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Lecture 1 - Reasonings on Complex Systems

A Personal Bibliographic Search

e Evolution:
e E. Mayr,What Evolution Is, (Basic Books, New York, 2001).
e M.A. Nowak, Evolutionary Dynamics, Princeton Univ. Press, (2006).

e Networks:

e A.L. BarabasiLinked. The New Science of Networks(Perseus Publishing,
Cambridge Massachusetts, 2002.)

e F. Vega-RedonddComplex Social Networks Cambridge University Press,
Cambridge, (2007).

Methods of Statistical Physics:

e N.Bellomo,Modelling Complex Living Systems. A Kinetic Theory and
Stochastic Game Approach (Birkhauser-Springer, Boston, 2008).

e N.Bellomo, D. Knopoff, and J. Sole@n the Difficult Interplay Between Life,
“Complexity”, and Mathematical Sciencellath. Models Methods Appl. Sci23,
(2013).
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Lecture 1 - Reasonings on Complex Systems

e E. Kant 1790, daCritique de la raison pur@raduction Fracaise, Press Univ. de
France, 1967,

Living Systems: Special structures organized and with bhigyato chase a
purpose.

E. Schrodinger, 1943 What is Life?

| living systems have the ability to extract entropy to kelegit own at low
levels.

E.P. Wiegner, Comm. Pure Appl. Math., 1960

The miracle of the appropriateness of the language of madhesifor the
formulation of the laws of physics is a wonderful gift which meither
understand nor deserve.
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R. May, Science 2003

In the physical sciences, mathematical theory and expatimhavestigation
have always marched together. Mathematics has been lessiv# in the life
sciences, possibly because they have been until receisttyipieve, lacking
the invariance principles and fundamental natural consdaof physics.

G. Jona Lasinio, La Matematica come Linguaggio delle Scienze della Natura

Life represents and advanced stage of an evolutive andiselgecocess. It
seems to me difficult understanding living entities withoamsidering their
historical evolution. Population dynamics is based on laaigbrimitive
mathematical theory, on the other hand it should explairethergence of
individual living entities by selection.

Is life an emerging property of matter?

On the Difficult Interplay Between Life, “Complexity”, and M athematical Sciences Towards a Theory of Complex Living Being — p. 6/82



Lecture 1 - Reasonings on Complex Systems

Hartwell - Nobel Laureate 2001 Nature 1999

¢ Biological systems are very different from the physicallograical systems
analyzed by statistical mechanics or hydrodynamics. Sitedl mechanics
typically deals with systems containing many copies of arigavacting
components, whereas cells contain from millions to a fewessopf each of
thousands of different components, each with very speetécactions.

e Although living systems obey the laws of physics and chstrtisé notion
of function or purpose differentiate biology from otherunad sciences.
Organisms exist to reproduce, whereas, outside religial®brocks and
stars have no purpose. Selection for function has produoedivting cell,

with a unique set of properties which distinguish it fromnmaate systems of
Interacting molecules. Cells exist far from thermal edurilim by harvesting
energy from their environment.
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Lecture 1 - Reasonings on Complex Systems

N.B. H. Berestycki, F. Brezzi, and J.P. NadglMathematics and Complexity in Life
and Human ScienceMathematical Models and Methods in Applied Sciences, 2010

The study of complex systems, namely systems of many uadsvidteracting
In a non-linear manner, has received in recent years a re@akincrease of
iInterest among applied mathematicians, physicists asagaksearchers in
various other fields as economy or social sciences.

Their collective overall behavior is determined by the dyres of their
Interactions. On the other hand, a traditional modelingmdividual
dynamics does not lead in a straightforward way to a matherakat
description of collective emerging behaviors.

In particular it is very difficult to understand and model sgesystems based
on the sole description of the dynamics and interactionsfefaaindividual
entities localized in space and time.
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Five Common Features and Sources of Complexity

1. Abilaty to express a strategy: Living entities are capable to develop
specificstrategies andorganization abilitieshat depend on the state of the
surrounding environment. These can be expressed withewatplication of any
external organizing principle. They typically operatat-of-equilibrium. For
example, a constant struggle with the environment is deegeldo remain in a
particular out-of-equilibrium state, namely stay alive

2. Heterogeneity: The ability to express a strategy is not the same for all
entities: Heterogeneitgharacterizes a great part of living systems, namely, the
characteristics of interacting entities can even diffenfran entity to another
belonging to the same structur@. developmental biology, this is due to different
phenotype expressions generated by the same genotype

3. Learning ability: Living systems receive inputs from their environments and
have the ability to learn from past experience. Therefoee ttrategic ability and the
characteristics of interactions evolve in tinfgocieties can induce a collective strategy
toward individual learning
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Lecture 1 - Reasonings on Complex Systems

4. Nonlinear Interactions: Interactions are nonlinearly additive and involve
Immediate neighbors, but in some cases also distant @ticlving systems have the
ability to communicate and can possibly choose differeseolation paths. In some
cases, the topological distribution of a fixed number of hbas can play a prominent
role in the development of the strategy and interactiongngientitiesplay a

game at each interaction with an output that is technically related nto their
strategy often related to surviving and adaptation abilitgividual interactions in
swarms can depend on the number of interacting entitiesnétat on their distance

5. Darwinian selection and time as a key variable: All living
systems are evolutionary. Birth processes can generatedudls more fitted to the
environment, who can generate new individuals again mdealfio the outer
environment. Neglecting this aspect means that the tinle stabservation and
modeling of the system itself is not long enough to obseradugionary events. The
time scale can be very short for cellular systems and veny fonvertebrates.
Micro-Darwinian occurs at small scales, while Darwiniaolenion is generally
interpreted at large scales
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Technical Features of Complex Systems

e Multiscale aspects: The study of complex living systems always needs a
multiscale approactsuch that the dynamics at the large scale needs to be properl
related to the dynamics at the low scales. For instance utingibns expressed by a
cell are determined by the dynamics at the molecular (genetrel. This feature
characterizes also the dynamics of vehicles and animaks,enthe mechanical system
IS linked to individual behaviors. In any case, macroscopociels generally kill the
heterogeneous behaviors exhibited at the low scales.

e Tvme varying role of the environment: The environment surrounding
a living system evolves in time, also due to the interactiai ¥he inner system.
Therefore the output of this interaction evolves in timee@hthe several implications
Is that the number of components of a living system might gkean time.
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On the Interpretation of Empirical Data

The collective dynamics of complex systems is determinemhtgyactions at the
micro-scale ruled by the strategy that interacting erstiéiee able to express. This
collective dynamics exhibits emerging behaviors as wedicase aspects of the
dynamics which may not be specifically related to complesitich as steady
conditions uniform in space that are reproduced in analagly elassical systems.
These considerations lead to state that models should haabtlity to depict both
emerging behaviors far from steady cases, which shouldenattificially imposed in
the structure of the model, rather should be induced byantams at the micro-scale.

Accordingly, empirical data should be used toward the assesnent of models at
the micro-scale. Subsequently validation of models shouloe obtained by
Investigating their ability to depict emerging behaviors.However, the process can
be implemented if the modeling at the micro-scale is consisnt with the physics of
the real system, and if the tuning method leads to a unique salion of the inverse
problem of parameters identification.
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What is the Black Swan?It is worth detailing a little more the expressiBiack Swan
introduced in the specialized literature for indicatingpradictable events, which are
far away from those generally observed by repeated empawdence. According to
the definition by Taleb a Black Swan is specifically charazést as follows:

“A Black Swan is a highly improbable event with three priradipharacteristics: Itis
unpredictable; it carries a massive impact; and, after thetf we concoct an
explanation that makes it appear less random, and more giaole, than it was.”

N. N. Taleb, The Black Swan: The Impact of the Highly Improbalitandom House,
New York City, 2007.

Since it is very difficult to predict directly the onset of aabk swan, it is useful
looking forthe presence of early signals

M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Cargnter, V. Dakos,
H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara Early-warning signals for
critical transitionsNaturg 461, 53-59, (2009).
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Complexity Features in the Metamorphosis by Escher

Heterogeneous ability to express a strategy
Nonlinear Interactions

Learning ability

Darwinian selection and time as a key variable
Complexity in the interpretation of reality

The Black Swan.
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To what extent the Metamorphosis represents the complexitgf living systems?

Let us leave some freedom to our fantasy by taking the lidertgok at the fascinating
piece of art and concentrate to the right hand-end part wthereandscape evolves in
time going first from a geometrical village made of similddpking houses to a real
village with a heterogeneous distribution of houses’ sh&®eher’s representations
have greatly attracted the fantasy of mathematicians wersaously or not, have
linked them to some mathematical reasonings. This is plcghat it is here
suggested by posing the gquestion in the title of the slide.

The evolution is related to interactions, definitely mué&ipnes. Is nonlinearity
somehow expressed? the evolution is selective as showreliyatihsition from
essential shapes to an organized village, where all avaisgdaces are well exploited.
Moreover, the presence of a church, that takes an imporéahbpthe space and a
somehow central position, indicates the presence of araligvolution. This latter
might even reflect a multiscale dynamics. In fact, it resastshe output of the action
from the micro-scale of individuals to the macro-scale efvifillage.
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Suddenly the landscape changes from a village, turning inta chess plate, the
only connections being a Bridge and a tower. Can this suddemange be
interpreted as a “Black Swan”?

The real Tower is not that of the chess plate, however, it sarpreted as an early
signal that an extreme event is going to happen. In any daseatious changes in the
picture can be interpreted as predictable emerging betsgawuile the last one is not a
predictable event. one might consider that Escher wentgjirohe experience of two
world wars, while a peaceful village is transformed into #lbdetween the two
armies of the chess plate.

Since the village exists in reality (it is in the Mediterranecoast immediately on the
South of the village of Amalfi) does the Tower truly exists®Millage looks at the
sea, while the tower cannot be observed looking at it fronfria as in the picture.
On the other hand, looking at it from the rear it is possiblelieerve a tower on the
cape in front of the village. This is not sufficient to answes tjuestion posed above;
however one can realize that emerging behaviors are alsouttito be interpreted.
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Strategy Step |

e The mathematical approach devoted to the ambitious aimadnstanding the
essence of life and evolution and, consequently, of dasgriy mathematical
equations the dynamics of living systems, cannot be basethesical field theories as
usual in the modeling of inert matter.

e Accordingly, one can either look fdreuristic modelsbased on a purely
phenomenological interpretation of the system under denation, or look for
mathematical modelsderived within suitable mathematical structures conststeth
the paradigms of complexity.

e This second approach is, according to the authors’s biase ngorous and is, in any
case the necessary step towards the development of a ssittamt theory linking
mathematics to the specific science under consideratigrniskbbgy, economy,
sociology, etcetera. In other words, the structure offeesthathematical theory, while
the characterization of the interactions at the micro-shtaild be delivered by
theoretical tools of the other science.
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Lecture 1 - Reasonings on Complex Systems

Strategy Step Il

Understanding the links between the dynamics of livingeyst and their
complexity features;

Derivation a general mathematical structure, consistdhttive aforesaid
features, with the aim of offering the conceptual framewtorkard the derivation
of specific models;

Design of specific models corresponding to well defined elsge$ systems by
Implementing the said structure with suitable model ofwrdlial-based
Interactions according to a detailed interpretation ofdixeamics at the
micro-scale;

Validation of models by comparison of the dynamics predidig them with that
one resulting from empirical data;

Analysis of the gap between modeling and mathematical ¥heor
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Strategy Step Il

The overall system is subdivided infonctional subsystentonstituted by
entities, calledactive particleswhose individual state is callexttivity;

The state of each functional subsystem is defined by a sejtalrle dependent,
probability distribution over the microscopic state, whincludes position,
velocity, and activity variables, which represent thetstyaes expressed
heterogeneously by each individual;

Interactions are modeled by games, more precisely staclygmshes, where the
state of the interacting particles and the output of theauons are known in
probability;

The evolution of the probability distribution is obtaineg & balance of particles
within elementary volume of the space of the microscopitestavhere the
dynamics of inflow and outflow of particles is related to iaigrons at the
microscopic scale.
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Representation for space distributed systems in each node
Consider active particles in a node for functional subsyst&beled by the subscrifat

e The description of the overall state of the system is dedigiday thegeneralized
one-particle distribution function

fi=filt,x,v,u) = fi(t,w) : [0,T]xQx D, x D, - R4,

such thatf; (¢, x, v, u) dx dv du = f;(t, w) dw denotes the number of active particles
whose state, at timg is in the intervalw, w + dw]| of thei-th subsystem.

e w = {x,v,u} is an element of thepace of the microscopic states.

e X andv Represent thenechanical variables, whenever these have a physical
meaning: in some cases they are vanishing variables, whiletivorks, the space is
substituted by nodes.

e The activity variable can be a vector.
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Lecture 1 - Reasonings on Complex Systems

e The activity terms are computed as follows:
alfltx) = [ ufiltxvadvdu,
D+, X Dy,
is thelocal activation, while thelocal activation densityis given by:

a;[fi](t,x) _ 1
vilfil(¢,x) vl fi] (L, %)

ad;|fi](t,x) = /D . ufi(t,x,v,u)dv du.

e More in general one can introduce higher order moments toattivation:

a?[fl](tvx) — / ’Ujpfi(t,X,V,’Uj) dv du,

Dy, XDy,

e Mechanical terms are computed analogously and depend on the activity terms.
For instance théocal densities are computed as follows:

pilfil(t, %) = / Filt %, v, ) dv du,

and similarly for higher order quantities.
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Stochastic Gamed.iving entities, at each interactiop/ay a gamavith an output that
technically depends on their strategy often related toigumgy and adaptation abilities,
namely to an individual or collective search for fithess. dhgut of the game
generally is not deterministic even when a causality ppiecis identified.

e Testparticles of the-th functional subsystem with microscopic state, at ttme
delivered by the variabléx, v, u) := w, whose distribution function is

fi = fi(t,x,v,u) = fi(t,w). The test particle is assumed to be representative of the
whole system.

e Field particles of thek-th functional subsystem with microscopic state, at ttme
defined by the variabléx™, v*, u™) := w™, whose distribution function is

fe = fu(t,x*, v, u™) = fr(t,w").
e Candidate particles, of theh-th functional subsystem, with microscopic state, at
time ¢, defined by the variabléx., v., u.) := w., whose distribution function is

frn = fr(t, e, Vi, us) = fr(t, ).
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Stochastic Games

1. Competitive (dissent): When one of the interacting particle increases its status by
taking advantage of the other, obliging the latter to desxeta Therefore the
competition brings advantage to only one of the two. Thigtgpinteraction has
the effect of increasing the difference between the stdtedaracting particles,
due to a kind of driving back effect.

2. Cooperative (consensus)When the interacting particles exchange their status,
one by increasing it and the other one by decreasing it. Thwergthe interacting
active particles show a trend to share their micro-stateh $gpe of interaction
leads to a decrease of the difference between the integgudirticles’ states, due
to a sort of dragging effect.

3. Learning: One of the two modifies, independently from the other, theoastate,
In the sense that it learns by reducing the distance betvirssn. t

4. Hiding-chasing: One of the two attempts to increase the overall distance them
other, which attempts to reduce it.
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Stochastic GamedPictorial illustration of (a) competitive,(b) cooperai\c)
hiding-chasing and (d) learning game dynamics between tireegparticles. Black

and grey bullets denote, respectively, the pre- and pdostaation states of the
particles.

%q O—0O ﬂ O o ‘WQ/HH%()‘QH»

(a) Competition (b) Cooperation

(c) Hiding-chasing (d) Learning
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Stochastic Games

Figure 1. — Active particles interact with other particlagheir action domain
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Stochastic Game®n the interplay between sensitivity and interaction damai

l QI Q[ QS
(a)

(b) (c)

R
Rs R,
Rs
R R
. | S

(a) (b) (c)
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Stochastic Games

Interactions with modification of activity and transition: Generation of particles
into a new functional subsystem occurs through pathway$erént paths can be
chosen according to the dynamics at the lower scale.

<.

Figure 2: — Active particles during proliferation move frame functional subsystem
to the other through pathways.
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Selected bibliography

e M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbai, I. Giardina,

V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic,
Interaction ruling animal collective behavior dependsapotogical rather than metric
distance: evidence from a field studroc. Nat. Acad. Sgi105(4) (2008), 1232-1237.

e R. Eftimie, Hyperbolic and kinetic models for self-organized bioti
aggregations and movement: a brief overvidwMath. Biology 65 (2012), 35-75.

e N. Bellomo and C. Doglg, On the modelling of traffic and crowds - a survey of
models, speculations, and perspectie®\M Review, 53(3) (2011), 409-463.

e N. Bellomo, and A. Bellouquid On The Modeling of Crowd Dynamics: Looking at
the Beautiful Shapes of Swarnid¢etw. Heter. Media.6 (2011), 383—399.

e N. Bellomo and J. Soler On the mathematical theory of the dynamics of swarms
viewed as complex system®@ath. Models Methods Appl. S¢i22, Suppl. 1:
1140006, (2012).

e N. Bellomo, A. Bellouquid, and D. Knopoff, From the micro-scale to collective
crowd dynamicsSIAM Multiscale Modeling Simulatig2013, to appear.
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Crowds in Bounded Domain with Obstacles
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Crowds in unbounded Domains

azto azt2

On the Difficult Interplay Between Life, “Complexity”, and M athematical Sciences Towards a Theory of Complex Living Being— p. 32/82



Lecture 2 - 2.1 Social Behaviors in Crowds

Active particles and micro-scale states

Crowd dynamics

Active particles Pedestrians
Position
Microscopic state Velocity
Activity

Different abilities
Functional subsystems Individuals pursuing different targets

etc.
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Polar coordinates with discrete values are used for thecitgleariablev = {v, 6}:

19:{(91:(),---,92',---,(971: n 27T}, IU:{m:O,...,vj,...,vmzl}.

n—1

flt,x,v,u) Zwatxu (0—0;)R6v—u;).

1=1 7=1
Some specific cases can be considered. For instance thef¢tasedifferent groups,
labeled with the superscript = 1, 2, which move towards two different targets.

fo(t,x,v,u) ZZfzjtx 0;)) ®d(v—1v;) ®(u—uo),
=1 7=1

wheref;;(t,x) = f(t,x, 6;,v;) corresponding, for each group= 1, 2, to the
1j-particle, namely to the pedestrian moving in the directipwith velocity v, .

— Zpa(t,x) = Sj;j;jf{j(tvx>a

o=14i=1 j=1
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Interactions in the table of games

T
PTG %
6, 6,
Y
=

Particle in P moves to a directidly (black arrow) and interacts with a field particle
moving tod, (blue arrow), the direction to the targetds (red arrow).
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Lecture 2 - 2.1 Social Behaviors in Crowds

(0 +  vij - Ox) fij(t,x) = Tf](t, x)

— Z Z /A77[:0<t7X*>]A2k,pQ<ij)[p(taX*>]fgk<t7X)fgq(tﬁx*>dX*

h,p=1k,q=1

AT / nlp(t, x™)] f2u(t, ") dx,

p=1qg=1

wheref = { f;; }, while the termA7, . (¢j) should be consistent with the probability
density property:

DO Ankpelif) =1, Vhpe{l,....n}, Vkqe{l,...,m},

i=1 j=1

for o = 1, 2, and for all conditioning local density.
Pedestrians have a visibility zore= A(x), which does not coincide with the whole
domain(2 due to the limited visibility angle of each individual.
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e Interaction rate:
n(p(t,x)) = n°(1 + p(t, x)).

e Transition probability density: The approach proposed here is based on the
assumption that particles are subject to three differdhtances, namely thigend to
the exit pointtheinfluence of the streamduced by the other pedestrians, and the
selection of the path with minimal density gradient. A siifipd interpretation of the
phenomenological behavior is obtained by assuming therizetion of the two
probability densities modeling the modifications of theoed#ly direction and modulus:

Ahk,pg(1J) = Bhp(2) (eh — 9¢|p(t,x)) X Ckq(J) (Uk — ’Uj\p(t,x)).

— Interaction with a upper stream and target directions, mage> 0, 0, > 0y

Bry,(i) = au(l—p)+aup if i=h+1,
Br,(i) = l—aus(l—p)—auop if i=h,
Br,(i) = 0 if i=h-1
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Lecture 2 - 2.1 Social Behaviors in Crowds

— Interaction with a upper stream and low target direcbipn> 60,; 6, < 0:

Br,(i) = auop if i=h+1,
Br,(i)) = 1l—au(l—p)—aup if i=nh,
Bn,(i) = auo(l—p) if i=h-1

— Interaction with a lower stream and upper target diredior: 0,; 6, > 0!

Bry,(i) = au(l—p) if i=h+1,
Br,(i) = l—aus(l—p)—auop if i=h,
Br,(i) = auop if i=h-1

— Interaction with a lower stream and target directibps< 0,; 0, < 0y

Bi(i) = 0 if i=h+1,
Br,(i)) = l1l—au(l—p)—aup if i=nh,
Br,(1)) = au(l—p)+aup if i=h-1
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Lecture 2 - 2.1 Social Behaviors in Crowds

— Interaction with faster particles, < v, and slower particles, > v,

[ 1—Buop, j=k [ Buop, =k
Ciq(7) = Buop, j=k+1 Chg() =4 1-Buop, j=k—1;
. 0, otherwise. L 0, otherwise.

— Interaction with equal velocity particles, = v,

[ 1-28uop, j=k;
Ciq(J) = § Buop, j=k—-1
\ /B'U/(),O, ]:k+1

—for k = 1 the candidate particle cannot reduce velocity, while#o& k£ cannot
increase it

[ 1-fBuop, j=1, [ Buop,  j=m-l
Cg‘l<]>:< BU0,0, ]:21 CgQ<]>:< 1—5U0p, ]:m1
L 0, otherwise; . 0, otherwise.
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Lecture 2 - 2.1 Social Behaviors in Crowds

Mild form of the initial value problem

—

Gex) = o560+ | (st[f,ﬂ(s,x)—i,i(s, ) ZIF (s, x>)ds,
ie{l,...,n}, j€{l,....m}, o€e{l,2},

where the following notation has been used for any givenorefitt, x):
fj(t, x) = fii(t, x + v; cos(0:)t, y + v; sin(0;)t).

H.1. For all positiveR, there exists a constaat, > 0 so that

0<n(p) <C,, whenever 0 <p<R.

H.2. Both the encounter ratgp] and the transition probabilityy, . (ij)[p] are

Lipschitz continuous functions of the macroscopic dengjtiye., that there exist
constantd.,,, L 4 is such that

| nlpil=nlp2] |< Ly | pr—p2 [, | Ank,pq(i7)[01]—Ank,pq (25) 2] [< La | pr—p2 |

whenevell < p; < R,0< p2 < R,andalli,h,p=1,..,nandj, k,q =1,..,m.
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Lecture 2 - 2.1 Social Behaviors in Crowds

Existence Theory

THEOREM: Let¢y; € Lo, N L', ¢7; > 0, then there exist$’ so that, if

| ¢ ||1< ¢°, there exisfT, ag, and R so that a unique non-negative solution to the
Initial value problem exists and satisfies:

feXr, sup || f(t)[1< a0l ¢,
t€[0,T)

p(t,x) < R, Vtel0,T], xe€.

Moreover, if>°2_ S > ieq |l 935 llo< 1, and|| & [|1 is small, one has

p(t,x) <1, Vvtel0,T], xe.

There existp”, (r =1, ...,p — 1) such that if|| ¢ ||1< ¢", there exists,- so that it is
possible to find a unigue non-negative solution to the iivdue problem satisfying
for anyr < p — 1 the following f(¢) € X0, (p — 1)T],

sup || f(E+ (r = 1DT) 1< ar—1 || ¢ ||,
te[0,T]

andp(t+ (r—1)T,x) < R, Vte][0,T], x €. Moreover,
p(t+ (r—1T,x) <1, Vtelo,T], xe€.
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A Case Study

o,
o ,"‘:\\\\\\\
P
Py

) 0’(;‘,,«“‘);'.‘«}"‘1

|

I
!

/M"\\\\\\\\ '0
it i
i /w‘

I - “I'
‘ «

IS
,"' ‘&&%Q‘S\‘\‘\\\.
AN

\

\
\

On the Diffi€ult Interplay Between Life, “Complexity”, and M athematical Scienesowards a Theory of Complex Living Being — p. 42/82
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A Case Study
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Case Study 2

—ma@a 0> -
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Lecture 2 - 2.2 System Biology and Immune Competition

A Post-Darwinian Approach to Hallmarks of Cancer and ImmGeés

EVOLUTION OF CELLULAR PHENOTYPE

. SINGLE CELL

A

MITOSIS

TWO DAUGTHER CELLS
CONTAINING IDENTICAL
COPIES OF DNA

EXPRESSION OF
OF NEURON
SPECIFIC GENE

v \

%}g NEURON @ EPITHELIAL CELL
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Lecture 2 - 2.2 System Biology and Immune Competition

MULTISCALE REPRESENTATION OF TUMOUR GROWTHgene interactionsstochastic
games}, cells kinetic theory, tissues ¢ontinuum mechanigsmixed (ybrid models

Kinetic theory Hybrid models

for active particles @

Stochastic games

Tumor tissue

N. Bellomo, A. Bellouquid, J. Nieto, and J. SolerModeling chemotaxis from
L2-closure moments in kinetic theory of active partidiscr. Cont. Dyn. Syst. - B8
847-863, (2013).
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Lecture 2 - 2.2 System Biology and Immune Competition

Phenomenological description

Multicellular systems involved in the immune competitiare atrongly related to the
complexity features presented in Lecture 1. Therefore thedeling can be regarded
as a challenging benchmark for the application of the ma#tiead tools developed in
this paper. Moreover, the approach needs tackling the @nobf reducing the overall
complexity induced by the very large number of componentsived in the
competition.

D. Hanahan and R.A. Weinberg Hallmarks of cancer: the next generati@ell 144
(2011) 646-74.

A. Bellouquid, E. De Angelis, and D. Knopoff From the modeling of the immune
hallmarks of cancer to a black swan in bioloiyjath. Models Methods Appl. Sck3,
(2013), 949-978.

R.A. Weinberg, The Biology of CanceiGarland Sciences - Taylor and Francis, New
York, (2007).
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Lecture 2 - 2.2 System Biology and Immune Competition

Immune competition

e Mutations namely self-sufficiency in growth signals, insensitividyanti-growth
signals, evading apoptosis, limitless replicative posgndustained angiogenesis,
evading immune system attack, and tissue invasion and tasigdncorporate some
aspects of genetic mutation, gene expression, and evoduticgelectionleads to
malignant progression

e This process can be contrasted by the immune defasa®mune cell&arnthe
presence of carriers of a pathology and attempt to depleta.tht is a complex
process, where cells from tl@nate immunitymprove their action by learning the
so-calledacquired immunity

e An important feature is the process of Darwinian selegtwmch can potentially
Initiate in each birth process, where mutations bring nemegje variants into
populations and natural selection then screens them. e sases, such as the
generation of daughters from mother cells, new cell phgrestycan originate from
random mistakes during replication.
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Lecture 2 - 2.2 System Biology and Immune Competition

Decomposition into functional subsystem3he model considers two types of active
particles, namely epithelial and cancer cells, which mowefthe differentiate state to
various levels of progression, and immune cells charasérpy different values of
activation. The subdivision into functional subsystem®eorted in Table, where in
particular:

1 =1 Epithelial cells ¢ = 5 Innate immune cells l

1 i =2 Firsthallmark <+ ¢ =6 Acquired immunity 1 {

1l 1=3 Secondallmark <+ <=7 Acquired immunity 2 )

¢ = 4 Third hallmark <+ ¢ =8 Acquired immunity 3

Table Functional subsystems

- ¢ = 2 corresponds to the ability to thrive in a chronically inflaame
micro-environment;

- ¢ = 3 to the ability to evade the immune recognition;

- ¢ = 4 to the ability to suppress the immune reaction.

On the Difficult Interplay Between Life, “Complexity”, and M athematical Sciences Towards a Theory of Complex Living Being — p. 50/82



Lecture 2 - 2.2 System Biology and Immune Competition

Mathematical structure

%ﬁj (t) = Ji[f1(t) = Ci;[f1(t) + Pi;[f1(t) — Dii[f](t) + Li; [f1(t)
= >SS Tl ABREGS fiv fra — Fis Y 3 minlf] fra

k=1 p=1qg=1 k=1 q=1

— YYYYUhk[f]Hhk (15 fhpfkq—fz'jzz??ik[f]’/ggfkqa
h=1 k=1 p=1 q=1 k=1gqg=1
+ A (fij = fis), (1)

fori =1,...,8andj =1, ..., m, and it is assumed that the activity variable attains
values in the following discrete sek;, = {0 = uq, ..., u;, ..., um, = 1}. Therefore, the
overall state of the system is described by the generalistddition function

fz’j = fz'j(t), 1= 1, ...,8, ] == 1, ceey TN,

where the index labels each subsystemlabels the level of the activity variable, and
fi; (t) represents the number of active particles from functionbbgstem that, at
time ¢, have the state;.
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Interactions

Conservative interactions, where cells modify their astiwithin the same
functional subsystem. A candidateparticle with state:, can experiment a
conservative interaction with a fieldparticle. The output of the interaction can
be in the contiguous stat@s_1, 1, Of Upy 1.

Interactions can induce net proliferative events, whiahganerate, although with
small probability, a daughter cell that presents genetidifrtations with respect
to the mother cell. A candidate-particle (mother cell) can generate, by
Interacting with a field:-particle, a daughter cell, belonging either to the same
functional subsystem with same state, or eventually todheviing functional
subsystem with the lowest activity value.

Interactions can generate destructive events in the skasthe immune system
has the ability to suppress a cancer cellh&andidate particle with state,,
interacting with a fields-particle with state:, can undergo a destructive action
which occurs within the same state of the candidate particle
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Lecture 2 - 2.2 System Biology and Immune Competition

Interactions

Figure 3: A h-candidate particl® (mother cell) by interaction with a k-field particle
I proliferates giving a daughter céll, belonging either to the same functional sub-
system with same state (identical daughter), or to thewatig functional subsystem
with the lowest activity value (mutated daughter). CantlidaarticleC' can experi-
ment a conservative interaction with the field partiéle with an output in the same
functional subsystem. Finally, candidate partitlecan be subject a destructive action
which occurs within the same state.
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Lecture 2 - 2.2 System Biology and Immune Competition

Qualitative analysis and simulations

e The objective of the qualitative and computational analgsinsists in understanding
If the immune system, possibly thank also to therapeutictab@as, has the ability to
suppress cells of the last hallmark.

e Existence of solutions for arbitrary large times has beewgut, while simulations
have shown the whole panorama of the competition dependiiraganitical parameter
that separate the situations where the immune system gamsiiose where it looses.
It is the ratio between the mutation rates of the immune eeltsus cancer cells, both
corresponding to the last mutation.

e Simulations show different trajectories are obtained i@ umber density of tumor
cells corresponding to increasing values of the ratio betvtbe said parameter. The
first trajectory shows that for low values of the parametentiodel predicts a rapid
growth of cancer cells due to the lack of contrast of the imensystem. However, for
Increasing values of the parameter the trajectory showena tio an asymptotic value
corresponding to a certain equilibrium. This asymptotiltigadecreases for increasing
value of the parameter up to when the defence is strong ertoudgplete the presence
of tumor cells.
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Lecture 2 - 2.2 System Biology and Immune Competition

Simulations

Figure 4: Time evolution of the density of the most aggrestivnor functional subsys-
tem for different values of parametarcorresponding to the ratio between the rates of
proliferation of the last immune and cancer hallmarks.
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2. From Reasonings on Complex Systems to Mathematical Tools

Looking for the black swan
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A guestion which is also a dilemma

Should mathematics attempt to reproduce experiments btieqs whose parameters
are identified on the basis of empirical data, or develop rtevegires, hopefully a new
theory able to capture the complexity of biological phenoaand subsequently to
base experiments on theoretical foundations?

This question witnesses the presence dibemma, which occasionally is the object
of intellectual conflicts within the scientific communityolwever, we are inclined to
assert the second perspective, since we firmly believettbahialso give a
contribution to further substantial developments of mathtcal sciences.

Should a conceivable mathematical theory show commonresata all field of
applications?

Although a theory should be linked to a specific class of systall theories should
have common features.
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Strategy and Model Validation

Models should be derived within mathematical structurésble to include the
aforesaid common features of living, hence complex, system

The first step toward the validation of models consists imfyi@g that they
describe quantitative results delivered in quasi steatgst(corresponding to
experiments) as an output of the dynamics at the micro-sealeout artificially
iInserting them into the model (for instance as a trend to ailibgqum);

The the second step toward the validation of models consistxifying that they
describe, at least at a qualitative level, emerging callediehaviors observed in
reality.
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Mathematical Structures: Models with Space Dynamics

H.1. Candidate or test particles ¥ interact with the field particles in the interaction
domainx™® € Q. Interactions are weighted by theteraction rates n,;[f] and
uni|f] supposed to depend on the local distribution function irpibetion of the field
particles.

H.2. A candidate particle modifies its state according to the @bdlty density:

Ci u[f1(ve — v, us — u|w«, w), which denotes the probability density that a
candidate particles of the-subsystems with state. = {x., v., u.} reaches the state
{v,u} in thei-th subsystem after an interaction with the field particliethe
k-subsystems with state™ = {x*, v*, u"}.

H.3. A candidate particle, ix, can proliferate, due to encounters with field particles in
x*, with rateu . P; ., which denotes the proliferation rate into the functional
subsystem, due the encounter of particles belonging the functionasgstems: and

k. Destructive events can occur only within the same funelfisabsystem with rate

Wik Dik.
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Balance within the space of microscopic states and Structes

Variation rate of the number of active particles
= Inlet flux rate caused by conservative interactions
+Inlet flux rate caused by proliferative interactions
— QOutlet flux rate caused by destructive interactions

— QOutlet flux rate caused by conservative interactions

where the inlet flux includes the dynamics of mutations.

This flow-chart corresponds to the following structure:
(875 tv: ax) fz'(t,X,V,U) — (JZC - JZL T JZP - Jf))[f](t,x,v,u),

where the various termg can be formally expressed, consistently with the definition
of n, u, C, P, andD.
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Mathematical Structures

n
J¢ = / i [E] (W, W) Chi[F] (Ve = V, s — u|Wa, W™, usy)
hok=1 QxD2 xD2

X fr(t,x, Vi, us) fu(6, X7, v, u") dve dv™ dus du™ dx™,

JF = fz-(t,x,v)/ nik [l (W, w") fr(t,x", v, u")dv" du”™ dx”,
P Qx Doy X Dy
=y ok £ (W, W) P [£] (1, ")
hok=1 Qx D2 x Dy,
X fr(t,x, v, u) fu(t,x", v, u") dv" dus du”™ dx”.
= S hxy) | g ] (e W) D [£] (o, )
P Qx Dy X Dy

X  frt,x", v ,u")dv" du” dx”.
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Mathematical Structures

- Interaction rates, denoted by, [f](w., w™) andunk [f](w., w™), which model
the frequency of the interactions between a canditlgtarticle with statew . and
a field k-particle with statew ™. Different rates; andu are used corresponding to
conservative and proliferative/destructive interactiaiespectively.

- Transition probability density C;, [f](w. — w;w™), which denotes the
probability density that a candidateparticle ends up into the state of the test
particle of the:-th functional subsystem after an interaction (with ratg) with a
field k-particle, while test-particles interact with field particles and lose their
state.

- Proliferative term Pj . [f](w. — w; w™), which models the proliferative events
for a candidaté:-particle into thei-th functional subsystem after interaction (with
rateu ) with a field k-particle.

- Destructive term D, [f](w; w™), which models the rate of destruction for a
candidate-particle in its own functional subsystem after an inta@ac{with rate
i) With a field k-particle.
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Mathematical Structures: Vanishing mechanical variables

The framework when space and velocity variables are notfeignt simplify as
follows:

8tf7;(t,u) = [Ci [f] + P; [f] — L; [f] — D; [f]] (t,u)

- Z / nhk(u*, U*)Czk[f] (u* — u|u*, u*) fh<t, u*)fk(t, u*) du, du”
D

h,k=1 u X Doy,

+ D /D /D tine (U, 0°) P IE] (s, w*) o (8, 0%) Fo (8, 0% dus du”

h,k=1
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Sources of nonlinearity

Sensitivity and space interaction domainsA candidate (or test) particle
Interacts with a number of field particles by means of a comoation ability that
is effective only within a certaillomain of influence of the space variable
Q27[f], which depends on the maximal density of active particlelwban be
captured in the communication. This domain is effectiveyainik is included in
the sensitivity domain Qs(x), within which active particles have the
potential ability to feel the presence of another particles

Partial sensitivity: If 27 C Qg the active particle receives sufficient information
to fully develop the standard strategy without restricsio@n the other hand,
when(2s C €y, interactions are not sufficient to fully develop their stggy. We
adopt the notatiof[f, x| = Q;[f][) 2s(x) to denote the effective interaction
domain. In some special case this domain might be equal toszethat particles
do not modify their trajectory.
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Sources of nonlinearity with influence on the encounter rate

Micro-state distance: |w. — w*| = |(x«, V&, ux) — (x*, v*, u")| between the
micro-states by a suitable metric. to be considered for spehific case.

Individual-mean state distance; which refers the state.. to the mean value of
w" in the domain of interactions of the field particles accogdma suitable
metric. Such a distance can be formally denoted as follows:— Eq(w™)|.

Hierarchic distance: which occurs when two active particles belong to different
functional subsystems. Then the distajice- h| can be defined if a conceivable
numbering criterion is applied in selecting the first subsysby a certain
selection rule (for instance, in the animal world, the “doemt”) and in

numbering the others by increasing numbers depending aettreasing rate.

Affinity distance: According to the general idea that two systems with close
distributions areaffine In this case the distancel|ign, — fx||Lr are)-
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Sources of nonlinearity

'Q[ @21 Qs
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R
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Looking for the Black Swan in Social Dynamics

e The dynamics of social and economic systems are neceslsaséd on individual
behaviors, by which single subjects express, either coaslyi or unconsciously, a
particular strategy, which is heterogeneously distridute

¢ A radical philosophical change has been undertaken inlsaatheconomic
disciplines. An interplay among Economics, Psychologyg &aciology has taken
place, thanks to a new cognitive approach no longer grouadede traditional
assumption of rational socio-economic behavi&tarting from the concept of bounded
rationality, the idea of Economics as a subject highly aédddy individual (rational or
irrational) behaviors, reactions, and interactions hagibdo impose itself

e A key experimental feature of such systems is thegraction among heterogeneous
individuals often produces unexpected outcomes, whiclewabsent at the individual
level, and are commonly termed emergent behaviors.

e Mathematical models should also focus, in particular, on tle prediction of the so
called Black Swan. The latter is defined to be a rare event, showing up as aroinedt
collective trend generated by possibly rational individahaviors.
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Looking for the Black Swan in Social Dynamics
G. Ajmone Marsan, N. Bellomo, and A. Tosi@pmplex Systems and Society -
Modeling and Simulations, Springer Briefs Springer, New York, (2013).

Living — active entities

Behavioral strategies, bounded rationalityrandomness of human behaviors

Heterogeneous distribution of strategiesstochastic games

Behavioral strategies can change in time

Self-organized collective behavior can emerge spontasigoln particular the
so-called Black Swan.
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Looking for the Black Swan in Social DynamicsComplexity Features of Social
Systems

* Social classes: (poot); = —1, ..., u;, ..., u, = 1 (wealthy)
* Political opinion: (dissensus) = —1, ..., v, ..., v, = 1 (CONSENSUS)

* Distribution function: f;" (t) = # people inu; with opinionv,. at timet

U S S AL G szqufk

p,q=1h, k=1 g=1 k=1

7/ 7/

~~ ~

Gain Loss

AZ% (i, 7):=P((up, vp)—(us, vr)|(ug, vq))

ZZA (i, r)=1, Vh,k=1,...,n, Vp,g=1,...,m.

r=1 1=1
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Looking for the black swan in Social Dynamics

V/\ [\y competition

Q
Q
Q
Q
Q
Q
®
Q
Q
Q
\J

y/\ cooperation

Q
Q
Q
Q
\J

class distance >y

A critical distance triggers either cooperation or confp@tiamong the classes. If the
distance is lower than the critical one then a competitikedglace. Conversely, if the
actual distance is greater than the critical one then thlsmganization forces
cooperation.
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics

Interaction rate Two different rates of interaction are considered, cqoesling
to competitive and cooperative interactions, respedtivel

Strategy leading to the transition probabilitied/hen interacting with other
particles, each active particle plays a game with stoahastiput. If the difference
of wealth class between the interacting particles is lolwanta critical distance
~vIf] (where, here and henceforth, square brackets indicatectiduoal
dependence on the probability distributibnthen the particles compete in such a
way that those with higher wealth increase their state agénose with lower
wealth. Conversely, if the difference of wealth class idleigthany[f] then the
opposite occurs. The critical distance evolves in time eding to the global
wealth distribution over wealthy and poor particles.

Thecritical distancev|f] is here assumed to depend on the instantaneous
distribution of the active particles over the wealth classeich that the time
evolution ofy[f] such that it grows with the number of poor active particlbast
causing larger and larger gaps of social competition.
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics

SIf] s= NI = NI = D0 i) - Ejﬁ

. n—|—3

S[f] = So = ~[f] = 0, WhereSy, ~o are a reference social gap and the
corresponding reference critical distance, respectively

S|f] = 1 = ~[f] = n: when the population is composed by poor particles only
(N~ =1, NT = 0) the socio-economic dynamics are of full competition;

S|f] = —1 = ~[f] = 0: when the population is composed by wealthy particles
only (N~ =0, NT = 1) the socio-economic dynamics are of full cooperation.

_ 290(SIE? — 1) — n(So + (ST — S0)
= 253~ 1)

where- denotes integer part (floor).

n
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3 - Modeling Social Conflicts and Political Competition

Dynamics of the threshold

S = N W kA N 3 0 O

-1 -0.8 -06 -04-02 0 02 04 06 08 1
S

Piff, P.K., Stancato, D.M., Ceote, S., Mendoza-Denton, RKeltner, D., Higher
social class predicts increased unethical behavior, Bdicegs of the National
Academy of Sciences, 109(11), 40864091 (2012).

OECD, Divided We Stand: Why Inequality Keeps Rising? OECD Punohig (2011)
129.
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social DynamicsCase Studies

* Initial conditions

005 005

0755 529 Political
. op1inion
Social classes 075 \1 1
Society “neutral” on average Society poor on average
Mean wealth0 Mean wealth:—0.4
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics

* Society which is‘economically neutral” on average

v=3 N="7
cooperative competitive

015 035
03 [
25
01 023
02 [

015

0.05
01

005 ()15

A4 Political
0SS . -
. 025 = opinion
Social classes 03075 7075 P

7 0 .. : <&
2025  Political -0.75,
%4727 opinion
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics

* Society which igpoor on average

constanty

variable~y
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cooperative

O Political

050535~ 1t
opinion

0257
. 0.25
Social classes

Political
opinion

V=7

competitive

L
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics

Simulationsn =9 and u = 0.3

This Figure refers to the cagg& = 0, and shows that:

In an economically neutral society with uniform wealth di@tion not only do
wealthy classes stick at an earnest support to the Govetrpuokey, but also poor
ones do not completely distrust them, especially in a camteprevalent
cooperation among the classes & 3).

Therefore, this example does not suggest the developmeigroficant
polarization in that society, although a greater polaiarais observed for higher

values of.
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Lecture 3 - Mathematical Theory of Living Systems

Looking for the black swan in Social Dynamics
Early Signals of a Black Swan:Let us assume that a specific model has a trend to an
asymptotic configuration described by stationary distidms { f/ } i=1, ...

r=1,...,m

im |F" — ()| =0, Vr=1,...,m,

t—+oo

where|| - || is a suitable norm iff over the activityu € I,,. In addition, let us assume
that the modeled system is expected to exhibit a statiomangltdescribed by some
phenomenologically guessed distributidg } i=1, ... .

r=1,...,m

Accordingly, we define the following time-evolving distandss (the subscript “BS”
standing for Black Swan):

des(t) := max |f"— f'(t)ll,

which, however, will generally not approach zero as timesgoefor the heuristic
asymptotic distribution does not translate the actualti@the system. This function
can be possibly regarded as one of élagly-warning signaldor the emergence of
critical transitions to rare events, because it may hidjtlige onset of strong
deviations from expectations.
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3 - Modeling Social Conflicts and Political Competition

Early Signals of the Black Swan

0.8

Yo=3

L
B d B ,
'
i
0.6 b
\
i
0.5

i
0. [ b

dps

s
1
_______
-

\
03 pol
N,

R B L

T

0

0 Tax
t

The mapping — dgs(t) computed in the case studies with variab/éaking as
phenomenological guess the corresponding asymptotichdisons obtained with
constanty.
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End of the Lectures - Thanks

THANK YOU FOR YOUR ATTENTION AND THANKS TO
Giulia Ajmone Marsan OECD - Paris
Abdelghani Bellouquid Marrakesh University, Morocco
Elena De AngelisPolitecnico, Torino
Miguel A. Herrero Universidad Complutense de Madrid
Damian Knopoff Univ. Cordoba, CIEM CONICET Cordoba, Argentina
Juanjo Nieto Universidad de Granada
Juan Soler Universidad de Granada

Andrea Tosin IAC Istituto per le Applicazioni del Calcolo - CNR, Roma
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