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Concept

Chemotaxis describes an oriented movement towards or away from
regions of higher concentrations of chemical agents and plays a vitally
important role in the evolution of many living organisms.

(a) Slime mold, http://dictybase.org
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(b) Bacterial chemotaxis
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Where to find chemotaxis?

Certainly, applied mathematicians look for practical benefits of their work.
Since chemotaxis plays a key-role for many organisms, plenty applications
come into mind.

proliferation of bacteria (not only in petri dishes)
tumour growth/angiogenesis/haptotaxis
breeding concerns (insemination of sea urchins)
immunology/wound healing (production of chemokines at infection
sites)

E. Ben-Jacob,
http://star.tau.ac.il/∼eshel/
image-flow.html

M.A.J. Chaplain,
Journal of Neuro-Oncology

C. Pietschmann, MPI www.surgical-blog.com/
wound-healing-what-are-the-
phases-of-wound-healing/
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Basic model

It is common to use continuous models → system of partial differential
equations (PDE)

A general Keller-Segel model for chemotaxis:

equation for motile
species u:

∂u
∂t = ∇ ·

(
D∇u︸ ︷︷ ︸
diffusion

− u χ(v)∇v︸ ︷︷ ︸
chemotaxis

)
+ u g(u)︸ ︷︷ ︸

kinetics

equation for the
chemical agent v :

∂v
∂t = ∆v︸︷︷︸

diffusion

−β v + u s(u)︸ ︷︷ ︸
reaction

(nonlinear) coefficients modeling
saturation effects:

e.g. D, χ(v), s(u)
u→∞→ 0

introducing kinetics: e.g. s(u) = ν(1− u) (logistic)
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Features of chemotaxis models

Blow-up

∂tu = ∆u −∇ ·
(
uχ∇v

)
∂tv = ∆v − v + u

solution might form singularities
num. motivated by e.g. [Filbet ’06, Chertock &Kurganov ’08]
theor. motivated by e.g.
[Horstmann &Winkler ’04, Tao &Winkler ’11]
theoretical results R1 : all solutions are bounded

R2 : blow-up iff ||u0||1 > 8π/χ
R≥3 : no explicit threshold is known
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Features of chemotaxis models

Pattern formation

∂tu = ∆u −∇ ·
(
uχ∇v

)
+ νu(1− u)

∂tv = ∆v − αv + βu

well documented patterns arise (experimental and math.)
existence of non-trivial steady states
num. motivated by e.g.
[Mimura et al. ’93, Chertock &Kurganov ’08]
theor. motivated by e.g. [Myerscough et al. ’98, Tyson et al. ’99]
theoretical results R1,2 : unique global weak solution

(at least for ν � 1)
R≥3 : far less is known
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Numerical challenges

Highly localized solutions with steep gradients reveal particular numerical
challenges

CPU costs
Memory concerns
Convenient user interfaces
Accuracy of discretization
Robustness with respect to reasonable parameters (e.g. preservation
of physical properties)

“The purpose of computing is insight, not numbers”
Hamming, 1971
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Numerical setting

Recapitulate the governing model

∂tu = ∇ ·
(
D∇u − u χ(v)∇v

)
+ u g(u) (1)

∂tv = ∆ v − β v + u s(u)

Discretisation techniques
We (currently) use

a method of lines approach,
a canonical, uniform refinement of the spatial grid,
conform quadrilateral bilinear finite elements (Ritz-Galerkin),
the standard θ−scheme for temporal discretisation.
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Survey of num. schemes

Nonlinear Richardson scheme

A(xn) xn=bn−1

→xn
m+1=xn

m+Pn−1(xm)(bn−A(xm))

Linearisation
via Extrapolation Lin

A(2xn−1−xn−2) xn=bn−1

Picard linearisation Pic

Choose Pn(xm)=A(xm)

(Ordinary) Newtons method Newt

Choose Pn(xm)=jac(A(xm))

Decoupled Picard linearisation Dec

Reduction yields two n × n systems
A11(xm) y1=res1

A22 y2=−A21 y1+res2
(Strong decoupled Picard linearisation)

Decoupled Newtons method

Reduction yields three n × n systems
A22 z1=res2

C(xm) y1=res1−A12 z1

A22 z2=A21 y1

go on
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Comparison of iteration schemes

Model under consideration: 2D Pattern model on a square
Plots show convergence to num. reference solution
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Figure : Convergence with varying chemosensitivities, χ = 10, 20, 50.

efficiency scales remarkably with χ
Dec not comparable in terms of #IT
Dec and Lin reveal inconsistencies
Pic vs. Newt strongly emphasized for higher nonlinearity
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Stabilisation via AFC

Motivation
standard FEM fail for chemotaxis dominated PDEs
upwinding aims at ’smoothing-out’ instabilities and preserve physical
entities ...
... at costs of (first order) accuracy

REMEDY: merging of the two approaches is the motivation of
Algebraic Flux Correction (AFC), [Kuzmin ’09]

Standard Galerkin
+ second order
− num. artifacts

AFC
+ mixed order
+ failsafe

Discrete Upwinding
+ failsafe
− first order
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AFC sketch

Standard Galerkin
+ second order
− num. artifacts

convenient semi-discretized formulation

M∂tu = B(u)u

Discrete Upwinding
+ failsafe
− first order

AFC
+ mixed order
+ failsafe

correction of over-diffusive fluxes

ML∂tu = B̃(u) u︸ ︷︷ ︸
low order scheme

+ f̄ (u)︸︷︷︸
antidiff.
flux

, f̄ i =
∑
j 6=i

αij︸︷︷︸
lim.

factors

f ij

go on
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Discrete Upwinding

Consider the semi discretised system (B having zero row-sum)

M∂tu = B(u)u (2)

Aim: Preserve positivity and mass conservation

Add (just necessary) artificial diffusion B̃ = B + D

dij = max{−bij , 0,−bji} ≥ 0, j 6= i and dii = −
∑
j 6=i

dij

→ conservative monotone scheme (even LED)

ML∂tu = B̃(u)u (3)

... at costs of accuracy (first order), [Godunov ’59]
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Flux correction

In order to correct the over-diffusive fluxes in eq. (3), we introduce
limited antidiffusive fluxes.

ML∂tu = B̃(u) u︸ ︷︷ ︸
low order scheme

+ f̄ (u)︸︷︷︸
antidiff.
flux

, f̄ i =
∑
j 6=i

αij︸︷︷︸
lim.

factors

f ij

DRAWBACK: antidiffusive fluxes contain implicit contributions

REMEDY: linearisation via explicit AFC

compute upwinded (nonlinear) solution uL via (3)
correct end-of-step solution via

MLun+1 = MLuL + δt f̄ (uL) go on
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Flux correction

To correct the amount of discrete upwinding, add the differences in the
residuals (correcting flux) to the RHS of (3)

Correcting flux : f = (ML −M)
∂u
∂t −D(u)u

Flux decomposition : f i =
∑
j 6=i

f ij , f ij =
[
mij∂t + dij

]
(u i − uj)

Corrected equation : ML∂tu = B̃(u)u + f̄ , f̄ i =
∑
j 6=i

αij f ij

Some notes
f ij = −f ji ⇒ αij = αji

αij = 1⇒ Galerkin (2), αij = 0⇒ upwind (3)
αij still need to be specified, we use Zalesak limiter, [Zalesak ’79]
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Details of flux correction

0 Pre-limiting step: cancel “flattening” fluxes

fij = 0, if fij(uL
j − uL

i ) > 0 .
1 Calculate all antidiffusive fluxes into node i ,

P+
i =

∑
j 6=i

max{0, fij}, P−i =
∑
j 6=i

min{0, fij} .

2 Calculate distace to local minima

Q+
i = max

{
0,max

j 6=i
(uL

j − uL
i )
}
, Q−i = min

{
0,min

j 6=i
(uL

j − uL
i )
}
.

3 Calculate maximal correction factors

R+
i = min

{
1, miQ+

i
δtP+

i

}
, R−i = min

{
1, miQ−i
δtP−i

}
.

4 Finally

aij =

{
min{R+

i ,R
−
j }, if fij > 0 ,

min{R−i ,R+
j }, otherwise.
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Explicit flux correction
Time discretisation of the AFC equation contribute nonlineari-
ties even for θ = 0

fij(un+1,un) = mij(un+1
i − un+1

j )−mij(un
i − un

j )

+ δt
[
θdn+1

ij (un+1
i − un+1

j ) + (1− θ)dn
ij (un

i − un
j )
]

REMEDY: Linearisation via explicit AFC

compute upwinded (nonlinear) solution uL via (3)
correct end-of-step solution via

MLun+1 = MLuL + δt f̄ (uL),

where we have

fij(uL) = mij(u̇L
i − u̇L

j ) + dL
ij (uL

i − uL
j ).
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Roadmap of explicit AFC

timestep iteration

nonlinear iteration

High-order Galerkin scheme
Pn(xm) y = resn(xm)

Low-order scheme
(pos.-/mass preserving scheme)

P̃n(xm) y = r̃ esn(xm)

Explicit flux correction
xn+1 = xL + δt f̄ (xL)
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The need of AFC

In generic situations, classical Galerkin schemes provide
unphysical results, e.g. severe oscillations, negative densities,
loss of characteristic profiles → possibly solver-breakdown

(a) blowup (b) blowup (c) pattern

Figure : Challenges, blowup: Steep gradients, pattern: Maintenance of
travelling waves/trailing spots
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On AFC

AFC stabilised schemes resolve the problem at costs linear in
#DOF (per ITNL)

(a) blowup (b) blowup (c) pattern

Figure : No oscillations, no negative values, patterns are recaptured.
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Take home messages

Numerical studies offer validation and reshaping of underlying
models and provide quantitative insights into complex dynamics
Identification of proper num. scheme is a challenging task (user
customisation), focus: accuracy, number of iterations, complexity of
iterations, stability
A first glimpse revealed the potential of elaborate solver strategies,
particularly in case of large chemotaxis factors χ or poor (temporal)
discretisations
An AFC-like stabilisation counters chemotaxis-dominated num.
artifacts and is highly flexible and inexpensive
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Future interests

Numerical improvements
jacobian-free Newton methods
“global” AFC techniques
adaptive schemes

Model considerations
modeling aspects (variety and comparison of derivations, model
assumptions, combination of models)
possible patterns and steady states (→ Winkler)
multi species interactions (→ Horstmann)
follow signal transduction pathways up to the cell membranes
→ chemotaxis on surfaces (preliminary work by Sokolov exists)

go on
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Appendix: Gallery

Figure : Some impressions.
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Appendix: Modeling aspects

Macroscopic derivation (e.g. [Keller &Segel ’70]) require
δt/δh2 = const. Does it make sense to study
chemotaxis-dominating scenarios (from the modeling pov)?
Understand the motiviations for different microscopic approaches,
space vs. velocity jump processes,
[Othmer et al. ’88, Othmer &Stevens ’97]. What are their
differences numerically, [Erban & Othmer, ’04]? Is it perhaps
numerically favorable to consider microscopic models?

return
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Appendix: Multi-Species

higher coupling requires even more carefully chosen discretisations.
Does a segregated approach still provide reasonable/reliable results?
stabilisation techniques may also be required for Diffusion-like terms
(in the presence of conflicts)
consider (free-boundaries) multiphase-like scenarios. What about
single species space posession, e.g. at most one species lives in
designated areas?
conditions for a blow-up are even less analysed,
[Horstmann ’11, Arenas et al., ’09]. The results in
[Arenas et al., ’09] show that in the radial symmetric setting the
blow-up for multispecies has to be simultaneous, but what happens
for other initial symmetries?
What effect does a new approach have to the receptor-based
chemotactic sensitivity on the time asymptotic behavior and pattern
forming mechanism?

return
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Appendix: PDEs on surfaces

consider chemotaxis on the individual cell level: the chemo-gradient
induces a polarisation of the cell in terms of localisation of
membrane receptors → chemotaxis on surfaces
coupling with surface PDEs promote a level-set ansatz (different
scaling of grids)
numerical and mathematical analysis for gradient-based slope
limiters for PDEs on surfaces is desired (in context of AFC)

return
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Appendix: Gallery, Aggregation

Introducing Quorum-sensing-like terms protect the solution from blowing
up, typical aggregation behaviour is still maintained.

Figure : 3D simulation of an aggregation model with AFC. Note that
aggregates grow moderately in concentration, however the total mass is
preserved and neither a blow-up nor negative values are attained.

return
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Appendix: Gallery, AFC

Brief comparison of the pure Galerkin scheme, the low-order Upwinding
and the high-order AFC scheme.

Figure : Observe the difference in height at the specified timeinstant near the
blow-up time.

return
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Appendix: Gallery, BU

It was shown that in particular cases cells ’move’ towards the boundary
prior to a blow-up.

Figure : For a quadratic domain the solution prefers corners. Whether the
curvature influences this behaviour is still an open question!

return
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Appendix: Gallery, Pattern 1

A simple logistic-like growth is added to the minimal model. This leads
to travelling waves solutions.

Figure : 3D simulation of a pattern model with AFC. Note that the radial
travelling wave converts into an unsteady chaotic straying of the ’cells’.

return
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Appendix: Gallery, Pattern 2

Mimura et al. introduced a pattern model with quadratic chemical
gradient.

Figure : The pattern highly depend on χ, note that ’symmetry’ breaks for large
χ (top). Pattern spread, finally unsteady giraffe-like patches form (bottom).

return
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