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Lecture 1 - Reasonings on Complex Systems

A Personal Bibliographic Search

• Evolution:

• E. Mayr,What Evolution Is , (Basic Books, New York, 2001).

•M.A. Nowak,Evolutionary Dynamics, Princeton Univ. Press, (2006).

• Networks:

• A.L. BarabasiLinked. The New Science of Networks, (Perseus Publishing,

Cambridge Massachusetts, 2002.)

• F. Vega-Redondo,Complex Social Networks, Cambridge University Press,

Cambridge, (2007).

Methods of Statistical Physics:

• N.Bellomo,Modelling Complex Living Systems. A Kinetic Theory and

Stochastic Game Approach, (Birkhauser-Springer, Boston, 2008).

• N.Bellomo, D. Knopoff, and J. Soler,On the Difficult Interplay Between Life,

“Complexity”, and Mathematical Sciences, Math. Models Methods Appl. Sci.,23,

(2013).
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• E. Kant 1790, daCritique de la raison pure, Traduction Fracaise, Press Univ. de

France, 1967,

Living Systems: Special structures organized and with the ability to chase a

purpose.

E. Schrödinger, 1943, What is Life?,

I living systems have the ability to extract entropy to keep their own at low

levels.

E.P. Wiegner, Comm. Pure Appl. Math., 1960,

The miracle of the appropriateness of the language of mathematics for the

formulation of the laws of physics is a wonderful gift which we neither

understand nor deserve.
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R. May, Science 2003

In the physical sciences, mathematical theory and experimental investigation

have always marched together. Mathematics has been less intrusive in the life

sciences, possibly because they have been until recently descriptive, lacking

the invariance principles and fundamental natural constants of physics.

G. Jona Lasinio, La Matematica come Linguaggio delle Scienze della Natura,

Life represents and advanced stage of an evolutive and selective process. It

seems to me difficult understanding living entities withoutconsidering their

historical evolution. Population dynamics is based on a rather primitive

mathematical theory, on the other hand it should explain theemergence of

individual living entities by selection.

Is life an emerging property of matter?

On the Difficult Interplay Between Life, “Complexity”, and M athematical SciencesTowards a Theory of Complex Living Being – p. 6/82



Lecture 1 - Reasonings on Complex Systems

Hartwell - Nobel Laureate 2001, Nature 1999

• Biological systems are very different from the physical or chemical systems

analyzed by statistical mechanics or hydrodynamics. Statistical mechanics

typically deals with systems containing many copies of a fewinteracting

components, whereas cells contain from millions to a few copies of each of

thousands of different components, each with very specific interactions.

• Although living systems obey the laws of physics and chemistry, the notion

of function or purpose differentiate biology from other natural sciences.

Organisms exist to reproduce, whereas, outside religious belief rocks and

stars have no purpose. Selection for function has produced the living cell,

with a unique set of properties which distinguish it from inanimate systems of

interacting molecules. Cells exist far from thermal equilibrium by harvesting

energy from their environment.
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N.B. H. Berestycki, F. Brezzi, and J.P. Nadal, Mathematics and Complexity in Life

and Human Sciences, Mathematical Models and Methods in Applied Sciences, 2010.

The study of complex systems, namely systems of many individuals interacting

in a non-linear manner, has received in recent years a remarkable increase of

interest among applied mathematicians, physicists as wellas researchers in

various other fields as economy or social sciences.

Their collective overall behavior is determined by the dynamics of their

interactions. On the other hand, a traditional modeling of individual

dynamics does not lead in a straightforward way to a mathematical

description of collective emerging behaviors.

In particular it is very difficult to understand and model these systems based

on the sole description of the dynamics and interactions of afew individual

entities localized in space and time.
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Five Common Features and Sources of Complexity

1. Ability to express a strategy: Living entities are capable to develop

specificstrategies andorganization abilitiesthat depend on the state of the

surrounding environment. These can be expressed without the application of any

external organizing principle. They typically operateout-of-equilibrium. For

example, a constant struggle with the environment is developed to remain in a

particular out-of-equilibrium state, namely stay alive.

2. Heterogeneity: The ability to express a strategy is not the same for all

entities:Heterogeneitycharacterizes a great part of living systems, namely, the

characteristics of interacting entities can even differ from an entity to another

belonging to the same structure.In developmental biology, this is due to different

phenotype expressions generated by the same genotype.

3. Learning ability: Living systems receive inputs from their environments and

have the ability to learn from past experience. Therefore their strategic ability and the

characteristics of interactions evolve in time.Societies can induce a collective strategy

toward individual learning.
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4. Nonlinear Interactions: Interactions are nonlinearly additive and involve

immediate neighbors, but in some cases also distant particles. Living systems have the

ability to communicate and can possibly choose different observation paths. In some

cases, the topological distribution of a fixed number of neighbors can play a prominent

role in the development of the strategy and interactions. Living entitiesplay a

game at each interaction with an output that is technically related nto their

strategy often related to surviving and adaptation ability. Individual interactions in

swarms can depend on the number of interacting entities rather that on their distance.

5. Darwinian selection and time as a key variable: All living

systems are evolutionary. Birth processes can generate individuals more fitted to the

environment, who can generate new individuals again more fitted to the outer

environment. Neglecting this aspect means that the time scale of observation and

modeling of the system itself is not long enough to observe evolutionary events. The

time scale can be very short for cellular systems and very long for vertebrates.

Micro-Darwinian occurs at small scales, while Darwinian evolution is generally

interpreted at large scales.
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Technical Features of Complex Systems

•Multiscale aspects: The study of complex living systems always needs a

multiscale approach, such that the dynamics at the large scale needs to be properly

related to the dynamics at the low scales. For instance, the functions expressed by a

cell are determined by the dynamics at the molecular (genetic) level. This feature

characterizes also the dynamics of vehicles and animals, where the mechanical system

is linked to individual behaviors. In any case, macroscopicmodels generally kill the

heterogeneous behaviors exhibited at the low scales.

•Time varying role of the environment: The environment surrounding

a living system evolves in time, also due to the interaction with the inner system.

Therefore the output of this interaction evolves in time. One of the several implications

is that the number of components of a living system might change in time.

• Large deviations; Emerging behaviors are often related to large deviations
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On the Interpretation of Empirical Data

The collective dynamics of complex systems is determined byinteractions at the

micro-scale ruled by the strategy that interacting entities are able to express. This

collective dynamics exhibits emerging behaviors as well assome aspects of the

dynamics which may not be specifically related to complexity, such as steady

conditions uniform in space that are reproduced in analogy with classical systems.

These considerations lead to state that models should have the ability to depict both

emerging behaviors far from steady cases, which should not be artificially imposed in

the structure of the model, rather should be induced by interactions at the micro-scale.

Accordingly, empirical data should be used toward the assessment of models at

the micro-scale. Subsequently validation of models shouldbe obtained by
investigating their ability to depict emerging behaviors.However, the process can

be implemented if the modeling at the micro-scale is consistent with the physics of
the real system, and if the tuning method leads to a unique solution of the inverse

problem of parameters identification.
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What is the Black Swan?It is worth detailing a little more the expressionBlack Swan,

introduced in the specialized literature for indicating unpredictable events, which are

far away from those generally observed by repeated empirical evidence. According to

the definition by Taleb a Black Swan is specifically characterized as follows:

“A Black Swan is a highly improbable event with three principal characteristics: It is

unpredictable; it carries a massive impact; and, after the fact, we concoct an

explanation that makes it appear less random, and more predictable, than it was.”

N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, Random House,

New York City, 2007.

Since it is very difficult to predict directly the onset of a black swan, it is useful

looking for the presence of early signals

M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos,
H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara, Early-warning signals for

critical transitions,Nature, 461, 53–59, (2009).
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Complexity Features in the Metamorphosis by Escher

Heterogeneous ability to express a strategy
Nonlinear Interactions

Learning ability
Darwinian selection and time as a key variable

Complexity in the interpretation of reality
The Black Swan.
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To what extent the Metamorphosis represents the complexityof living systems?

Let us leave some freedom to our fantasy by taking the libertyto look at the fascinating

piece of art and concentrate to the right hand-end part wherethe landscape evolves in

time going first from a geometrical village made of similarlylooking houses to a real

village with a heterogeneous distribution of houses’ shape. Escher’s representations

have greatly attracted the fantasy of mathematicians who, consciously or not, have

linked them to some mathematical reasonings. This is precisely what it is here

suggested by posing the question in the title of the slide.

The evolution is related to interactions, definitely multiple ones. Is nonlinearity

somehow expressed? the evolution is selective as shown by the transition from

essential shapes to an organized village, where all available spaces are well exploited.

Moreover, the presence of a church, that takes an important part of the space and a

somehow central position, indicates the presence of a cultural evolution. This latter

might even reflect a multiscale dynamics. In fact, it resultsas the output of the action

from the micro-scale of individuals to the macro-scale of the village.
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Suddenly the landscape changes from a village, turning intoa chess plate, the

only connections being a Bridge and a tower. Can this sudden change be
interpreted as a “Black Swan”?

The real Tower is not that of the chess plate, however, it can interpreted as an early

signal that an extreme event is going to happen. In any case, the various changes in the

picture can be interpreted as predictable emerging behaviors, while the last one is not a

predictable event. one might consider that Escher went through the experience of two

world wars, while a peaceful village is transformed into a battle between the two

armies of the chess plate.

Since the village exists in reality (it is in the Mediterranean coast immediately on the

South of the village of Amalfi) does the Tower truly exists? The village looks at the

sea, while the tower cannot be observed looking at it from thefront as in the picture.

On the other hand, looking at it from the rear it is possible toobserve a tower on the

cape in front of the village. This is not sufficient to answer the question posed above;

however one can realize that emerging behaviors are also difficult to be interpreted.
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Strategy Step I

• The mathematical approach devoted to the ambitious aim of understanding the

essence of life and evolution and, consequently, of describing by mathematical

equations the dynamics of living systems, cannot be based onclassical field theories as

usual in the modeling of inert matter.

• Accordingly, one can either look forheuristic modelsbased on a purely

phenomenological interpretation of the system under consideration, or look for

mathematical modelsderived within suitable mathematical structures consistent with

the paradigms of complexity.

• This second approach is, according to the authors’s bias, more rigorous and is, in any

case the necessary step towards the development of a self-consistent theory linking

mathematics to the specific science under consideration, say biology, economy,

sociology, etcetera. In other words, the structure offers the mathematical theory, while

the characterization of the interactions at the micro-saleshould be delivered by

theoretical tools of the other science.
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Strategy Step II

• Understanding the links between the dynamics of living systems and their

complexity features;

• Derivation a general mathematical structure, consistent with the aforesaid

features, with the aim of offering the conceptual frameworktoward the derivation

of specific models;

• Design of specific models corresponding to well defined classes of systems by

implementing the said structure with suitable model of individual-based

interactions according to a detailed interpretation of thedynamics at the

micro-scale;

• Validation of models by comparison of the dynamics predicted by them with that

one resulting from empirical data;

• Analysis of the gap between modeling and mathematical theory.
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Strategy Step III

• The overall system is subdivided intofunctional subsystemsconstituted by

entities, calledactive particles, whose individual state is calledactivity;

• The state of each functional subsystem is defined by a suitable, time dependent,

probability distribution over the microscopic state, which includes position,

velocity, and activity variables, which represent the strategies expressed

heterogeneously by each individual;

• Interactions are modeled by games, more precisely stochastic games, where the

state of the interacting particles and the output of the interactions are known in

probability;

• The evolution of the probability distribution is obtained by a balance of particles

within elementary volume of the space of the microscopic states, where the

dynamics of inflow and outflow of particles is related to interactions at the

microscopic scale.
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Representation for space distributed systems in each node

Consider active particles in a node for functional subsystems labeled by the subscripti.

• The description of the overall state of the system is delivered by thegeneralized

one-particle distribution function

fi = fi(t,x,v, u) = fi(t,w) : [0, T ]× Ω×Dv ×Du → IR +,

such thatfi(t,x,v, u) dx dv du = fi(t,w) dw denotes the number of active particles

whose state, at timet, is in the interval[w,w + dw] of thei-th subsystem.

•w = {x,v, u} is an element of thespace of the microscopic states.

• x andv Represent themechanical variables, whenever these have a physical

meaning: in some cases they are vanishing variables, while in networks, the space is

substituted by nodes.

• Theactivity variable can be a vector.
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• Theactivity terms are computed as follows:

ai[fi](t,x) =

∫

Dv×Du

ufi(t,x,v, u) dv du ,

is thelocal activation, while thelocal activation density is given by:

adi[fi](t,x) =
aj [fi](t,x)

νi[fi](t,x)
=

1

νi[fi](t,x)

∫

Dv×Du

ufi(t,x,v, u) dv du.

•More in general one can introduce higher order moments for the activation:

a
p
i [fi](t,x) =

∫

Dv×Du

u
p
fi(t,x,v, u) dv du ,

•Mechanical terms are computed analogously and depend on the activity terms.

For instance thelocal densities are computed as follows:

ρi[fi](t,x) =

∫

Dv×Du

fi(t,x,v, u) dv du,

and similarly for higher order quantities.
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Stochastic GamesLiving entities, at each interaction,play a gamewith an output that

technically depends on their strategy often related to surviving and adaptation abilities,

namely to an individual or collective search for fitness. Theoutput of the game

generally is not deterministic even when a causality principle is identified.

• Testparticles of thei-th functional subsystem with microscopic state, at timet,

delivered by the variable(x,v, u) := w, whose distribution function is

fi = fi(t,x,v, u) = fi(t,w). The test particle is assumed to be representative of the

whole system.

• Field particles of thek-th functional subsystem with microscopic state, at timet,

defined by the variable(x∗,v∗, u∗) := w
∗, whose distribution function is

fk = fk(t,x
∗,v∗, u∗) = fk(t,w

∗).

• Candidateparticles, of theh-th functional subsystem, with microscopic state, at

time t, defined by the variable(x∗,v∗, u∗) := w∗, whose distribution function is

fh = fh(t,x∗,v∗, u∗) = fh(t,w∗).
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Stochastic Games

1. Competitive (dissent):When one of the interacting particle increases its status by

taking advantage of the other, obliging the latter to decrease it. Therefore the

competition brings advantage to only one of the two. This type of interaction has

the effect of increasing the difference between the states of interacting particles,

due to a kind of driving back effect.

2. Cooperative (consensus):When the interacting particles exchange their status,

one by increasing it and the other one by decreasing it. Therefore, the interacting

active particles show a trend to share their micro-state. Such type of interaction

leads to a decrease of the difference between the interacting particles’ states, due

to a sort of dragging effect.

3. Learning: One of the two modifies, independently from the other, the micro-state,

in the sense that it learns by reducing the distance between them.

4. Hiding-chasing: One of the two attempts to increase the overall distance fromthe

other, which attempts to reduce it.
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Stochastic GamesPictorial illustration of (a) competitive,(b) cooperative, (c)

hiding-chasing and (d) learning game dynamics between two active particles. Black

and grey bullets denote, respectively, the pre- and post-interaction states of the

particles.
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Stochastic Games

C Ω
T

F F

F

F
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Figure 1: – Active particles interact with other particles in their action domain
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Stochastic GamesOn the interplay between sensitivity and interaction domain
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Stochastic Games

Interactions with modification of activity and transition: Generation of particles

into a new functional subsystem occurs through pathways. Different paths can be

chosen according to the dynamics at the lower scale.

F F F

F C FF

T

T

FF FF FF T

i + 1

i

i − 1

Figure 2: – Active particles during proliferation move fromone functional subsystem

to the other through pathways.
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Selected bibliography
•M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,

V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic ,

Interaction ruling animal collective behavior depends on topological rather than metric

distance: evidence from a field study,Proc. Nat. Acad. Sci., 105(4) (2008), 1232-1237.

• R. Eftimie, Hyperbolic and kinetic models for self-organized biological

aggregations and movement: a brief overview,J. Math. Biology, 65 (2012), 35–75.

• N. Bellomo and C. Dogb̀e, On the modelling of traffic and crowds - a survey of

models, speculations, and perspectives,SIAM Review, 53(3) (2011), 409–463.

• N. Bellomo, and A. Bellouquid, On The Modeling of Crowd Dynamics: Looking at

the Beautiful Shapes of Swarms,Netw. Heter. Media., 6 (2011), 383–399.

• N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms

viewed as complex systems,Math. Models Methods Appl. Sci., 22, Suppl. 1:

1140006, (2012).

• N. Bellomo, A. Bellouquid, and D. Knopoff, From the micro-scale to collective

crowd dynamics,SIAM Multiscale Modeling Simulation, 2013, to appear.
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Crowds in Bounded Domain with Obstacles

P

T

∂Ω
Ω

P
′

~ν(P)

~ν(P′)

T

∂Ω

P∗ ~ν(P∗)

Λ∗
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Crowds in unbounded Domains
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Active particles and micro-scale states

Crowd dynamics

Active particles Pedestrians

Position

Microscopic state Velocity

Activity

Different abilities

Functional subsystems Individuals pursuing different targets

etc.
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Polar coordinates with discrete values are used for the velocity variablev = {v, θ}:

Iθ = {θ1 = 0 , . . . , θi , . . . , θn =
n

n− 1
2π}, Iv = {v1 = 0 , . . . , vj , . . . , vm = 1}.

f(t,x,v, u) =
n∑

i=1

m∑

j=1

fij(t,x, u) δ(θ − θi)⊗ δ(v − vj).

Some specific cases can be considered. For instance the case of two different groups,

labeled with the superscriptσ = 1, 2, which move towards two different targets.

f
σ(t,x,v, u) =

n∑

i=1

m∑

j=1

f
σ
ij(t,x) δ(θ − θi)⊗ δ(v − vj)⊗ δ(u− u0) ,

wherefσ
ij(t,x) = f(t,x, θi, vj) corresponding, for each groupσ = 1, 2, to the

ij-particle, namely to the pedestrian moving in the directionθi with velocityvj .

ρ(t,x) =

2∑

σ=1

ρ
σ(t,x) =

2∑

σ=1

n∑

i=1

m∑

j=1

f
σ
ij(t,x) ,
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Interactions in the table of games

Particle in P moves to a directionθh (black arrow) and interacts with a field particle

moving toθp (blue arrow), the direction to the target isθν (red arrow).
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(
∂t + vij · ∂x

)
f
σ
ij(t,x) = J [f ](t,x)

=

n∑

h,p=1

m∑

k,q=1

∫

Λ

η[ρ(t,x∗)]Aσ
hk,pq(ij)[ρ(t,x

∗)]fσ
hk(t,x) f

σ
pq(t,x

∗) dx∗

− f
σ
ij(t,x)

n∑

p=1

m∑

q=1

∫

Λ

η[ρ(t,x∗)] fσ
pq(t,x

∗) dx∗
,

wheref = {fij}, while the termAσ
hk,pq(ij) should be consistent with the probability

density property:

n∑

i=1

m∑

j=1

Aσ
hk,pq(ij) = 1, ∀ hp ∈ {1, . . . , n}, ∀ kq ∈ {1, . . . ,m} ,

for σ = 1, 2, and for all conditioning local density.

Pedestrians have a visibility zoneΛ = Λ(x), which does not coincide with the whole

domainΩ due to the limited visibility angle of each individual.
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• Interaction rate:

η(ρ(t,x)) = η
0(1 + ρ(t,x)).

• Transition probability density: The approach proposed here is based on the

assumption that particles are subject to three different influences, namely thetrend to

the exit point, theinfluence of the streaminduced by the other pedestrians, and the

selection of the path with minimal density gradient. A simplified interpretation of the

phenomenological behavior is obtained by assuming the factorization of the two

probability densities modeling the modifications of the velocity direction and modulus:

Aσ
hk,pq(ij) = B

σ
hp(i)

(
θh → θi|ρ(t,x)

)
× Cσkq(j)

(
vk → vj |ρ(t,x)

)
.

– Interaction with a upper stream and target directions, namely θp > θh, θν > θh:

Bσ
hp(i) = αu0(1− ρ) + αu0 ρ if i = h+ 1 ,

Bσ
hp(i) = 1− αu0(1− ρ)− αu0 ρ if i = h ,

Bσ
hp(i) = 0 if i = h− 1.
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– Interaction with a upper stream and low target directionθp > θh; θν < θh:

Bσ
hp(i) = αu0 ρ if i = h+ 1 ,

Bσ
hp(i) = 1− αu0(1− ρ)− αu0 ρ if i = h ,

Bσ
hp(i) = αu0 (1− ρ) if i = h− 1.

– Interaction with a lower stream and upper target directionθp < θh; θν > θh:

Bσ
hp(i) = αu0(1− ρ) if i = h+ 1 ,

Bσ
hp(i) = 1− αu0(1− ρ)− αu0 ρ if i = h ,

Bσ
hp(i) = αu0 ρ if i = h− 1.

– Interaction with a lower stream and target directionsθp < θh; θν < θh:

Bσ
hp(i) = 0 if i = h+ 1 ,

Bσ
hp(i) = 1− αu0(1− ρ)− αu0 ρ if i = h ,

Bσ
hp(i) = αu0 (1− ρ) + αu0 ρ if i = h− 1.
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Lecture 2 - 2.1 Social Behaviors in Crowds

– Interaction with faster particlesvk < vq and slower particlesvk > vq

Cσkq(j) =





1− β u0ρ, j = k;

βu0ρ, j = k + 1;

0, otherwise.

Cσkq(j) =





β u0ρ, j = k;

1− β u0ρ, j = k − 1;

0, otherwise.

– Interaction with equal velocity particlesvk = vq

Cσkq(j) =





1− 2β u0ρ, j = k;

β u0ρ, j = k − 1;

β u0ρ, j = k + 1.

– for k = 1 the candidate particle cannot reduce velocity, while fork = k cannot

increase it:

Cσkq(j) =





1− β u0 ρ, j = 1;

β u0 ρ, j = 2;

0, otherwise;

Cσkq(j) =





β u0 ρ, j = m− 1;

1− β u0 ρ, j = m;

0, otherwise.
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Lecture 2 - 2.1 Social Behaviors in Crowds

Mild form of the initial value problem

f̂σ
ij(t,x) = φ

σ
ij(x) +

∫ t

0

(
Γ̂σ
ij [f , f ](s,x)− f̂σ

ij(s, x)L̂[f ](s, x)

)
ds,

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, σ ∈ {1, 2},

where the following notation has been used for any given vector f(t,x):

f̂σ
ij(t,x) = fσ

ij(t, x+ vj cos(θi)t, y + vj sin(θi)t).

H.1. For all positiveR, there exists a constantCη > 0 so that

0 < η(ρ) ≤ Cη , whenever 0 ≤ ρ ≤ R.

H.2. Both the encounter rateη[ρ] and the transition probabilityAσ
hk,pq(ij)[ρ] are

Lipschitz continuous functions of the macroscopic densityρ, i.e., that there exist

constantsLη, LA is such that

| η[ρ1]−η[ρ2] |≤ Lη | ρ1−ρ2 |, | Aσ
hk,pq(ij)[ρ1]−A

σ
hk,pq(ij)[ρ2] |≤ LA | ρ1−ρ2 |

whenever0 ≤ ρ1 ≤ R, 0 ≤ ρ2 ≤ R, and alli, h, p = 1, .., n andj, k, q = 1, ..,m.
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Existence Theory
THEOREM: Let φσ

ij ∈ L∞ ∩ L1, φσ
ij ≥ 0, then there existsφ0 so that, if

‖ φ ‖1≤ φ0, there existT , a0, andR so that a unique non-negative solution to the

initial value problem exists and satisfies:

f ∈ XT , sup
t∈[0,T ]

‖ f(t) ‖1≤ a0 ‖ φ ‖1,

ρ(t,x) ≤ R, ∀t ∈ [0, T ], x ∈ Ω.

Moreover, if
∑2

σ=1

∑n

i=1

∑m

j=1 ‖ φ
σ
ij ‖∞≤ 1, and‖ φ ‖1 is small, one has

ρ(t,x) ≤ 1, ∀t ∈ [0, T ], x ∈ Ω.

There existφr, (r = 1, ..., p− 1) such that if‖ φ ‖1≤ φr, there existsar so that it is

possible to find a unique non-negative solution to the initial value problem satisfying

for anyr ≤ p− 1 the followingf(t) ∈ X[0, (p− 1)T ],

sup
t∈[0,T ]

‖ f(t+ (r − 1)T ) ‖1≤ ar−1 ‖ φ ‖1,

andρ(t+ (r − 1)T,x) ≤ R, ∀t ∈ [0, T ], x ∈ Ω. Moreover,

ρ(t+ (r − 1)T,x) ≤ 1, ∀t ∈ [0, T ], x ∈ Ω.
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Lecture 2 - 2.1 Social Behaviors in Crowds

A Case Study
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A Case Study
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Case Study 2
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Lecture 2 - 2.2 System Biology and Immune Competition

A Post-Darwinian Approach to Hallmarks of Cancer and ImmuneCells

EVOLUTION OF CELLULAR PHENOTYPE
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Lecture 2 - 2.2 System Biology and Immune Competition

MULTISCALE REPRESENTATION OF TUMOUR GROWTH: gene interactions (stochastic

games), cells (kinetic theory), tissues (continuum mechanics), mixed (hybrid models).

N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, Modeling chemotaxis from

L2-closure moments in kinetic theory of active particlesDiscr. Cont. Dyn. Syst. - B, 18

847–863, (2013).
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Lecture 2 - 2.2 System Biology and Immune Competition

Phenomenological description

Multicellular systems involved in the immune competition are strongly related to the

complexity features presented in Lecture 1. Therefore their modeling can be regarded

as a challenging benchmark for the application of the mathematical tools developed in

this paper. Moreover, the approach needs tackling the problem of reducing the overall

complexity induced by the very large number of components involved in the

competition.

D. Hanahan and R.A. Weinberg, Hallmarks of cancer: the next generation,Cell 144

(2011) 646–74.

A. Bellouquid, E. De Angelis, and D. Knopoff, From the modeling of the immune

hallmarks of cancer to a black swan in biology,Math. Models Methods Appl. Sci., 23,

(2013), 949–978.

R.A. Weinberg, The Biology of Cancer, Garland Sciences - Taylor and Francis, New

York, (2007).
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Lecture 2 - 2.2 System Biology and Immune Competition

Immune competition

•Mutations, namely self-sufficiency in growth signals, insensitivityto anti-growth

signals, evading apoptosis, limitless replicative potential, sustained angiogenesis,

evading immune system attack, and tissue invasion and metastasis, incorporate some

aspects of genetic mutation, gene expression, and evolutionary selection,leads to

malignant progression.

• This process can be contrasted by the immune defenceas immune cellslearn the

presence of carriers of a pathology and attempt to deplete them. It is a complex

process, where cells from theinnate immunityimprove their action by learning the

so-calledacquired immunity.

• An important feature is the process of Darwinian selection, which can potentially

initiate in each birth process, where mutations bring new genetic variants into

populations and natural selection then screens them. In some cases, such as the

generation of daughters from mother cells, new cell phenotypes can originate from

random mistakes during replication.
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Lecture 2 - 2.2 System Biology and Immune Competition

Decomposition into functional subsystemsThe model considers two types of active

particles, namely epithelial and cancer cells, which move from the differentiate state to

various levels of progression, and immune cells characterized by different values of

activation. The subdivision into functional subsystems isreported in Table, where in

particular:

↓ i = 1 Epithelial cells i = 5 Innate immune cells ↓

↓ i = 2 First hallmark ← i = 6 Acquired immunity 1 ↓

↓ i = 3 Secondhallmark ← i = 7 Acquired immunity 2 ↓

i = 4 Third hallmark ← i = 8 Acquired immunity 3

Table Functional subsystems

- i = 2 corresponds to the ability to thrive in a chronically inflamed

micro-environment;

- i = 3 to the ability to evade the immune recognition;

- i = 4 to the ability to suppress the immune reaction.
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Lecture 2 - 2.2 System Biology and Immune Competition

Mathematical structure

d

dt
fij(t) = Jij [f ](t) = Cij [f ](t) + Pij [f ](t)−Dij [f ](t) + Lij [f ](t)

=

n∑

k=1

m∑

p=1

m∑

q=1

ηik[f ]B
pq
ik (j)[f ] fip fkq − fij

n∑

k=1

m∑

q=1

ηik[f ] fkq

=

n∑

h=1

n∑

k=1

m∑

p=1

m∑

q=1

ηhk[f ]µ
pq
hk(ij) fhp fkq − fij

n∑

k=1

m∑

q=1

ηik[f ] ν
jq
ik fkq,

+ λ (f0
ij − fij), (1)

for i = 1, ..., 8 andj = 1, ..., m, and it is assumed that the activity variable attains

values in the following discrete set:Iu = {0 = u1, ..., uj , ..., um = 1}. Therefore, the

overall state of the system is described by the generalized distribution function

fij = fij(t), i = 1, ..., 8 , j = 1, ..., m,

where the indexi labels each subsystem,j labels the level of the activity variable, and

fij(t) represents the number of active particles from functional subsystemi that, at

time t, have the stateuj .
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Interactions

• Conservative interactions, where cells modify their activity within the same

functional subsystem. A candidateh-particle with stateup can experiment a

conservative interaction with a fieldk-particle. The output of the interaction can

be in the contiguous statesup−1, up or up+1.

• Interactions can induce net proliferative events, which can generate, although with

small probability, a daughter cell that presents genetic modifications with respect

to the mother cell. A candidateh-particle (mother cell) can generate, by

interacting with a fieldk-particle, a daughter cell, belonging either to the same

functional subsystem with same state, or eventually to the following functional

subsystem with the lowest activity value.

• Interactions can generate destructive events in the sense that the immune system

has the ability to suppress a cancer cell. Ah-candidate particle with stateup,

interacting with a fieldk-particle with stateuq can undergo a destructive action

which occurs within the same state of the candidate particle.
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Interactions

Figure 3: A h-candidate particleP (mother cell) by interaction with a k-field particle

F proliferates giving a daughter cellT , belonging either to the same functional sub-

system with same state (identical daughter), or to the following functional subsystem

with the lowest activity value (mutated daughter). Candidate particleC can experi-

ment a conservative interaction with the field particleF , with an output in the same

functional subsystem. Finally, candidate particleD can be subject a destructive action

which occurs within the same state.
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Qualitative analysis and simulations

• The objective of the qualitative and computational analysis consists in understanding

if the immune system, possibly thank also to therapeutical actions, has the ability to

suppress cells of the last hallmark.

• Existence of solutions for arbitrary large times has been proved, while simulations

have shown the whole panorama of the competition depending on a critical parameter

that separate the situations where the immune system gains from those where it looses.

It is the ratio between the mutation rates of the immune cellsversus cancer cells, both

corresponding to the last mutation.

• Simulations show different trajectories are obtained for the number density of tumor

cells corresponding to increasing values of the ratio between the said parameter. The

first trajectory shows that for low values of the parameter the model predicts a rapid

growth of cancer cells due to the lack of contrast of the immune system. However, for

increasing values of the parameter the trajectory shows a trend to an asymptotic value

corresponding to a certain equilibrium. This asymptotic value decreases for increasing

value of the parameter up to when the defence is strong enoughto deplete the presence

of tumor cells.
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Simulations

t

n 4

 

 

α = 0

α = 10−4

α = 10−3

α = 10−2

Figure 4: Time evolution of the density of the most aggressive tumor functional subsys-

tem for different values of parameterα corresponding to the ratio between the rates of

proliferation of the last immune and cancer hallmarks.
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2. From Reasonings on Complex Systems to Mathematical Tools

- Looking for the black swan
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A question which is also a dilemma

Should mathematics attempt to reproduce experiments by equations whose parameters

are identified on the basis of empirical data, or develop new structures, hopefully a new

theory able to capture the complexity of biological phenomena and subsequently to

base experiments on theoretical foundations?

This question witnesses the presence of adilemma, which occasionally is the object

of intellectual conflicts within the scientific community. However, we are inclined to

assert the second perspective, since we firmly believe that it can also give a

contribution to further substantial developments of mathematical sciences.

Should a conceivable mathematical theory show common features in all field of

applications?

Although a theory should be linked to a specific class of systems, all theories should

have common features.
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Strategy and Model Validation

• Models should be derived within mathematical structures suitable to include the

aforesaid common features of living, hence complex, systems;

• The first step toward the validation of models consists in verifying that they

describe quantitative results delivered in quasi steady states (corresponding to

experiments) as an output of the dynamics at the micro-scale, without artificially

inserting them into the model (for instance as a trend to an equilibrium);

• The the second step toward the validation of models consistsin verifying that they

describe, at least at a qualitative level, emerging collective behaviors observed in

reality.
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Mathematical Structures: Models with Space Dynamics

H.1. Candidate or test particles inx, interact with the field particles in the interaction

domainx∗ ∈ Ω. Interactions are weighted by theinteraction rates ηhk[f ] and

µhk[f ] supposed to depend on the local distribution function in theposition of the field

particles.

H.2. A candidate particle modifies its state according to the probability density:

Cihk[f ](v∗ → v, u∗ → u|w∗,w), which denotes the probability density that a

candidate particles of theh-subsystems with statew∗ = {x∗,v∗, u∗} reaches the state

{v, u} in thei-th subsystem after an interaction with the field particles of the

k-subsystems with statew∗ = {x∗,v∗, u∗}.

H.3. A candidate particle, inx, can proliferate, due to encounters with field particles in

x
∗, with rateµhkP

i
hk, which denotes the proliferation rate into the functional

subsystemi, due the encounter of particles belonging the functional subsystemsh and

k. Destructive events can occur only within the same functional subsystem with rate

µikDik.
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Balance within the space of microscopic states and Structures

Variation rate of the number of active particles

= Inlet flux rate caused by conservative interactions

+Inlet flux rate caused by proliferative interactions

−Outlet flux rate caused by destructive interactions

−Outlet flux rate caused by conservative interactions,

where the inlet flux includes the dynamics of mutations.

This flow-chart corresponds to the following structure:

(∂t + v · ∂x) fi(t,x,v, u) =
(
J
C
i − J

L
i + J

P
i − J

D
i

)
[f ](t,x,v, u),

where the various termsJi can be formally expressed, consistently with the definition

of η, µ, C, P , andD.
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Mathematical Structures

J
C
i =

n∑

h,k=1

∫

Ω×D2
u×D2

v

ηhk[f ](w∗,w
∗) Cihk[f ](v∗ → v, u∗ → u|w∗,w

∗
, u∗)

× fh(t,x,v∗, u∗)fk(t,x
∗
,v

∗
, u

∗) dv∗ dv
∗
du∗ du

∗
dx

∗
,

J
L
i =

n∑

k=1

fi(t,x,v)

∫

Ω×Du×Dv

ηik[f ](w∗,w
∗) fk(t,x

∗
,v

∗
, u

∗) dv∗
du

∗
dx

∗
,

J
P
i =

n∑

h,k=1

∫

Ω×D2
u×Dv

µhk[f ](w∗,w
∗)Pi

hk[f ](u∗, u
∗)

× fh(t,x,v, u∗)fk(t,x
∗
,v

∗
, u

∗) dv∗
du∗ du

∗
dx

∗
.

J
D
i =

n∑

k=1

fi(t,x,v)

∫

Ω×Du×Dv

µij [f ](w∗,w
∗)Dij [f ](u∗, u

∗)

× fk(t,x
∗
,v

∗
, u

∗) dv∗
du

∗
dx

∗
.
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Mathematical Structures

- Interaction rates, denoted byηhk[f ](w∗,w
∗) andµhk[f ](w∗,w

∗), which model

the frequency of the interactions between a candidateh-particle with statew∗ and

a fieldk-particle with statew∗. Different ratesη andµ are used corresponding to

conservative and proliferative/destructive interactions, respectively.

- Transition probability density Cihk[f ](w∗ → w;w∗), which denotes the

probability density that a candidateh-particle ends up into the state of the test

particle of thei-th functional subsystem after an interaction (with rateηhk) with a

field k-particle, while testi-particles interact with field particles and lose their

state.

- Proliferative term Pi
hk[f ](w∗ → w;w∗), which models the proliferative events

for a candidateh-particle into thei-th functional subsystem after interaction (with

rateµhk) with a fieldk-particle.

- Destructive termDik[f ](w;w∗), which models the rate of destruction for a

candidatei-particle in its own functional subsystem after an interaction (with rate

µik) with a fieldk-particle.
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Mathematical Structures: Vanishing mechanical variables

The framework when space and velocity variables are not significant simplify as

follows:

∂tfi(t, u) = [Ci[f ] + Pi[f ]− Li[f ]−Di[f ]] (t, u)

=

n∑

h,k=1

∫

Du×Du

ηhk(u∗, u
∗)Cihk[f ] (u∗ → u|u∗, u

∗) fh(t, u
∗)fk(t, u

∗) du∗ du
∗

+

n∑

h,k=1

∫

Du

∫

Du

µhk(u∗, u
∗)Pi

hk[f ](u∗, u
∗)fh(t, u

∗)fk(t, u
∗) du∗ du

∗

−fi(t, u)

n∑

k=1

∫

Du

ηik(u, u
∗) fk(t, u

∗) du∗

−fi(t, u)
n∑

k=1

∫

Du

µik(u, u
∗)Dik[f ] fk(t, u

∗) du∗
,

On the Difficult Interplay Between Life, “Complexity”, and M athematical SciencesTowards a Theory of Complex Living Being – p. 65/82



Lecture 3 - Mathematical Theory of Living Systems

Sources of nonlinearity

• Sensitivity and space interaction domains:A candidate (or test) particle

interacts with a number of field particles by means of a communication ability that

is effective only within a certaindomain of influence of the space variable

ΩI [f ], which depends on the maximal density of active particles which can be

captured in the communication. This domain is effective only if it is included in

thesensitivity domain ΩS(x), within which active particles have the

potential ability to feel the presence of another particles.

• Partial sensitivity: If ΩI ⊆ ΩS the active particle receives sufficient information

to fully develop the standard strategy without restrictions. On the other hand,

whenΩS ⊂ ΩI , interactions are not sufficient to fully develop their strategy. We

adopt the notationΩ[f ,x] = ΩI [f ]
⋂

ΩS(x) to denote the effective interaction

domain. In some special case this domain might be equal to zero so that particles

do not modify their trajectory.
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Sources of nonlinearity with influence on the encounter rate

• Micro-state distance: |w∗ −w
∗| = |(x∗,v∗, u∗)− (x∗,v∗, u∗)| between the

micro-states by a suitable metric. to be considered for eachspecific case.

• Individual-mean state distance:, which refers the statew∗ to the mean value of

w
∗ in the domain of interactions of the field particles according to a suitable

metric. Such a distance can be formally denoted as follows:|w∗ − EΩ(w
∗)|.

• Hierarchic distance: which occurs when two active particles belong to different

functional subsystems. Then the distance|k − h| can be defined if a conceivable

numbering criterion is applied in selecting the first subsystem by a certain

selection rule (for instance, in the animal world, the “dominant”) and in

numbering the others by increasing numbers depending on thedecreasing rate.

• Affinity distance: According to the general idea that two systems with close

distributions areaffine. In this case the distance is||fh − fk||Lp(Ω[f ]).
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Sources of nonlinearity
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Looking for the Black Swan in Social Dynamics

• The dynamics of social and economic systems are necessarilybased on individual

behaviors, by which single subjects express, either consciously or unconsciously, a

particular strategy, which is heterogeneously distributed..

• A radical philosophical change has been undertaken in social and economic

disciplines. An interplay among Economics, Psychology, and Sociology has taken

place, thanks to a new cognitive approach no longer groundedon the traditional

assumption of rational socio-economic behavior.Starting from the concept of bounded

rationality, the idea of Economics as a subject highly affected by individual (rational or

irrational) behaviors, reactions, and interactions has begun to impose itself.

• A key experimental feature of such systems is thatinteraction among heterogeneous

individuals often produces unexpected outcomes, which were absent at the individual

level, and are commonly termed emergent behaviors.

•Mathematical models should also focus, in particular, on the prediction of the so
called Black Swan. The latter is defined to be a rare event, showing up as an irrational

collective trend generated by possibly rational individual behaviors.
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Looking for the Black Swan in Social Dynamics

G. Ajmone Marsan, N. Bellomo, and A. Tosin,Complex Systems and Society -
Modeling and Simulations, Springer Briefs, Springer, New York, (2013).

• Living → active entities

• Behavioral strategies, bounded rationality→ randomness of human behaviors

• Heterogeneous distribution of strategies→ stochastic games

• Behavioral strategies can change in time

• Self-organized collective behavior can emerge spontaneously: In particular the

so-called Black Swan.

On the Difficult Interplay Between Life, “Complexity”, and M athematical SciencesTowards a Theory of Complex Living Being – p. 70/82



Lecture 3 - Mathematical Theory of Living Systems

Looking for the Black Swan in Social DynamicsComplexity Features of Social

Systems

• Social classes: (poor)u1 = −1, . . . , ui, . . . , un = 1 (wealthy)

• Political opinion: (dissensus)v1 = −1, . . . , vr, . . . , vm = 1 (consensus)

• Distribution function:fr
i (t) = # people inui with opinionvr at timet

dfr
i

dt
=

m∑

p, q=1

n∑

h, k=1

η
pq
hkA

pq
hk(i, r)f

p
hf

q
k

︸ ︷︷ ︸
Gain

A
pq

hk
(i, r):=P((uh, vp)→(ui, vr)|(uk, vq))

− f
r
i

m∑

q=1

n∑

k=1

η
rq
ik f

q
k

︸ ︷︷ ︸
Loss

m∑

r=1

n∑

i=1

A
pq
hk(i, r) = 1, ∀h, k = 1, . . . , n, ∀ p, q = 1, . . . , m.
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Looking for the black swan in Social Dynamics
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A critical distance triggers either cooperation or competition among the classes. If the

distance is lower than the critical one then a competition takes place. Conversely, if the

actual distance is greater than the critical one then the social organization forces

cooperation.
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Looking for the black swan in Social Dynamics

• Interaction rate. Two different rates of interaction are considered, corresponding

to competitive and cooperative interactions, respectively.

• Strategy leading to the transition probabilities. When interacting with other

particles, each active particle plays a game with stochastic output. If the difference

of wealth class between the interacting particles is lower than a critical distance

γ[f ] (where, here and henceforth, square brackets indicate a functional

dependence on the probability distributionf ) then the particles compete in such a

way that those with higher wealth increase their state against those with lower

wealth. Conversely, if the difference of wealth class is higher thanγ[f ] then the

opposite occurs. The critical distance evolves in time according to the global

wealth distribution over wealthy and poor particles.

• Thecritical distanceγ[f ] is here assumed to depend on the instantaneous

distribution of the active particles over the wealth classes, such that the time

evolution ofγ[f ] such that it grows with the number of poor active particles, thus

causing larger and larger gaps of social competition.
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Looking for the black swan in Social Dynamics

S[f ] := N
−[f ]−N

+[f ] =

n−1
2∑

i=1

fi(t)−

n∑

i=n+3
2

fi(t).

• S[f ] = S0 ⇒ γ[f ] = γ0, whereS0, γ0 are a reference social gap and the

corresponding reference critical distance, respectively;

• S[f ] = 1⇒ γ[f ] = n: when the population is composed by poor particles only

(N− = 1, N+ = 0) the socio-economic dynamics are of full competition;

• S[f ] = −1⇒ γ[f ] = 0: when the population is composed by wealthy particles

only (N− = 0, N+ = 1) the socio-economic dynamics are of full cooperation.

γ[f ] =
2γ0(S[f ]

2 − 1)− n(S0 + 1)(S[f ]2 − S0)

2(S2
0 − 1)

+
n

2
S[f ],

where· denotes integer part (floor).
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3 - Modeling Social Conflicts and Political Competition

Dynamics of the threshold
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Piff, P.K., Stancato, D.M., Ceote, S., Mendoza-Denton, R.,Keltner, D., Higher

social class predicts increased unethical behavior, Proceedings of the National

Academy of Sciences, 109(11), 40864091 (2012).

OECD, Divided We Stand: Why Inequality Keeps Rising? OECD Publishing (2011)

129.
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Looking for the black swan in Social DynamicsCase Studies

• Initial conditions
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Looking for the black swan in Social Dynamics

• Society which is“economically neutral” on average

γ = 3 γ = 7

cooperative competitive
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Looking for the black swan in Social Dynamics

• Society which ispoor on average

γ = 3 γ = 7

cooperative competitive

constantγ
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Looking for the black swan in Social Dynamics

Simulationsn = 9 and µ = 0.3

This Figure refers to the caseU0 = 0, and shows that:

• In an economically neutral society with uniform wealth distribution not only do

wealthy classes stick at an earnest support to the Government policy, but also poor

ones do not completely distrust them, especially in a context of prevalent

cooperation among the classes (γ0 = 3).

• Therefore, this example does not suggest the development ofsignificant

polarization in that society, although a greater polarization is observed for higher

values ofγ.
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Looking for the black swan in Social Dynamics
Early Signals of a Black Swan:Let us assume that a specific model has a trend to an

asymptotic configuration described by stationary distributions{f̄r
i } i=1, ..., n

r=1, ...,m
:

lim
t→+∞

‖f̄r
· − f

r
· (t)‖ = 0, ∀ r = 1, . . . , m,

where‖ · ‖ is a suitable norm inn over the activityu ∈ Iu. In addition, let us assume

that the modeled system is expected to exhibit a stationary trend described by some

phenomenologically guessed distributions{f̃r
i } i=1, ..., n

r=1, ...,m
.

Accordingly, we define the following time-evolving distancedBS (the subscript “BS”

standing for Black Swan):

dBS(t) := max
r=1, ...,m

‖f̃r
· − f

r
· (t)‖,

which, however, will generally not approach zero as time goes by for the heuristic

asymptotic distribution does not translate the actual trend of the system. This function

can be possibly regarded as one of theearly-warning signalsfor the emergence of

critical transitions to rare events, because it may highlight the onset of strong

deviations from expectations.
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Early Signals of the Black Swan

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 T
max

d
B

S

t

γ
0
=3

γ
0
=7

The mappingt 7→ dBS(t) computed in the case studies with variableγ, taking as

phenomenological guess the corresponding asymptotic distributions obtained with

constantγ.
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