On quantum models of excitation energy transfer in photosynthesis Jesús Montejo-Gámez (in collaboration con J. L. López) BIOMAT 2013 Granada, 19th June 2013 - Experimental evidence of quantum coherence - G. Fleming et al. for the FMO complex at 77 K¹ - E. Collini et al. in cryptophyte algae at 180 K² - Reviews of Y-C. Cheng and G. Fleming³ and G. Scholes et al.⁴ - Highly efficient ET observed in higher plants⁵ CHALLENGES: Understanding the photosynthetic ET mechanism, developing mathematical models, designing artificial devices to improve our lives. ¹Nature, 446: 782-786, 2007 ²Nature, 463: 644-648, 2010 Annu. Rev. Phys. Chem. 60: 241-262, 2009 ⁴Nat. Chem., 23;3(10):763-774, 2011 ⁵R.E.Blankenship, Molecular Mechanisms of Photosynthesis, London:Blackwell Sci, 2002 У 🤉 🦠 ### Outline - Excitation energy transfer in photosynthesis - 2 Mathematical formulation - Models of relevance - Förster theory - Redfield theory - 4 'Equilibrate' coupling regime - Prospects EET in photosynthesis # Photosynthesis EET in photosynthesis - Photosynthesis begins when light incides on the 'antennae' pigments, exciting them - Each excited molecule transfers energy to others, so recovering its ground state - In this way, the energy 'travels' to the reaction center Along the transfer there are neither heat flux nor radiation. It is called EXCITATION ENERGY TRANSFER (EET) ## Purpose - Developing a suitable formalism which allows to model the EET mechanism for the different photosynthetic complexes arising in Nature, as well as the factors which may take part in the energy migration. - Showing the main models accounting for EET, their hypotheses and their applicability to real cases. - Developing a suitable formalism which allows to model the EET mechanism for the different photosynthetic complexes arising in Nature, as well as the factors which may take part in the energy migration. - Showing the main models accounting for EET, their hypotheses and their applicability to real cases. # Mathematical formulation # Formulation: General setting⁶ Consider an aggregate of N pigments interacting with its surrounding proteins. Assume that - The analysis of the electronic configuration is reduced to the valence electrons - There are only two states, excited and ground, and the EET follows the Donor–Acceptor scheme • Scale of the problem \implies quantum approach. ⁶V. May, O. Kühn: Charge and Energy Transfer Dynamics in Molecular Systems, VILEY-VCH, 2011 EET in photosynthesis The aggregate+proteins system evolves according to i $$\hbar \partial_t |\Psi\rangle = \mathcal{H} |\Psi\rangle$$, where $|\Psi\rangle = |\Psi\rangle(t;r;R;Z)$ is the wavefunction of the system, t > 0 is the time, - $r = (r_1, \ldots, r_N)$ are the electronic coordinates, - $R = (R_1, \ldots, R_N)$ are the nuclear coordinates, - $Z = \{Z_k\}_{k \in K}$ are the reservoir coordinates, and $\mathcal{H} = H_{aaa}(r;R) + H_P(Z) + H_{aaa-P}(r;R;Z),$ $$H_P = \frac{1}{2} \sum_{k \in K} (T_k + \omega_k^2 m_k Z_k^2), \quad H_{agg-P} = \sum_{k \in K} f_k(R) Z_k$$ being the reservoir and interaction Hamiltonians, resp. ### Formulation: The aggregate Hamiltonian $$H_{agg} = \sum_{n=1}^{N} H_n + \frac{1}{2} \sum_{m,n=1}^{N} V_{nm}, \text{ where}$$ - H_n : Intramolecular Hamiltonian of the n^{th} pigment - V_{mn} : intermolecular Coulomb interactions Neglecting the electrostatic coupling among different molecules and setting the ground energy to be 0, we have $$H_{agg} = H_{agg}^{(1)} + H_{agg}^{(2)} + \ldots + H_{agg}^{(N)},$$ (1) $$H_{agg}^{(1)} = \sum_{n=1}^{N} E_n |n\rangle \langle n| + \frac{1}{2} \sum_{m \neq n=1}^{N} J_{nm} |m\rangle \langle n|, \qquad (2)$$ E_n = site energies, J_{nm} = Coulombian interaction. ⁷T. Renger, *Photosynth. Res.* 102:471-485, 2009 → *** → *** → *** → *** # Förster theory: Assumptions - T. Förster⁸ proposed that EET is transferred by Coulombian interaction - If the extension of the molecular wavefunction is smaller than the intermolecular distance $|X_{nm}|$, then $$J_{nm} = \kappa_{nm} \frac{|d_n||d_m|}{|X_{nm}|}$$ (dipole-dipole approximation), where κ_{nm} is an orientation factor depending on the dipole moments d_i • If the exciton-vibrational coupling is much larger than the Coulombian one, then the excited states are localized and incoherent (hopping) transfer happens. ⁸Ann. Phys. Leipzig, 2:55-75, 1948. For $P_n(t)$ = Probability of system to be in the state $|n\rangle$, #### Förster formulae for the EET $$P'_{n}(t) = \sum_{m=1}^{N} k_{m \to n} P_{m}(t) - \sum_{m=1}^{N} k_{n \to m} P_{n}(t),$$ $$k_{n\to m} = \frac{2\pi}{\hbar^2} |J_{nm}|^2 \int_{\mathbb{R}} D_{\alpha}^{(m)}(\omega) D_I^{(n)}(\omega) d\omega,$$ $D_{\alpha}^{(m)} = absorbance\ lineshape\ function\ of\ the\ acceptor$ $D_{I}^{(n)} = emission\ lineshape\ function\ of\ the\ donor.$ EET governed by these rules is also known as Förster Resonance Energy Transfer (FRET). - Förster theory is applicable only for few photosynthetic systems. The EET in peridinin-Chla complex of dinoflagellates⁹ is an example of successfully application. - It is observed long-lasting coherence \Rightarrow The assumption of localized excited states is, in general, not suitable # Weak coupling: Frenkel excitons If the exciton-vibrational coupling is much weaker than the Coulombian interaction, then - $\mathcal{H} \approx H_{agg}$ - J_{nm} couplings become relevant and the localized excited states $|n\rangle$ do not diagonalize H_{agg} anymore We consider the eigenstates $|\alpha\rangle$ of H_{agg} . Since $$|\alpha\rangle = \sum_{n=1}^{N} c_n^{\alpha} |n\rangle,$$ which is a coherent superposition of the localized excited states, we conclude that **weak coupling induces delocalized excited states**, known as **Frenkel excitons**, associated with the **exciton energies** ε_{α} ### Redfield theory: Rate constants Multilevel Redfield theory¹⁰ can be applied: #### Redfield rates (Renger et al, Phys.Rep. 343:138-254, 2001) $$P'_{\alpha}(t) = \sum_{\beta} k_{\beta \to \alpha} P_{\beta}(t) - \sum_{\beta} k_{\alpha \to \beta} P_{\alpha}(t),$$ $$k_{\alpha \to \beta} = 2\gamma_{\alpha\beta} \pi^{2} \left\{ [1 + n(\omega_{\alpha\beta})] J(\omega_{\alpha\beta}) + n(-\omega_{\alpha\beta}) J(-\omega_{\alpha\beta}) \right\}$$ $$\gamma_{\alpha\beta} = \sum_{m,n=1}^{N} e^{-f(K,|R_{n}-Rm|)} c_{m}^{(\alpha)} c_{m}^{(\beta)} c_{n}^{(\alpha)} c_{n}^{(\beta)}, \, \hbar \, \omega_{\alpha\beta} = \varepsilon_{\alpha} - \varepsilon_{\beta}$$ - $f = f(K, \delta)$ is a δ -decreasing function - $J(\omega)$ is the espectral density (extended by 0 for $\omega < 0$) - $n(\omega)$ is the Bose–Einstein distribution function #### This model has been successfully applied to model EET: - In simple dimeric structures by M. Yang, G. Fleming¹¹ and by P. Kellberg, T. Pullerits¹² - In bacterias by T. Renger et al. for the WSCP complex¹³ and by J. Adolphs et al. for the FMO complex¹⁴ - In higher plants by O.Kühn et al. 15 and by V. Prokhorenko, A. R. Howard 16 $^{^{11}{\}it Chem.\ Phys.\ 275:\ 355-372,\ 2002}$ ¹² J. Chem. Phys., 124: 1-9, 2006 ¹³ J. Phys. Chem. B, 111(35): 10487-10501, 2007 ¹⁴ Photosynth. Res. 95: 197-209,2006 ¹⁵Chem Phys, 275:15-30, 2002 ¹⁶ J. Phys. Chem. B, 104: 11563-11578, 2000 ### The type of EET hinges upon two time scales: Intramolecular relaxation time τ_{rel} and transfer time τ_{trans} . - If $\tau_{rel} \ll \tau_{trans}$, the excitation cannot persist in two different moleculas $\Rightarrow incoherent \ transfer$, associated with classical probabilities - If $\tau_{trans} \ll \tau_{rel}$, excitation moves around the aggregate \Rightarrow coherent transfer, associated with quantum probabilities - If $\tau_{trans} \approx \tau_{rel} \Rightarrow partially coherent transfer$ (equilibrate exciton-vibrational coupling). How can we model EET in this case? #### Modified Redfield Theory - Considers delocalized states (strong excitonic coupling) - Introduces reorganization effects in the nuclear Hamiltonian, which are caused by interaction with proteins (strong exciton-vibrational coupling). It has been applied by V. Novoderezhkin et al. for EET - in the FMO complex¹⁷ - in PS II of higher plants¹⁸ ¹⁷ J Phys Chem B, 109: 10493-10504, 2005 ¹⁸ Biohys J, 89: 1464-1481, 2005 ### Combined coupling: Generalized Förster rates There are large complexes where delocalized excited states are formed only in certain domains. - Whithin these domains, Redfield theory can be used - To describe transfer between excitons in different domains, Förster theory is extended #### Generalized Förster rates Transfer between $|\alpha_a\rangle$ and $|\beta_b\rangle$ in the domains a and b: $$k_{\alpha_a \to \beta_b} = 2\pi \frac{|V_{\alpha_a \beta_b}|^2}{\hbar^2} \int_{\mathbb{R}} D_{\alpha_a}(\omega) D_{\beta_b}(\omega) d\omega,$$ $$V_{\alpha_a\beta_b} = \sum c_{m_a}^{\alpha_a} c_{n_b}^{\beta_b} V_{m_a n_b}$$ Applications: Green sulfur bacteria and PS II in plants #### In order to provide EET with a rigorous mathematical treatment, we are interested in - Achieving a suitable functional framework for the wavefunctions and operators involved in such processes - Finding out an appropriate master equation in the Lindblad form for EET - Analyzing the meaning of the Wigner transform in this scope, in order to apply the mathematical tools of PDEs to coherent ET theories - Studying the suitability of a stochastic wavefunction approach to EET¹⁹ ¹⁹L. Diosi, W.T. Strunz, Physics Letters A, 235:569-573, 1997; Thank you!!