Consensus and Flocking in Self-Alignment Dynamics Lecture II. Consensus and flocking

Eitan Tadmor

Center for Scientific Computation and Mathematical Modeling (CSCAMM)

Department of Mathematics, Institute for Physical Science & Technology

University of Maryland

www.cscamm.umd.edu/tadmor

School "Luis Santaló": Scientific Challenges in a Sustainable Planet UIMP, Santander, July 15-19 2013

Mathematical considerations

• By L_A we denote the Laplacian matrix associated with $A = \{a_{ij}\}$

$$L_A := D - A, \qquad D_{ii} = \sum a_{ij} \leftarrow \deg_i$$

• Self-alignment is driven by a discrete Laplacian ($\alpha \mapsto 1$):

$$\frac{d}{dt}\mathbf{p}_{i}(t) = \alpha \sum_{i} a_{ij}(\mathbf{p}_{j} - \mathbf{p}_{i}) \mapsto \sum_{i} a_{ij}\mathbf{p}_{j} - \deg_{i}\mathbf{p}_{i} \leftrightarrow \frac{d}{dt}\mathbf{p} = -L_{A}\mathbf{p}$$

Observe that $Re\lambda_k(L_A) \geq 0$ and $L_A \mathbf{1} = 0$, $\mathbf{1} = (1, 1, \dots, 1)^{\top}$. In particular, if A is symmetric $\lambda(A) \geq 0$:

$$\mapsto$$
 Symmetric A's: $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_N$

⊙ The example of the "usual" Laplacian matrix

$$\left\{ \dots \frac{1}{4}, \dots, \frac{1}{4}, -1, \frac{1}{4}, \dots, \frac{1}{4}, \dots \right\}$$

⊙ Note the issue of a sign – the Laplacian should be negative: $(\Delta u, u) = -|\nabla u|^2 \le 0$ and not positive $\langle L_A u, u \rangle \ge 0$

Mathematical considerations cont'd

- Self-alignment: $\frac{d}{dt}\mathbf{p} = -L_A\mathbf{p} \implies \frac{1}{2}\frac{d}{dt}|\mathbf{p}|^2 = -\langle L_A\mathbf{p}, \mathbf{p}\rangle \leq 0$ which is consistent with convexity ($\leadsto \mathbf{p}(t) \in \text{conv hull}\{\mathbf{p}_j\}$) but lacks coercivity: $-\langle L_A\mathbf{p}, \mathbf{p}\rangle \nleq -|\mathbf{p}|^2$
- Operators on graphs: "nodes" $\{p\}_i \in X$ and "edges" $\{\mathbf{u}\}_{ij} \in Y$ gradient $\nabla: X \mapsto Y: (\nabla p)_{ij} := \sqrt{a_{ij}}(p_j p_i)$ divergence div: $Y \mapsto X: (\text{div } \mathbf{u})_i := \sum_i \sqrt{a_{ij}}(u_{ji} u_{ij})$
- \rightsquigarrow with the usual duality: $\langle \nabla p, \mathbf{u} \rangle = \langle p, \operatorname{div} \mathbf{u} \rangle$ for symmetric A's
- Self-alignment: $\frac{d}{dt}\mathbf{p} = \operatorname{div}\nabla\mathbf{p} \implies \frac{1}{2}\frac{d}{dt}|\mathbf{p}|^2 = -|\nabla\mathbf{p}|^2$:

$$\frac{1}{2}\frac{d}{dt}\sum_{i}|\mathbf{p}_{i}|^{2}=-\frac{1}{2}\sum_{i:}a_{ij}|\mathbf{p}_{i}-\mathbf{p}_{j}|^{2}\leq0$$

• And since $\sum_{i} \mathbf{p}_{i}(t) = \sum_{i} \mathbf{p}_{i}(0)$:

$$\frac{1}{2N}\frac{d}{dt}\sum_{ii}|\mathbf{p}_i-\mathbf{p}_j|^2=-\sum_{ii}a_{ij}|\mathbf{p}_i-\mathbf{p}_j|^2$$

Mathematical considerations cont'd

• Exercise: $\frac{d}{dt}\mathbf{p}_i = \sum_i a_{ij} (\mathbf{p}_j - \mathbf{p}_i)$ with symmetric A's —

$$\rightarrow$$
 $\frac{1}{2N}\frac{d}{dt}\sum_{ij}^{J}|\mathbf{p}_i-\mathbf{p}_j|^2=-\sum_{ij}a_{ij}|\mathbf{p}_i-\mathbf{p}_j|^2$

• What about coercivity — RHS $\lesssim -\sum_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2$? For example, $-\sum_{ij} a_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2 \le -\min a_{ij} \sum_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2$ implies

$$rac{d}{dt}\sum_{ii}|\mathbf{p}_i-\mathbf{p}_j|^2 \leq -\eta\sum_{ii}|\mathbf{p}_i-\mathbf{p}_j|^2, \quad \eta=2N\min a_{ij}$$

• Sharp characterization – Courant-Fischer (for symmetric A's):

$$\lambda_2(L_A) = \min_{\sum \mathbf{p}_k = 0} \frac{\langle L_A \mathbf{p}, \mathbf{p} \rangle}{|\mathbf{p}|^2} \le N \frac{\sum_{ij} a_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2}{\sum_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2}$$

$$\longrightarrow -\sum_{ij} a_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2 \leq \frac{1}{N} \lambda_2(L_A) \sum_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2$$

Mathematical considerations – spectral analysis

$$\frac{1}{2}\frac{d}{dt}\sum_{ij}|\mathbf{p}_i-\mathbf{p}_j|^2\leq -\lambda_2(L_A)\sum_{ij}|\mathbf{p}_i-\mathbf{p}_j|^2$$

 ∼→ Convergence towards flocking/consensus is dictated by the the Fiedler number:

$$\frac{d}{dt} \vee (t) \lesssim -\frac{\lambda_2(\textit{L}_{\textit{A}(t)})}{(\textit{L}_{\textit{A}(t)})} \vee (t), \quad \vee_{\mathbf{p}(t)}^2 = \frac{1}{\textit{N}^2} \sum_{ij} |\mathbf{p}_i(t) - \mathbf{p}_j(t)|^2$$

Exercise: verify the last few steps...

• sharp characterization: $\lambda_2(L_A) \geq N \min_{ij} a_{ij}$

Questions:

- What about the Fiedler number $\lambda_2(L_A)$?
- What about the non-symmetric models of self-alignment?

The symmetric case: spectral analysis

• Convergence towards flocking/consensus is dictated by

$$\frac{d}{dt} \vee (t) \lesssim -\frac{\lambda_2(L_{A(t)})}{(L_{A(t)})} \vee (t), \quad \vee_{\mathbf{p}(t)}^2 = \frac{2}{N^2} \sum_{ij} |\mathbf{p}_i(t) - \mathbf{p}_j(t)|^2$$
$$\vee_{\mathbf{p}(t)}^2 = \frac{1}{N} \sum_{i} |\mathbf{p}_i - \langle \mathbf{p} \rangle|^2, \qquad \langle \mathbf{p} \rangle(t) = \frac{1}{N} \sum_{k} \mathbf{p}_k \equiv \langle \mathbf{p} \rangle(0)$$

$$|\mathbf{p}_i(t) - \langle \mathbf{p} \rangle(0)| \lesssim e^{-\alpha \eta t} \vee_{\mathbf{p}(0)}, \qquad \eta := \min_t \lambda_2(L_A(\mathbf{p}(t)))$$

• Flocking/consensus if
$$\eta = \min_t \lambda_2(L_A(\mathbf{p}(t))) > 0$$
 or at least . . .
$$\lambda_2(s) \equiv \lambda_2(L_{A(\mathbf{p}(s))}) \quad \int_{-\infty}^{\infty} \lambda_2(s) ds = \infty \quad \leadsto \quad \text{flocking/consensus}$$

• Fiedler number $\lambda_2(L_A)$ quantifies algebraic connectivity: $\mathcal{G}_A = \{\mathbf{p}, A(\mathbf{p})\}$ is uniformly connected if every two agents are connected through a path, $\Gamma_{ij} = \{k_1 = i < k_2 < \ldots < k_r = j\}$ \forall pairs $(\mathbf{p}_i, \mathbf{p}_j)$: $\exists \Gamma_{ij}$ such that $\min_{k_\ell \in \Gamma_{ii}} a_{(k_\ell, k_{\ell+1})} \ge \mu > 0$

Consensus/flocking by the "energy method"

$$rac{d\mathbf{p}_i}{dt} = lpha \sum_{i
eq i} a_{ij} (\mathbf{p}_j - \mathbf{p}_i), \; ext{stochastic adjacency matrix} \; \sum_j a_{ij} = 1$$

• Contraction of diameters: $\frac{\mathsf{d}_{\mathbf{p}}(t)}{\mathsf{d}_{i,j}} := \max_{i,j} |\mathbf{p}_i(t) - \mathbf{p}_j(t)|$

$$\frac{d}{dt}\mathsf{d}_{\mathbf{p}}(t) \leq -\alpha \big(\min_{ij} \eta_{ij}\big)\mathsf{d}_{\mathbf{p}}(t), \quad \eta_{ij} := \sum_{k}^{\infty} \min\big(a_{ik}, a_{jk}\big)$$

• If $\eta = \min_{ij} \eta_{ij} > 0$ then $\exists \mathbf{p}^{\infty} \in \mathsf{conv}(\{\mathbf{p}_i\})$ s.t.

$$|\mathbf{p}_i(t) - \mathbf{p}^{\infty}| \lesssim e^{-\alpha \eta t} \mathsf{d}_{\mathbf{p}(0)}, \qquad \eta := \min_{ij} \sum_k \min(a_{ik}, a_{jk})$$

DeGroot, Chatterjee, Krause, ... Motsch & ET

- An ℓ_{∞} "energy method covers non-symmetric models

The energy method vs. spectral analysis

$$|\mathbf{p}_i(t) - \mathbf{p}^{\infty}| \lesssim e^{-lpha\eta t} \mathsf{d}_{\mathbf{p}(0)}, \qquad \eta := \min_{ij} \sum_k \min(a_{ik}, a_{jk})$$

- Consensus if $\eta(t) > N \min_{ij} a_{ij} > 0$ requires global interactions or at least one neighbor connectivity (the symmetric case)
- Spectral analysis of the symmetric case:

$$|\mathbf{p}_i(t) - \mathbf{p}^{\infty}| \lesssim \mathrm{e}^{-\alpha \eta t} \vee_{\mathbf{p}(0)}, \qquad \eta := \min_t \lambda_2(\mathit{L}_{\mathcal{A}}(\mathbf{p}(t)))$$

- If $\eta = \min_t \lambda_2(L_A(\mathbf{p}(t))) > 0$ requires connectivity of graph or sufficiently strong influence $\int_{-\infty}^{\infty} \eta(s) ds = \infty$ \leadsto flocking/consensus
- What is the consensus \mathbf{p}^{∞} ? by convexity: $\mathbf{p}^{\infty} \in \text{conv}(\{\mathbf{p}_i\})$
 - \odot Symmetric case: $\mathbf{p}^{\infty} = \langle \mathbf{p} \rangle (0), \quad \langle \mathbf{p} \rangle := \frac{1}{N} \sum \mathbf{p}_i$
 - Non-symmetric case?

Global influence implies unconditional consensus

• Opinion dynamics —

$$\frac{d}{dt}x_i(t) = \alpha \sum_{i \neq i} a_{ij}(x_j - x_i), \quad a_{ij} = \frac{1}{\deg_i} \phi(|x_i - x_j|), \ \deg_i = \left\{ \frac{N}{\sum_k \phi_{ik}} \right.$$

• $\eta = N \min_{ij} a_{ij} \mapsto N \min \frac{1}{\deg_i} \phi(|x_i - x_j|) \ge \min_{r \le d_{\mathbf{x}}(t)} \phi(r)$:

and since $d_{x}(t) \leq d_{x}(0)$:

$$\frac{d}{dt}d_{\mathbf{x}}(t) \leq -\alpha \eta d_{\mathbf{x}}(t), \qquad \eta = \min_{r \leq d_{\mathbf{x}}(0)} \phi(r) > 0$$

• Set $Supp\{\phi(\cdot)\}=[0,\rho)$:

$$ho > \mathsf{d}_{\mathbf{x}}(0) \; \mapsto \; |x_i(t) - x^\infty| \stackrel{<}{_{\sim}} e^{-\alpha \eta t}, \quad x^\infty \in \mathsf{conv}(\{x_i\})$$

• Global interactions \mapsto unconditional emergence of consensus

Global influence implies unconditional flocking

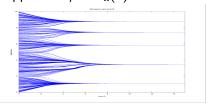
Flocking dynamics —

$$\frac{d}{dt}v_i(t) = \alpha \sum_{j \neq i} a_{ij}(v_j - v_i), \quad a_{ij} = \frac{1}{\deg_i} \phi(|x_i - x_j|), \quad \deg_i = \left\{ \frac{N}{\sum_k \phi_{ik}} \right\}$$

$$\begin{aligned} \bullet \ \phi(0) &= 1 \searrow : \quad \eta \equiv \eta(t) \geq \textit{N} \min \frac{1}{\deg_i} \phi(|x_i - x_j|) \geq \phi(\mathsf{d_x}(t)) \\ &\frac{d}{dt} \mathsf{d_v}(t) \leq -\alpha \phi(\mathsf{d_x}(t)) \mathsf{d_v}(t), \qquad \frac{d}{dt} \mathsf{d_x}(t) \leq \mathsf{d_v}(t) \end{aligned}$$

[S.-Y Ha & J.-G Liu]
$$\mathcal{E}(t) := d_{\mathbf{v}}(t) + \alpha \int_{0}^{d_{\mathbf{x}}(t)} \phi(s) ds \downarrow$$

• If $\int_{-\infty}^{\infty} \phi(s)ds > d_{\mathbf{v}}(0)$ implies <u>bounded</u> expansion: $d_{\mathbf{x}}(t) \leq R$


$$\int_{-\infty}^{\infty} \phi(s) ds > \mathsf{d}_{\mathbf{v}}(0) \quad \mapsto \quad |v_i(t) - v^{\infty}| \lesssim e^{-lpha \eta t}, \quad \eta := \phi(R)$$

- Example: $\phi(r) = \frac{1}{1 + r^{2\beta}}$: unconditional flocking if $\beta \le 1/2$
- Global interactions $(\rho > d_x(0))$ implies emergence of flocking

Cucker-Smale vs. the new model

Local interactions — the emergence of clusters

• If ϕ is compactly supported: $\rho < d_x(0) \mapsto$ formation of clusters:

- A cluster $\mathcal{C} \subset \{1, 2, \dots N\}$: $\begin{cases} #1. & \max_{i,j \in \mathcal{C}} |x_i x_j| \leq \rho; \\ #2. & \min_{i \in \mathcal{C}} |x_i x_i| > \rho \end{cases}$
- Self-contained dynamics: $\frac{d}{dt}\mathbf{p}_{i_{i}\in\mathcal{C}} = \sum_{i\in\mathcal{C}} a_{ij}(\mathbf{p}_{j} \mathbf{p}_{i}), \sum_{i\in\mathcal{C}} a_{ij} = 1$
- If $\mathbf{p}(t) \in \mathsf{BV}$ then $\exists \ \mathbf{p}^{\infty}$, partitioned into finitely many clusters:

$$\{1,2,\ldots,N\} = \cup_{k=1}^K \mathcal{C}_k : \begin{cases} \text{ either } \mathbf{p}_i(t) \to \mathbf{p}_{\mathcal{C}_k}^{\infty}, & \forall i \in \mathcal{C}_k \\ \text{ or } |x_i^{\infty} - x_i^{\infty}| > \rho, & i \in \mathcal{C}_k, j \in \mathcal{C}_\ell, k \neq \ell. \end{cases}$$

Question #1 Determine K_{∞} based on $\{\mathbf{p}\}(0)$ and ϕ ?; Question #2 $K_{\infty} = 1$? —that is, consensus of <u>local</u> interactions?

Connectivity is necessary and sufficient for consensus

• $\mathcal{G}_A = \{\mathbf{p}, A(\mathbf{p})\}$ is uniformly connected if every two agents are connected through a path, $\Gamma_{ij} = \{k_1 = i < k_2 < \ldots < k_r = j\}$

$$\forall \mathbf{p}_i, \mathbf{p}_j, \ \exists \Gamma_{ij} \ \text{ such that } \ \min_{k_\ell \in \Gamma_{ij}} a_{(k_\ell, k_{\ell+1})} \geq \mu > 0$$

- Clearly, connectivity is necessary for flocking/consensus . . . and it is also sufficient for flocking/consensus:
- Symmetric models: $L_A := I A$ graph Laplacian of A with e.v. $0 = \lambda_1(L_A) \le \lambda_2(L_A) \le \dots \lambda_N(L_A) \le 1$

$$V(t) \leq e^{-\alpha\lambda_2 t} V(0), \qquad V^2(t) := \frac{1}{N} \sum_i |\mathbf{p}_i(t) - \langle \mathbf{p} \rangle(0)|^2$$

If \mathcal{G}_A is connected then: $\lambda_2(L_A) \geq \frac{\mu}{N^2} \mapsto \text{consensus/flocking}$

Connectivity is sufficient for consensus - cont'd

• The symmetric case: Let $diam(\mathcal{G}_A) = \max_{ij} length(\Gamma_{ij})$, then

$$|\mathbf{p}_i - \mathbf{p}_j|^2 \leq \textit{diam}(\mathcal{G}_A) \sum_{k_\ell \in \Gamma_{ii}} |\mathbf{p}_{k_{\ell+1}} - \mathbf{p}_{k_\ell}|^2;$$

By uniform connectivity

$$\frac{\mu}{\operatorname{diam}(\mathcal{G}_A)}|\mathbf{p}_i-\mathbf{p}_j|^2 \leq \sum a_{k_{\ell+1},k_{\ell}}|\mathbf{p}_{k_{\ell+1}}-\mathbf{p}_{k_{\ell}}|^2 \leq \sum_{ij} a_{ij}|\mathbf{p}_i-\mathbf{p}_j|^2$$

and hence ("coercivity with vanishing entries")

$$\lambda_2(L_A) = \min_{\mathbf{p}} N \frac{\sum a_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2}{\sum_{ij} |\mathbf{p}_i - \mathbf{p}_j|^2} \ge \frac{\mu}{N \operatorname{diam}(\mathcal{G}_A)} \ge \frac{\mu}{N^2}$$

Exercise Work out the details.

- If connectivity persists $\lambda_2(L_{A(\mathbf{p}(s))}) > 0 \sim$ consensus Question: Trace the propagation of connectivity in time: $\lambda_2(L_{A(\mathbf{p}(t))})$
- If $diam(\mathcal{G}_A)=1$ then by the ℓ_{∞} -energymethod: $\lambda_2(L_A)\geq \mu$.

Connectivity is sufficient for consensus - cont'd

• The example of non-symmetric opinion dynamic (e.g., Krause model):

$$\dot{x}_i = rac{lpha}{\deg_i} \sum_j \phi_{ij} (x_j - x_i), \quad \deg_i = \sum_j \phi_{ij}, \quad \phi_{ij} \equiv \phi(|x_i - x_j|)$$

• An energy method — the "energy" $\mathcal{E}(t)$ decays:

$$\mathcal{E}(t) := \sum_{ij} \Phi(|x_i - x_j|), \quad \Phi(r) = \int_0^r s\phi(s)ds$$

satisfies
$$\frac{d}{dt}\mathcal{E}(t) \lesssim -\left(\sum_{ij}\phi_{ij}|x_i-x_i|^2\right)^2 \lesssim \mathcal{E}^2(t)$$
 (coercivity)

If \mathcal{G}_A is connected then: $\mu d_{\mathbf{x}}(t) \lesssim \frac{1}{\sqrt{t}} \mapsto \text{consensus after } t \geq t_0$

On the propagation of connectivity

- ullet Consensus \mapsto connectivity
- ullet Connectivity \mapsto consensus

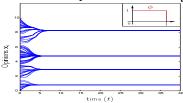
How the influence function dictates persistence of connectivity?

• Heterophilious dynamics:

"Similarity breeds connectivity": intuition tells us about ...
Tendency to align with those that act and think alike:

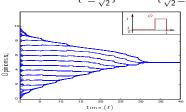
Homophilious —
$$a_{ij} \sim \frac{1}{\mathsf{deg}_i} \phi(|x_i(t) - x_j(t)|)$$
 with $\phi \downarrow$

Heterophilious — "bonding with the different":

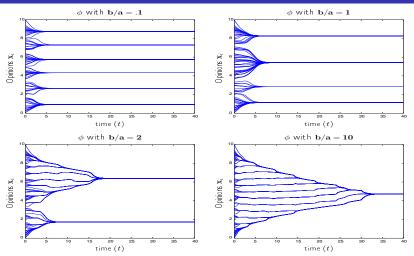

$$a_{ij} \sim rac{1}{\mathsf{deg}_i} \phi(|x_i(t) - x_j(t)|)$$
 with $\phi \uparrow$

Nearest neighbor dynamics:

Motivated by the careful observations of Rome group: the influencing neighborhood is topological not geometrical

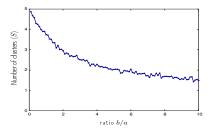

1D Heterophilious dynamics

- Strong influence: $1.0\chi_{\{0<\leq r<1\}}, \quad \phi(r)\searrow$
- Consensus: 100 agents uniformly distributed on [0, 10].


Strong influence → fragmentation into clusters

• "Weak" influence: $\phi(r)=0.1\chi_{\{r\leq \frac{1}{\sqrt{c}}\}}+1.\chi_{\{\frac{1}{\sqrt{c}}\leq r<1\}}, \quad \phi(r)\nearrow$

Heterophily influence \mapsto connectivity and hence consensus!!


More on heterophilious dynamics

Opinion dynamics with different $\phi=a\chi_{[0,\frac{1}{\sqrt{2}}]}+b\chi_{[\frac{1}{\sqrt{2}},1]}$. Reducing the relative influence of close neighbors (as $b/a\uparrow$), decreases the # of clusters. For b/a=10, the dynamics converges to a consensus.

Heterophilipus dynamics and the decrease of # of clusters

• This was not a coincidence: Trace the propagation of connectivity in time: # clusters K(t):

Log decay of average number of clusters $\langle K \rangle$ depending on the ratio b/a. For each b/a, we run 100 simulations to estimate $\langle K \rangle$.

2D Heterophilious dynamics

• Local interaction – compactly supported influence function ϕ vs. Local interaction - heterophily dynamics with factor 10:

1D dynamics with nearest neighbor

• Interaction with two nearest neighbors (1D):

$$\frac{d}{dt}x_i(t) = \sum_{|i-j|=1} \phi_{ij}(x_j - x_i), \qquad \phi_{ij} = \phi(|x_i - x_j|)$$

THM. If ϕ is non-decreasing on $d_{\mathbf{x}}(0)$, then the graph remains connected and $|x_i(t) - \overline{x}| \lesssim e^{-\gamma t/N^2} |x_i(0) - \overline{x}|$

 \bullet A steeper increase of ϕ enhances the connectivity \dots