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Gillespie SSA τ -leap method

Gillespie stochastic simulation algorithm1

Gillespie’s algorithm is a Monte Carlo simulation method which generates sample
paths or realisations of a Markov processes. The statistical properties of the
ensemble of such sample paths converge, when the number of realisations tends to
infinity, to the solution of the corresponding Master Equation

The algorithm is based on an exact representation of the Master Equation. In this
sense, the sample paths generated using the Gillespie algorithm are exact realisations
of the underlying Markov process

The mathematical foundation of the numerical algorithm is based on a (rather
clever) reinterpretation of the Master Equation, with the so-called elementary
process probability, P(τ, i), as the central element

1D.T. Gillespie. J. Comp. Phys. 22, 403 (1976)
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Gillespie SSA τ -leap method

Derivation of the algorithm I

Recall that Wi (X (t))∆t is the probability of event i to occur between t and t + ∆t

The elementary process probability is such that P(τ, i)∆t is the probability of the
next process to occur in (t + τ, t + τ + ∆t) and be process i

P(τ, i)∆t can be written as the product of the probability of no event occurring
between (t, t + τ), P0(τ), and the probability that event i occurs between t + τ and
t + τ + ∆t), i.e. Wi (X (t))∆t:

P(τ, i)∆t = P0(τ)Wi (X (t))∆t

The next step in our derivation is calculating P0(τ)
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Gillespie SSA τ -leap method

Derivation of the algorithm II

Derivation of P0(τ)

1 Divide (t, t + τ) into k � 1 equal intervals of duration
ε = τ/k

2 The probability of no reaction occuring during any of
these subintervals is given by:

R∏
i=1

(
1−Wi (X (t))ε+ O(ε2)

)
' 1−

R∑
i=1

Wi (X (t))ε+O(ε2)

3 Using the Markov Property and recalling that ε = τ/k,
P0(τ) can be written as:

P0(τ) =

(
1−

R∑
i=1

Wi (X (t))
τ

k
+ O(k−2)

)k

4 Which, in the limit k →∞ is P0(τ) = e−τ
∑R

i=1 Wi (X (t))
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Gillespie SSA τ -leap method

Derivation of the algorithm III

Finally ...

1 So, the quantity P(τ, i), i.e. the probability density of the next process to occur in
(t + τ, t + τ + ∆t) and be process i , is given by:

P(τ, i) = Wi (X (t))e−τ
∑R

i=1 Wi (X (t)),

2 Which can be rewitten as P(τ, i) = P(τ |X (t))P(i |τ,X (t)) where:

P(τ |X (t)) = (
∑

i Wi (X (t))e−τ
∑

i Wi (X (t)) is the waiting time distribution conditioned
to the state of the system at time t be X (t)

P(i |τ,X (t)) = Wi (X (t))∑
i Wi (X (t))

is the probability of process i to occur conditioned to the

waiting time be τ and the state of the system at time t be X (t)
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Gillespie SSA τ -leap method

Gillespie algorithm

Gillespie stochastic simulation algorithm

1 Initialisation X (t = 0) = X0. Initialise seed of random number generator

2 Calculate Wi (X (t)) for i = 1, . . . ,R. Calculate W0(X (t)) =
∑R

i=1 Wi (X (t))

3 Generate two random numbers z1 and z2 uniformly distributed on the unit interval

4 Calculate the waiting time τ = 1
W0(X (t))

log
(

1
z1

)
5 Calculate which process occurs by choosing j so that

j−1∑
i=1

Wi (X (t)) ≤ z2W0 <

j∑
i=1

Wi (X (t))

6 Update t ← t + τ and X (t + τ)← X (t) + rj

7 Iterate steps 2–6 until some stopping criterion is fulfilled (e.g. t ≥ T )
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Gillespie SSA τ -leap method

Example: Branching with binary anihilation2

Gillespie SSA sample paths for different values of the carrying capacity ns = σ/λ
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n
/K Red line ns = 10, green ns = 50, blue

ns = 100, black nS = 1000

2V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106 (2004)

T. Alarcón (CRM, Barcelona, Spain) Lecture 3 Biomat 2013, Granada, June 2013 9 / 21



Gillespie SSA τ -leap method

Example: Branching with binary anihilation2

Gillespie SSA sample paths for different values of the carrying capacity ns = σ/λ

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

n
/K

2V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106 (2004)

T. Alarcón (CRM, Barcelona, Spain) Lecture 3 Biomat 2013, Granada, June 2013 9 / 21



Gillespie SSA τ -leap method

Outline

Numerical methods I: Gillespie stochastic simulation algorithm

Numerical Methods II: The τ -leap method

T. Alarcón (CRM, Barcelona, Spain) Lecture 3 Biomat 2013, Granada, June 2013 10 / 21



Gillespie SSA τ -leap method

Motivation3

The SSA has a serious drawback: Poor computational performance, in particular
when slow and fast processes are considered

1 The fast processes dominate the behaviour of the waiting time distribution (i.e. the
waiting times generated are very small), and therefore very large number of iterations
are necessary to cover simulation times relevant to the dynamics of the slower processes

To overcome this situation Gillespie proposed a new numerical scheme to speed up
performance with respect to his original method: The τ -leap method, where
accuracy is traded off in the benefit of performance

The τ -leap method differs from the SSA in one significant aspect: Whereas the
latter involves generating individual events, the former is based on, upon prescription
of a time step τ , estimating the number of occurrences of each elementary event
durin the time interval (t, t + τ).

3D. Gillespie. J. Chem. Phys. 115, 1716 (2001)
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Gillespie SSA τ -leap method

Derivation of the method I

We can represent the process X (t) in the following way:

X (t) = X0 +
R∑
i=1

riZi (t),

where X0 is the initial condition and Zi (t) is the advancement coordinate for process
i , i.e. the number of times process i has occurred in the interval (0, t)

Similarly,

X (t + τ) = X (t) +
R∑
i=1

riZi (τ),

where Zi (τ) is the number of times process i has occurred in the interval (t, t + τ)

Zi (τ) is distributed according to a Poisson distribution with parameter
λi (t) =

∫ t

0
Wi (X (s))ds, i.e.

P(Zi (t) = z) =
(λi (t))z

z!
e−λi (t)

So, Zi (τ) = Poisson(λi (τ)) ≡ Yi (λi (τ))
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Gillespie SSA τ -leap method

Derivation of the method II

Hence,

X (t + τ) = X (t) +
R∑
i=1

riYi (λi (τ)),

Now, if τ is small, λi (τ) can be approximated by:

λi (τ) =

∫ t+τ

t

Wi (X (s))ds 'Wi (X (t))τ

From the two equations above, we obtain the τ -leap formula:

X (t + τ) ' X (t) +
R∑
i=1

riYi (Wi (X (t))τ)
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Gillespie SSA τ -leap method

Caveats

Remark 1

τ -leap method→ SSA when τ → 0

Remark 2

For the τ -leap formula to be a good approximation, τ and Wi (X (t)) must be such that
the propensity functions will not suffer and appreciable change when
X (t)→ X (t + τ) = X (t) + ∆Xτ . This statement, which will be made more precise in
the next slide, is the so-called leap condition

Remark 3

If τ is nor chosen properly (i.e. too big), the τ -leap formula can yield negative
(unphysical) values of X (t)
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Gillespie SSA τ -leap method

Leap condition I

Remarks 2 and 3 imply that chosing τ in a proper manner is critical for the method
to produce accurate results

There are several methods in the literature. All of their derivations are heuristic and
no proof of optimality has been given for any them

We thus focus here on the simplest one, due to Gillespie4, which is a straightforward
application of the leap condition. An improved result has been derived by Cao et al.5

4D. Gillespie. J. Chem. Phys. 115, 1716 (2001)
5Y. Cao, D. Gillespie, L.R. Petzold. J Chem. Phys. 124, 044109 (2006)
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Gillespie SSA τ -leap method

Leap condition II

Recall Zi (τ) ' Yi (Wi (X (t))τ)

The expected net change of the state of the system between (t, t + τ), 〈∆Xτ 〉, is
therefore given by:

〈∆Xτ 〉 =
R∑
i=1

ri 〈Yi (Wi (X (t))τ)〉 =
R∑
i=1

riWi (X (t))τ ≡ τξ(X (t)),

where ξ(X (t)) is the average (expected) state change per unit time

Furthermore, the leap condition can be stated as
|W(X (t + τ))−Wi (X (t))| ≤ εi (X (t))

Gillespie’s criterion6 consists of taking X (t + τ) = X (t) + 〈∆Xτ 〉 and
εi (X (t)) = ε0W0(X (t)) where W0(X (t)) =

∑
i Wi (X (t)), i.e. that the variation in

X (t) is of the order of the average and that the variation in the propensities are all
bound by the inverse of the average waiting time W0(X (t)) =

∑
i Wi (X (t))

6D. Gillespie. J. Chem. Phys. 115, 1716 (2001)
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Gillespie SSA τ -leap method

Leap condition III

By assuming 〈∆Xτ 〉
X (t)

< 1, we can write:

Wi (X (t) + 〈∆Xτ 〉)−Wi (X (t)) ' 〈∆Xτ 〉∂XWi (X (t)) = τξ(X (t))∂XWi (X (t))

Therefore,
τ |ξ(X (t))∂XWi (X (t))| ≤ ε0W0(X (t))

Gillespie’s leap condition:

τ = min
i∈[1,M]

ε0W0(X (t))

|ξ(X (t))∂XWi (X (t))|
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Gillespie SSA τ -leap method

τ -leap algorithm

1 Initialisation X (t = 0) = X0. Initialise seed of random number generator. Fix value
of ε0

2 Calculate Wi (X (t)) for i = 1, . . . ,R. Calculate W0(X (t)) =
∑R

i=1 Wi (X (t))

3 Calculate the value of τ according to the leap condition

4 Generate M random Poisson distributed numbers Yi (Wi (X (t))τ)

5 Update X (t + τ) according to the τ -leap formula

6 Update t ← t + τ

7 Iterate steps 2–6 until some stopping criterion is fulfilled (e.g. t ≥ T )
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Gillespie SSA τ -leap method

Example: Decaying dimerisation7

S1 → ∅, S1 + S1 � S2, S2 → S3. SSA results

7D. Gillespie. J. Chem. Phys. 115, 1716 (2001)
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Gillespie SSA τ -leap method

Example: Decaying dimerisation8

S1 → ∅, S1 + S1 � S2, S2 → S3. τ -leap algorithm, ε0 = 0.03

8D. Gillespie. J. Chem. Phys. 115, 1716 (2001)
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Gillespie SSA τ -leap method

Outline of next lecture

1 Some examples from my own research
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