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Jrigins in a ralled experimen

~ = |DEA — Use tumor ce
_guided biopsies of primary and metastatlc tumor
~ for diagnosis to develop primary cell cultures and
test the inhibitory effects of chemotherapeutic
agents in-vitro to predict clinical outcomes
analogous to sensitivity testing of cultured
bacteria to antibiotics

%’I’HODS DlsEerse matenal? CT guided .
Wu colon cancer
n

0 small cellular aggregates and'seed in culture
flasks containing DMEM with 20% FBS plus

antibiotics
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-~ “islands” ofﬂorma ibroblasts. Islandsthen

— expanded rapidly and invariably overgrew the culture
dish destroying all the tumor cells.

= RESPONSE — Kill fibroblasts!

= EVENTUAL RESPONSE- why?? No good answer —
lots of data but no organizational framework.

= SOLUTION-Mathematical models

chronic and domlnated 0)Y non-llnear Processes.

NDAMENTAL FLAW — Ilnear |ntU|t|ve thlnk Ing, '



= “|n the abbsence ol consistent.application; of

rJJorolJJ rrieitrierreliicall mocdels, irigoretczell
gleie) e SV IHlargeiy remart empirical;
e enomeno1og|ceTI and anecdotal
successiul only in linear systems that can be
defined by a single experiment or a few
experiments.”

@enby‘and Maini in Natiﬁi 20024__—""




=Y belleve the‘davmust{:ome when the blologlst

~ will'- without being a mathematician - not hesitate
to use mathematical analysis when he [sic]
requires It". Karl Pearson (Nature, 1901) -

= “|f cancer is ever to be understood properly, :
SIatr emat"‘al models such asitiaese willisurely, —
il “Econemist, 2004 -




But enthusiasm is hardly universal...

= “[don’t believe in mathematical modeling.”

_:_—_—..:

= “Mathematical models are for researchers too lazy
to do the experiments.”

= “The Pl opines mathematical models can describe

tumor invasion — this is patently absurd.” -

Inical Cancer



Program at Moffitt:
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~ Motive, Means, and Opportunity -
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Moffitt Integrated Mathematical Oncology Dept. — The
physics paradigm, finding first principles

Integrating and Leveraging

— A CCINIS COINIC @; e C ' the Physical Sciences
| ——#-—-
da nd com pleX b‘uflﬁr-‘]@{- to Open a New Frontier

~ incomprehensible! il
= First principles will exist

= Quantitative models
linked to experimental
and clinical data are

necessary to ¢ defme

y dyna -

U|fying framework
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All stages Local

Breast (female)

Colon and rectum

Lung and bronchus

Melanoma

Pancreas

Prostate

Regional

Distant
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Treat tumor as a biologicallinvasion. That is, the tumor cells
- represent arforeign “species’ that begin as a small
population of cells (perhaps one) but, because of
competitive advantages over normal tissue, proliferate
rapidly driving the normal cells to extinction. .

Apply models models from population biolegy torinvasive
cancer

lat*are the competitive advantages;that tranermg;'!gg B
I IUMBIECElISH Albeunded growth? “One

. another only by killing its,yeung or stealing
its food™ - Schaefer




Speaking of food, consider glucose

l metabolism in cancers

Cancers with elevated .
Fd Glucose uptake:

— Colorectal

— Brain

— Breast

— Melanoma

— Cervical

— Ovarian

— Lung

— Pancreatic
— Esophageal
— Lymphom
— Leimyosarcoma
— H&N

Recurrant Melanoma Breast w/ equivocal MRI
Anderson & Price (2000) E.J. Cancer

Czernin & Phelps. (2002) Ann. Rev. Med. 53:89-112



" tumors have a remarkable capacity to ferment
glucose even in the presence of adequate
oxygen"

e

— - Otto Warburg, 1934
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High glycolysis leads to increased
acid production
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A consequence of upregulated glycolysis is an acidic
extracellular environment - here measured with 3P NMR
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Killing its young: Chronic exposure to

ro AJ r S I Jf‘a + \ 1 a
aicidic orl, 13 1o4c

maining (rel co
O
AN

0O 20 40 60 80 100 120 140
Time (hr)




The Dilemma:

S

ffearcinogenesis is somatic evolution,
~common.phenotypic traits of invasive
cancers emerge following competition and
Darwinian selection and must always

confer a selective growth advantage
Aerobic metabolism seems inconsistent with

WS principle since it is m licallysms
o ineffic e

e —— ]

—

otentially toxic,
acidic environment. Survival of the
fittest??
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Why does aerobic glycolysis persist in advance
primary and metastatic tumors? Acid-Mediated
Tumor Invasion Hypothesis

—- = General concept: Tumor-~
Induced perturbations in the
micro-environment are
unfavorable to normal tissue
and enhance tumor growth in a
self propagating pattern

= Specific concept: Altered tumor
metabolism results in'an acidic
pH, both'in the tumor and in a
ring ofi surrounding normal
tissue. Tumor cells have an
idealipi. (i-e: maximume
preliieration) of about 0.5 pH
units lower than nermal. This
provides a selective growth
advantage so that they
continue to proliferate while
normal cells die




Proposed SequUeERCE:

CAltered glitlicose metapolismt restltsinfincreased
lactic acid production -
R transport across the membrane is increased
primarily through amplification of the Na*/H* antiport

= This results in increased pH; and decreased pH..
= H* ions in the extracellular space will difitise aleng

concentration gradients into peritumoral host tissue
resulting in: normal cell death, ECM degradation,
ﬂ‘_ﬁauctlon of'angiogenesis, and Ing omemgnh
l I resBoQ§M
‘umor cells (more tolerant of acid pHy) continue to
proliferate and invade into the disrupted normal
tissue

e



Acidic piH. causes poS dependent apoptosis, through
celsozse ectvity e corligrs raleive grovyir

advantags on cancer cells

UICaSEU

S '." ollard, Paraskeva, A acidic el VireRmeRt =
leads to p53 dependent induction of apoptosis...
- Oncogene: 16:3199-3204, 1999

= Park et al. Acidic environment causes apoptosis by
Increasing caspase activity. British J. Cancer
80(12):1892-1897,1999.

= Dairkee et al. Selective culture of primary breast
cancer. Cancer Res. 35:2516-2519, 1995
=

ﬂ’suishi et al. Remarkable toleranﬁﬁ of tumorcellsito....

— nutrient deprvatienipessibl AvIochemical targets
for'cancer therapy. Cancer Res. 60:6201-6206, 2000
= Gerweck and Fellenz. The simultaneous

determination of intracellular pH and cell energy
status. Radiation Res. 125: 257-261, 1991
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- = Rhozin et al. Per1eeﬂa1%mpl=la£2@|str|but|on and
- secretion of'cathepsin B in malignant cells. Cancer Res.
45:6517-6525. 1994

= Webb et al. Modeling tumour acidity and invasion. Novartis
Found. Symp. 240:169-181, 2001 - —
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-~ = Xurand Fidler Acidic piH-induced elevation in Interleukin & |
wexpressionrby human ovarian carcinoma cells. Cancer

Res. 60:4610-4616, 2000

= Shi et al Regulation of vascular endothelial growth factor
expression by acidosis in human cancer cells.. Oncogene.
20(28):3751-3756. 2001




The hypothesis was initially framed
mathematically

2o rNy (1~ £ ap) —d,LN, +V - (D, [N,JVN,)

Z= N1 - F—an ) —d,LN,+V - (D, [N,JVN,)
'-—‘;5 [}N_‘!,_ d:.'L + Dﬁ?’zL
where

N1= Normal cells —— 1, Numerical
N,= Tumor celis ) - T}, Numerical

L- Excess acid concentration (i.e. the acid above pH 7.4) ---- A Numerical

r, and r. = Maximal growth rate for the cellular populations ' mn, Equation (A4)
respectively n, Equation (A3)
K= Carrying capacity ’ A Equation (A2)
o - Lumped interference term

D, and D.= Invasion terms for each cell papulation

d, and d. = Death rale due io excess acid in the exiracellular

space

d.= Removal of excess acid by tumor and peritumoral

vasculature

r:—= Excess acid production by tumor cells

D - Diffusion coefficient for H'



Dimensionless Parameters

m(l —n1) —é1An

p212(1 —1n2) + Ve - [A2(1 — 1) Ven2]
86—": = 53(7‘;’2 = A) T V%A

where

51 B (d]fd::,) x (?‘3!’?‘[) x Ky

P2 = ra/ry

Ar = D7y/Ds

53 = d3/f‘1




olrits (Sozliel romoyrwr/ 2lnENIENPe)E

[n1velr e)

""—“EF—P%;N = [ ——
= FP#2 N =Ky N;=0 H=0
= FP#3 N=Ky(1-8,) N;=35, K H=H,

Where 6:=(di/dy




Linear Staollity Anzalysis

:__':F'_1 and I;P#?éa’reﬁﬂconditioally '

e ——
unstable

= FP#4 is stable and FP#3 is unstable if 6,>1
and vice versa




reiveling weve solutior

— 1, Numerical
== T), Numerical
---- A Numerical
N, Equation (A4)
n, Equation (A3)
A Equation (A2)




Acellular gapiatthertumprEhestinterdacein head
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pHe gradients match model predictions

pH vs. distance from tumor
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PAS staining shows degradation of the ECM around
the tumor roughly corresponding to the acid gradient




Does pH, distribution around a
tumor predict subsequent growth?

-
p—

Overlay of Day 7 and Day 21



Comparison of pH, distribution with
tumor growth during subsequent 7 da_yi
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Tumor Growth as a Function of pHe
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Percent of 3+ SuperPixels
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Regional selection pressures In breast cancers:
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Hypothesis: Could an increase in serum buffer
reduce the gradient and stop invasive tumor
growth?
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Bicarbonate inhibits
metastases and prolongs

% survival

—e— control
o bicarb

60

Days post-implantation

1 untreated
I bicarbonate

Flucrescence density (AUF-cm ?)
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X Model must include aidiscretized approach to descrlbe
- individual cell-history and its interactions with other cells
while retaining the while retaining continues elements to
describe the production, diffusion, and removal of H* ions
(Aalpen Patel). _

= Modified Cellular Automata Model:

ablish N x N'array of automatoaﬁlls with-a—eﬁ&mh"

- COlesponeeRcENEIWEEnHItn cells and physicall
- 1ze 20 x 20 microns.




hﬁtﬁomatonﬂs-eﬂﬁer-aiumor cell, a normal cell. a
-='m1ﬁ0vesse1—or-vacant

= The local extracellular pH

= The local glucose concentration




Viicroy easels are rendornly disiriotted rirolc

J'UHO'JE e JJmll]rlfJOfJ SPEC

& number of automaton cells;oececupied b
NS the totalinuimereli automatontce




= H* and glucose concentrations form 2
continuous fields over the simulation space
obeying suitable time-dependent, diffusion
equations with sinks, sources, and boundary

snditions determined by cells and vessels
- q

i

et




Iypical 20 X200 n.d, n oMz Cells blue
Jrlomly S1s I rric 1oy




Aulemigiass
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= Mlcrovessels remam—ccﬂstant

— I’f utomaton cell is either a tumor or normal then the value
of the concentrations of H* or Glucose in its state vector
are considered.

= |f pH is lower than some critical threshold (pHpy PHp7); the
cell dies and the automata becomes vacant.

-l

Typical values pHy\=6.8 pHy=6.0

o but lower than some thresholc 'p‘l'la‘,’ﬂm_

ESTOUININTE ' state (€. ho mitosis occurs)
Typlcal pHon=7.1 pHo=6.4
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Auvilemigian:

==t

-“I“fteﬁ‘pH >_pHQ—aﬂd=g=I=laeese{;oncentratlons are adeguate

-E(‘tﬁ?'é‘shdd-e—and G; assumed to be 2.5 mM), the cell may
divide but only if an adjacent automata cell is vacant. [f
more than one is vacant it enters the cell with the largest

—

value of G. —

——




Iffusion equation for the time-dependent glucose fie

D.V>G,(F)—k(F)G,(F) =0

here G, (T) is the glucose concentration at T after sub-generation t. The term  K(T)

(having units 1/S) is the glucose consumption rate at the location T :

VT = Normal Cells
VT =Tumor Cells

Vr = Vacant Cells
Vr = Vessel Cells

N

T

here 1x107° /s <k, <5x107/s and 1x107° /s <k, <1x107/s are ranges for glucose

consumption by normal and tumor cells respectively




BV E D+ K7 =0
viiete Dy =1.08x10"eni’ {3 is the diffasion constant forlactic acid, E(F).is the &
coneentration.at position. F:after mib-generation ¢ and. h(F)- is an acid production rate

that {s non-vere ofily at-positions 7 -where fliere s a-tumot:csll:

H{ V7= dctive timor cells
W(Fy={HE YF= Quiescent tumor ceils
0 V¥ # Pumor cells

In m:::mcdal H{-and# are key variables.adjusted to model fumor phenotypes:
BXp! m#bohmn
Ix1G4 -i:':H"" <1x 10 mid T gand HE =5% 10" mhd 7.2 .2




Strategy for Model Anelysis

':'=i-—r—'_—-—.'_:-__

e il e

o US@ 1arge dlspa'nfyﬂﬂ time scales of ceII

— proliferation ( about 102 hrs) and chemical
diffusion (intervessel diffusion time 1 — 10 s).

= Cell distribution changes so slowly they can be -
treated as adiabatic perturbationsioen the chemical
fields.

s




SYUic Itlorns orl 2l cozirse frrle SJ,

SEREemISUPSETTA(TF=SEO)FoIral

_ —up'da’ung—'l'hen solve the equmbrlum bo‘“h o'“

- Vvalue problems to determine the resultant
response of of the chemical fields. This is
repeated 1/f times until all cells and chemical fields
have been updated. This is one generation. No
quantitative differences found in evolution of
automata if /<0.1

e '-rﬂ-_
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74=2.50x 10 mM/s |
~HA=2.75% 107 mMJs
- =300 x 10“ mM/s
- H!'=500x10" me’:,

- H!'=8.00x10 > mM/s

0.06 0.08  0.10 0.12 0.14 0.16 0.18

?,
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evolutionary Models of Carciniogeriesi

— -

— CarC|nogene3|s—|sreﬂeﬁ-descr|bed as “somatic evolution”

= Cancer cells typically accumulate hundreds, thousand, and
even hundreds of thousands of genetic mutations

= Each mutation will perturb the fithess of the individual.
Those mutations that confer selective growth advantage
will result in clonal expansion.

= \What are the environmental selection parameters that
Sgovern the relative growth advantage,o eaoh.neu
IENOLYpPEY




SUmme syvoelutionan.moedel

r———— CalCINOgENESISTIS aniineVviiawle CoNSEqUENCE IE mom:r:; tissue
" ——«—ada@tlveﬁﬁdscape A clinical cancer emerges only If —.
| ____evolutionary speed'is sufficient to reach a fitness maximum

~ during the lifetime of the host. Fundamental equation of
carcinogenes is U; =0;,0G/dv|,_,,
= Environmental selection parameters in early carcinogenesis

promote mutations in oncogenes but these produce only. self-
limited clonal expansion

= | ater carcinogenesis is dominated by substrate competition.
This promotes the glycolytic phenotype.

ﬂe resulting acidification of the enviro twill tend te-resu_lg_ﬂ

N P53 dependentinduction efapop produces a new
Avironment'selecting for p53 mutations to, promote resistance

the acidic pH..

= The invasive phenotype is the predictable result of the

interaction of a plastic genome and a sequence of
environmental selection forces.




e ———— e L
- = Recall that the tumor soelution to the state equations Is

= only conditionally stable. Critical parameter is 0, where

04= (dy/dp) X (ry/ry) X Ky

= Recall the phenomenon of “self-poisoning™ inrcellular
automaton model




. HJ 8.00 x 10~ mM/s

0.0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

9,

80)7, 5 (3D)



Izj—de(H)T

T

here T is the concentration of tumor cells (cells/cm?), I, is the tumor growth rate (1/9),
K. is the tumor carrying capacity (cells/cm’) and d. is the maximum death rate (1/s) for
either extreme acidification or alkalinization:

dH

E=I‘HT—dH(H _HS)

here r, is the H* ion production rate by tumor cells (M -cm’/ (cell-s)), Hy is the

serum H" ion concentration and d,, is the rate of removal (or addition) of H" ions if

he local H™ ion concentration is greater (or less) than that within the serum. Typically,
d, =ap, where « is the blood vessel areal density (1/cm) and p is the vessel




_ (H_Hopt)2
FlH)= H?+bH +H’

opt

H is the H™ ion concentration expressed as a molarity (M). This function has the
desirable properties that f (Hopt) =0, f(0)=1,and f(H — 0)=1. The parameter b in

equation (1) sets the width of the hospitable zone. If H,, > H  is the half-maximum

oint on the acidic side, then b=H, , [1 —4H, /H,,+ (HOIDt / Hl/z)z} such

that f (H,,,)=1/2.




Dimensionless form:

Two fixed-points (i.e., (r,h) values at which dz/ds=0 and dh/ds=0), one where

(z=0,h=hy) and the other where (z >0,h>hy).

51h1/2 (hs B 1)2
hs + h1/2 [1 + hs (hs + h1/2 o 4):|

> 1

then absence of tumor is a stable state and vice-versa.




Results of Systemic Acidification
Cellular Automaton Model
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@ Vessel Fraction =0.08
Acid Production = 8.0 x 10° mM/s




From Harguindey, SA HenderseoniES, INaeherr Elfects ofisystemic

aicidification of rriice withl Sarcorna 180, Cancear Rasezrcr 99:4654-4%

. Effects of Systemic Acidification with Sarcoma 180
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"=l “Spontaneous’ regression observed in up to 6% of patients

«nrlarge series following nephrectomy (usual number about
1%).
= Two recent studies (NEJM 23:1655-1659, 2001 and Lancet
358:966-970, 2001) showed statistically signifieant survival
benefit in patients receiving cytoreductive nephrectomy
prior to system therapy with interferon-alfa.

ﬁ_{a‘posed mechanisms include reduction of tumor_t;urden“ -

movall of sourcerferfuture:metastases, enhanced




nephrectomy are due to removal of the kidney rather

~than the cancer

= Proposed mechanism:
~ = Unilateral nephrectomy, by removing functioning nephrons,
produces mild renal failure.
= Mild azotemia produces a graded metabolic acidosis

= The systemic acidification will be sufficient in.many cases
to reduce the velocity of the propagating tumor wave front
prolonging survival

pJiane; cases the degree of acidification is sufficient to il

destabilize. the tumor solution of thesstate eguations 'serthatsss
L LhE systemimpyesttorthe newstablersolution (the null -
selution) with apparently “spontaneous™ regression of the
tumor.

B




between the degree of renal failure and survival

following Qyt_oreductlve nephrectomy |
— Clmlcal data from SWOG 8949 reviewed (see NEJM |

-~ article)

= All patients received Interferon-alfa. Randomize into
surgical (cytoreductive nephrectomy) and non-surgical
arms.

= Survival for interferon alone 8.1 months, nephrectomy plus
interferon 11.1 months. P=0.012

*“BUN and creatinine obtained frm‘ﬂ?mﬂrg —

[ timE GieEnrelimen gical” values at time"
#first' dose of interferon. —




Patient Survival Following Cytoreductive Nephrectomy

Survival by Increase in Creatinine Post-Surgery (Yes/No)
Eligible Patients Randomized to the Surgery Arm on SNOG 8949

Median
At Risk Death in Months
0 15 15 4
""""" 1 70 64 17

______

Months from Nephrectomy



Tlumoer cell apopiosisinduced by Oiminuteintaantenaliniusionieimelphalan, acidi( piH 6.6)

or acid olus rmelonzl
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tweer irie degr 22 of renal fallure zind survival

| _followigiep gytorsduciive figonre romy_ : |
gm=— CI|n|caI data from SWOG 8949 reviewed (see N[=R]Y

-~ article)

= All patients received Interferon-alfa. Randomize into
surgical (cytoreductive nephrectomy) and non-surgical
arms.

= Survival for interferon alone 8.1 months, nephrectomy plus
interferon 11.1 months. P=0.012

J_...b N'and creatinine obtained from ds. “-F.’.ﬁeseuﬁg@g
- imererenieliment: =P ical” values at time"™
dose of Interferon.
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1. Mathematical models demonstrate that both early
and late tumor growth may be explained by local
microenvironmental perturbations that result from .
altered tumor metabolism with increased acid
production

lhe glycolytic phenotype is the consequence of -
sslres during

3. The acid-mediated tumor invasion model predicts
novel methods of treatment which are supported by
some preliminary clinical data.
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= "['will'also ask for an appropriation of an extra

- $100 million to launch an intensive campaign to
find a cure for cancer, and | will ask later for
whatever additional funds can effectively be used.
The time has come in America when the:same
kind of concentrated effort that split'the atom and
took man to the moon should be turned toward

ﬂmuering this dread disease. Let us make a fotal
t |

mbgel_cgmm@nm.amgyms goal.”
Richard Nixon. State of the Unien Speech, 1970




The “war” Is net going that well

- | 700,142 29.0

_ﬁ_-— 1

= W 2. Cancer —— 553,768 22.9
_=—h—
| 3. Cerebrovascular diseases 163,538 6.8
= 4. Chronic lower respiratory diseases 123,013 5.1
= 5. Accidents (Unintentional injuries) 101,537 4.2
0 6. Diabetes mellitus 71,372 3.0

InflUenza and Pneumonia

2.2

AlZHEIMERSais
= 9. Nephritis 39,480 1.6 g

= 10. Septicemia 32,238 1.3

Source: US Mortality Public Use Data Tape 2001, National Center for Health Statistics, Centers for Disease Control
and Prevention, 2003.
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Trig cor r*@r)t [ “sornztic evolution” was firs rr)rg,)oJed Ir1tre
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CHROMOSOME, 5a
ALTERATION MUTATION OR LDSS
GENE FAFP







Darwin’s Principles in cancer
evo,l,utio,,n TR A

y Herltable Varlatmn,ats"veral Ievels ..
. (population and individual ‘Phenotypic |
heterogeneity - reaction norms - in can’cer

and normal cells) \ -
2 Struggle for Existence (only in,eancer)

~ Fitness determines prollteraf( o= fitness of
any phenotype is dependent on -

-

~environmental selection force »- «« > w..




Bridging molecular biology with cancer evolution

rlow exzactly does a

futation confer 2

arolifgrziie efrayyin)

g ——-——I-F]-‘:/-:l:ﬁ]:["le o ———
Evolution selects b |

_-._—-—_-pher-\otwes-noi.qenotvpe
Fitter phenotypes proliferate
?t the expense of those less " g

The fitness value of any
genotype or phenotype is
dependent on the extant
environment




Evolutionary models In cancer

- Ecological Dynariles: .6/0r

= Strategy Dynamics U0 =107 (8G7Z§=5 -
—evaluated-at v = u; (Note combination of

genetic and environmental influence)

= Small changes in a population or strategy can
trigger dramatic changes in theradaptive
landscape.




Normal tissue and Substrate

Population X; ~ dependent growth availability
on constraints
—
Normal or The ability of cells JSTate —
abnormal in the population uptake must

T T—

fo detect and exceed basal

process sig

growth

positive and
negative growth
factors




The math model demonstrates
carcinogenesis requires mutations in genes
that make, receive, or process growth and
Normal cell | death signals

Carcinoma



But this produced only self-limited growth

Denslty




Re-focus on the anatomy and physiology of
epithelial surfaces

Tumour
stage

Marmal
apitheliur

Interstitial
necplasia

> CArs INoe - Invasive

I s

CARINoma

»| Metastatic

dizeasa

Physiological

—| Acidosis || Motility |—| Degradation of

- , tate Initiation | —s | Intenmittant |—| HIF o —= | GlYCONTE
hypida stabilization phenotype
\ I Process | Proliferation| |Se\echon ‘ | Induction ‘ | Metabohsm| ‘Select\on |

Model
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19 of 20 DCIS exhibited focal areas of
increased GLUT-1 expression. Central
distribution and in micro-invasion




Upregulation of Na/H exchangers in regions
of micro-invasion




Similar results reported in cervical cancer

Lee et. al.Gynecol Oncol. 2008 _
CIN 11 CIN III _w
= “Successful adaptation

to the hypoxia-
glycolysis-acidosis
seguence in the .
microenvironment Is
crucial during

cancinogenesis.” =
L TTTTR—
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irlicn’s rmagic gullet wriicr oroved orophet]c]n
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- “Infact; a diagnosis of cancer would be
similar to diagnosing /nfection in a patient. Both
words represent a broad spectrum of
liInesses. Using infection as an example, what
kind of infection — strep, staphylococcus, e-coli,
tuberculosis, anthrax? Each of those infectious

ﬁcteria responds to certainantibiotic...... . =

- festmenz;eutavich

(from the Arizona Cancer Center website)



Expectations remain that e will e found if

e It (stlmulus package)—wm Iaunch anew effort to
- conquer adisease that has touched the life of nearly
every American by seeking a cure for cancer in our

lifetime.”
- President Obama —

Will today be the day?

Moffitt Cancer Center logo

ﬂscurﬁ_ ith cam -"-‘;d

S

Cannabis linked to 'prostate cancer cure
LA Times
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Although 50%, died;, 50% sunvived —

SOINMENVESIES,

Historic, Dernographic, and
Genetic Evidence for Increased
Population Frequencies of
CCR5A32 Mutation in Croatian
Island Isolates after Lethal 15th
Century Epidemics

Mathods In 2002, DNA analysis of 100 randomby selected

Results The
scted |

per Corespandence to:
the background ririka B

Conclusion Cur
th mich- 15th century epider

"

P.D. VINCENTI MaccanNTI C.R.
/U-mﬁm#ur Poprelit poflilentia die' affectis
Duobria curre joogis i cadem aritals palefira
FPreddara rmorte defurni, 9
Tarrugpescem Mageihas ? eyl dagfiss
Lpregiam navavit operatic.




hewplagueyiciviiedsbuigWvitnuiaue

lower rrortel |J~L —

i g ]

e
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F e

s 1361 there was a second pestllence
"~ within England, which was called the
mortality of children. Several people of high
birth and a great number of children died.

E==

= |n 1374 the fourth pestilence began in

" England... In the followin , 8 large————
,beWer—sﬁoimﬁong the
wealthier and more eminent citizens died In
the pestilence.



Overlooking evolution: A systematic analysis of cancer relapse
and therapeutic resistance research

. A e e . .
C. Athena Aknplsl'i Virginia S. Y. Kwan', Kathryn A. J, ohnson'. Steven L. Neub.ergl.
Carlo C. Maley

= Cancer therapy selects,for cancer cells resistant to treatment, a process that is
[fundamentally evelutionary. To what extent, hewever, is the evolutionary perspective
employed in research on therapeutic resistance and relapse? We analyzed 6,228
papers about therapeutic resistance and/or relapse in cancers and found that the use of
evolution terms in abstracts has remained at about 1% since the 1980s. However,
detailed coding of 22 recent papers revealed a higher proportion of papers using
evolutionary methods or evolutionary theory, although this number is still less than 10%.
Despite the fact that relapse and therapeutic resistance is essentially’anievolutionary
process, it appears that this framework has not permeated research. This represents an
unrealized opportunity for advances in research on therapeutic resistance.

S

S ———

A - —
—



Challenges: Overcoming bamers

___._._-._—_

* Whatis evolutionand - | don'tbelievein —
= how doees:it-apply to mathematical modeling.
cancer?
Depends on who you = “Mathematical models are
ask: for researchers too lazy: to.

: _ _ do the experiments.”
evolutionary biologists,

Oncolo .|sts,_§90|al - “The Pl opines -
L= atical modelsican
Nﬁgﬁe tumor invasion —
paradigms this is patently absurd.”

typically meet
resistance




Change in the US Death; Rates: by Cause,
1950 & 2007

—— —_— e —

=

* Age-adjusted to 2000 US standard population.

Sources: 1950 Mortality Data - CDC/NCHS, NVSS, Mortality Revised.
2001 Mortality Data—NVSR-Death Final Data 2001-Volume 52, No. 3.
http://www.cdc.gov/nchs/data/nvsr/nvsr52/nvsr52 03.pdf

Heart Cerebrovascular Pneumonia/ Cancer
Diseases Diseases Influenza



UmpRiRvasioninodelsienginate
2coerirnernt

— = [DEA — Use tumor cells obtained thri
—_guided biopsies of primary and metastatic tumor
~ for diagnosis to develop primary cell cultures and
test the inhibitory effects of chemotherapeutic
agents in-vitro to predict clinical outcomes
analogous to sensitivity testing of cultured
bacteria to antibiotics

W WIETHODS- DisEerse materialﬁm CT guidediw
wa@um astatic colon cancer

nto small cellular aggregates and seed in culture
flasks containing DMEM with 20% FBS plus
antibiotics




= RESUL IiS:Initialigeo eJroitnliofnalinle

(rlorlolelyers In 9oL <r 'rIJr Wit 0oserveole
- Blellelsagilonstcliilel - ISIdNESTNENTEXP ~mrlrdr -

e ———

~ rapidly and |nvar|ably overgrew w the culture dish
~__destroying all the tumor cells.

= RESPONSE .
= — Kill fibroblasts!

= EVENTUAL RESPONSE- why?? No good answer —
lots of data but no organizational framewaork:.

= SOLUTION-Mathematical models

ﬁUNDAMENTAL FLAW — linear |§iﬁitive thinking, .
easoni ) U of2 ction Is typically.

ort-term, linear disease, cancers are chroenic and
dominated by non-linear processes




= “|n the abbsence ol consistent.application; of

rJJorolJJ rrieitrierreliicall mocdels, irigoretczell
gleie) e SV IHlargeiy remart empirical;
e enomeno1og|ceTI and anecdotal
successiul only in linear systems that can be
defined by a single experiment or a few
experiments.”

@enby‘and Maini in Natiﬁi 20024__—""




Generzl Gozl:

e

—— Sé'_ch for a'CUT’HTﬁE’FI—HﬂifyIng mechanlsm that

" Confers on cancer cells, despite their genotypic
and phenotypic diversity and instability, the
consistent ability to invade and destroy normal -
tissue. -




or cavalaolrie rrrelinigrrieiiczl] rrioegls e
turnor invasior

= - = =
- ——— ——— e

Treat tumor as a biologicallinvasion. That is, the tumor cells
- represent arforeign “species’ that begin as a small
population of cells (perhaps one) but, because of
competitive advantages over normal tissue, proliferate
rapidly driving the normal cells to extinction. .

Apply models models from population biolegy torinvasive
cancer

lat*are the competitive advantages;that tranermg;'!gg B
I IUMBIECElISH Albeunded growth? “One

. another only by killing its,yeung or stealing
its food™ - Schaefer




rrietaioolisrn and rnicroenvirornirent: vascularity 1s
50zlilzll]y YEIEIOYENECUS




The tumor microenvironment

— — TS o 0.2 mm
N b annulae

 EEFS5
M Hocchst
B CD21

Courtesy R Hill



Selective use ofi glycolytic metabolism for energy
orodtction 15 2 rellmzrs of transforred cells

— Vanburgr(circa 1920 s)rirstopsernearconsistent
*“*—'m'creased glucose Uptake In tumor tissue. ThIS -
~  turned out to be due to preferential use of the
glycolytic metabolic pathways even in the presence
of abundant oxygen. Recall:

Aerobic metabolism
= Glucose + O, —> 36 ATP + H,0 + CO;
Anaerobic metabolism
=

lucose —> 2 ATP + 2 lactic acid. B —
ﬁg@m@m with marked
creased glucose flux (typically 5te 10 fold).
Increased acid is pumped into the extracellular space

(pH; high and pH, low!)
= |nefficient and have to get rid of acid load. Why??7?




FDG-RPEIl Imaging denmoenstrates incrieased glucese uptake in
g vast rnejority of turnors ¢ mrl correlaites ugiage Wit
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Acld-Vlediated Turnor Invasion rlyootnesis:

X General concept: Tumer-induced perturbatlons mthe
- micro-envirenment are unfavorable to normal tissue and
enhance tumor growth in a self propagating pattern

= Specific concept: Altered tumor metabolism results in an
acidic pH, both in the tumor and in a ring of sureuUnding
normal tissue. Tumor cells have an ideal pHy (i-e.
maximum proliferation) of about 0.5 pH units lower than

ermal. This; prowdes a selectlve growth advantage so thats
%/ continu te.w. Jifcells die -
| ¢ , vased on properties found invirtually all

tumors



Proposed SequUeERCE:

CAltered glitlicose metapolismt restltsinfincreased
lactic acid production -
R transport across the membrane is increased
primarily through amplification of the Na*/H* antiport

= This results in increased pH; and decreased pH..
= H* ions in the extracellular space will difitise aleng

concentration gradients into peritumoral host tissue
resulting in: normal cell death, ECM degradation,
ﬂ‘_ﬁauctlon of'angiogenesis, and Ing omemgnh
l I resBoQ§M
‘umor cells (more tolerant of acid pHy) continue to
proliferate and invade into the disrupted normal
tissue

e



Equations geverning acid mediated invasion

0N| —

N, (1 —‘——(IIQK ) —d LN|+V (DM [N ]VN)

No(1 = 22— ay2) —d,LN, +V « (D, [N,]JVN,)

OC—L: I'3N2 - dgL + D3V2L
where

N = Normal cells
N,= Tumor cells
L= Excess acid concentration (i.e. the acid above pH 7.4)

r, and r, = Maximal growth rate for the cellular populations
respectively

K= Carrying capacity

a = Lumped interference term

D, and D,= Invasion terms for each cell population

d, and d, = Death rate due to excess acid in the extracellular
space

d;= Removal of excess acid by tumor and peritumoral
vasculature

.= Excess acid production by tumor cells

D; = Diffusion coefficient for H*




Dimensionless Parameters

T = rit §=/;—'3

%' =m((l —m)—61An

2 = pona(1 = m2) + Ve - [A2(1 = 11)Ven2]

A 53(?’]2 — A) + V%A

ot

where

o1 = (di/d3) x (r3/r1) x K,

(Wn = f‘zfrl

Ay = D>/Ds3

53 = d3/?‘1

Lds
r3k;




olrits (Sozliel romoyrwr/ 2lnENIENPe)E

[n1velr e)

"‘—"EF"P#zI N0 G- H=0
= FP#2 Ny=Ky N;=0 H=0
= FP#3 Ny=Ky(1-8;) N=K; FIS e

Where 6:=(di/dy




Linear Staollity Anzalysis

:__':F'_1 and I;P#?éa’reﬁﬂconditioally '

e ——
unstable

= FP#4 is stable and FP#3 is unstable if 6,>1
and vice versa
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n, Equation (A4)

n, Equation (A3)

A Equation (A2)
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X Model must include a discretized approach to descrlbe
- individual cell-history and its interactions with other cells
while retaining the while retaining continues elements to
describe the production, diffusion, and removal of H* ions.

= Modified Cellular Automata Model:

Establish N x N array of autematon cells with a one to one
espondence between the aute | cells-andqajyﬂ@-




hﬁtﬁomatonﬂs-eﬂﬁer-aiumor cell, a normal cell. a
-='m1ﬁ0vesse1—or-vacant

= The local extracellular pH

= The local glucose concentration




Viicroy easels are rendornly disiriotted rirolc

J'UHO'JE e JJmll]rlfJOfJ SPEC

& number of automaton cells;oececupied b
NS the totalinuimereli automatontce




= H* and glucose concentrations form 2
continuous fields over the simulation space
obeying suitable time-dependent, diffusion
equations with sinks, sources, and boundary

snditions determined by cells and vessels
- q

i

et




Iypical 20 X200 n.d, n oMz Cells blue
Jrlomly S1s I rric 1oy




Aulemigiass

s

= Mlcrovessels remam—ccﬂstant

— I’f utomaton cell is either a tumor or normal then the value
of the concentrations of H* or Glucose in its state vector
are considered.

= |f pH is lower than some critical threshold (pHpy PHp7); the
cell dies and the automata becomes vacant.

-l

Typical values pHy\=6.8 pHy=6.0

o but lower than some thresholc 'p‘l'la‘,’ﬂm_

ESTOUININTE ' state (€. ho mitosis occurs)
Typlcal pHon=7.1 pHo=6.4



.

ules (corit.)

Auvilemigian:

==t

-“I“fteﬁ‘pH >_pHQ—aﬂd=g=I=laeese{;oncentratlons are adeguate

-E(‘tﬁ?'é‘shdd-e—and G; assumed to be 2.5 mM), the cell may
divide but only if an adjacent automata cell is vacant. [f
more than one is vacant it enters the cell with the largest

—

value of G. —

——




Diffusion equation for the time-dependent glucose field




Acid orofile governirg equeatiorn




Strategy for Model Anelysis

':'=i-—r—'_—-—.'_:-__

e il e

o US@ 1arge dlspa'nfyﬂﬂ time scales of ceII

— proliferation ( about 102 hrs) and chemical
diffusion (intervessel diffusion time 1 — 10 s).

= Cell distribution changes so slowly they can be -
treated as adiabatic perturbationsioen the chemical
fields.

s




SYUic Itlorns orl 2l cozirse frrle SJ,

SEREemISUPSETTA(TF=SEO)FoIral

_ —up'da’ung—'l'hen solve the equmbrlum bo‘“h o'“

- Vvalue problems to determine the resultant
response of of the chemical fields. This is
repeated 1/f times until all cells and chemical fields
have been updated. This is one generation. No
quantitative differences found in evolution of
automata if /<0.1

e '-rﬂ-_
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e devebomem L of Jr)orﬁlrll CENCENS JenerﬂHy EGUInESNEAISIBIREVET
~ decades w th {I-step 0 [OQrESSION ot }"kl!iﬁ:)hllv*‘fﬁk OUdIs = =
—|ﬂer-easmgly dISO rdered pre- mallgnant IeS|ons such as colon pc yp (g E—

IAVasIive cancer.

« = (Carcinogenesis-isroften describe as “somatic evolution” driven by
competition among different populations arising through random
mutations with clonal selection determined by the properties of the
tissue environment formally analogous to classical Darwinian
dynamics.

= There is clear evidence of accumulating mutations during
carcinogenesis — most transformed cells possesshundreds,
thousands, or even hundreds of thousands of mutations. But, there is
no prototypical cancer genotype — the genome of every sporadic
populatiens . appears to be unigue.

model is that some ic mutations confer
o itrclonal sion. _Over time these

= |Loeb and others hypothesize increased mutation rate due to
chromosomal or microsattelite instability is necessary to drive
carcinogenesis



Environmental

/
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Endogenous
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DNA repair

DNA damage Mutations Mutations in
mutator genes
I

Repetitive
selection for Selection for
mutants & malignant
mutators | phenotype

20 years

Clinical
detection
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Proolerms arnd C Syl ‘ nt Concepiuzl Mocdel

What does ‘selective growth advantage mean? Need to defme the
~ dynamics.ofienvironmental selection forces with the phenotypic
expression of genetic mutations to understand the process.

Is the mutator phenotype necessary? Can invasive cancer evolve with the
normal background mutation rate? There is evidence of non-random
distribution of the mutations among different gene segment with
complete degradation of some and stability of othersi(e.g. membrane

transport proteins).
alter cellular ...
. mﬂ& of alterations in the

r—siill




The role of the mutagenic phenotype can be evaluated using| information theory since
genomic infermation generates;and maintains; the: transmembrane entropy. gradient.

Shannon entropy in each codon where r is the probability of each of the 64 possible
configurations:

e erlobbf ==
Total information in a gene with m codons:

lo=mH'

Total information in the genome with G genes

G
=31

g1

Cellular fithess u. is sum of contribution from all of the genes where 1, is the fitness

contribution from each gene and is a function of the information content (i.e. reduction
in the information content of the gene reduces its contribution to fithess) and the total
number of gene products within the celll & which may be controlled by other genes
acting as repressors or promoters

ne = Y k(o ugll)

g1

Cellular proliferation r. is determined by the cellular fithess compared to the mean

fitness of its competitors within the community

M
flu, 1) ZA ugllg) - 1&\[2 U]

&l m=1

Applying the Eigen-Schuster limit, information degradation in a specific gene follows
its contribution to fitness:

du,
dt




Raslt:

— = iniermationfoss bECAUSE oiraccumulaungimutatons s constramed

e Dy tne competl’uve stresses of the Darwinian envirenmer: -
carcinogenesis protecting'the genome from an mformatlon crisis”

« = Because of these dynamics, gene segments that decrease the
fitness (proliferation) of the cells are subject to maximum
degradation. This is manifested as loss of function of tumor
suppressor genes and differentiation genes. The latter manifests as
progressive de-differentiation

= Gene segments necessary for proliferation (such as,oncogenes,
membrane transporters, PFK) are protected by prompt clonally loss
following a muation. The observed mutation rate in these genes will

eyminimal censisting primarily of gain-of-function mutations.

lhe net effect is tumor cells,will asympioticallyiapproach é-s.t'aﬁ_
minimumiinfermaton (| plexity) resulting in progressive

)SS of differentiated functlon but unbounded proliferation. This
implies mechanism of tumor invasion must be simple




= Define p,(x,t) as the probability that any observed cell in'some volume
~ ofitissue (x).is.a.tumor cell. This marginal probability also represents,
by the law of large numbers, the relative number of cancer cells in any
space x. The time dependence of p.(x,t) defines tumor growth.

= |n EPI data in any measurement is the result of flow of Fisher
Information from an information source to a sink J —/

= Here Jis the extracellular information produced by the presence of the
cancer cell about the age of the tumor. / is the quantity of information
eaches normal cells.

p(t) Ft® F=constant 6= 162



The EPI predlctlons can be comparned to the growth rate ofi small breast cancers
ootelifisc Usirlg sectsritiel rrierrrogrears,. SLe sidcdie: Srere rf' ' e ' :c-, 2

— all snowed oower law growir witn 9 of ‘
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Basic Evolution Equations

Assume a volume of tissue contains distinct cellular populations designated by

x;i = 1,...,n,. Each population is defined by a phenotype vector u; composed of
multiple scalar components that include cellular properties and interactions with the
microenvironment (other cells, ECM, nutrients etc.). We define population and mean

phenotype vectors:
X = I: X1 oot X :I

“mean phenotype” assumes limited diversity within each population due to the small
background mutation rate and environmental perturbations. This has been observed in
clonal populations of both normal and transformed cells .

Cellular fitness is defined by clonal proliferative capacity and determined by
fitness-generating or G-functions with a virtual variable, v. Setting the virtual variable
equal to the phenotype of a population produces the fithess for that population, which
is a function of X, U, and substrate concentration k. The relationship between fithess
and the G-function is given by

G(v, U, X, R) =H,(uxR)y i=1,.. 5.

V=1,

The population dynamics maybe written either in terms of the fitness function or the
fitness generating function

.‘.C,' = I,‘H,‘(U,X,R) = .T,'(}(V.U,X,R)‘

v=if;

While the G-function does not provide a conceptual advantage from simply writing
down equations of motion, it is critical for understanding how systems evolve.

A single G-function model with scalar strategies - defining "somatic ecology”:

) Do alvux; E(WR?
G,WX,R) =B, 1 -&==— || =—~+— -
X ( ) e "

Cell populations in-vivo are subject to two general growth constraints:
1.“Organizational” controls encompassed in X(v) including intracellular processes
such as senescence and interactions with the extracellular environment including
other cells and environmental factors that resutl from their phenotypes such as ECM,
growth promoters and suppressors [a(v, u)]. 2. Substrate availability (second term) -
cells must obtain substrate in excess of basal metabolic demand »: to supply energy
and macromolecules for proliferation. B, is a constant converting excess substrate
into new cells.
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lyriarmics

We assume population nhumbers for each phenotype x; are normally determined by
K(v). That is, normal cells under physiologic conditions are not subject to substrate

limitations. Pathological exceptions include acute or chronic ischemia such as stroke,
myocardial infarction or diabetic ulcers.

Substrate dynamics include Michaelis-Menten uptake:

- o~ E(v)R2
Rer=2 e
=1

where r is substrate delivery rate

r= re(man +m12Ni)

=2

r. represents local physiologic control that modulates flow through the vascular
network and must be > 1 for cell proliferation (i.e. delivery must exceed basal
demand). We assume maximum substrate delivery is limited by local vascularity:
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K™ = Maximum number of cells
Kt = Mean tissue carrying capacity of tumor cells
Ene.n = Mean substrate uptake for normal cells
Ei.... = Mean substrate uptake for tumor cells

uy, = Value of up for largest x"™> =2, ... .n
urmax — Value of u, for maximum £

o; = Variance in X distributions

og = Variance in £ distributions
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the effects of accumulating genemic mutations.

. = ~Jihe constraints.alsoproduce variations in the observed mutation rate of
different gene segments and add a caveat to interpretation of experiments
designed to measure the mutation rate and understand the role of specific
mutations in tumor biology. Specifically: 1. using the observed mutation rate in
any gene to infer the global genomic mutation is possible only with precise -
knowledge of the contribution of that gene to cellular fitness. 2. tumor cells'in-
vitro are subject to environmental selection pressures different from those in-
vivo. Mutations observed in cell lines may be irrelevant to the same tumor

cells when they are in-situ -
atlon asy ically. appreachiesias
sed to accurately predict

qng carcmogene3|s ceIIuIar mform
imum. This

WIMBREIoOWL | As and suggests fundamentall limitations; im tumor
screening strategies.




Conclusions (cornt)

Evo|uf|onary game'ﬂTeoryxanJ:e used to deflne the lnteractlons of the —

- phenotypic properties generated by accumulating mutations and environmental
selection properties.

=  Growth constraints in normal tissues favor initial mutations that alter cellular
reception or processing of growth promoter and inhibitory signals such as
mutations in oncogenes and tumor suppressor genes.

= As these mutations accumulate, the populations, although uncenstrained by
local growth factors, exhibit only self-limited growth due to substrate limitations.
This results in transition to a previously unknown phase of carcinogenesis
dominated by competition for substrate and provides the evolutionary dynamics
for development of the angiogenic and glycolytic phenotypes

cellular properties of invasive cancer pop e reeeﬁt-ﬂmw
othistages




Coriclusions (cornt)

In'gene ral , the evoluﬂonary models demonstrate mallgnant phenotypes WI||
inevitably emerge from the fitness landscape necessary for maintenance of

~ multiple'phenotypes in a cooperative, non-competitive environment. That is,
tumors: are the price of the environment necessary to maintain functioning
multicellular organisms. This is evident in the number of benign lesions such
as colon polyps or skin nevi that increase monotonically with age. These
mutant populations, although benign, have the potential to form cancers if they
can evolve to a local fithess maximum.

= The development of a clinical cancer from a premalignant lesion is dependent
on the speed of evolution. If a tumor population approaches a fitness
maximum within the lifetime of the host, he/she develops cancer. Otherwise,
the tumor is insignificant.

erevelutienaryirate isidetermined by the mutation, rate and the clonal E
fivity of the environment. This combines -centric approachrandithes
wronmental APPIOZCHNRIGNAISING el of carcinogenesis.

sRAllerauensinrtherenvironment may substantially alter tumor growth even in

e presence of a stable genome. Consider strategies that treat normal cells
and alter the adaptive landscape rather than treating just tumors.
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