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Some basic definitions

Conditional probability and Bayes Theorem

P(A|B) =
P(A ∩ B)

P(B)
=

P(B|A)P(A)

P(B)

Probability density function (PDF)

Let X be a random variable taking values in R. The probability that X ∈ (x , x + dx) is
given by p(x)dx where p(x) is the PDF of X . Some properties of the PDF are:

1 ∫ ∞
−∞

p(x)dx = 1

2

P(x1 ≤ X ≤ x2) =

∫ x2

x1

p(x)dx = 1
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Markov processes1

In an informal sense, we can define a stochastic process as a system whose time
evolution proceeds in a probabilistic manner and for which a random variable X (t)
exists which determines the state of the system at time t

Such systems are described in terms of an infinite set of joint probability densities:

P(xntn, xn−1tn−1, . . . , x1, t1)

or, equivalently, by a set of joint conditional probability densities:

P(xntn, xn−1tn−1, . . . , xk+1tk+1|tktk , . . . , x1, t1)

Obviusly such a system is not possible to deal with in practice and, therefore,
additional conditions must be imposed in order to make the system tractable

1C.W. Gardiner. Stochastic methods. (2009)
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Markov processes: The Markov property2

The Markov Property: Lack of long-term memory

The Markov Property is an additional condition whereby
we assume that the system looses memory of all its past
history except for the most recent event

This statement is equivalent to claiming that the waiting
time between two successive events is exponentially
distributed. A derivation of this fact is postponed until
Lecture 3

In mathematical terms, the Markov Property is expressed as:

P(xntn|xn−1tn−1, . . . , x1, t1) = P(xntn|xn−1tn−1)

This property allows us to write any joint PDF in the infinite hierarchy in terms of
just one: the one-step PDF P(xntn|xn−1tn−1):

P(xntn, xn−1tn−1, . . . , x2t2|x1, t1) = Πn
i=2P(xi ti |xi−1ti−1)

2C.W. Gardiner. Stochastic methods. (2009)
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The Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation (CKE) is a direct consequence of the Markov
property and provides a first step towards writing an equation for the time evolution of
the probability density
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The Chapman-Kolmogorov Equation

Consider the identity

P(x3t3|x1t1) =

∫
P(x3t3, x2t2|x1, t1)dx2

Now:

P(x3t3, x2t2|x1, t1) =
P(x3t3, x2t2, x1t1)

P(x1t1)
=

P(x3t3, x2t2, x1, t1)

P(x2t2, x1t1)

P(x2t2, x1t1)

P(x1t1)
=

P(x3t3|x2t2, x1, t1)P(x2t2|x1, t1)

By the Markov property:

P(x3t3, x2t2|x1t1) = P(x3t3|x2t2)P(x2t2|x1t1)
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The Master Equation
The Master Equation is a reformulation of the CKE that is easier to handle and more
directly related to physical models.

Consider P(x3t3|x2t2) and let dt ≡ t3 − t2

P(x3t3|x2t2) = (1− a0(x2)dt)δ(x3 − x2) + W (x3|x2)dt

W (x3|x2) is the transition rate (probability per unit time) of the transition x2 → x3

and 1− a0dt is the probability of no transition occurring. Therefore

a0(x2) =

∫
W (x3|x2)dx3

According to the CKE

P(x3t2 + dt|x1t1)− P(x2t2|x1t1)

dt
=

∫
W (x3|x2)P(x2t2|x1, t1)dx2−a0(x3)P(x3t2|x1t1)

Using the definition of a0(x3) and taking dt → 0, we obtain:

dP(x3t|x1t1)

dt
=

∫
(W (x3|x2)P(x2t|x1, t1)−W (x2|x3)P(x3t|x1t1)) dx2
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The Master Equation

If only a discrete set of transitions is possible:

W (x3|x2)→Wi (X ) and, upon occurrence of reaction i , X → X + ri

The corresponding Master Equation then reads:

dP(X , t)

dt
=
∑
i

(Wi (X − ri )P(X − ri )−Wi (X )P(X , t))

Which can be re-written in the following form:

dP(X , t)

dt
=
∑
i

(
e−ri∂X − 1

)
Wi (X )P(X , t)
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Rare events in stochastic dynamics3

Rare events are noise-induced transitions between different attractors (equilibrium
points) in multi-stable systems or between an attractor and an absorbing state (e.g.
extinctions) in systems far away from a phase transition

Rare events are driven by large fluctuations, typically of the order of (or larger than)
the average value of the random variable

Therefore, these events are intrinsically non-Gaussian and we need to resort to
methods other than diffusive limits of the Master Equation (see Van Kampen (2007)
and Gardiner (2009))

Statistics of rare events: Typically their frequency ∼ e−φ/ε where ε� 1 is a
measure of noise intensity

3Hong Qian. Nonlinearity. 24, R19 (2011). V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106
(2004)
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Rare events in stochastic dynamics

Two examples
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WKB/Large deviations approximation

In this context, we introduce a set of asymptotic methods which are particularly
well-suited for the study of rare events: WKB/Large deviations approximation

We have seen that Markov stochastic processes can be described in terms of either a
Master Equation for P(x,t):

∂P(x , t)

∂t
= ΩHP(x , ∂x)P(x , t)

where x = X/Ω, HP(p, x) =
∑

i

(
e−ri p − 1

)
wi (x), and Wi (X ) = Ωwi (x)

or in terms of the corresponding characteristic function G(p, t) =
∑

X P(X , t)pX

whose equation is derived from the Master Equation:

∂G

∂t
= HG (p, ∂p)G(p, t)

The operators HP(p, x) and HG (p, q) are both Shrödinger-like operators since the
pairs (p, x) and (p, q), respectively, satisfy the following the canonical
communtation relations for the position-momentum operators:

For HP : [x , p] = 1 since p = ∂x
For HG : [q, p] = 1 since q = −∂p

T. Alarcón (CRM, Barcelona, Spain) Lecture 2 Biomat 2013, Granada, June 2013 14 / 23
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or in terms of the corresponding characteristic function G(p, t) =
∑

X P(X , t)pX

whose equation is derived from the Master Equation:

∂G

∂t
= HG (p, ∂p)G(p, t)

The operators HP(p, x) and HG (p, q) are both Shrödinger-like operators since the
pairs (p, x) and (p, q), respectively, satisfy the following the canonical
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pairs (p, x) and (p, q), respectively, satisfy the following the canonical
communtation relations for the position-momentum operators:

For HP : [x , p] = 1 since p = ∂x
For HG : [q, p] = 1 since q = −∂p

This asymptotic methods exploit the analogy to the Schrödinger equation to provide a
low-noise asymptotic approximation that allows to study the statistics of rare events
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The Path Integral Approach

The solution of this Schrödinger-like equations can be given in terms of path integrals4

The solution for the characteristic function equation is given by:

G(p, t) =

∫ t

0

e−S(p,q)Dq(s)Dp(s)

where

S(p, q) =

∫ t

0

(−HG (p, q) + p(s)q̇(s)) ds + S(p, t = 0)

By using the Laplace method, we can approximate the above path integral by:

G(p, t) = e−S(p,t)

where S(p, t) is the action integral calculated on the path that minimises the action
functional S, which corresponds to the solution of the Hamilton equations:

dp

dt
= −∂H

∂q
,
dq

dt
=
∂H

∂p

4R.P. Feynman & A.R. Hibbs. Quantum mechanics & path integrals. Emended ed. (2005)
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The Path Integral Approach

This approach has been rediscovered several times in Human history:

1 Martin, Siggia, Rose Phys Rev A (1973) (field theory)

2 Kubo, Matsuo, Kitahara J. Stat. Phys. (1973) (WKB singular perturbation analysis)

3 Doi. J Phys. A (1976) (second quantisation)

4 Peliti J. Phys (1984) (second quantisation)

5 Freidlin & Wentzell. Random perturbations of dynamical systems. (1984). (Large
deviation theory)

T. Alarcón (CRM, Barcelona, Spain) Lecture 2 Biomat 2013, Granada, June 2013 16 / 23



Markov property Master Equation Asymptotic methods and rare events

Analytical mechanics in stochastic dynamics5

Hamilton equations:
dp

dt
= −∂H

∂q
,
dq

dt
=
∂H

∂p

The solution to these equations provide a great amount of information about rare
event statistics

These trajectories live on a surface constant energy. Rare events are characterised by
the trajectory on the corresponding phase space which connect the two states

Finally, the rate of the rare event is proportional to e−S , where S is the classical
action on the unique trajectory that fulfils the boundary conditions, thus reducing
the problem of rare events to solving the evolution of a classical Hamiltonian system,
a task much simpler than tackling the full Master Equation

5H. Ge & H. Qian. Int. J. Mod. Phys. B. 26, 1230012 (2012). H. Qian. Nonlinearity. 24, R19
(2011).
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Analytical mechanics in stochastic dynamics6

Some properties

The Hamiltonian dynamics generated by HG (p, q) is conservative. In fact, we will
see that HG (p(t), q(t)) = 0.

S(p = 1, t) = 0. Normalisation G(p = 1, t) = 1⇒ S(p = 1, t) = 0

S(p, t) > 0 for all p 6= 1

dq

dt
=
∂HG

∂p

∣∣∣∣
p(t)=1

(1)

corresponds to the mean-field, deterministic dynamics

6V. Elgart & A. Kamenev. Phys. Rev. E. 70,041106 (2004). H. Qian. Nonlinearity. 24, R19
(2011).
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Example: Branching and binary annihilation7

1 Birth: n→ n + 1 with probability rate W+(n) = σn. Death: n→ n − 2 with
probability rate W−(n) = λn(n − 1)/2

2 Probability balance:

P(n, t + ∆t) = ∆t (σ(n − 1)P(n − 1, t) + (λ(n + 2)(n + 1)/2)P(n + 2, t))

+(1−∆t(σn + (λn(n − 1)/2)))P(n, t)

3 When ∆t → 0:

dP(n, t)

dt
=

λ

2
((n + 2)(n + 1)P(n + 2, t)− n(n − 1)P(n, t))

+σ ((n − 1)P(n − 1, t)− nP(n, t))

4 Which leads to the Hamiltonian HG (p, q) = σ(p − 1)pq − λ
2

(p2 − 1)q2

7V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106 (2004)
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Hamilton equations and phase portrait8

Hamilton equations:

dq

dt
= −λpq2 + σ(2p − 1)q

dp

dt
= λ(p2 − 1)q − σ(p − 1)p

Mean-field equation, i.e. p(t) = 1:

dqmf

dt
= σqmf

(
1− λ

σ
qmf

)
,

i.e. a logistic growth model with
carrying capacity ns = σ/λ

Conservative system: Thick lines
show the lines of HG (p, q) = 0
which implies q(p) = 2nsp/(p + 1)

8V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106 (2004)
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Extinction probability9

From the analysis of the phase protrait we conclude that the optimal fluctuation
path to extinction from the mean-field stable steady-state, (p = 1, q = ns), is

q(p) = 2nsp/(p + 1),

which connects the mean-field stable steady-state with the absorbing state
(p = 0, q = 0)

The action calculated along this trajectory is given by (recall that, on this trajectory,
HG = 0):

S0 =

∫ 1

0

q(p)dp = ns2(1− log 2) (2)

The extinction rate,τ−1
E is thus given by

τ−1
E = e−S0 = e−ns2(1−log 2)

9V. Elgart & A. Kamenev. Phys. Rev. E. 70, 041106 (2004)
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Summary

We have established a method to analyse the statistics of rare events beased on an
analytical mechanics of stochastic systems which is derived from solutions to the
Master Equation/characteristic function PDE obtained via a path integral solution

We have seen that the study of the solutions of corresponding Hamilton equations
and its phase portrait yields a wealth of useful information regarding rare event
statistics

Sometimes, however, the information provided by the classical Hamiltonian is not
enough to predict rare events statistics to the accuracy demanded by certain
applications, and one needs to resort to the statistical analysis of the ensemble of
transition paths. Such analisys is beyond the scope of these lectures. If interested,
consult the reviews C.P. Dellago & P.G. Bolhuis. Adv. Polymer Sci. (2008) or W. E
and E. Vanden-Eijnden. Ann Rev. Phys. Chem. (2012).
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Outline of next lecture

1 Numerical methods I: Gillespie stochastic simulation algrithm

2 Numerical methods II: The τ -leap method
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