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Biological Motivation

Signaling proteins (Shh) «— change in cell behavior

(GLI code)

A. Ruiz i Altaba, PNAS 2007
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Naive scheme of the Shh signaling pathway
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Signaling proteins (Shh) «— change in cell behavior
(GLI code)

A. Ruiz i Altaba, Trends Cell Biol. 2007
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Shh signaling pathway

Development Cancer

@ Implicated in development of many tissues and organs (skin,
lungs, brain, bone and blood).

@ Shh has an important role via GLI regulation in tumor formation:
deregulation of Shh pathway leads to various tumors (skin,
prostate, brain, colon).
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Intercellular communication: Hedgehog

Shh-Gli in vertebrates «— Hh-Ci in Drosophila J
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Intercellular communication: Hedgehog

Shh-Gli in vertebrates «— Hh-Ci in Drosophila )
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Biological Motivation

D-V neural patterning

The neural tube is polarized along the anteroposterior and
dorsoventral axis.
Dorsoventral spinal cord patterning of the chick embryo J
TGF-R family:
) BMP4,7 in ® BMP4 in © BMPd,BMP; )
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D-V neural patterning

a Shh RNA b Shh protein

¢ 1

€ Graded Shh activity and ventral neural tube patterning

Nature Reviews | Genetics T Jessell
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Models of signal propagation and transduction

@ How do morphogen gradients form and propagate? By diffusion?

@ How is the signal interpreted by the responding cells?
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Models of signal propagation and transduction

@ How do morphogen gradients form and propagate? By diffusion?

@ How is the signal interpreted by the responding cells?

Reaction-diffusion equations: basic ingredients

@ Diffusion equation to describe morphogen propagation and
formation of concentration gradient

@ Law of mass action to describe rates of change in protein
concentrations and gene codifications.

(Turing, Meinhard, Wolpert, Lander, Lai, Schaffer, ...)
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Models of signal propagation and transduction

Brownian motion / Fick’s second law (or a coupled system of them)

2
ou ocu
— =v— + f(t,x,u(t, x),...)
ot Ox?
Single particle moving in alattice Equation satisfied by the probability
transition probability 1/2 distribution { pn(t)}
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Model by Saha and Schaffer

(Saha and Schaffer, 2006 (Development) and 2004)

@ Main purpose: to understand the dynamics of morphogen gradient
formation and interpretation.

@ The model studies D-V patterning in the chick embryo spinal cord,
beginning when Shh is first secreted by the floor plate.

@ The model focus on the ventral-most binary cell fate (V3
interneurons).
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Modeling morphogenetic responses

@ Transport of the Shh signal: Fick’s law: linear diffusion.

o[shh]
o = v AdShh]
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Modeling morphogenetic responses

@ Transport of the Shh signal: Fick’s law: linear diffusion.

o[shh]
o = v AdShh]
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Shh propagation along the neural tube

Movie time

(K. Saha and D.V. Schaffer, 2006)
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How to reduce diffusivity

Class of Mechanism Examples
\ - == Signal « Shh hydrophobic modification
Accumulation | « Excess HSPG or Vitronectin
\ * Low Dispatched
\ m— Wild Type
""" Shunting « Excess Hip or Patched
[Shh] \
( M) == = Signal * Low HSPG or Vitronectin
n = Dispersal + High Dispatched
b
2.5 nM Switching Threshold
Variable patterning
Ventral Distance from Shh source (ium) Dorsal

(K. Saha and D.V. Schaffer, 2006)

An arbitrary (non dynamic) threshold had to be introduced in order for
the model to yield a wave front radically distinct from the instantaneous

gradient implied by linear diffusion.
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Insoluble (!) problems for linear diffusion:

@ Instant spreading derived from Brownian motion

@ No real wave fronts (retrograde fronts?)

@ No time to respond. Linear diffusion prevents the activity of
activators or repressors, avoiding morphogenetic responses.
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Finite speed of propagation

Isabel Guerrero’s Lab
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— making in question linear diffusion. |
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Going back to the biology

Nanoscale Hh organization (Vyas et al., 2008)

@ Hh forms visible aggregates (~ 100 nm) composed by Hh
oligomers, HSPG ... and the dimension of these aggregates is
large with respect to the dimension of the cells.

@ The ratio of these scales violates the Brownian foundation that
assumes that particles are small with respect to the size of the
space they are occupying.
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Biological Motivation

Size of the aggregates

Isabel Guerrero’s Lab
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Exposure time

Drawbacks of the model

@ Transport modeled with diffusion equation: unphysical spreading
out of morphogen to all the neural tube soon after secretion.

@ The concentration of Shh received by the cells and the time of
exposure are of similar relevance

(H.C. Park, J. Shin, B. Appel, Spatial and temporal regulation of ventral spinal cord precursor
specification by Hedgehog signaling. Development, 2004)

(J. Briscoe et al., Interpretation of the sonic hedgehog morphogen gradient by a temporal
adaptation mechanism. Nature, 2007)
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Problems in linear-diffusion-based models

@ The morphogen signal is received instantaneously and
accumulates from the beginning and continuously. The necessity
of an arbitrary threshold.

© Aggregates do not behave as very small particles in large spaces,
thus denying one of the assumptions of the brownian motion.

© There are privileged ways of propagation.

© Patterning action of morphogens is a dynamic process:
responding cells are not inert.

© Time is needed for the active interplay between morphogens and
cellular response.

—— To reevaluate the very basis of the Turing-Wolpert modeling of
morphogenetic action. J
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Alternative description of the transport mechanism

The controversy about the applicability of linear diffusion (Brownian
mechanism of motion) was already pointed out in the pioneer work of
Einstein over a century ago (1906). He discussed the possibility of
considering the variance linear in time, which implies linear diffusion
and infinite speed of propagation, which Einstein noted as impossible
from the physical point of view. Einstein explicitly commented:

... the mean velocity of change of the observable {(...)
becomes infinitely great for an infinitely small interval of time;
which is evidently impossible ...
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Alternative description of the transport mechanism

— Models based on linear diffusion are in question in Biology

@ Substituting the Fick law by the Cattaneo law gives

Pu 0w o

—— = reactions.
Tor + ot "ox?
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Alternative description of the transport mechanism

—— Models based on linear diffusion are in question in Biology J

@ Substituting the Fick law by the Cattaneo law gives
Pu ou u
otz ot 0x?

In 1992, M.B. Rubin showed that Cattaneo’s model of hyperbolic
heat conduction violates the second law of thermodynamics.

= reactions.
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Alternative description of the transport mechanism

—— Models based on linear diffusion are in question in Biology )

@ Substituting the Fick law by the Cattaneo law gives

d2u  ou d%u

— + — — v—— = reactions.
Tor T ot Vox2

In 1992, M.B. Rubin showed that Cattaneo’s model of hyperbolic
heat conduction violates the second law of thermodynamics.

@ Changing the classical diffusion term vAu by a power law
diffusion of porous medium type vdiv(u”Vu).
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Alternative description of the transport mechanism

Ph. Rosenau (1992), from the observation that the speed of sound is
the highest admissible free velocity in a medium, derived

auya( 3 )
ot ox 2 2
Ul + % | 5]
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Alternative description of the transport mechanism

Ph. Rosenau (1992), from the observation that the speed of sound is
the highest admissible free velocity in a medium, derived

ou 0 |u!—a” — 9%u
i ox v
ot ox 2 2 c—00 0x?
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Alternative description of the transport mechanism

@ There are different approaches to deduce the flux limited terms:
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Alternative description of the transport mechanism

@ There are different approaches to deduce the flux limited terms:

- From kinetic theory of multicellular growing system
(N. BELLOMO, A. BELLOUQUID, J. NIETO, J. SOLER, M3AS 2010 )
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Alternative description of the transport mechanism

@ There are different approaches to deduce the flux limited terms:

- From kinetic theory of multicellular growing system
(N. BELLOMO, A. BELLOUQUID, J. NIETO, J. SOLER, M3AS 2010 )

- From nonlinear Hilbert expansions

(C. D. LEVERMORE, G. C. POMRANING, Astrophys. J. 1981 )
(J.-F. COULOMBEL, F. GOLSE, TH. GOUDON, Asymp. Anal. 2005 )
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Alternative description of the transport mechanism

@ There are different approaches to deduce the flux limited terms:

- From kinetic theory of multicellular growing system
(N. BELLOMO, A. BELLOUQUID, J. NIETO, J. SOLER, M3AS 2010 )

- From nonlinear Hilbert expansions

(C. D. LEVERMORE, G. C. POMRANING, Astrophys. J. 1981 )
(J.-F. COULOMBEL, F. GOLSE, TH. GOUDON, Asymp. Anal. 2005 )

- Y. Brenier (2000) obtained this equation by means of an optimal
mass transport theory as a gradient flow of the Boltzmann entropy
for the metrics corresponding to the cost function

2 _ 1z ;
K(z) = 0(1 \/ cz), if |z| <c,

+o00, if |z]>c¢
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Alternative description of the transport mechanism

@ There are different approaches to deduce the flux limited terms:

- From kinetic theory of multicellular growing system
(N. BELLOMO, A. BELLOUQUID, J. NIETO, J. SOLER, M3AS 2010 )

- From nonlinear Hilbert expansions

(C. D. LEVERMORE, G. C. POMRANING, Astrophys. J. 1981 )
(J.-F. COULOMBEL, F. GOLSE, TH. GOUDON, Asymp. Anal. 2005 )

- Y. Brenier (2000) obtained this equation by means of an optimal
mass transport theory as a gradient flow of the Boltzmann entropy
for the metrics corresponding to the cost function

2 _ _ 122 i
K(z) = c (1 \/ o ) , if ]zl <e,
—+00, if |z| >c

(ANDREU, CASELLES, MAZON, MoLL, PUEL, MCCANN, CALVO, SOLER.. 2004-12)
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Modification of the Model. Transport by Diffusion?

» Alternative description of the transport mechanism to solve the

problem of infinite speed of propagation of the linear diffusion
theory.

» How should the flux be modified? Transport kinetic equations
ou

5= vAu = vdiv(Vu) = vdiv((Vinu)u) = vdiv(v u)
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Modification of the Model. Transport by Diffusion?

» Alternative description of the transport mechanism to solve the

problem of infinite speed of propagation of the linear diffusion
theory.

» How should the flux be modified? Transport kinetic equations

% =vAu = vdiv(Vu) = vdiv((Vinu)u) = vdiv(v u)

From a microscopic point of view the particles are moving with velocity

v, determined by the entropy of the system S(u) = ulnu and the
concentration u (~ chemical potential):

V:V(S(Uu)>
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Modification of the Fokker—Plack model

new microscopic velocity depending on the relative entropy
v(Sw/v
V1 + % [9(S(u)/u)?

V=

which gives

ou . uvu
azydlv -
\ U2+ 5 |Vul?
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Flux-limited porous media

But there are other possibilities

ou . um™vu
= v div

g VU2 + 5| Vul?

ou m+1 uvum
ot \/1 m:1)2 g ym|?

(F. Andreu. V. Caselles, J. Mazon, M. Verbeni, J.Soler., SIAM J. Math. Anal 2012)
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Numerical comparison
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relativistic heat'eq.
classical heat eq.
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Numerical comparison

1.5

t=0.15

relativistic heat'eq.
classical heat eq.
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Numerical comparison

t=10.3
2 T T L T
relativistic heat eq.
classical heat eq.
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Numerical comparison

t = 0.6
2 T T L T
relativistic heat eq.
classical heat eq.
1.5+ -
1 - i
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Numerical comparison

t=10.9
2 T T L T
relativistic heat eq.
classical heat eq.
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Mathematical models

Numerical comparison
t=1.2

relativistic heat'eq.
classical heat eq.
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Numerical comparison

t=1.5
2 T T T . .. T
relativistic heat eq.
classical heat eq.
1.5 +
1 L
0.5 + -
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

(CALVO, MAZON, SOLER & VERBENI, M3AS 2011)
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Relativistic heat equation
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Flux-limited porous media
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Modeling morphogenetic responses

@ Transport of the Shh signal: introduction of flux limiter

olstn] [Shh]ox[Shh]
ot " JIshhi2 + Z (a,dshhy?
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Modeling morphogenetic responses

@ Transport of the Shh signal: introduction of flux limiter

olstn] [Shh]ox[Shh]
ot " JIshhi2 + Z (a,dshhy?

GliAct g
T glil
\/GliRep — &y

Shh— Ptc1 — Smo Glil ptcl Ptcl
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Modeling morphogenetic responses

d[Ptc1Shh
OlPtetShfmem] - _ Kon[Shh][Ptc1 mem] — o [Ptc1Shhmem] + Kgout[Pte1Shheye] — KinlPtc1Shhmem]

at
d[Ptc1shh
% = kein[Pte1Shhmem] — Keout[Pte1Shhay] — Kggeg[Pte1Shhey].
a[Ptet
% = kopr[Ptc1Shhmem] — kon[Shh][Ptct mem] + kgyt[Ptct gyel,
AIPte1 gy , . .
TCY = —keptlPtelgy] + kpPy ([GII1A)(t — 7), [GIB4](1), [GI8™eP(1)]) @prc
a[GlitAet
% = —keglGII1A] + kGPyr ([GmAC’](t — 7), [Gli3A(1), [GIiSR"“p(t)]) LT
a[GlizA°t K
O16I™7  ves G134 —8 _ o [G3"]
ot 1+ Rpr 1+ Rpe
a[GlizFer K
7[ ! ] = [Gli3Am] o kdeg[Gli3Rep]'
ot 1+ Rpyge
nere [Ptel o] [Ptc1Shhmem]
tclp tc mem.
Ppic Rpte = ————

" [Ptelg] + [Ptcl mem] [Ptc! mem]
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Numerical experiments

[Shh] (nM)

5 5 o5 -
0 50 100 150 200 250 300 . 100 ) 150 200 250 300
distance from floor plate (pm) distance from floor plate (yum)

No instant spreading
Real wave fronts

Time to respond
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[Gli3®P] (nM)
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Going back to biological models

Numerical experiments

[GLi14) (nM)
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Numerical experiments: Desensitization

Gili activity

Briscoe ' -
experiments FLS Linear diffusion
7\ A 25 B25
2 0
? 15 %15
E 1 ém
0.5 5
0 . . . . . 0 . . ) ) )
0 5 10 15 20 2% 30 0 5 10 15 2 25 30

Time
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Going back to biological els

Cell extensions vs classical cell communication

>

IHOG-GFP
CDO-YFP
IHOG-YFP

Biological flux-limiters

(Verbeni, O. S., Mollica, Siegl-Cachedenier, Carleton, Guerrero, Ruiz i Altaba, Soler, appered in
Physics of Life Reviews, 2013)
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