan(π
8 ), cosh(ε) tan(δ)(tan(π

8 ) tan(α) + 1)} .

For the sake of simplicity of notation we consider M ⊂ Π+
π
8
∩ Wδ ∩ Σ+

α and ∂(M) ⊂
Σα ∩ C+.

Furthermore, we claim that (0, 0, 0) �∈ ∂(M) and so ∂(M) ⊂ Π+
0 − Π0. If not, we

deduce from Lemma 2.6 that around (0, 0, 0) the maximal surface M is in the exterior of
C((0, 0, 0)) but this contradicts ∂(M) ⊂ C+.

Consider now the Scherk’s type maximal surface S δ
2

described in 2.5.3 that is asymp-
totic to the boundary of the region W δ

2
. In the following we prove that S δ

2
∩ M = ∅.

It is clear that there exist t0 ∈ ] − ∞, 0], t1 ∈ ]0,∞[ such that τt0(S δ
2
) ∩ M = ∅ and

τt1(S δ
2
) ∩ M �= ∅. Therefore, we can define

t̂ = Infimum{t ∈ ]t0,∞[ | τt(S δ
2
) ∩ M �= ∅} .

Suppose t̂ ≤ 0. Observe that, since M ⊂ Π+
π
8
∩ Wδ ∩ Σ+

α , ∂(M) ⊂ C+ − {(0, 0, 0)} and

S δ
2
∩ C+ = {(0, 0, 0)}, then τt̂(S δ

2
) and M can have a contact point neither at infinity nor

at the boundary. Hence there exists an interior point of M in τ t̂(S δ
2
). Taking into account

our assumptions on the singularities and statement i) in Proposition 2.9 we deduce that this
point is not a singularity. Then, by applying the maximum principle we get that M and
τt̂(S δ

2
) coincide which contradicts the hypothesis on ∂(M). Thus t̂ > 0 and S δ

2
∩M = ∅.

Consider now Sλ
δ
2

the homothetic shrinking of S δ
2

by λ, λ ≥ 1. We shall prove that

Sλ
δ
2
∩ M = ∅ for all λ ≥ 1. Suppose on the contrary that there exists λ ′ ≥ 1 such that

Sλ′
δ
2
∩ M �= ∅. We denote by

λ̂ = Infimum{λ ∈ ]1,∞[ | Sλ
δ
2
∩ M �= ∅} .

Moreover, it is clear that S λ̂
δ
2

and M do not contact either at infinity or at the boundary.

Therefore there must exist an interior point of M in S λ̂
δ
2

. Using again statement i) in

Proposition 2.9 and our hypothesis on the singularities we deduce that this point is not a
singularity and so by applying the maximum principle we obtain that S λ̂

δ
2

and M coincide.

But this contradicts our assumptions on ∂(M).
Thus Sλ

δ
2
∩ M = ∅ for all λ ≥ 1. Taking into account that S δ

2
is asymptotic to

C+((0, 0, 0)) near the conelike singularity (0, 0, 0), we deduce that M ⊂ C+ and the
Corollary 3.2 finishes the proof. �



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 16

Theorem 3.5. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior such that M ⊂ Π+

θ ∩ Σ+
α

and ∂(M) ⊂ Σα ∩ C+, for θ, α ∈ ] − π
4 , π

4 [ .

FIGURE 7

Proof: Suppose there exists such an M . We observe that if θ ≤ 0 or α < 0 we
can consider an orthochronous hyperbolic rotation f s such that fs(M) ⊂ Π+

θ′ ∩ Σ+
α′ and

∂(fs(M)) ⊂ Σα′ ∩ C+ for some θ′ ∈ ]0, π
4 [ , α′ ∈ [0, π

4 [ . As in the previous theorem, for
the sake of simplicity of notation we assume M ⊂ Π+

θ ∩ Σ+
α and ∂(M) ⊂ Σα ∩ C+, for

θ ∈ ]0, π
4 [ , α ∈ [0, π

4 [.
Since ∂(M) ⊂ Σα∩C+ we have that there exists p0 ∈ ∂(M) such that x3(p0) ≤ x3(p)

for all p ∈ ∂(M). As in the preceding theorem it is easy to see that p0 �= (0, 0, 0) and so
λ = x3(p0) > 0. Then, reasoning as in Proposition 3.1 we can conclude M ⊂ Π+

θλ ∩ Σ+
α .

Denote by R̃δ the Riemann type maximal example that results after applying an elliptic
rotation of π

2 along the axis x3 on Rδ for any δ ∈ ]0, π
4 [. We assert that M ∩ R̃δ =

∅. Observe that we can consider t0 ≤ 0 and t1 ∈ R such that τt0(R̃δ) ∩ M = ∅ and
τt1(R̃δ) ∩ M �= ∅. Now define

t̂ = Infimum{t ∈ ]t0,∞[ | τt(R̃δ) ∩ M �= ∅} .

Suppose t̂ ≤ 0. Note that τt̂(R̃δ) and M can have a contact point neither at infinity nor at
the boundary. Hence there exists an interior point of M in τ t̂(R̃δ). Making use of statement
i) in Proposition 2.9 and taking into account our assumptions on singularities, we deduce
that the point is not a singularity. Therefore, by applying the maximum principle we get
that τt̂(R̃δ) and M coincide. But this contradicts our hypothesis on ∂(M). Thus t̂ > 0 and
R̃δ ∩ M = ∅.

Consider now R̃λ
δ the homothetic shrinking of R̃δ by λ, λ > 0. Next we prove that

R̃λ
δ ∩ M = ∅ for all λ ≥ 1. Assume that there exists λ′ > 1 such that R̃λ′

δ ∩ M �= ∅. We
denote by

λ̂ = Infimum{λ ∈ ]1, λ′[ | R̃λ
δ ∩ M �= ∅} .

Observe that R̃λ′
δ and M do not contact either at infinity or at the boundary for all λ ≥ 1.

Therefore there is an interior point of M in R̃λ′
δ . Using again our assumptions on singular-

ities and statement i) in Proposition 2.9 we deduce that the point is not a singularity. Then
by applying the maximum principle we obtain that R̃λ′

δ and M coincide, which contradicts
our hypothesis on ∂(M). The same argument proves that R̃λ

δ ∩ M = ∅ for all λ ≤ 1.
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Analogously, considering R̂δ the Riemann type maximal example that results after ap-
plying a rotation of − π

2 along the axis x3 on Rδ for any δ ∈ ]0, π
4 [, we obtain R̂λ

δ ∩M = ∅
for all λ ∈ R.

Furthermore, it is not difficult to prove that

(Π+
θ ∩ Σ+

α ) −
(⋃

λ∈R

R̃λ
δ ∪

⋃
λ∈R

R̂λ
δ

)
⊂ {(x1, x2, x3) ∈ R

3 | − tan(δ)x1 + x2 + x3 ≥ 0}

∩ {(x1, x2, x3) ∈ R
3 | tan(δ)x1 + x2 + x3 ≥ 0}.

Taking this into account, we can assert

M ⊂ (Π+
θ ∩Σ+

α )∩{(x1, x2, x3) ∈ R
3 | − tan(δ)x1+x2+x3 ≥ 0, tan(δ)x1+x2+x3 ≥ 0} .

A direct computation shows that

Π+
θ ∩ {(x1, x2, x3) ∈ R

3 | − tan(δ)x1 + x2 + x3 ≥ 0, tan(δ)x1 + x2 + x3 ≥ 0} ⊂ Wδ′ ,

where δ′ ∈ ]0, π
4 [ is given by

tan(δ′) =
tan(δ) tan(θ)
1 + tan(θ)

.

Then Theorem 3.4 concludes the proof. �
To finish this section, we analyze the case of maximal surfaces whose boundary is con-

tained in a timelike plane but not necessarily in C+. An easy argument allows us to prove:

Proposition 3.6. There does not exist a connected properly immersed maximal surface M
with at least a connected component of ∂(M) contained in Σ+

α ∩ Σ+
−α ∩ {(x1, x2, x3) ∈

R
3 | x1 = 0}, where α ∈ ]0, π

4 [.

Proof: Let B a connected component of ∂(M) satisfying

B ⊂ Σ+
α ∩ Σ+

−α ∩ {(x1, x2, x3) ∈ R
3 | x1 = 0} ,

where α ∈ ]0, π
4 [. Thus, the function x2 has at least a minimum on B. We note that the

minimum can not be a singularity. Then, the tangent vector to the boundary at this point
is vertical and therefore the tangent plane of the maximal surface at this point is timelike,
which is contrary to our assumptions. �
Corollary 3.7. There does not exist a connected properly immersed maximal surface M
contained in V (θ, δ, δ ′) with ∂(M) contained in a timelike plane.

Proof: From the hypothesis it is not difficult to see that there exists an isometry of
L3 such that sends the timelike plane to the plane {(x1, x2, x3) ∈ R3 | x1 = 0} and in
particular the image of ∂(M) lies in Σ+

α ∩ Σ+
−α ∩ {(x1, x2, x3) ∈ R3 | x1 = 0} for some

α ∈ ]0, π
4 [. The result is then a consequence of Proposition 3.6.

4. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A SPACELIKE PLANE

The purpose of this section is to obtain, using the maximum principle, other results
about maximal surfaces whose boundary is contained in a spacelike plane but that can not
be inferred from the Theorem quoted in Paragraph 2.4. We start with a result similar to
Corollary 2.8.

Proposition 4.1. Let M be a connected properly immersed maximal surface without down-
ward pointing lightlike singularities in the interior such that M ⊂ {(x1, x2, x3) ∈ R3 |
0 ≤ x3 ≤ k} and ∂(M) ⊂ {(x1, x2, x3) ∈ R3 | x3 = k}, for k > 0. Then M is a planar
region.
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FIGURE 8

Proof: We proceed by contradiction. Assume that there exists t ≥ 0 such that M ⊂
Π+

0t but M �⊂ Π+
0t′ for any t < t′. Observe that M ∩ Π0t = ∅. If not, there exists p an

interior point of M in Π0t. Then, from statement i) in Proposition 2.9 and our assumptions
on singularities we deduce that p is a regular point. But if p is regular, it follows from the
maximum principle that M = Π0t, contradicting the hypothesis on ∂(M).

Since M is properly immersed and M ∩ Π0t = ∅ we can find ε > 0 such that
B((0, 0, t), ε) ∩ M = ∅. Hence, there are constants ε′ ∈ ]0, ε[ and a0 > 0 sufficiently
small such that τt+ε′ (Ca0) ⊂ B((0, 0, t), ε) ∪ Π−

0t. Now we define

A = {a ∈ ]0, a0] | τt+ε′(Ca) ∩ M = ∅} .

Clearly, a0 ∈ A and we can consider a′ = Infimum(A). We claim a′ = 0. Assume on
the contrary that a′ > 0. Then as τt+ε′(Ca) and M do not have a contact either at infinity
or at the boundary, we infer that there is an interior point of M in τ t+ε′(Ca′). Taking
into account statement i) in Proposition 2.9 and our assumptions on the singularities we
infer that the interior point is not a singularity and then, by applying the interior maximum
principle we obtain M = τt+ε′(Ca′) which contradicts the hypothesis on ∂(M).

Therefore, a′ = 0 and so M ⊂ Π+
0t+ε′ contradicting our assumption at the beginning

of the proof. �

Theorem 4.2. Let M be a connected properly immersed maximal surface without upward
pointing lightlike singularities in the interior such that M ⊂ V (θ, δ, δ ′) and ∂(M) ⊂ Π0.
Then M is a planar region.

FIGURE 9

Proof: Up a translation we can assume that

M ∩ (Πθ ∪ H((0, 0, 0), (1,− cot(δ), cot(θ)(cot(δ) − cot(δ′)))) = ∅ .
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Now we observe that

τ−1(H2
+) ∩ Πθ ∩ V (θ, δ, δ′) = α1 ,

τ−1(H2
+) ∩ H((0, 0, 0), (1,− cot(δ), cot(θ)(cot(δ) − cot(δ′)))) ∩ V (θ, δ, δ′) = α2 ,

where α1 and α2 are two regular curves. Observe that the union of these curves is a
continuous curve of τ−1(H2

+) and that the tangent vectors to these curves at the point
(0, 0, 0) are contained in the plane Π0 and are linearly independent.

Since τ−1(H2
+) is a spacelike surface, it is well-known (see Theorem 4.1 in [1]) that

there exists S a maximal surface (it is even a graph on the x3-plane) spanned by the curve
α1 ∪ α2. Note that the tangent plane of S at (0, 0, 0) is the plane Π0. On the other hand,
using Proposition 2.10 and Remark 2.11 we have that S is contained in the convex hull of
its boundary and thus S ⊂ V (θ, δ, δ ′).

Now, we denote by Sλ the homothetic shrinking of S by λ, λ > 0. As M is properly
immersed it is possible to find λ0 > 0 such that Sλ0 ∩ M = ∅. Next we prove that
Sλ ∩ M = ∅ for all λ > 0. Assume that there exists λ′ > 0 such that Sλ′ ∩ M �= ∅. We
denote by

λ̂ = Infimum{λ ∈ ]λ0, λ
′] | Sλ ∩ M �= ∅} .

Observe that Sλ and M do not contact at the boundary for all λ > 0. Therefore there
is an interior point of M in S λ̂. It follows from assertion ii) in Proposition 2.9 and the
conditions on the singularities that the contact point is not a singularity. Then, by applying
the maximum principle we obtain Sλ = M which contradicts the assumptions on ∂(M).

Hence, taking into account that the tangent plane of S at (0, 0, 0) is Π0 we obtain

V (θ, δ, δ′) −
⋃
λ∈R

Sλ ⊂ Π0 ,

from which we deduce that M ⊂ Π0. �

Corollary 4.3. Let M be a connected properly immersed maximal surface without general
conelike singularities in the interior such that M ⊂ V (θ, δ, δ ′) and ∂(M) is contained in
a spacelike plane. Then M is a planar region.

Proof: Let Π be the spacelike plane such that ∂(M) ⊂ Π and M ′ a connected compo-
nent of M − (M ∩Π). Denote by Π+ the half space determined by Π such that M ′ ⊂ Π+.
Then, it is not difficult to see that there exists an isometry of L3, f, that verifies f(Π) = Π0

and f(V (θ, δ, δ′) ∩ Π+) ⊂ V (θ̂, δ̂, δ̂′), for some θ̂, δ̂ and δ̂′. Therefore, the corollary
follows from Theorem 4.2. �

On the other hand it is easy to prove the following result:

Proposition 4.4. Let M be a connected properly immersed maximal surface without gen-
eral conelike singularities in the interior such that M ⊂ C+ and ∂(M) is contained in a
spacelike plane. Then M is a planar region.

Proof: Observe that our hypothesis imply that ∂(M) is compact. We consider the
intersection of M with all the timelike planes H(y, v) such that ∂(M) ⊂ H +(y, v). By
applying Corollary 3.3 to the connected components of M that are contained in H −(y, v)
we obtain that M ⊂ H+(y, v) for all the timelike planes described above. Then M is also
compact and Proposition 2.10 proves that M is a planar region. �



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 20

5. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A LIGHTLIKE PLANE

AND THE CONVEX HULL PROPERTY

As a consequence of the previous sections we deduce the following results for maximal
surfaces whose boundary is contained in a lightlike plane.

Proposition 5.1. There does not exist a connected properly immersed maximal surface M
without general conelike singularities in the interior such that M ⊂ V (θ, δ, δ ′) and ∂(M)
is contained in a lightlike plane.

Proof: Suppose there exists such an M . Let Π be the lightlike plane such that ∂(M) ⊂
Π. Then, we can consider the pencil of planes through the line L = Π∩Π 0, it is to say the
set of planes sharing the line L. Since M cannot be flat, it is possible to find a spacelike
or timelike plane in the pencil that intersects M transversally. But Corollaries 4.3 and 3.7
leads to a contradiction in each case. �

Proposition 5.2. There does not exist a connected properly immersed maximal surface
M without general conelike singularities in the interior such that M ⊂ C+ and ∂(M) is
contained in a lightlike plane.

Proof: This can be demonstrated as in the preceding proposition using now Proposition
4.4 and Corollary 3.3. �

As we saw in Paragraph 2.6, a compact maximal surface lies in the convex hull of its
boundary and the set of its general conelike singularities. This is not true for non-compact
maximal surfaces in general. However, Theorem 4.2 and Proposition 4.4 can be seen as a
convex hull type property. We have proved that if certain conditions are satisfied then the
surfaces lie in the convex hull of their boundary. In the remainder of the section, we use
the results obtained in the previous sections to give a generalization of these results. More
precisely we have

Proposition 5.3. Any connected properly immersed maximal surface contained in V (θ, δ, δ ′)
lies in the convex hull of its boundary and its general conelike singularities.

Proof: Let M be a minimal surface satisfying the hypotheses of the proposition and
denote by A the set of general conelike singularities of M . If M is contained in a plane
the result is obvious. Assume then that M is not flat and consider v ∈ S2 and y ∈ R3 such
that (∂(M) ∪ A) ⊂ H+(y, v). We have to prove that M ⊂ H+(y, v) too.

We proceed by contradiction, and suppose that M ∩ (H −(y, v) − H(y, v)) �= ∅. Let
M ′ be a connected component of M ∩ H−(y, v).

First, assume v is a spacelike vector, it is to say H(y, v) is a timelike plane. Then,
Corollary 3.7 leads to a contradiction.

Suppose now that v is a timelike vector, it is to say H(y, v) is a spacelike plane. In this
case, Assumption “ M ′ not flat ” contradicts Corollary 4.3.

Finally, if the vector v is a lightlike then the plane H(y, v) is also lightlike. Then
Proposition 5.1 gives a contradiction. �

Proposition 5.4. Any connected properly immersed maximal surface contained in C+ lies
in the convex hull of its boundary and its general conelike singularities.

Proof: The proof can be obtained as in the above proposition using Corollary 3.3 and
Propositions 5.2 and 4.4. �
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