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T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 1 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function

Outline

Motivation

Master Equation

Law of mass action

Steady vs absorbing states

Analytical methods: Characteristic function

T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 2 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function
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Motivation

There exists the general idea that randomness and noise simply add an unsystematic
perturbation to a well-defined average behaviour

I will present several examples of systems in which noise contributes to the
behaviour of the system in a non-trivial manner and it is fundamental to
understanding the system

From these examples I will extract rules of thumb for ascertaining when randomness
plays a fundamental roles
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Large fluctuations in bistable systems

Mean-field model of the G1/S transition modela

aTyson & Novak. JTB. 210, 249-263 (2001)

dy
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Finite-size Tyson-Novak system

Separatrix turns into a barrier
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The Moran process

The Moran process, named after the australian statistician Pat Moran, is a widely-used
variant of the Wright-Fisher model and is commonly used in population genetics

Moran process

N individuals of two types. N is kept
fixed.

n: number of normal individuals. m:
number of mutant individuals.
N = n + m

At each time step:
1 n→ n + 1 and m→ m − 1 with

probability rate W+(n) = n
N

(
1− n

N

)
2 n→ n − 1 and m→ m + 1 with

probability rate W−(n) =
(
1− n

N

)
n
N
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The Moran process

Simulation results
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Note that W+(n) = W−(n), i.e.
〈∆n〉 = 〈(n(t + ∆t)− n(t))〉 = 0

This implies that:

d〈n〉
dt

= 0 (1)

The system has two absorving states:
W+(n = 0) = W−(n = 0) = 0 and
W+(n = N) = W−(n = N) = 0

This means that

lim
t→∞

P(n(t) = 0 ∪ n(t) = N) = 1 (2)

This behaviour is not at all captured by
the deterministic equation (1) which
predicts that the population will stay
constant
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Stochastic logistic growth

The logistic equation,

dm

dt
= m

(
1− m

K

)
, (3)

has two steady states: m = 0 unstable and m = K stable, i.e. regardless of the value
of K and for any initial condition such that m(t = 0) > 0, m(t) will asymptotically
approach K .

Consider now a continuous-time Markov process nt whose dynamics are given by the
following transition rate:

1 n→ n + 1 with probability rate W+(n) = n

2 n→ n − 1 with probability rate W−(n) = n(n−1)
K

This stochastic process has a unique absorbing state: n = 0, and therefore we
expect the stochastic dynamics to show strong discrepancies with Eq. (8) when
randomness is dominant
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Stochastic logistic growth

Simulation results
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Red line K = 10, green K = 50, blue
K = 100, black K = 1000

For small K fluctuations dominate the
behaviour of the system. Extinctions
are common for small K , in
contradiction to the behaviour
predicted by the logistic equation Eq.
(8), and become rarer as K is allowed
to increase.
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Summary

We have seen two examples in which two different mathematical descriptions of the
same physical/biological process give different answers as to what is their behaviour

We have seen a model (the Moran model) where the deterministic description
predicts the population to stay constant. To the contrary, the stochastic description
predicts that the population never stays constant: Eventually, the system evolves to
n = 0 or n = N

Another model (logistic growth) presents the same dilemma: Its deterministic
description preditcs that n = 0 is always unstable, whereas the stochastic
formulation shows that very often the system evolves to n = 0

The question naturally arises: How is this possible? How come two mathematical
descriptions of the same phenomenon offers so different answers?
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The Master Equation

The Master Equation is our fundamental mathematical description of an stochastic
process and the starting point for any attempt to analyse a particular model

It is obtained as a probability balance for all the events that can occur during the
time interval (t, t + ∆t)

Mathematically, it is a set of ordinary differential equations for the probability
distribution P(X , t) i.e. the probability that the number of individuals in the
population at time t to be X
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The Master Equation

dP(X , t)

dt
=

R∑
i=1

(Wi (X − ri , t)P(X − ri , t)−Wi (x , t)P(X , t)) (4)

where:

X is a (vector-valued) Markov process

R is the number of possible processes (e.g. birth, death, mutation)

Wi (X , t) is the probability rate of event i to occur

ri is the change in the value of X when event i occurs, i.e.

P(X (t + dt) = X (t) + ri |X (t)) = Wi (X , t)dt

The Master Equation can be interpreted as a balance equation where the first term
corresponds to positive flux into state X from every allowed state and the second term as
negative flux from state X into every possible state
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Modelling the transition rates: The law of mass action

To specify an stochastic model we need to give an expression for the probability rate
for each of the events involved in the dynamics of the system (for example, birth and
death)

The standard modelling assumption used to write down expressions for these rates is
the so called Law of Mass Action

This assumption, which originates in chamical kinetics, consists of assuming that the
probability rate of a particular event involving j molecular species, of the same type
or of different types, is proportional to (i) the number of ways in which the
corresponding molecular species can combine and (ii) a rate constant which
accounts for the probability that an encounter of the elements participating in the
reaction actually produces the corresponding product
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Examples

X → Product: W (x) = k1X

X + Y → Product: W (x) = k2
XY

2

X + X → Product: W (x) = k2
X (X−1)

2

X + Y + Z → Product: W (x) = k3
XYZ

3!

X + X + X → Product: W (x) = k3
X (X−2)(X−3)

3!
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Example: Birth-and-death process

1 Birth: n→ n + 1 with probability rate W+(n) = λn. Death: n→ n − 1 with
probability rate W−(n) = σn

2 Probability balance:

P(n, t+∆t) = λ(n−1)∆tP(n−1, t)+σ(n+1)∆tP(n+1, t)+(1−(λn∆t+σn∆t))P(n, t)
(5)

3 When ∆t → 0:

dP(n, t)

dt
= λ(n − 1)P(n − 1, t) + σ(n + 1)P(n + 1, t)− (λn + σn)P(n, t) (6)

T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 19 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function

Outline

Motivation

Master Equation

Law of mass action

Steady vs absorbing states

Analytical methods: Characteristic function

T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 20 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function

Steady states in stochastic systems

The definition of equilibrium states in stochastic systems is a bit technical and there
are several definitions of equilibrium (with or without detailed balance, equilibrium or
non-equilibrium, etc.)

We will avoid these technicalities, at least for the moment, and adopt a more
intuitive and practical approach (although not terribly rigorous)

For concreteness, consider (again) the stochastic logistic growth, i.e. a process nt
such that:

1 n→ n + 1 with probability rate W+(n) = n

2 n→ n − 1 with probability rate W−(n) = n(n−1)
K

Consider a state of the system, ns , is, roughly speaking, a state of the process such
that W+(ns) = W−(ns).

1 W+(ns) is the number of births within a population of ns individuals
2 Likewise, W−(ns) = the number of deaths within a population of ns individuals
3 So an steady state of our population dynamics is reached when nt = ns , since death

rate is balanced by birth rates and therefore the population stays roughly constant

ns = K + 1 which coincides with the deterministic stable fixed point (if K � 1)

Note that W+(n)−W−(n) > 0 if n < ns and W+(n)−W−(n) < 0 if n > ns
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Absorbing states in stochastic systems

The concept of absorbing state is the stochastic equivalent of the concept of
attractor in deterministic systems

An absorbing state, n0, is characterised by Wi (n0) = 0, i.e. once the system has
reached the absorbing state, it cannot leave anymore

The set of accessible states of the abosrbing state is the equivalent of the basin of
attraction of an attractor in deterministic systems: If na is an accessible state of n0

the stochastic dynamics will take the system from na to n0 with probability one

Consider again, the stochastic logistic growth:

1 Steady states are in general not absorbing states
2 W+(ns) 6= 0 and W+(ns) 6= 0
3 If n = 0 then W+(0) = W−(0) = 0 therefore n = 0 is an abosrbing state
4 Also, ns belongs to the set of accessible states of n = 0

ns belonging to the set of accessible states of n = 0 means that there is at least one
consecutive set of transitions that connects ns and n0. For example:
K → K − 1→ K − 2→ · · · 1→ 0

However, if K � 1 the probability of such a chain of events is vanishingly small
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Summary I

ns is an steady state in the sense that births and deaths are balanced. Moreover,
W+(n)−W−(n) > 0 if n < ns and W+(n)−W−(n) < 0 if n > ns . This is
essentially equivalent to what happens in the deterministic logistic growth model.

However, ns is not an absorbing state of the stochastic dynamics. The only
absorbing state is n = 0

Stochastic extinctions are relatively rare provided K is big. If this is the case, the
deterministic system provides a reasonable approximation to the behaviour of the
model.

If, on the contrary, K is small stochastic extinctions are relatively common and the
deterministic description is not an accurate one
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Summary II

We have seen several examples of stochastic systems in which noise and randomness
are the dominating factors. Their behaviours are not captured by their deterministic
or mean-field conterparts

In general, we should expect non-trivial random effects for:
1 Small populations: Large fluctuations/rare events have probability P ∼ e−ΩS for large

system size Ω
2 Dynamics with absorbing states
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Analytical solutions

Analytical solutions to the Master Equation are rare. General situations need to be
dealt with by means of perturbative methods (Lecture 2) or numerical simulation
(Lecture 3)

For linear systems, it is possible to write a PDE for the so called probability
generating function:

G(s, t) =
∑
n

P(n, t)sn (7)

Example: Birth-and-death process

1 Master Equation:

dP(n, t)

dt
= λ(n − 1)P(n − 1, t) + σ(n + 1)P(n + 1, t)− (λn + σn)P(n, t) (8)

2 Multiply by sn and sum over all n∑
n

sn
dP(n, t)

dt
= s2

∑
n

λ(n − 1)P(n − 1, t)sn−2 +
∑
n

σ(n + 1)P(n + 1, t)sn

−s
∑
n

(λn + σn)P(n, t)sn−1 (9)
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Analytical solutions

Example: Birth-and-death process (cont.)

1 PDE for the characteristic function:

∂G(s, t)

∂t
= (λs − σ)(s − 1)

∂G(s, t)

∂s
(10)

2 This PDE can be solved by the method of characteristics. If G(s, t = 0) = s I

G(s, t) =

(
σ(s − 1)− (σ − λs) exp(−t(λ− µ))

λ(s − 1)− (σ − λs) exp(−t(λ− µ))

)I

(11)

3 By Cauchy’s formula:

P(n, t) =
n!

2πi

∮
G(z , t)

zn+1
dz (12)

Note

Even when an analytical, closed solution for the characteristic function is not available,
this function and its associated PDE are the corner stone for asymptotic analysis,
specially WKB asymptotics

T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 27 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function

Analytical solutions

Example: Birth-and-death process (cont.)

1 PDE for the characteristic function:

∂G(s, t)

∂t
= (λs − σ)(s − 1)

∂G(s, t)

∂s
(10)

2 This PDE can be solved by the method of characteristics. If G(s, t = 0) = s I

G(s, t) =

(
σ(s − 1)− (σ − λs) exp(−t(λ− µ))

λ(s − 1)− (σ − λs) exp(−t(λ− µ))

)I

(11)

3 By Cauchy’s formula:

P(n, t) =
n!

2πi

∮
G(z , t)

zn+1
dz (12)

Note

Even when an analytical, closed solution for the characteristic function is not available,
this function and its associated PDE are the corner stone for asymptotic analysis,
specially WKB asymptotics

T. Alarcón (CRM, Barcelona, Spain) Lecture 1 Biomat 2013, Granada, June 2013 27 / 28



Motivation Master Equation Law of mass action Steady vs absorbing states Analytical methods: Characteristic function

Outline of next lecture

1 Formal definition of a Markov process
The Markov property
Chapman-Kolmogorov equation
Derivation of the Master Equation

2 Asymptotic methods and rare events
WKB/large deviations approximation to the solution of the Master Equation
Eikonal approximation and analytical mechanics in stochastic processes
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