NON EXISTENCE RESULTS AND CONVEX HULL PROPERTY FOR
MAXIMAL SURFACESIN L3
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ABSTRACT. In this paper we deal with properly immersed maximal surfaces with non
empty boundary and singularities in the 3-dimensional Minkowski space. We use max-
imum principle and scaling arguments to obtain non existence results for these surfaces
when the boundary is planar. We also give sufficient conditions in order that such surfaces
satisfy the convex hull property.

1. INTRODUCTION

In the last years, maximal hypersurfaces in a Lorentzian manifold have been a focus
of considerable interest. These are spacelike submanifolds of codimension one with zero
mean curvature. Such hypersurfaces, and in general those having constant mean curvature,
have a specia significancein classical Relativity (see [17]).

When the ambient space is the flat Minkowski space L', Calabi [2] (n < 3) and
Cheng and Yau [3] (for arbitrary dimension) proved that a complete maximal hypersurface
is necessarily a spacelike hyperplane. The preceding result is valid if we subgtitute the
hypothesis of completeness for the one of properness (see[7]).

Therefore, it does not make any sense to consider global problems on regular maximal
hypersurfacesin L *1. Interesting problems are then, those that deal with hypersurfaces
with non empty boundary or having certain type of singularities. In this line, Bartnik
and Simon [1] obtained results on the existence and regularity of spacelike solutions to
the boundary value problem for the mean curvature operator in . " +! and Kobayashi [14]
investigated such surfaces with conelike singularities. In [6] Estudillo and Romero de-
fined a class of maximal surfaces with singularities of other type and studied criteria for
such surfaces to be a plane. On the other hand, Klyachin and Mikyukov [12] tackle the
problem of existence of solutions to the maximal hypersurface equation in L "1 with pre-
scribed boundary conditions and a finite number of singularities. It should be remarked
that Fernandez, L 6pez and Souam [9] proved that a complete embedded maximal surface
with a finite set of singularities is an entire graph over any spacelike plane and that this
family of maximal graphs has a structure of moduli space. Finally, we would like to men-
tion the paper [22] where topological obstructionsto the existence of this type of surfaces
are given by Umeharaand Yamada.

Maximal surfaces in .3 and minimal surfaces in the Euclidean space are closely re-
lated. Firstly, both families are solutions of variational problems: loca maxima (minima)
for the area functional and both admit a Weierstrass representation (see [13] for maximal
surfaces). Moreover, the maximal surface equation as well as the minimal surface equa-
tion are quasilinear elliptic equations and therefore we have a maximum principle for them.
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Otherwise, contrarily to the minimal case, solutions to the maximal surface equation can
have isolated singularities, that is to say, points where the solution is not differentiable.
These points correspond to possible degeneracy of the ellipticity of the maximal surface
equation. Geometrically at these singular points the Gauss curvature blows up, the Gauss
map has no well-defined limit and the surface is asymptotic to the light cone.

Moreover, in the minimal case, the maximum principle has been used by Schoen [21],
Hoffman-Meeks[11], Meeks-Rosenberg [ 18], L6épez-Martin [16], among others, to obtain
remarkable results. In this paper we apply maximum principle and scaling arguments to
properly immersed maximal surfaces with non empty boundary and isolated singularities
in L3, We get two types of results: non existence results for properly immersed maximal
surfaces with singularities and planar boundary contained in a timelike or lightlike plane
and results that generalize the convex hull property for such surfaces. Recall that a surface
satisfies the convex hull property if and only if it lies in the convex hull of its boundary.
Although it is well-known that compact maximal surfaces in L3 verify the convex hull
property, just for having non positive Euclidean Gauss curvature (see [20]), thisis not the
general case. We give sufficient conditions so that a properly immersed maximal surface
(not necessarily compact and with singularities) verifies the convex hull property.

The present paper is laid out as follows. Section 2 contains the notations and defini-
tions we need in the paper. In this section we also describe the behavior of maximal sur-
faces around an isolated singularity and present the maximal surfaces we use as barriers:
Lorentzian catenoids, Riemann type maximal surfaces, Scherk’s type maximal surfaces as
well as spacelike planes. We finish the section giving a first generalization of the convex
hull property to compact maximal surfaces with singularities.

In Section 3 we obtain non existence results for properly immersed maximal surfaces
with singularities and boundary contained in a timelike plane. In particular, if C*+ =
{(z1,22,23) € R3 | 2% + 23 — 2% < 0,25 > 0} we show that:

Theorem A. There does not exist a connected properly immersed maximal surface M
suchthat M C {(x1,22,23) € R® | 23 > 0,—tan(f)xs + x5 > 0} and O(M) C
C+ N {(xlwrQamB) S R3 | To = 0},f0r 9 E] _ %, %[ .

The preceding theorem holds even if we allow certain singularities (see Theorem 3.5).

Section 4 is devoted to study properly immersed maximal surfaces whose boundary is
contained in a spacelike plane. Let us consider V (0,6,6’) = {(z1,22,73) € R? | 23 >
0, —tan(@)xs + 23 < 0,21 — cot(d)xa + cot(f)(cot(d) — cot(d’)) > 0}, for 6 €]0, §[
andd, ¢’ €]0, 7| (seeFig. 6). Our main result of this sectionis:

Theorem B. Let M be a connected properly immersed maximal surface such that M C
V(6,0,d") and 9(M) is contained in a spacelike plane. Then M isa planar region.

As in the previous theorem, Theorem B holds even if we allow certain singularities (see
Theorem 4.2 and Corollary 4.3). We would like to emphasize that in the proof of the
above theorem a barrier surface is constructed ad hoc using the af orementioned Bartnik
and Simon existence result. Moreover, the previous theorem is valid if we substitute the
region V (0, 6,4") for C* (see Proposition 4.4).

Finally, in Sect. 5 we exploit the results obtained in the preceding sections to give non
existence results for properly immersed maximal surfaces with the boundary on alightlike
plane and to state the following convex hull property:
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Proposition C. Any connected properly immersed maximal surface with singularities con-
tained either in V(0,4,46’) or C* lies in the convex hull of its boundary and some of its
singularities.

We refer the reader to Propositions 5.3 and 5.4 for a precise formulation of this result.

Acknowledgments. We areindebted to F. Martin, |. Fernandez and specially to F.J. Lopez
for helpful conversations during the preparation of this work. This paper was carried out
during the second author’s visit to the IME, Universidade de Sdo Paulo (Brasil). The sec-
ond author is grateful to the people at the institute for their hospitality. The authors would
aso like to thank the referee for valuable suggestions.

2. PRELIMINARIES

We denote by 1.3 the three dimensional Lorentz-Minkowski space (R?, ( , )), where
(,) =dx?+ dxd — dx3. A vectorv € R3 — {(0,0,0)} is caled spacelike, timelike or
lightlike if (v, v) is positive, negative or zero, respectively. The vector (0,0, 0) is consid-
ered a spacelike vector. We say that aplaneinL? is spacelike, timelike or lightlike if the
induced metric is Riemannian, non degenerate and indefinite or degenerate, respectively.
We also say that an affine planein 1.2 is spacelike, timelike or lightlikeif it is paralel to a
spacelike, timelike or lightlike vectoria plane.

Thelight coneat y = (y1,y2,ys3) € L? isdefined as

Cly) ={z €L’ | (z—y, 2 —y) =0}

We also denote C*(y) = C(y) N{z3 > ys} and C~ (y) = C(y) N {x3 < y3}. Observe
that lightlike vectorsinIL? liein the light cone C((0, 0,0)).

Let usdenote by H? = H2 UH?, whereH? = {z € L? | (z,2) = —1} N {z3 > 0}
andH? = {z € L3 | (z,2) = —1} N {z3 < 0}.

Consider o : C — {|z| = 1} — H? the stereographic projection for H? given by

(2.1) O(Z)< 23(z)  2R(2) |42—+1),

22 =17 |22 =17 |22 — 1

whereC = CU{cc}, o(o0) = (0,0, 1) and & and R stands for theimaginary and real part
of the complex humbers.

Animmersion X : M — L3 is spacelike if the tangent plane at any point is spacelike.
If X isspacelike M isorientable, that isto say, the Gauss Map N is globally well defined
and N (M) liesin one of the components of H 2.

A maximal immersion is a spacelike immersion X : M — L2 such that its mean
curvature vanishes. In this case X (M) is said to be a maximal surface in L3. Using
isothermal parameters compatible with a fixed orientation N : M — H2, M hasin a
natural way a conformal structure, and themap g = ¢ ~! o N is meromorphic. Moreover,
there exists a holomorphic 1-form @3 on M such that the 1-forms

1 (1 1/1
(2.2) @15<—9>@37¢2— <—+g><I>3
g 2 \yg

are holomorphic, and together with ® 3, have no real periods on M and no common zeros.
Up to atrandation, theimmersion is given by

(23 X =% [(@1,02,22).
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The induced Riemannian metric ds? on M is given by ds? = \(du? + dv?), where z =

2
u+ivisaconformal parameter and A = 1(|®; |2+ |®5|* — |@35/%) = (‘%3' <‘—;‘ - |g|)) :
Since M is spacelike, we have |g| # 1 on M and we can assume |g| < 1.

Conversely, let M, g and @3 be a Riemann surface, a meromorphic map on M and a
holomorphic1-formon M. If |g(p)| # 1,Vp € M andthel-forms® ;, j = 1,2, 3, defined
as above are holomorphic, have no real periods and no common zeros then the conformal
immersion X defined in (2.3) is maximal and its Gauss map iso o g. We call (M, g, ®3)

the Weierstrass representation of X. For more details see [13].

2.1. The maximum principle for maximal surfaces. A maximal surface in L3 can be
represented locally asagraph 23 = u(x1, z2) of asmooth function u withu? +u?, <1,
satisfying the equation

(2.4) (1- uil)umz2 + 22U Ugp Uy oy + (1 — uiQ)ugElgg1 =0.

The maximum principle for elliptic quasilinear equations then gives the following maxi-
mum principle for maximal surfaces:

Maximum principle. Let S; and S- be two maximal surfaces in I3 which intersect tan-
gentially at a point p € S; N Ss. Supposethat u;, for i = 1, 2 denotes the function defining
S; around p and that «; > uo (We say S; isabove S, or S isbelow S1). Then S; = Ss
locally around p.

2.2. Maximal surfaceswith singularities. If in amaximal immersion X : M — L3 we
allow points ¢ € M where the induced metric is not Riemannian we say that X (respec-
tively, X (M)) has singularities and ¢ (respectively, X (¢)) is caled asingular point. The
different kind of isolated singularities of maximal surfaces as well as the behavior of max-
imal surfaces around these points are well-known (see [14], [5], [19] and [9]). We need to
recall some aspects of this behavior and go deeply into some of them.

Let D beanopendiscand X : D — L3 amaxima immersion with asingular point in
q € D. There are two possibilities: either N extends continuously to ¢ (q is a spacelike
singular point) or not (¢ isalightlike singular point).

In the second case D — {q} with the induced metric is conformally equivalentto {z €
C,0 < r < |z] < 1} and X extendsto aconformal map X : A, — L3 with X(S!) =
X(q) = p,where A, = {z € C,r < |z] < 1} andS' = {2z € C,|z| = 1}. Denote
by J(z) = L theinversion about S'. Then Schwarz reflection allows us to assert that
X extends analytically to B, = {z € C,r < |z| < 1} and satisfies X o J = —X +
2p. Thereforeif (g, ®3) are the Welerstrass data of the extended immersion we have that
J*(®y) = —®4 for k = 1,2,3, where by J*(®;) we denote the pullback of & under
J, more precisely if ®;, = frdz then J*(®y) = =2 (fx o J)dz. Thusgo J = % and
consequently |g| = 1 onS!. Let IT be a spacelike plane containing p = X (St) and label
7 : L3 — II asthe Lorentzian orthogonal projection. If n (always even) and m denote the
number of zeros of ®; on S' and the degree of the map g : S* — S', respectively, it can
be proved

Lemma 2.1. ([9]) There exists a small closed disc U in II centered at p such that (7 o
X)"Mp)nV =stand (ro X) : V—S' — U — {p} isacovering of m + 2 sheets,
where V isthe annular connected component of (7 o X) ~1(U) containing S*.

Asaconseguence, X isan embedding around ¢ if andonly if m = 1 andn = 0. Inthis
casethepoint p = X (S') issaid to beaconelike singularity of the maximal surface X (D).
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Moreover, for ro closeenoughto 1, X (A,,) isthe graph of a function « over II. Locally,
conelike singularities are points where the function defining the graph is not differentiable
and correspond to possible degeneracy of the equation (2.4). Moreover, the graph of w is
either above IT and asymptotic to C'*(p) or below IT and asymptotic to C'~(p), and the
point p is called adownward or upward pointing conelike singularity, respectively.

~

~

a) b)
¢ = /‘
_ ’,A
c) d)

FIGURE 1. Different typesof isolated singularities: Figuresa), b) and c)
correspond to lightlike singularitieswhile d) is an example of aspacelike
singularity. More precisely: @) A downward pointing conelike singular-
ity (m = 1, n = 0), b) adownward pointing lightlike singularity with
m = 2,n = 0, ¢) alightlike singularity withm = 1,n = 2 and d) a
spacelike singularity with n = 2.

Furthermore, we can also prove:

Lemma 2.2. Let D beanopendiscand X : D — L3 a maximal immersion with a
lightlike singular pointin ¢ € D and denote p = X (¢). Then, the neighborhoods U and
V of Lemma 2.1 can be chosen to verify:
i) If pisalightlike singularity with n = 0, then X (V') is either over II and asymp-
toticto C*(p) or below IT and asymptotic to C ~(p) (see Fig. 1.a) and 1.b)).
ii) On the contrary, if p is a lightlike singularity with n > 0, there exist points of
X (V) in both sides of the planeI1. In particular there exist a pair of curves «, 8
in V starting at ¢ such that X () — {p} is over II and asymptotic to C *(p) and
X (8) — {p} isbelow IT and asymptoticto C~ (p) (seeFig. 1.c)).

Proof: Up to aLorentzian isometry we can assumeIl = {z3 = 0} and p = (0,0, 0).
Let X : A, — R3 be a conformal reparametrization of the maximal immersion with
X(S') = p and consider U, V asin Lemma2.1. A thoughtful reading of the proof of
Lemma2.1in[9] will convince the reader that the same arguments provei).

For the proof of assertion ii) we use again the ideas of the Lemma 2.1 in [9]. Observe
that the Weierstrass data can be written on a neighborhood of S as

(25) g(z) = 2™, By(z) = L[)f()d ,
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whereaq,...,a, arethe zerosof ®; on S! (each zero appears as many times as its mul-
tiplicity) and f is a non-vanishing holomorphic function. Recall that the multiplicity of
the zero of ®3 at a; coincides with the number of nodal curves of the harmonic function
x3 meeting at a; minus one. By the maximum principle there are no domains bounded by
nodal curvesand x5 changes sign when crossing anodal curve. Notethat sincen > 2 there
arepoints of X (V') in both sides of IT and there exist at least a pair of domainsT", T/ C V
bounded by a pair of nodal curves of z 5, apiece of 9V — S' and a point or a piece of S,
such that z3(X (T")) > 0 and 23(X(I')) < 0.

In order to finish the assertion ii) we shall provethat theimage of all the curvespy(s) =
se? for§ € K = [0,27] —{arg(ay),...,arg(a,)} isasymptotic to the cone C(p). Taking
into account (2.5) we can write

i f/ezH —a. ] . —im6 . 1 —imo .
oy = [T L) ey (HE ey, L e .

51 610 2% tm 2% pm

- iTI™ (e —a, . . L .
As J*(®3) = —P3, we deduce & <%f(e“’)) = 0. Using thisit is straight-

forward to see eiﬁ
X(po(s))
z3(X (po(s)))

where || - ||; isthe C! normin C'(K,R3). Therefore, we can consider a pair of curves
a € I"and 8 € I satisfying the requirements of statement ii). O

lim

s—1

— (sin(m#), — cos(mb),1)|| =0,

1

Definition 2.3. If the point p is as in the statement i) of Lemma 2.2 we say that p is a
downward or upward pointing lightlike singularity, respectively. We a so name both types
of singularities general conelike singularities.

If Disanopendiscand X : D — L3 amaximal immersion with a spacelike singular
point in ¢ € D, the local behavior at the singularity is similar to the case of minimal
surfaces in R? (see [4], [6] and [9]): X is not a topological embedding, D — {q} with
the induced metric is conformally equivalentto {z € C,0 < |z| < 1}, the Welerstrass
data (g, ®5) extend analyticaly to ¢, |g(¢)] < 1 and & = (P4, Po, P3) has a zero at .
Furthermore, up to a Lorentzian isometry we can assume that the tangent plane of X (D)
ap=X(q) isIl = {z3 = 0} andp = (0,0, 0). Observe that the Weierstrass data of the
immersion can be written as

g(z) = 2"f(2), ®3(z)=2"""dz,

wherem > 0, n isthe zero order of ® at ¢ and f isaholomorphic function with f(0) # 0.
Furthermore, up to arotation around the axis x 3, we can assume (f(0)) = 0. From here
it is easy to obtain that the asymptotic behavior of the immersion around the singularity is
in polar coordinates

(26) X(sei?) = (W’msm((nﬂ) )+ O(s"*2),

—gnt? e gmAn+l
27(0)(n+1) cos((n +1)0) + O(s"*?), proSm—

cos((m+mn+ 1)9)) ,

where by O(s™*2) we denote a function such that s ~"~20(s"*?) is bounded as s — 0.
Therefore, it is clear that X has a branch point at ¢ of order n in the sense of Gulliver-
Osserman-Royden ([10]). From Lemma 2.12in [10] we have
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Lemma24. Let X : D — LL? be a maximal immersion with a spacelike singular point
ing € D,p = X(q) and S an embedded surface in L.? with p € S. Suppose that for
a neighborhood V' of ¢, X (V') lies on one side of S. Then the tangent planeto S at p
coincides with the tangent planeto X (D) at p.

Remark 2.5. In the case of spacelike singularities, we always assume that the immersion
X : D — L3 isnot a branched covering of an embedded surface, it is to say that ¢ is not
a false branch point (see [10]).

Finally, weliketo mention awell known property of maximal surfaceswith singularities
(seefor example[8]).

Lemma2.6. Let X : M — L3 be a maximal immersion with isolated singularities. Then
for all ¢ € M there exists a neighborhood V, such that X (V') — { X (q)} is contained in
the exterior of C'(X (q)).

Remark 2.7. Let S be an embedded surface and p € S. If the tangent plane of S at p is
spacelike then S can be written in a neighborhood of p as the graph of a function / on a
domain 2 of the plane {3 = 0}. Let M be another surface (possibly with singularities)
and denote by 7 the orthogonal projection on {« 3 = 0}. In this context, we say that M is
above (below) S inaneighborhood of p if x3(p") > h(x1, z2) (x3(p") < h(zx1,x2)) for all
p/ S Mﬁ?’ril(Il,lEQL (iEl,l'Q) e Q.

2.3. Maximal surfaces with boundary. Let S’ be a maximal surface with possibly iso-
lated singularities. Consider S C S’ such that the topological boundary of S in S’ is not
empty and at least piecewise C*. Then S will be called amaximal surface with boundary,
the topological boundary of S in S’ issaid to be the boundary of S and it will be denoted
as 0(S). We also denote Int(S) = S — 9(S) and we refer to Int(S) astheinterior of S.
Moreover, S issaid aproperly immersed maximal surfacewith boundaryif S’ isamaximal
surface properly immersed in 3. Note that from our definition, some of the singularities
could be on the boundary of S.

At this point, we would like to mention that if .S is a maximal surface with boundary,
since the components of amaximal immersion are harmonic functions, we deduce that the
intersection of S with any planeII containing 9(S) in one of the half spaces determinated
by I, is a union of piecewise analytic curves and therefore each connected component of
S — (S NTII)isamaximal surface with boundary.

2.4. Parabolicity of maximal surfaces. In [7] |. Fernandez and F.J. Lopez proved the
following result

Theorem (Fernandez-Lopez) Let M be a properly immersed maximal surfacewith bound-
ary such that, except for a compact st, it is containedin theregion {z € .3 | (z,z) > ¢},
for e > 0. Then M isrelative parabolic, it isto say, bounded harmonic functionson M are
determined uniquely by their values at the boundary and the interior isolated singularities.

An immediate consequence of this theoremis

Corollary 2.8. Let M be a connected properly immersed maximal surface with boundary
suchthat M C {(z1,22,23) € R? | 0 < 23 < k} and the boundary and the singularities
arecontainedin {(z1, 22, z3) € R® | 23 = k}, for k > 0. Then M isa planar region.

We would like to mention that in [ 7] the definition of amaximal surface with boundary
is more general than in this paper.



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 8

2.5. Our barriers. Let us introduce some notation. For any v € R3 — {(0,0,0)} and
y € R3 wedefine

H(y,v):{xGRS | <U,l‘*y>e:0},
HT(y,v) ={z € R¥| (v, — y). > 0},

H (y,v) ={z € R*| (v, — y). < 0},

where (-, -). denotes the Euclidean metric of R3.

Furthermore, for 6 € [— %, 7] and ¢ € R, we introduce the following terminology

Iy = H((0,0,), (0, — tan(0), 1)) .

I, = H((0,0,t), (0, — tan(6), 1)) .

IT,, = H((0,0,t), (0, — tan(6), 1)) .
In particular we denote by 1Ty = Ilgo, IIj = II, and I1, = II,.

We also consider for o €] — 7, 7

So = H((0,0,0), (0,1, — tan(a))) .

St = H*((0,0,0),(0,1, — tan(a))) -

¥, = H((0,0,0),(0,1, - tan(a))) .

Observe that [Tz, and I1_=, are lightlike planes while I1y; are spacelike planes for
0 €] — T,%[ Furthermore, for all 6 €] — 7, 7[ it is aways possible to consider an
orthochronous hyperbolic rotation f, of L3 of the form

T 1 0 0 X1
fs ( T2 ) = ( 0 cosh(s) sinh(s) ) ( x2 )
T3 0 sinh(s) cosh(s) x3

that preservesthe forward (backward) light cone C' ((0, 0,0)) (C~((0,0,0))) and verifies
fs(Ilg) = Io. Analogously, for 6 € ] — T, 7 [ we can always consider ﬁ an orthochronous
isometry of 1.3, consisting of the orthochronous hyperbolic rotation f, composed with a
vertical trandlation, such that f,(IT},) = I13 and f,(I1;,) = Iy (and so f5(Ilp;) = Ilo).

On the other hand, X, are timelike planes and as before we can find always an or-
thochronous hyperbolic rotation f, of I3 that preserves the forward (backward) light cone
C*((0,0,0)) (C~((0,0,0))) and such that fs(X,) = Y. For more details about these
isometries of L3 we refer the reader to [8].

Now we present the examples of maximal surfaces that we use as barriers.

2.5.1. Lorentziancatenoids. Consider C = {C,, a €0, o[} thefamily of vertical Lorentzian
catenoids, itisto say, C, isthemaximal surfacegivenonD—{0} = {z € C | 0 < |2| < 1}
by the Weierstrass datag = z and @3 = a4= (see Fig. 2).

Lorentzian catenoids can be also seen as graphs of the radially symmetric functions

u(r) =

ey
o Vi2+aZ

It is worth mentioning that L orentzian catenoids have aready been used as barriers for
maximum principle application in [1] and [5].

r>0.
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FIGURE 2. Lorentzian catenoid for ¢ = 1.

2.5.2. Riemann type maximal surfaces. In[15], R. Lopez, F.J. Lépez and R. Souam stud-
ied the set of maximal surfacesin L2 that are foliated by pieces of circles. Between them,
we emphasize the one-parameter family of Riemann type maximal surfaces. Thisis afam-
ily of singly-periodic maximal surfaces that plays the same role that Riemann’s minimal
examples play in the euclidean space and whose fundamental piece is a graph over any
spacelike plane, has one planar end and two conelike singul arities (see Fig. 3).

P

FIGURE 3. A Riemann type maximal example.

Let us recall briefly the Weierstrass representation of half fundamental piece of these
Riemann type maximal surfaces.
Consider for r €]1, co[ the four punctured torus

N ={(z,w) € C* xC | w? = 2(z* + 2rz + 1)}
and define in the z-plane
so={z€C||z|=1}, s1=][r1,0[x{0}, s2=]—o00,79]x {0},
wherer; = —r ++r2 —Tandry = —r — /72 — 1. Observethat 7, < —1 < 71 < 0.
Then we label N C N as the connected component of z ~1(C — U%_s;) containing the
point (%, 3(2 +r)). Finally we define M = N, where N means the closure of NV in

N.
For the sake of brevity, when z(22 + 2rz + 1) € R*, we denote:

zr = (2, +V2(22+2rz2+ 1)), z-=(z,—/2(22+2rz+1)).
On M we consider the Weierstrass data g = z and &3 = % and the 1-forms &},
j = 1,2 givenby (2.2). Define v thelift to M of so. Observethat v generates 1, (M, Z).
Itis not difficult to see that @, is exact and that ®5, ®3 have no real periods on v and so
we can consider the maximal immersion X = (X1, X, X3) = R [ (@1, Pa, P3).
Denote by ~; thelift to M of s;. Itisnot hard to prove that X (1) is a straight line
parallel to {z2 = x3 = 0}. We aso observe that the set of singularities of the immersion
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is the trace of the curve v and the image of these points by the immersion X is a unique
point that we label P". Moreover, z, can be chosen so that X (v1) = {2 = 23 = 0} and
P = (OaPQTaP?f)

Let be ©(r) € [—m, [ the angle such that cos(O(r)) = %, sin(O(r)) =
s it isto say, theangle that forms (0, 1, 0) and the vector P". In order to use

(P3)2+(Pg)?’
the surfaces of this family as barriers, we need to study the function ©(r).

First of al, observethat ©(r) = arctan (h( ) where

d(r)
h(r) = X3(=1-) — X3(r1) = X3(14+) — X53(0) , d(r) = Xao(-1-) — Xa(r1) .
From here we have

- m dt
m 1 V(2 +2rt 4+ 1)
14 1
(2.8) = m/ P :/ dt ,
0 0 Vi(t?2+2rt+1)
(29) m/ "o / (1 + £t
1 t/t(t2 +2rt 4+ 1)

Note that » aswell as d are positive functionsand so ©(r) €10, 5 [. Moreover, we observe
that

(2.10) d(r) =rh(r) +I(r),
where
(211) / t(t2 + 2rt +1)dt

Using (2.10) and (2.11) it is not hard to see that
lim6(r) =1, lim 6(r)=

Moreover, from (2.8) we observe that
1 2
(2.12) W (r) = / fdt
o (t(t2+42rt+1))2
On the other hand, from (2.10) and (2.11) the derivative of d respect to r is given by

(2.13) d(ry=rh'(r) + gh(r) .
According to (2.10) and (2.13) we have

W (r)d(r) —h(r)d'(r) _ I(r)h'(r) — $h(r)?
h(r)? +d(r)>  h(r)*+d(r)?

Therefore, taking into account (2.11) and (2.12) we obtain that ©/(r) < 0 ands0 © isa

one-to-onefunction © :]1, co[—]0, F.

For convenience of notation, for 6 €]0, [ we shall denote by Rs the maximal surface
with boundary defined in L? by the above immersion for r = © ~1(6) (see Fig. 4). We
asodenoteby R = {Rs | 6 €]0, [}.

Finally, we need to provethat Rs C IIy N {xz3 > 0}. Itis not difficult to see that the
point {0} isaplanar end of the surface asymptotic to the plane {3 = 0}. Therefore, X3

O'(r) =



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 11

FIGURE 4. Rs for § = 0.595881.

is bounded on M. From Corollary 2.8 we deducethat Rs C {x3 > 0}. Moreover, from
the above facts there exists t > 0 such that Rs C II,. The maximum principle allows us
to assert that Rs C 115 .

2.5.3. Scherk’s type maximal surfaces. Now, we describe the one-parameter family of
Scherk’s type maximal surfaces. This family of singly-periodic maximal surfaces was
studied in depth by |. Fernandez and F.J. Lépez in [8], although an exampl e of this type of
maximal surfaces appeared already in[14]. For b €]0, 1] we denote by S, the maximal sur-
facegivenonD — {b, —b} by the Weierstrass data g(z) = iz and ®3(z) = i

zdz
22—b2)(b222-1)"

FIGURE 5. A Scherk’stype maximal surface.

The surface Sy, is a graph over any spacelike plane, it is invariant under the tranda
tion along the vector (0, m, 0) and each fundamental piece of this singly-periodic
maximal surface has a conelike singularity. Up to trandation we can assume one of these
singularitiesisthe point (0,0, 0) and then the set of al conelike singularitieslie ontheline
{z1 = z3 = 0}. Moreover, it is not difficult to see that the ends are asymptotic to the
totally geodesic horizonta half cylinder 9(Ws), where

Ws = {(z1,22,23) € R3 | —tan(d)xz1 + xz3 > 0,tan(d)zy + x5 > 0},

for 6 = arctan (%) € ]0, [ and using Corollary 2.8 we obtain that the surface S, lies
ontheregion Ws.

For the sake of simplicity, we denote S5 the Scherk’s type maximal surface that is
asymptoticto 9(Ws).

2.6. Theconvex hull property. Theobjectiveof this subsectionisto provethat acompact
maximal surface, even with isolated singularities, satisfies the convex hull property, itisto
say, the surface lies in the convex hull of its boundary and singularities.

Let 7, denotethetranglation along the vector (0, 0,¢), ¢t € R. Inorder to demonstratethe
convex hull property we need the following version of the maximum principlefor maximal
surfaceswith singularities. We would like to point out that the proof isinspired in the work
[10].
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Proposition 2.9. Let X : D — L3 be a maximal immersion with an isolated singular
pointing € D, p = X(q) and S an embedded maximal surface (without singularities) in
L3 with p € S. Then we have:

i) If X (D) isabove S, then p must be a downward pointing lightlike singularity.
i) If X(D) isbelow S, then p must be an upward pointing lightlike singularity.

Proof: We shall prove assertion i). Statement ii) can be proved in asimilar way. Sup-
pose first that p is alightlike singularity but not a downward pointing lightlike singularity.
Denote by II the tangent planeto S at p that is a spacelike plane. From Lemma 2.2 we
obtain a curve in X (D) asymptotic to C~(p). Since S is asymptotic to IT in a neigh-
borhood of p we deduce that there are points of X (D) below .S and this contradicts our
assumptions.

Now assume p is a spacelike singularity. According to Lemma 2.4 we have that the
tangent planeto X (D) at p and the tangent plane to .S at p coincide. Denote IT this plane
and 7 the Lorentzian orthogonal projection on II. Up to a Lorentzian isometry we can
suppose that p = (0,0,0) and IT = II,. Consider adisk A in IT centered at (0,0) such
that S is the graph of afunction h on A and A C 7(X (D)). Denote M = X (V'), where
V is the connected component of (m o X)~1(A) containing q. If 9(M) N h(A) # 0,
we have an interior regular point in X (D) N S. By applying the maximum principle we
obtain M = h(A) and then h(A) must contain a spacelike singularity. Taking into account
Remark 2.5 we infer that thisis a contradiction. Suppose then that 9(M) is strictly above
h(A). Thenthereexists§ €] — %, 0[ sufficiently small and f an hyperbolic rotation in L3
such that f(II) = II, and f(0(M)) remains strictly above h(A). Note that the tangent
plane to the maximal surface f (M) at (0,0, 0) isIIy and thus we can assert that there are
pointsof f (M) below h(A). Trandating in the positive x 3-direction, we find alast contact
point with A(A) which must be an interior regular point. Asin the previous case by using
the maximum principle we obtain that h(A) and 7+, (f(M)) coincide for some ¢, > 0.
From Lemma2.6 we havethat 7 =1 (0,0,0) N7, (f(M)) = (0,0, ty). Then we can deduce
that (0,0, ¢9) = (0,0,0) but this contradicts ¢ty > 0. O

The above result allows us to prove the following proposition.

Proposition 2.10. Let M be a compact maximal surface with isolated singularities. Then
M liesin the convex hull of (M) and its general conelike singularities.

Proof: Denote by A the set of general conelike singularities. If M iscontained in a
planethe result is obvious. Assume thenthat M isnot flat and consider v € S? and y € R3
such that (9(M)U A) C H™ (y,v). We haveto provethat M C H ™ (y,v) too.

We proceed by contradiction, and supposethat M N(H ~ (y,v) — H(y,v)) # 0. Let M’
be a connected component of M N H ~(y,v). Observethat M’ does not contain general
conelike singularities.

First, assume v isatimelike vector, itisto say H (y, v) isaspacelike plane. Then, there
exists an interior point p € M’ such that M’ is contained in the slab determinated by the
parallel planes H(p,v) and H(y,v). Therefore, we can use Proposition 2.9 to infer that p
isaregular point of M’. Thus, by using the maximum principle we find M’ = H(p,v)
which is a contradiction.

Anaogously, if v is either spacelike or lightlike, it isto say, if H(y,v) is atimelike or
alightlike plane, we can deduce the existence of an interior point p € M’ suchthat M’ is
contained in the slab determinated by the parallel planes H (p, v) and H (y, v). If p werea
spacelike singularity, from Lemma 2.4 we have that H (p, v) would be the tangent planeto
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M’ &t p, contradicting that |g(¢q)| < 1. Assume now that p is alightlike singularity. Up a
Lorentzian isometry we can assume p = (0,0, 0) and

o H(p,v) =Ygand M’ C X if visspacelike,

e H(p,v) =TI= and M’ C H*I_‘ if vislightlike.
By Lemma 2.6 we have that M’ is in the exterior of C'((0,0,0)). Consider now 7 the
L orentzian orthogonal projection on I1. It is easy to prove that the preceding conditions
imply that 7(M’) C (IIp — {(0,4,0) | ¥ € R}) in a neighborhood of (0,0,0). This
contradicts Lemma 2.1. Therefore, since p is not a singular point we infer that H(y, v)
is the tangent plane to M’ at p and so we obtain a contradiction with the fact that M is
spacelike. O

Remark 2.11. Observe that the Proposition 2.10 holds even if M cannot be extended to
an open maximal surface M.

3. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A TIMELIKE PLANE

FIGURE 6

We recdll that
Ct = {(21,22,73) € R® | 22 + 22 — 22 < 0,23 >0} .

Furthermore, for 6 €]0, 5[ and 4,0’ €]0, 7| we had denoted by V (6,4, ¢’) the convex
region

V(0,6,8") =115 NI, N H*((0,0,0), (1, — cot(), cot(#)(cot(5) — cot(d")))) .
We note that theregion V (6, 9, §") isthe convex hull of the half lineswith originin (0, 0, 0)
and directions (1, 0,0), (cot(d), 1,0) and (cot(d’), 1, tan(d)) (see Fig. 6).
Proposition 3.1. For any o €] — 7, Z[, there does not exist a connected properly im-
mersed maximal surface M without downward pointing lightlike singularitiesin the inte-
rior, provided M C H%‘ N+, o(M) C %, and there is a point po € (M) verifying
1'3(]?()) < Zd(p), for all pE a(M)

Proof: First of all, observe that up an orthochronous hyperbolic rotation f , of L3 we
can assume « = 0.

Suppose that there exists such an M and define ¢ = x3(py). For any 6 € [0, Tlwecan
consider the set

Typ={te[0,t]| M C 11,

Since0 € T, wehave Zy # (). We shall provethat Z, = [0,¢]. If ¢ = 0 thisfact is obvious.
Thus, assume ¢ > 0. Clearly 7, is closed.
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Let us see that it is open. Observethat if ¢ € Zy then [0,¢] C Zy. Now we claim that
if t € Ty N[0, 1] then there exists ¢ > 0 such that [t,¢ + [C Z,. If not, we have two
possibilities

e Thereisp, aninterior point of M, inthe planeIly; or

e M isasymptotic at infinity to Iy;.
Note that in the former case, from our assumptions on the singularities and assertion i)
in Proposition 2.9 we deduce that the point p is not a singularity. Then, from the interior
maximum principle follows that M and I14; coincide. But it leads us to a contradiction
with zs(pg) = t > t. Now we shall demonstrate that the second case is not possible either.

Suppose that M is asymptotic to I14;. In this case we can assume M N ITg; = . If not,
there exists an interior point of M in 11y, and then we may apply the previous argument.
Consider f an orthochronous isometry of I3 such that f(Ily;) = Il and f (H(jt) g .
Denote M = f(M). Then we have a properly immersed maximal surface M C g,
asymptotic to Iy with M N Iy = 0.

Since the immersion is proper and (0,0,0) ¢ M wecanfind e > 0 sufficiently small
sothat B((0,0,0),¢) N M = 0, where B((0,0,0),¢) = {z € R? | (z,2). < €2}. Hence,
thereexistse’ €]0, [ and ap > 0 small enough such that 7. (C,,) C B((0,0,0),¢) UII, .
Now we define

A={a€]0,a0] | 7(Ca) N M =0} .
Clearly, ap € A and we can consider ¢’ = Infimum(A4). We claim o’ = 0. Assume on
the contrary that «’ > 0. Then as 7..(C,) and M do not have a contact at infi nity, we
infer that there is p an interior point of M in T (Cyr). Furthermore, taking into account
our assumptions and statement i) in Proposition 2.9, we can assert that p is aregular point
of M. Therefore, by applying the maximum principle, we obtain M = 7o /(Cy) which
contradicts the fact that 9( M ) C Yo NIIf.

Therefore Z, is open and Z, = [0, i ]. As a consequence we have M C HZ{ for all
6 €0, F[andthus M C TI%,.

Then we have two possi bilities:

e poisnotasingular pointin O(M),

e po isasingularity.
Assume that the first case occurs. Then, aspg € 9(M) N1z and M C HJr N ¢ the
tangent plane at the point po would be lightlike of timelike, whichis acontrad|ct|on Inthe
second case, according to Lemma 2.6 we have that around p ¢ the surfaceis in the exterior
of C(po), which contradicts again M C H*%‘f. O

Corollary 3.2. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularitiesin theinterior suchthat M/ ¢ Ct N}

and0(M) C Xy, foranya €] — 7, Z[.

Proof: The corollary followsimmediately from Proposition 3.1. [(J
Corollary 3.3. There does not exist a connected properly immersed maximal surface M

without downward pointing lightlike singularities in the interior such that M ¢ C* and
(M) liesin theintersection of C* with a timelike plane P.

Proof: Assume that there exists such a maximal surface and consider M/’ a connected
component of M — (M N P). Upto an elliptic rotation and a translation we can assume
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the timelike planeisthe plane 3, for a €] — 4, LM c Chtnxiandd(M') C .
An immediate application of Corollary 3.2to M’ leads to a contradiction. [

Theorem 3.4. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularitiesin theinterior suchthat M ¢ Ws N}
andd(M) Cc ¥, NCH,ford €)0, F[,a €] — 5, 5[

47 4

Proof: First of all we consider the isometry f. of L? with tanh(e) = tan(%). Itisnot
difficult to seethat f.(M) C H% NWs NEL and 8(f.(M)) C So N CT, where

tan(a) 4 tan(%)

tan(e) = T tan(@) + 1

tan(0’) = min{tan(%), cosh(e) tan(d)(tan(%) tan(e) + 1)} .

For the sake of simplicity of notation we consider M C H% NWsNEtandd(M) C
Yo NCTt.

Furthermore, we claim that (0,0,0) ¢ d(M) and so (M) C T — Tlp. If not, we
deduce from Lemma 2.6 that around (0, 0, 0) the maximal surface M isin the exterior of
C((0,0,0)) but this contradicts O(M) c C*.

Consider now the Scherk’s type maximal surface S 5 described in 2.5.3 that is asymp-

totic to the boundary of the region Ws. In the followi ng we prove that Sg N M = 0.
It is clear that there exist to €] — 00,0], ¢1 €]0, oo[ such that ¢, (S5) N M = 0 and
T, (S3) N M # (). Therefore, we can define

t = Infimum{t € Jto, oo| | T(Ss) N M # 0} .

Suppose < 0. Observethat, since M C H%‘ NWsNXE, o(M) c Ct —{(0,0,0)} and
S5 N C*t ={(0,0,0)}, then 73(Ss) and M can have a contact point neither at infinity nor
at the boundary. Hence there exists an interior point of M in T;(S% ). Taking into account
our assumptions on the singul arities and statement i) in Proposition 2.9 we deducethat this
point is not a singularity. Then, by applying the maximum principle we get that M and
Tt(Sa’ ) coincide which contradicts the hypothesison d(M). Thus ¢ > 0 and SsNM = 0.

Consider now SA the homothetic shrinking of Sy by A, A > 1. We shaII prove that
SA NnM = {for aII A > 1. Suppose on the contrary that there exists A’ > 1 such that

Sf N M # (. We denote by

A = Infimum{X €]1,00[ | S3 N M # 0} .

Moreover, it is clear that S§ and M do not contact either at infinity or at the boundary.
2

Therefore there must exist an interior point of M in S§. Using again statement i) in
Proposition 2.9 and our hypothesis on the singulariti&swé deduce that this point is not a
singularity and so by applying the maximum principle we obtain that S§ and M coincide.
But this contradicts our assumptionson 9(M). i

Thus SA NM = @ foral A\ > 1. Taking into account that Sa is asymptotic to

C*((0,0, 0)) near the conelike singularity (0,0, 0), we deduce that M c C* and the
Corollary 3.2 finishes the proof. O
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Theorem 3.5. There does not exist a connected properly immersed maximal surface M
without downward pointing lightlike singularitiesin the interior such that M C H(;* nxt
andd(M) c ¥,NCH for0,a ] -7, %[.

FIGURE 7

Proof: Suppose there exists such an M. We observe that if # < 0 or a < 0 we
can consider an orthochronous hyperbolic rotation f ¢ such that f,(M) C Hg, N 2:[, and
I(fs(M)) C X NCT forsomed’ €10, 5[, o € [0, §[ . Asinthe previous theorem, for
the sake of simplicity of notation we assume M C IIj N Xf and 9(M) C £, N C*, for
0€]0,%[,ac0,Z ]

Sinced(M) C ¥, NCT wehavethat thereexists py € 9(M) suchthat z3(po) < x3(p)
foral p € 9(M). Asin the preceding theorem it is easy to see that po # (0,0,0) and so
A = x3(po) > 0. Then, reasoning as in Proposition 3.1 we can conclude M/ C I1 5, N 7.

Denote by R the Riemann type maximal example that results after applying an elliptic
rotation of 7 along the axis x3 on Rs for any 6 €]0, T[. We assert that M N Rs =
(. Observe that we can consider ¢, < 0 and ¢t; € R such that 7,,(Rs) N M = () and
71, (Rs) N M # (). Now define

t = Infimum{t € Jto, oo | 7 (Rs) N M # 0} .

Suppose ¢ < 0. Note that Tf(ég) and M can have a contact point neither at infinity nor at
theboundary. Hencethereexistsaninterior point of M in r;(fi(;). Making use of statement
i) in Proposition 2.9 and taking into account our assumptions on singularities, we deduce
that the point is not a singularity. Therefore, by applying the maximum principle we get
that Tf(ég) and M coincide. But this contradicts our hypothesison d(M). Thus ¢ > 0 and
éa NM=0.

Consider now R} the homothetic shrinking of Rs by A, A > 0. Next we prove that
R)NM = (foral A > 1. Assume that there exists \’ > 1 such that R}’ N M # (). We
denote by

X = Infimum{A €1, X[ | R} N M # 0} .

Observe that Eg’ and M do not contact either at infinity or at the boundary for al A > 1.
Thereforethereis an interior point of M in Eg’ . Using again our assumptions on singular-
ities and statement i) in Proposition 2.9 we deduce that the point is not a singularity. Then
by applying the maximum principlewe obtain that szg’ and M coincide, which contradicts
our hypothesison 9(M ). The same argument proves that 172(? NM=0foral A <1.
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Analogously, considering Rs the Riemann type maximal example that results after ap-
plying arotation of —Z along theaxisz; on R for any 6 €0, Z[, we obtain RINM =10
foral )\ € R.

Furthermore, it is not difficult to prove that

(I nxh) — <U Eg‘ U U ﬁ[}) C {(z1,72,73) € R® | —tan(d)xy + 22 + 23 > 0}
A€ER AER
N {(x1,12,73) € R® | tan(8)x; + 22 + a3 > 0}.
Taking this into account, we can assert
M C (H;ﬁEI)ﬂ{(ml,mg,mg) € R? | —tan(0)x; +aotx3 > 0,tan(d)z; +aotx3 > 0} .
A direct computation shows that
I N {(21, 22, 23) € R? | —tan(d)z1 + x2 + a3 > 0,tan(8)zy + a2 + 23 > 0} C Wy |
whered’ €]0, 5[ isgiven by
tan(d) tan(6
tan(d") = 1 —E—‘zan(H() !
Then Theorem 3.4 concludes the proof. [J

To finish this section, we analyze the case of maximal surfaces whose boundary is con-
tained in atimelike plane but not necessarily in C . An easy argument allows us to prove:

Proposition 3.6. There does not exist a connected properly immersed maximal surface M
with at least a connected component of 9(M) contained in X7 N ST N {(zy, 22, 23) €
R3 | 21 = 0}, wherea €]0, 5.

Proof: Let B aconnected component of 9(M) satisfying
BC EI mzta N {(1‘1,$2,$3) S R3 | xr1 = 0} ,

where o €10, §[. Thus, the function x» has at least a minimum on B. We note that the
minimum can not be a singularity. Then, the tangent vector to the boundary at this point
is vertical and therefore the tangent plane of the maximal surface at this point is timelike,
which is contrary to our assumptions. (J

Corollary 3.7. There does not exist a connected properly immersed maximal surface M
contained in V (6, §, §") with 9(M') contained in a timelike plane.

Proof: From the hypothesis it is not difficult to see that there exists an isometry of
IL3 such that sends the timelike plane to the plane {(z1, 2, 73) € R® | 1 = 0} and in
particular theimage of (M) liesin X} NS N {(21, 22, 23) € R? | 2 = 0} for some
a €0, Z[. Theresult is then a consequence of Proposition 3.6.

4. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A SPACELIKE PLANE

The purpose of this section is to obtain, using the maximum principle, other results
about maximal surfaces whose boundary is contained in a spacelike plane but that can not
be inferred from the Theorem quoted in Paragraph 2.4. We start with a result similar to
Corollary 2.8.

Proposition 4.1. Let M be a connected properly immersed maximal surface without down-
ward pointing lightlike singularities in the interior such that M C {(x1,z2,23) € R3 |
0<az3 <k}andd(M) C {(x1,22,73) € R? | 23 = k}, for k > 0. Then M isa planar
region.
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FIGURE 8

Proof: We proceed by contradiction. Assume that there exists¢ > 0 such that M C
g, but M ¢ I, forany t < ¢'. Observethat M N 1Ily, = (. If not, there exists p an
interior point of M inIly,. Then, from statement i) in Proposition 2.9 and our assumptions
on singularities we deduce that p is aregular point. But if p is regular, it follows from the
maximum principlethat M = T, contradicting the hypothesison O(M).

Since M is properly immersed and M N 11, = @ we can find ¢ > 0 such that
B((0,0,t),e) N M = . Hence, there are constants ¢’ €10, e[ and ap > 0 sufficiently
small such that 7,4/ (Cq,) C B((0,0,t),e) UIL;,. Now we define

A={ae)0,ao] | Teper (Ca) N M =0} .

Clearly, ap € A and we can consider ¢’ = Infimum(A). We claim o’ = 0. Assume on
the contrary that ' > 0. Thenas ;1. (C,) and M do not have a contact either at infinity
or a the boundary, we infer that there is an interior point of M in 7,y (Cy ). Taking
into account statement i) in Proposition 2.9 and our assumptions on the singularities we
infer that the interior point is not a singularity and then, by applying the interior maximum
principlewe obtain M = 7;,..(C,.) which contradicts the hypothesison 9(M).

Therefore, ' = 0 and so M C II, .+ contradicting our assumption at the beginning
of the proof. [

Theorem 4.2. Let M be a connected properly immersed maximal surface without upward
pointing lightlike singularitiesin the interior such that M C V' (9, 4,6’) and (M) C II,.
Then M isa planar region.

FIGURE 9

Proof: Up atranglation we can assume that
M N (11, U H((0,0,0), (1, — cot(d), cot(#)(cot(d) — cot(5")))) =0 .
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Now we observe that
T—I(Hi) N H@ N V(97 6) 61) = a1,

7_1(H) N H((0,0,0), (1, — cot(5), cot () (cot(8) — cot(8')))) NV (6,6,8") = as ,

where «; and oo are two regular curves. Observe that the union of these curves is a
continuous curve of 7_;(H?2 ) and that the tangent vectors to these curves at the point
(0,0,0) are contained in the plane I and are linearly independent.

Since 7_1 (H3) is a spacelike surface, it is well-known (see Theorem 4.1 in [1]) that
there exists S amaximal surface (it is even a graph on the z 3-plane) spanned by the curve
a1 U ag. Notethat the tangent plane of S at (0, 0, 0) is the plane IT,. On the other hand,
using Proposition 2.10 and Remark 2.11 we havethat S is contained in the convex hull of
its boundary and thus S C V' (6,4, 4").

Now, we denote by S* the homothetic shrinking of S by A, A\ > 0. As M is properly
immersed it is possible to find A\g > 0 such that S* N M = (). Next we prove that
SAN M = foral A > 0. Assume that there exists A’ > 0 such that S* N M # (). We
denote by

A = Infimum{\ €)X, X'] | S} N M #0} .

Observe that S* and M do not contact at the boundary for all A > 0. Therefore there
is an interior point of M in S*. It follows from assertion ii) in Proposition 2.9 and the
conditions on the singularities that the contact point is not a singularity. Then, by applying
the maximum principle we obtain S* = M which contradicts the assumptions on 9(M).
Hence, taking into account that the tangent plane of S at (0, 0,0) isTI, we obtain

V(0,66 - ) s cly,
AER

from which we deducethat M C I1y. O

Corollary 4.3. Let M bea connected properly immersed maximal surface without general
conelike singularities in the interior such that A/ C V' (6,6,0") and 9(M) is contained in
a spacelike plane. Then M isa planar region.

Proof: Let IT be the spacelike plane such that (M) C IT and M’ a connected compo-
nent of A — (M N1I). Denoteby II* the half space determined by IT such that M/’ C I+,
Then, it isnot difficult to see that there exists anisometry of IL3, f, that verifies f(I1) = II,
and f(V(0,4,8') nTIT) C V(@, 3,5’), for some 5,3 and §'. Therefore, the corollary
followsfrom Theorem 4.2. J

On the other hand it is easy to prove the following result:

Proposition 4.4. Let M be a connected properly immersed maximal surface without gen-
eral conelike singularitiesin the interior such that M ¢ C* and §(M) is contained in a
spacelike plane. Then M isa planar region.

Proof: Observe that our hypothesis imply that 9(M) is compact. We consider the
intersection of M with all the timelike planes H (y,v) such that 9(M) C H ™ (y,v). By
applying Corollary 3.3 to the connected components of M that are contained in H ~ (y, v)
we obtainthat M/ C H ™ (y,v) for all the timelike planes described above. Then M isalso
compact and Proposition 2.10 provesthat M isa planar region. O



R.CHAVES, L.FERRER, NON EXISTENCE RESULTS FOR MAXIMAL SURFACES 20

5. MAXIMAL SURFACES WHOSE BOUNDARY IS CONTAINED IN A LIGHTLIKE PLANE
AND THE CONVEX HULL PROPERTY

As a conseguence of the previous sections we deduce the following results for maximal
surfaces whose boundary is contained in alightlike plane.

Proposition 5.1. There does not exist a connected properly immersed maximal surface M
without general conelike singularitiesin theinterior suchthat M c V (9, 4,4") and 0(M)
is contained in a lightlike plane.

Proof: Supposethereexistssuchan M. Let IT bethelightlike plane such that (M) C
I1. Then, we can consider the pencil of planesthroughtheline . = II N1, itisto say the
set of planes sharing the line L. Since M cannot be flat, it is possible to find a spacelike
or timelike plane in the pencil that intersects M transversally. But Corollaries 4.3 and 3.7
leads to a contradiction in each case. O

Proposition 5.2. There does not exist a connected properly immersed maximal surface
M without general conelike singularitiesin theinterior suchthat M c C* and (M) is
contained in a lightlike plane.

Proof: Thiscan be demonstrated asin the preceding proposition using now Proposition
4.4 and Corollary 3.3. O

As we saw in Paragraph 2.6, a compact maximal surface lies in the convex hull of its
boundary and the set of its general conelike singularities. Thisis not true for non-compact
maximal surfacesin general. However, Theorem 4.2 and Proposition 4.4 can be seen as a
convex hull type property. We have proved that if certain conditions are satisfied then the
surfaces lie in the convex hull of their boundary. In the remainder of the section, we use
the results obtained in the previous sections to give a generalization of these results. More
precisely we have

Proposition 5.3. Any connected properly immersed maximal surface containedin V' (6, 6,6")
liesin the convex hull of its boundary and its general conelike singularities.

Proof: Let M be aminima surface satisfying the hypotheses of the proposition and
denote by A the set of general conelike singularities of M. If M is contained in a plane
the result is obvious. Assume then that A/ is not flat and consider v € S? and y € R? such
that (O(M)U A) C H* (y,v). We haveto provethat M C H " (y, v) too.

We proceed by contradiction, and suppose that M N (H ~(y,v) — H(y,v)) # 0. Let
M’ be aconnected component of M N H ~ (y, v).

First, assume v is a spacelike vector, it is to say H(y,v) is atimelike plane. Then,
Corollary 3.7 leads to a contradiction.

Suppose now that v is atimelike vector, it isto say H (y, v) isaspacelike plane. In this
case, Assumption“ M’ not flat " contradicts Corollary 4.3.

Finaly, if the vector v is a lightlike then the plane H(y,v) is aso lightlike. Then
Proposition 5.1 gives a contradiction. [

Proposition 5.4. Any connected properly immersed maximal surface containedin C* lies
in the convex hull of its boundary and its general conelike singularities.

Proof: The proof can be obtained as in the above proposition using Corollary 3.3 and
Propositions 5.2 and 4.4. OJ
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