On quantum models of excitation energy transfer in photosynthesis

Jesús Montejo-Gámez (in collaboration con J. L. López)

BIOMAT 2013

Granada, 19th June 2013

- Experimental evidence of quantum coherence
 - G. Fleming et al. for the FMO complex at 77 K¹
 - E. Collini et al. in cryptophyte algae at 180 K²
 - Reviews of Y-C. Cheng and G. Fleming³ and G. Scholes et al.⁴
- Highly efficient ET observed in higher plants⁵

CHALLENGES: Understanding the photosynthetic ET mechanism, developing mathematical models, designing artificial devices to improve our lives.

¹Nature, 446: 782-786, 2007

²Nature, 463: 644-648, 2010

Annu. Rev. Phys. Chem. 60: 241-262, 2009

⁴Nat. Chem., 23;3(10):763-774, 2011

⁵R.E.Blankenship, Molecular Mechanisms of Photosynthesis, London:Blackwell Sci, 2002 У 🤉 🦠

Outline

- Excitation energy transfer in photosynthesis
- 2 Mathematical formulation
- Models of relevance
 - Förster theory
 - Redfield theory
- 4 'Equilibrate' coupling regime
- Prospects

EET in photosynthesis

Photosynthesis

EET in photosynthesis

- Photosynthesis begins when light incides on the 'antennae' pigments, exciting them
- Each excited molecule transfers energy to others, so recovering its ground state
- In this way, the energy 'travels' to the reaction center

Along the transfer there are neither heat flux nor radiation. It is called EXCITATION ENERGY TRANSFER (EET)

Purpose

- Developing a suitable formalism which allows to model the EET mechanism for the different photosynthetic complexes arising in Nature, as well as the factors which may take part in the energy migration.
- Showing the main models accounting for EET, their hypotheses and their applicability to real cases.

- Developing a suitable formalism which allows to model the EET mechanism for the different photosynthetic complexes arising in Nature, as well as the factors which may take part in the energy migration.
- Showing the main models accounting for EET, their hypotheses and their applicability to real cases.

Mathematical formulation

Formulation: General setting⁶

Consider an aggregate of N pigments interacting with its surrounding proteins. Assume that

- The analysis of the electronic configuration is reduced to the valence electrons
- There are only two states, excited and ground, and the EET follows the Donor–Acceptor scheme

• Scale of the problem \implies quantum approach.

⁶V. May, O. Kühn: Charge and Energy Transfer Dynamics in Molecular Systems, VILEY-VCH, 2011

EET in photosynthesis

The aggregate+proteins system evolves according to

i
$$\hbar \partial_t |\Psi\rangle = \mathcal{H} |\Psi\rangle$$
, where $|\Psi\rangle = |\Psi\rangle(t;r;R;Z)$

is the wavefunction of the system, t > 0 is the time,

- $r = (r_1, \ldots, r_N)$ are the electronic coordinates,
- $R = (R_1, \ldots, R_N)$ are the nuclear coordinates,
- $Z = \{Z_k\}_{k \in K}$ are the reservoir coordinates, and $\mathcal{H} = H_{aaa}(r;R) + H_P(Z) + H_{aaa-P}(r;R;Z),$

$$H_P = \frac{1}{2} \sum_{k \in K} (T_k + \omega_k^2 m_k Z_k^2), \quad H_{agg-P} = \sum_{k \in K} f_k(R) Z_k$$

being the reservoir and interaction Hamiltonians, resp.

Formulation: The aggregate Hamiltonian

$$H_{agg} = \sum_{n=1}^{N} H_n + \frac{1}{2} \sum_{m,n=1}^{N} V_{nm}, \text{ where}$$

- H_n : Intramolecular Hamiltonian of the n^{th} pigment
- V_{mn} : intermolecular Coulomb interactions

Neglecting the electrostatic coupling among different molecules and setting the ground energy to be 0, we have

$$H_{agg} = H_{agg}^{(1)} + H_{agg}^{(2)} + \ldots + H_{agg}^{(N)},$$
 (1)

$$H_{agg}^{(1)} = \sum_{n=1}^{N} E_n |n\rangle \langle n| + \frac{1}{2} \sum_{m \neq n=1}^{N} J_{nm} |m\rangle \langle n|, \qquad (2)$$

 E_n = site energies, J_{nm} = Coulombian interaction.

⁷T. Renger, *Photosynth. Res.* 102:471-485, 2009 → *** → *** → *** → ***

Förster theory: Assumptions

- T. Förster⁸ proposed that EET is transferred by Coulombian interaction
- If the extension of the molecular wavefunction is smaller than the intermolecular distance $|X_{nm}|$, then

$$J_{nm} = \kappa_{nm} \frac{|d_n||d_m|}{|X_{nm}|}$$
 (dipole-dipole approximation),

where κ_{nm} is an orientation factor depending on the dipole moments d_i

• If the exciton-vibrational coupling is much larger than the Coulombian one, then the excited states are localized and incoherent (hopping) transfer happens.

⁸Ann. Phys. Leipzig, 2:55-75, 1948.

For $P_n(t)$ = Probability of system to be in the state $|n\rangle$,

Förster formulae for the EET

$$P'_{n}(t) = \sum_{m=1}^{N} k_{m \to n} P_{m}(t) - \sum_{m=1}^{N} k_{n \to m} P_{n}(t),$$

$$k_{n\to m} = \frac{2\pi}{\hbar^2} |J_{nm}|^2 \int_{\mathbb{R}} D_{\alpha}^{(m)}(\omega) D_I^{(n)}(\omega) d\omega,$$

 $D_{\alpha}^{(m)} = absorbance\ lineshape\ function\ of\ the\ acceptor$ $D_{I}^{(n)} = emission\ lineshape\ function\ of\ the\ donor.$

EET governed by these rules is also known as Förster Resonance Energy Transfer (FRET).

- Förster theory is applicable only for few photosynthetic systems. The EET in peridinin-Chla complex of dinoflagellates⁹ is an example of successfully application.
- It is observed long-lasting coherence \Rightarrow The assumption of localized excited states is, in general, not suitable

Weak coupling: Frenkel excitons

If the exciton-vibrational coupling is much weaker than the Coulombian interaction, then

- $\mathcal{H} \approx H_{agg}$
- J_{nm} couplings become relevant and the localized excited states $|n\rangle$ do not diagonalize H_{agg} anymore

We consider the eigenstates $|\alpha\rangle$ of H_{agg} . Since

$$|\alpha\rangle = \sum_{n=1}^{N} c_n^{\alpha} |n\rangle,$$

which is a coherent superposition of the localized excited states, we conclude that **weak coupling induces delocalized excited states**, known as **Frenkel excitons**, associated with the **exciton energies** ε_{α}

Redfield theory: Rate constants

Multilevel Redfield theory¹⁰ can be applied:

Redfield rates (Renger et al, Phys.Rep. 343:138-254, 2001)

$$P'_{\alpha}(t) = \sum_{\beta} k_{\beta \to \alpha} P_{\beta}(t) - \sum_{\beta} k_{\alpha \to \beta} P_{\alpha}(t),$$

$$k_{\alpha \to \beta} = 2\gamma_{\alpha\beta} \pi^{2} \left\{ [1 + n(\omega_{\alpha\beta})] J(\omega_{\alpha\beta}) + n(-\omega_{\alpha\beta}) J(-\omega_{\alpha\beta}) \right\}$$

$$\gamma_{\alpha\beta} = \sum_{m,n=1}^{N} e^{-f(K,|R_{n}-Rm|)} c_{m}^{(\alpha)} c_{m}^{(\beta)} c_{n}^{(\alpha)} c_{n}^{(\beta)}, \, \hbar \, \omega_{\alpha\beta} = \varepsilon_{\alpha} - \varepsilon_{\beta}$$

- $f = f(K, \delta)$ is a δ -decreasing function
- $J(\omega)$ is the espectral density (extended by 0 for $\omega < 0$)
- $n(\omega)$ is the Bose–Einstein distribution function

This model has been successfully applied to model EET:

- In simple dimeric structures by M. Yang, G. Fleming¹¹ and by P. Kellberg, T. Pullerits¹²
- In bacterias by T. Renger et al. for the WSCP complex¹³ and by J. Adolphs et al. for the FMO complex¹⁴
- In higher plants by O.Kühn et al. 15 and by V. Prokhorenko, A. R. Howard 16

 $^{^{11}{\}it Chem.\ Phys.\ 275:\ 355-372,\ 2002}$

¹² J. Chem. Phys., 124: 1-9, 2006

¹³ J. Phys. Chem. B, 111(35): 10487-10501, 2007

¹⁴ Photosynth. Res. 95: 197-209,2006

¹⁵Chem Phys, 275:15-30, 2002

¹⁶ J. Phys. Chem. B, 104: 11563-11578, 2000

The type of EET hinges upon two time scales: Intramolecular relaxation time τ_{rel} and transfer time τ_{trans} .

- If $\tau_{rel} \ll \tau_{trans}$, the excitation cannot persist in two different moleculas $\Rightarrow incoherent \ transfer$, associated with classical probabilities
- If $\tau_{trans} \ll \tau_{rel}$, excitation moves around the aggregate \Rightarrow coherent transfer, associated with quantum probabilities
- If $\tau_{trans} \approx \tau_{rel} \Rightarrow partially coherent transfer$ (equilibrate exciton-vibrational coupling). How can we model EET in this case?

Modified Redfield Theory

- Considers delocalized states (strong excitonic coupling)
- Introduces reorganization effects in the nuclear Hamiltonian, which are caused by interaction with proteins (strong exciton-vibrational coupling).

It has been applied by V. Novoderezhkin et al. for EET

- in the FMO complex¹⁷
- in PS II of higher plants¹⁸

¹⁷ J Phys Chem B, 109: 10493-10504, 2005

¹⁸ Biohys J, 89: 1464-1481, 2005

Combined coupling: Generalized Förster rates

There are large complexes where delocalized excited states are formed only in certain domains.

- Whithin these domains, Redfield theory can be used
- To describe transfer between excitons in different domains, Förster theory is extended

Generalized Förster rates

Transfer between $|\alpha_a\rangle$ and $|\beta_b\rangle$ in the domains a and b:

$$k_{\alpha_a \to \beta_b} = 2\pi \frac{|V_{\alpha_a \beta_b}|^2}{\hbar^2} \int_{\mathbb{R}} D_{\alpha_a}(\omega) D_{\beta_b}(\omega) d\omega,$$

$$V_{\alpha_a\beta_b} = \sum c_{m_a}^{\alpha_a} c_{n_b}^{\beta_b} V_{m_a n_b}$$

Applications: Green sulfur bacteria and PS II in plants

In order to provide EET with a rigorous mathematical treatment, we are interested in

- Achieving a suitable functional framework for the wavefunctions and operators involved in such processes
- Finding out an appropriate master equation in the Lindblad form for EET
- Analyzing the meaning of the Wigner transform in this scope, in order to apply the mathematical tools of PDEs to coherent ET theories
- Studying the suitability of a stochastic wavefunction approach to EET¹⁹

¹⁹L. Diosi, W.T. Strunz, Physics Letters A, 235:569-573, 1997;

Thank you!!