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Mathematical considerations

e By L4 we denote the Laplacian matrix associated with A = {a;;}
La:=D-A  Dj=) a; +— deg
e Self-alignment is driven by a discrete Laplacian (a +— 1):

d d
P =a) aj(pj—pi) = Y ajpj—degipi ¢ —p=-Lap
J J
Observe that ReAi(La) > 0and L,1 =0, 1=(1,1,...,1)".
In particular, if A is symmetric A\(A) > 0:
— Symmetric A's: 0= XA < A <...< )y
® The example of the "usual” Laplacian matrix

1 1 1 1 1
oL

® Note the issue of a sign — the Laplacian should be negative:
(Au,u) = —|Vul? <0 and not positive (Lau, u) >0



Mathematical considerations cont’'d

d 1d
e Self-alignment: Ep =—Lap ~ Ea]p|2 =—(Lap,p) <0
which is consistent with convexity (~» p(t) € conv hull{p;})
but lacks coercivity: —(Lap,p) £ — |p|?

e Operators on graphs: “nodes” {p}; € X and “edges” {u}; € Y

gradient V: X = Y : (Vp); == /aj(p; — pi)
divergence div: Y = X1 (divu); := >\ /aj(uji — uj)

~~ with the usual duality: (Vp,u) = (p,div u) for symmetric A’s

d 1d
If-ali Do—p= ~—|p|? 2.
e Self-alignment 7P = divVp ~ 2dt‘p‘ —|Vp|

2 2
thZI pil” = —2%:30'|pi—r)j| <0
e And since Z-p;( ) =i pi(0):
2N dtz|p' pil* = =2 _ajlpi - pil?
ij



Mathematical considerations cont’'d

d
e Exercise: P = Z ajj (pj — pi) with symmetric A's —

2th2\p, pil>=—>_ ajlpi — p;
7

e What about coercivity — RHS < — >~ [p; — pj|*?

For example, —3 ajlpi — pj|*> < —min a;; > |pi — pj|? implies
d .
dt > pi—piP <-n)_Ipi—pil>, n=2Nmina;

e Sharp characterization — Courant-Fischer ( for symmetric A’s):

L aslp: — pil?
Na(L) = min (LAPRL 2 251Pi P
Sp=0 |p| ZU b7 — Pj|

1
=2 ailpi = < gda(La) D Ipi — byl




Mathematical considerations — spectral analysis

2dtz‘pl pj|2< )\2 LA Z|p’_pf|2

~» Convergence towards flocking/consensus is dictated by the
the Fiedler number:

SV 2 NallaoVD, Vi = 35 S Ibil?)

Exercise: verify the last few steps...
e sharp characterization: Ay(La) > N minj aj;
Questions:

e What about the Fiedler number A(La)?
e What about the non-symmetric models of self-alignment?



The symmetric case: spectral analysis

e Convergence towards rocking/consensus is dictated by

jtv( t) £ —Xa(La))V(t), p(t =5 Z Ipi(t
Vi = Slei— IR (p)(e) = ;;pk - B0)

pi(t) = (P)(0)| < e Vp(),  n:=minAa(La(p(t)))

e Flocking/consensus if 7 = min: A2(La(p(t))) > 0 or at least . ..

A2(s) = Aa(Lap(s))) /)\g(s)ds =00 ~ flocking/consensus

e Fiedler number A\»(La) quantifies algebraic connectivity:
Ga = {p,A(p)} is uniformly connected if every two agents are
connected through a path, Iy ={ki =i < ko < ... < k, = j}

V pairs (p;,pj) : 3 such that kTeIP A(ky kpiq) = 1 >0



Consensus/flocking by the “energy method”

dp; . . :
Bi = az a;j(p; — pi), stochastic adjacency matrix » ; a; =1

e Contraction of diameters: dy(t) := max|p;(t) — p;(t)]
I7J
d _ .
2o(0) < —a(minng)dp(t), ;= ij min (k. ajx)

o If 7 = minjin; > 0 then Ip> € conv({p;}) s.t.

pi(t) —p™| < e *"dy(0), n:i= mUmZ min(ajk, ajk)
k

DeGroot, Chatterjee, Krause, ... Motsch & ET

e Unconditional flocking using ¢1, ¢2, {~- based approaches:
Cucker & Smale, Ha & ET, Carrillo et. al., Ha & Liu, ... ...

e An /., “energy method — covers non-symmetric models



The energy method vs. spectral analysis

pi(t) —p™| £ e " dy(), n = mumz min(ajk, ajk)
k

e Consensus if n(t) > N minj a; > 0 — requires global interactions
or at least one neighbor connectivity (the symmetric case)

e Spectral analysis of the symmetric case:

e If n = mins A\2(La(p(t))) > 0 — requires connectivity of graph
oo
or sufficiently strong influence / n(s)ds = oo~ flocking/consensus

e What is the consensus p>? — by convexity: p> € conv({p;})

1
©® Symmetric case: p™ = (p)(0), (p):= N Zp"

® Non-symmetric case?



Global influence implies unconditional consensus

e Opinion dynamics —

d 1 N
aXI.(t) = a; a,-j(xj—x,-), aj = ngé(lxi—xj'l)v deg; = {Zk bik

(% — 1) > min_(r):

° n = Nmina; ~ Nmin

ij deg; r<dy(t)
and since dy(t) < dy(0):
d
il < _ — ;
g Ox(t) = —andk(t), 7 i ¢(r) >0

e Set Supp{a(-)} = [0, p):

p>dy(0) = |xi(t) — x| e, x™ € conv({x;})

e Global interactions — unconditional emergence of consensus




Global influence implies unconditional flocking

e Flocking dynamics —

1 N
V:(t = O‘Z aij(vj—vi), aj= @g_é(le—&-l)v deg; = {Zk b
J#i '

#(0)=1N\s n=n(t) > Nmin di
Cat) < —ad(d( D)D), (D) <du(t)
dx(t)

[S-Y Ha & J-G Liu] &(t):=dy(t)+a [ ¢(s)ds |
0

o If/ ¢(s)ds > dy(0) implies bounded expansion: dy(t) < R

/ 5(s)ds > dy(0)

e Example: ¢(r) =

B — 1) > B(d(1))

1

15728 unconditional flocking if 5 < 1/2

e Global interactions (p > d (O)) implies emergence of flocking




Cucker-Smale vs. the new model



Local interactions — the emergence of clusters

e If ¢ is compactly supported: p < dx(0) — formation of clusters:

. . x| < e
e A cluster C C {1,2,...N}: { 1. maxijec i =1 < p
#2. minjecjgc X — x| > p

e Self-contained dynamics: P/,ec Z ajj(pj — Pi), Z aj=1
jec jec

e If p(t) € BV then 3 p, partitioned into finitely many clusters:
either p;(t) = pg>, VieCx
1,2,...,N} = Ko .
{1.2, b= UG {or X7 = x| > p, i€Cyj€Cok#L
Question #1 Determine Ko, based on {p}(0) and ¢7?;
Question #2 Ko, = 17 —that is, consensus of local interactions?



Connectivity is necessary and sufficient for consensus

e Ga = {p,A(p)} is uniformly connected if every two agents are
connected through a path, I'j = {ki =i < ky <... < k, =}

Vpj,pj, lj such that kfpe'p A(kpokgq) = 1 >0
e Clj

e Clearly, connectivity is necessary for flocking/consensus . . .
and it is also sufficient for flocking/consensus:

e Symmetric models: L := 1 — A graph Laplacian of A
with ev. 0 = )\1(LA) < )\2(LA) <.. )\N(LA) <1

V(1) < e V() VA = 1 S IRl (IO

If Ga is connected then: A\y(La) > % — consensus/flocking



Connectivity is sufficient for consensus — cont’'d

e The symmetric case: Let diam(Ga) = max;; length(T";), then

Ipi — pil* < diam(Ga) > Pk, — Pl

kger,'j
By uniform connectivity

M > ) ,
m“’i LI Zak4+1vkz|pke+1 —Pi|” < z,-j:aij|pi - pjl

and hence (“coercivity with vanishing entries")

o aglpi — 1 p
A2(La) = min N > . >
Aba) = M N o — B2 = Naam(Ga) ~ N2
Exercise Work out the details.
e If connectivity persists —  Aa(La(p(s))) > 0 ~» consensus

Question: Trace the propagation of connectivity in time: A2(La(p(t)))
o If diam(Ga) = 1 then by the /y.-energymethod: A\a(La) > p.



Connectivity is sufficient for consensus — cont’'d

e The example of non-symmetric opinion dynamic
(e.g., Krause model):

. (6
Xj = deg- E ¢U(XJ'_XI')? degl E ¢Ua ¢U |XI _Xj|)
"

e An energy method — the “energy” 5( ) decays:

= Zcb(]x,- —xj|), ®(r)= /Or so(s)ds

satisfies —g(t Z¢U|x, x| | < &%(t) (coercivity)

If Ga is connected then: pdy(t) < > consensus after t > t

Sl-




On the propagation of connectivity

e Consensus —  connectivity
e Connectivity +—  consensus

How the influence function dictates persistence of connectivity?

e Heterophilious dynamics:

“Similarity breeds connectivity”: intuition tells us about ...
Tendency to align with those that act and think alike:

Homophilious — a; ~ djg(bﬂX;(t) —x(8)) with ¢

1

Heterophilious — “bonding with the different”:

1 .
25~ gog A(0) —())) with &1

e Nearest neighbor dynamics:

Motivated by the careful observations of Rome group:
the influencing neighborhood is topological not geometrical



1D Heterophilious dynamics

e Strong influence: 1.0x(0<c<,<1}, &(r)
e Consensus: 100 agents uniformly distributed on [0, 10].

* time (1)

Strong influence +— fragmentation into clusters

e “Weak” influence: ¢(r) = 0'1X{r<%} + 1‘X{%<r<1}7 o(r)
<7 =<

Opinions x;

" time (1)

Heterophily influence +— connectivity and hence consensus!!



¢ with b/a =1

More on heterophilious dynamics

¢ with b/a = .1

Opinions x;
Opinions x;

s 0 5 20 25 30 35 20
time (t)

time (%)

¢ with b/a =2 ¢ with b/a = 10

Opinions x;
Opinions x;

o
o s 0 5 20 25 30 35 20
time (¢)

time (%)

Opinion dynamics with different ¢ = a b . Reducin
pini y ics wi i 0] X[o,\%]+ X[%,l] ucing
the relative influence of close neighbors (as b/a 1), decreases the #
of clusters. For b/a = 10, the dynamics converges to a consensus.



Heterophilipus dynamics and the decrease of # of clusters

e This was not a coincidence:
Trace the propagation of connectivity in time: # clusters K(t):

Number of clusters (S)

ratio b/a
Log decay of average number of clusters (K) depending on the
ratio b/a. For each b/a, we run 100 simulations to estimate (K).



2D Heterophilious dynamics

e Local interaction — compactly supported influence function ¢
vs. Local interaction - heterophily dynamics with factor 10:



1D dynamics with nearest neighbor

e Interaction with two nearest neighbors (1D):

D= dslg—x). b5 =alx—x)
li—jl=1

THM. If ¢ is non-decreasing on dy(0), then the graph remains

connected and |x;(t) — X| < e‘”t/N2|x,-(0) —X|

e A steeper increase of ¢ enhances the connectivity ...



