Mathematical Models for Social Changes and Criminology

#### Mario PRIMICERIO Università di Firenze

Granada – BIOMAT 2013

## Part 1 – Modelling demography and social dynamics

- a) A general introduction
- b) Demographic models
- c) Models for elementary social dynamics
- d) Coupling demography and social dynamics

## Introduction: criminology & mathematics

There is a vast literature on the **descriptive** side of criminology, but the use of mathematical models and methods is still largely at its dawn, with the exception of two areas:

- a) image analysis (fingerprint identification, crime scene reconstruction, forensic applications)
- b) statistical analysis of data

### **Using empirical statistics**

 Looking just for possible correlations (regression) between crime rate and possible explicative variables (such as income, social inequality, % young males, education, probability of arrest, ...) may lead to contradictory conclusions

#### A few examples quoted by Mirta Gordon (EJAM <u>21</u> (2010))

1) crime rate vs. expected punishment:

Ehrlich (1973, 1975) finds that crime rates are sensitive to the expected size of punishment

Archer and Gartner (1984) find no impact of capital punishment on murders in their cross-national study

2) crime rate vs. average income

Fleisher (1966) and Ehrlich (1973) examined the effect of unemployment rates, income levels, and income disparities: their findings on the effects of average income levels are in contradiction

#### And, finally .....

#### 3) crime rate vs. education

Tauchen and Witte (1994) find that in a sample of young men, going to work or school tends to reduce the probability of being involved in criminal activities.

Ehrlich (1975) finds a positive relationship between the average number of school years completed by the adult population and property crimes committed across the U.S. in 1960 ('education puzzle').

#### A better use of mathematics

- Mathematics is not always able to give complete answers but it is always useful to pose the correct questions
- Without (at least) a conceptual model to test and possibly validate, abundance of data may be background noise and not information!

#### **Of course, statistics is important!**

Once one has at least a *conceptual model*, statistics has to play a major role.

And it is important to analyze data (quite often, huge amounts of data) with some care.

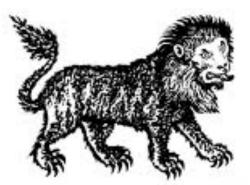
Disaggregate data relevant to different types of crime, take under-reporting into account, using data-mining carefully....

#### Without good data....

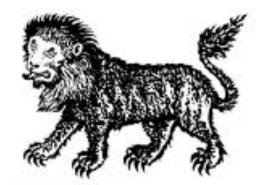
...and without a good use of statistical techniques,

our mathematical models could risk to reduce to interesting exercises and/or to"*nice pieces of mathematics*"

#### How to get good data?



HIC SUNT LEONES



It is necessary to convince key people (ministries, police, criminologists...) to trust mathematics (and mathematicians)!

#### And, in any case...

- Police forces usually have an enormous amount of data on crime..... BUT
- too aggregated (mostly at country level)
- systematic biases (under-reporting)
- no agreement on classification of crimes
- difficult to be obtained
- difficult to disentangle causes from effects (ex: effect of probability of arrest on amount of crime vs. effect of amount of crime on probability of arrest)

### The limits of our approach

Remember we are just looking for conceptual models

- Thus, our aim is to investigate the structure of possible interactions among observable quantities, state variables, and possible control actions.
- We do not claim that real world is deterministic, but just confine to arguments in terms of mean field approach

# Social models in view of criminology

Assume we want to model the "recruitment" of criminals. According to Marcus FELSON....

two main "state variables" are to be taken into account:

age and social condition

(of course there are also other variables to be taken into account, but these are more than enough for a conceptual model)

#### Age structure: PDE models

"Density" n(t,a) such that, for any couple of ages  $\alpha$ and  $\beta$ , (0<  $\alpha$  <  $\beta$ ) the integral

$$\int_{\alpha}^{\beta} n(t,a) da$$

represents the number of individuals in the population that have age between  $\alpha$  and  $\beta$  at time t.

### Age structure: PDE models (2)

It is well known that, if  $\mu(t,a)$  represents the mortality, we have the equation

$$n_t + n_a + \mu(t, a) = 0$$

that has to be solved with a given initial condition  $n(0,a)=n_0(a)$  and with a boundary condition that is e.g.

$$n(0,t) = \int_{0}^{\infty} \lambda(t,a) n(t,a) da$$

where  $\lambda(t,a)$  is the fertility.

#### Age structure: discrete models

Also this is a very classical topic. One considers m age groups and discretizes the time. Hence for the vector <u>n(t)</u> (whose m components are the number of individuals in each group at time t) we have the linear evolution

 $\underline{n}(t+1) = A(t)\underline{n}(t)$ 

Where A(t) is the Leslie or Lefkovitch matrix

#### **Leslie or Lefkovitch matrix**

$$\mathbf{A} = \begin{pmatrix} r_1 + f_1 & f_2 & f_3 & f_4 & \cdots & f_m \\ s_1 & r_2 & 0 & \cdots & \cdots & 0 \\ 0 & s_2 & r_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & s_{m-1} & r_m \end{pmatrix}$$

where the  $f_i$  represent the fertility of each age group, the  $r_i$  the individuals that remain in the group in the time step, the  $s_i$  the individuals that pass to the next age group (in case of Leslie the  $r_i$  are 0 and the age groups are of unit age/time width).

## **Compartmental models for social structure**

Consider a *closed society* and neglect space variability.

The social structure of the society will be identified by a n-vector

 $\underline{U}(t) = (u_1(t), u_2(t), \dots, u_n(t)),$ 

that gives for every time t the number of individuals that belong to each of the n social groups forming the society.

### **Compartmental models for social structure - 2**

For the moment, <u>disregard criminality</u> and consider that the n social groups are identified by the average wealth

 $a_1, a_2, ..., a_n$ 

of its members and assume

$$0 < a_1 < a_2 < \dots < a_n(< +\infty)$$

Thus the total wealth of the society is

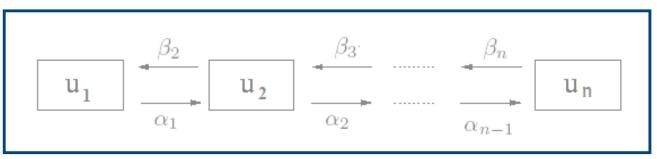
$$W(t) = \sum_{i=1}^{n} a_i u_i(t)$$

### **Compartmental models for social structure - 3**

To describe the evolution of the society, starting from a given initial situation  $\underline{U}(0)$  we have to give the dynamics of transition from/to any of the classes. Assume that:

transition is possible just from/to adjacent classes





Here  $\alpha$  and  $\beta$  represent, for any social class, the rate of **social promotion** and **social relegation** 

### The associated dynamical system: equilibrium points

$$\begin{split} \dot{u}_{i}(t) &= \alpha_{i-1} u_{i-1}(t) - (\alpha_{i} + \beta_{i}) u_{i}(t) + \beta_{i+1} u_{i+1}(t), \\ i &= 1, 2, \dots, n, \text{ with } \\ \alpha_{0} &= \alpha_{n} = \beta_{1} = \beta_{n+1} = 0. \end{split}$$

If the coefficients are positive constants (TOY EXAMPLE) one finds immediately that there exists one unique non-trivial equilibrium that is given by

 $\hat{u}_{k} = \frac{\alpha_{1}}{\beta_{2}} \frac{\alpha_{2}}{\beta_{3}} \dots \frac{\alpha_{k-1}}{\beta_{k}} \equiv \omega_{k-1} \hat{u}_{1}, \quad k = 1, 2, \dots, n,$ (where  $\hat{u}_{0} = 1$  by definition). Thus, if  $\omega = \sum_{k=1}^{n-1} \omega_{k}$ , we have:  $\hat{u}_{1} = N / \omega$  $N = \sum_{k} u_{k}(t) = \text{constant dimension of the population}$ 

# Social mobility depending on total wealth

If the coefficients depend on the total wealth, any fixed point of the operator  $\phi$  defined by

$$\varphi(W) = N \frac{\sum_{k} a_{k} \omega_{k-1}(W)}{\omega(W)}$$

gives a non-trivial equilibrium. The converse is true since the coefficients are known once W is given. ... the *toy example* is instrumental! Existence – almost trivial fixed point argument Uniqueness – additional conditions on  $\alpha$  and  $\beta$  ensuring  $\phi' < 1$ 

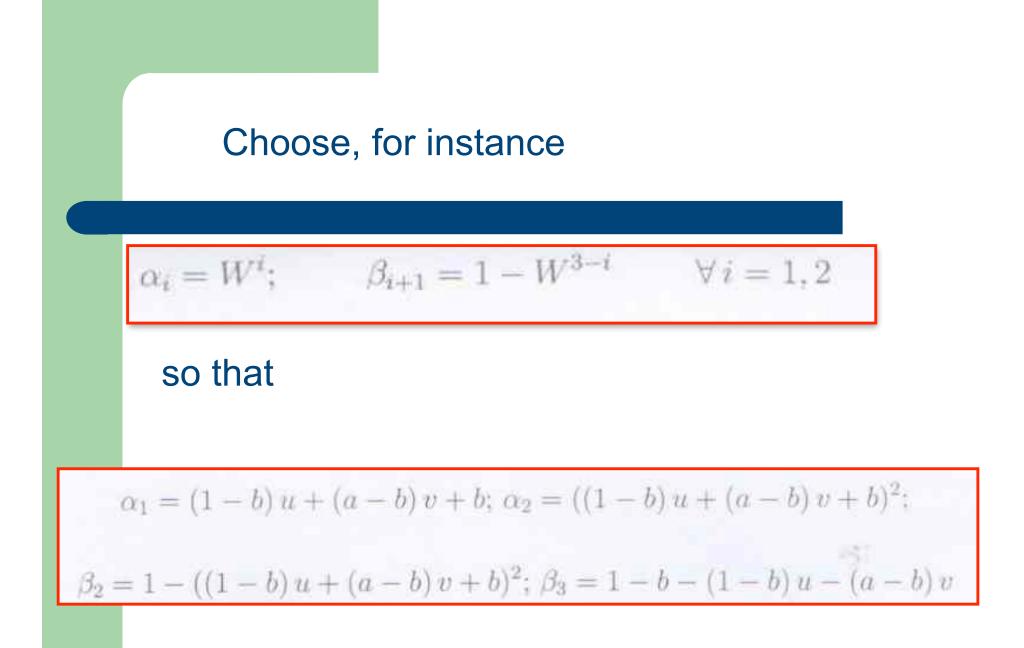
#### The case of three social classes

Let u, v, and 1-u-v be the (normalized) dimension of the three classes; let us normalize also wealth so that

W= u + av +b(1-u-v).

where b < a < 1.

Of course the largest wealth is W=1 (when u=1...everybody is rich!) and the smallest is W=b (u=v=0... everybody is poor!)



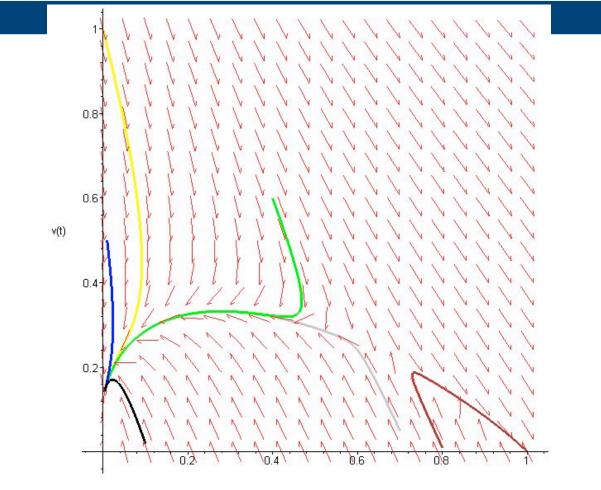
#### The case of three social classes - 2

#### The dynamical system becomes

$$\dot{u} = ((1-b)u + (a-b)v + b)^2v - (1-b - (1-b)u - (a-b)v)u$$
  
$$\dot{v} = (1-2(u+av + b(1-u-v)))u -$$
(2.11)  
$$- (1+(u+av + b(1-u-v)))v + u + av + b(1-u-v)$$

A particular situation arises when the lowest class does not contribute to the total wealth (b=0). In this case, three fixed points exist: the poorest (u=v=0), the wealthiest (u=1), and a situation corresponding to the coexistence of the three classes (that is a saddle-node).

#### The corresponding phase portrait



## An example of coupling between demography and social dynamics

Two social classes (rich and poor) and two age groups (juveniles and adults).

$$\mathbf{N}(t) = \begin{pmatrix} \mathbf{N}_1(t) \\ \mathbf{N}_2(t) \end{pmatrix} = \begin{pmatrix} \mathbf{P}\mathbf{B}_1 & (\mathbf{I}-\mathbf{Q})\mathbf{B}_2 \\ (\mathbf{I}-\mathbf{P})\mathbf{B}_2 & \mathbf{Q}\mathbf{B}_2 \end{pmatrix} \begin{pmatrix} \mathbf{N}_1(t-1) \\ \mathbf{N}_2(t-1) \end{pmatrix} = \mathbf{A}\mathbf{N}(t-1)$$

**P** and **Q** are the social mobility matrices and the **B**'s are the Lefkovitch matrixes for the two social classes

$$\mathbf{B}_{1} = \begin{pmatrix} 0 & f_{1} \\ s_{1} & s_{1} \end{pmatrix} \quad \mathbf{e} \quad \mathbf{B}_{2} = \begin{pmatrix} 0 & f_{2} \\ s_{2} & s_{2} \end{pmatrix}$$
$$\mathbf{P} = \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \quad \mathbf{e} \quad \mathbf{Q} = \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix}$$

#### A few remarks on the system

$$\begin{pmatrix} n_{11} \\ n_{12} \\ n_{21} \\ n_{22} \end{pmatrix} (t) = \begin{pmatrix} 0 & pf_1 & 0 & (1-q)f_2 \\ ps_1 & ps_1 & (1-q)s_2 & (1-q)s_2 \\ 0 & (1-p)f_1 & 0 & qf_2 \\ (1-p)s_1 & (1-p)s_1 & qs_2 & qs_2 \end{pmatrix} \begin{pmatrix} n_{11} \\ n_{12} \\ n_{21} \\ n_{22} \end{pmatrix} (t-1)$$

The system is extremely rich, even in very specially simple cases. Set e.g. q=0 and consider how the mobility p (assumed constant) affects the equilibria of the system

#### The linear case

If the spectral radii of the Lefkovitch matrixes for the two social groups are >1 and <1 respectively (a Malthusian character), changing p we can have that both populations tend to extinction or "blow up" etc. (a trivial exercise)

#### A simple nonlinear case

In a logistic-type case for population1, we find a non-trivial equilibrium (for p<1) and p is a bifurcation parameter that has two critical values.

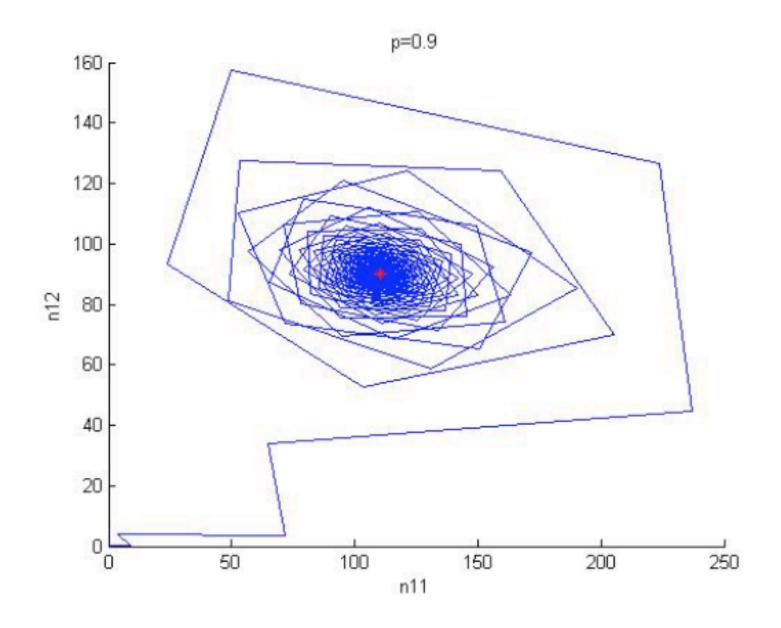


Figura 3.11: Comportamento della coppia di valori $n_{11},n_{12}$  con $K_1=100,$   $r=3.1,\;s_1=s_2=0.5,\;f_2=0.8$ e condizioni iniziali $n_{11}(0)=1,\;n_{12}(0)=n_{21}(0)=n_{22}(0)=0$ 

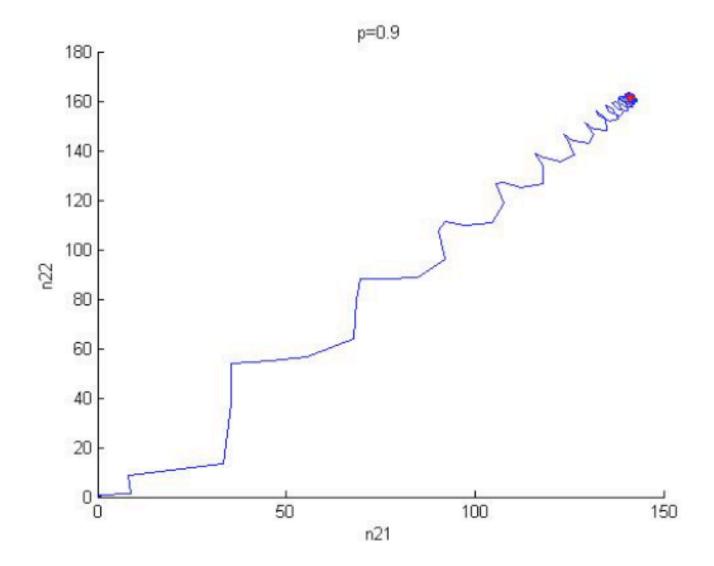


Figura 3.12: Comportamento della coppia di valori $n_{21},n_{22}$  con $K_1=100,$   $r=3.1,\;s_1=s_2=0.5,\;f_2=0.8$ e condizioni iniziali $n_{11}(0)=1,\;n_{12}(0)=n_{21}(0)=n_{22}(0)=0$ 

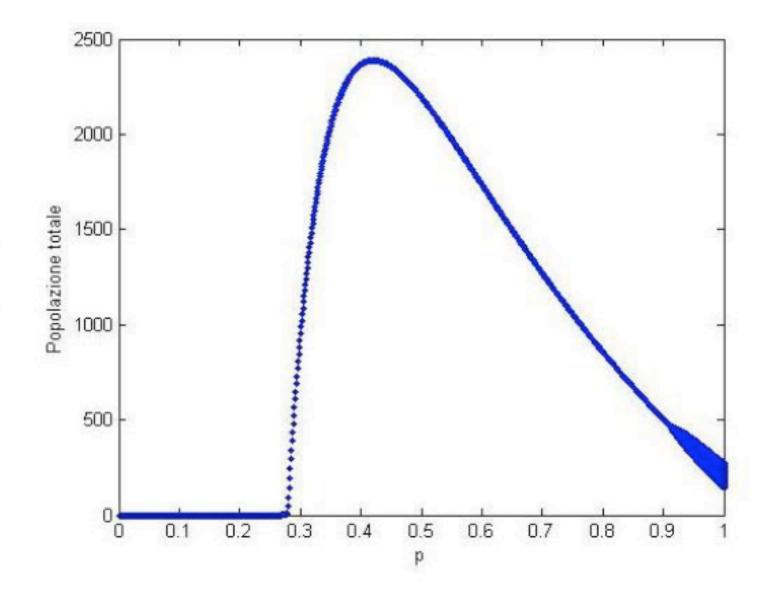


Figura 3.13: Diagramma di biforcazione della popolazione totale in funzione di p