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Moving Boundary Models and Problems for Crowd and Swarm Dynamics

Crowd dynamics in a spatial domain
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Moving Boundary Models and Problems for Crowd and Swarm Dynamics

What about swarms?
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Modeling by means of the kinetic theory for active particles

Hallmarks of the kinetic theory of active particles

The overall system is subdivided into functional subsystems
constituted by entities, called active particles, whose individual
state is called activity;
The state of each functional subsystem is defined by a suitable,
time dependent, distribution function over the microscopic state;
Interactions are modeled by games, more precisely stochastic
games, where the state of the interacting particles and the output
of the interactions are known in probability;
Interactions are delocalized and nonlinearly additive;
The evolution of the distribution function is obtained by a
balance of particles within elementary volumes of the space of
the microscopic states, where the dynamics of inflow and outflow
of particles is related to interactions at the microscopic scale.
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Modeling by means of the kinetic theory for active particles

Toward a kinetic theory of active particles

Crowd dynamics
Active particles Pedestrians

Position
Microscopic state Velocity

Activity
Different abilities

Functional subsystems Individuals pursuing different targets
etc.
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Modeling by means of the kinetic theory for active particles

Crowds in bounded domains with obstacles
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Modeling by means of the kinetic theory for active particles

Polar coordinates with discrete values are used for the velocity
variable v = {v,θ}:

Iθ = {θ1 = 0 , . . . ,θi , . . . ,θn =
n−1

n
2π}, Iv = {v1 = 0 , . . . ,vj , . . . ,vm = 1}.

f (t,x,v,u) =
n

∑
i=1

m

∑
j=1

fij(t,x,u)δ(θ−θi)⊗δ(v− vj) .

Some specific cases can be considered. For instance the case of two
different groups, labeled with the superscript σ = 1,2, which move
towards two different targets.

f σ(t,x,v,u) =
n

∑
i=1

m

∑
j=1

f σ
ij (t,x)δ(θ−θi)⊗δ(v− vj)⊗δ(u−u0) ,

Local density:
ρ(t,x) =

2

∑
σ=1

ρ
σ(t,x) =

2

∑
σ=1

n

∑
i=1

m

∑
j=1

f σ
ij (t,x) ,
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Modeling by means of the kinetic theory for active particles

Interactions in the table of games

Particle in P moves to a direction θh (black arrow) and interacts with a field
particle moving to θp (blue arrow), the direction to the target is θν (red
arrow).
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Modeling by means of the kinetic theory for active particles

Interaction functions

• Interaction rate:

η(ρ(t,x)) = η
0(1+ρ(t,x)).

• Transition probability density: The approach proposed here is
based on the assumption that particles are subject to three different
influences, namely the trend to the exit point, the influence of the
stream induced by the other pedestrians, and the selection of the path
with minimal density gradient. A simplified interpretation of the
phenomenological behavior is obtained by assuming the factorization
of the two probability densities modeling the modifications of the
velocity direction and modulus:

Aσ

hk,pq(ij) = Bσ

hp(i)
(
θh→ θi|ρ(t,x)

)
×C σ

kq(j)
(
vk→ vj|ρ(t,x)

)
.
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Modeling by means of the kinetic theory for active particles

Interactions in the table of games

A particle can change its velocity direction, in probability, only to an
adjacent state. (a) A candidate particle with direction θh interacts with an
upper stream with direction θp and target directions θν and decides to
change its direction to θh+1. (b) A candidate particle interacts with an upper
stream and lower target directions, and decides to change its direction either
to θh+1 or θh−1.
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Modeling by means of the kinetic theory for active particles

Interaction functions

– Interaction with a upper stream and target directions, namely
θp > θh, θν > θh:

Bσ

hp(i) = u0(1−ρ)+u0 ρ if i = h+1 ,

Bσ

hp(i) = 1−u0(1−ρ)−u0 ρ if i = h ,

Bσ

hp(i) = 0 if i = h−1 .
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Mathematical structures

Mathematical structures

Variation rate of
the number of
active particles

=
Inlet flux rate
caused by
conservative interactions

−
Outlet flux rate
caused by
conservative interactions(

∂t + vij ·∂x
)
f σ
ij (t,x) = J[f](t,x)

=
n

∑
h,p=1

m

∑
k,q=1

∫
Λ

η[ρ(t,x∗)]Aσ

hk,pq(ij)[ρ(t,x
∗)]f σ

hk(t,x) f σ
pq(t,x

∗)dx∗

− f σ
ij (t,x)

n

∑
p=1

m

∑
q=1

∫
Λ

η[ρ(t,x∗)] f σ
pq(t,x

∗)dx∗, (1)

where f = {fij}.
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On the initial value problem

Mild form of the initial value problem

The initial value problem consists in solving Eqs. (1) with initial
conditions given by

f σ
ij (0,x) = φ

σ
ij(x).

Let us introduce the mild form obtained by integrating along the
characteristics:

f̂ σ
ij (t,x) = φ

σ
ij(x)+

∫ t

0

(
Γ̂σ

ij[f, f](s,x)− f̂ σ
ij (s, x)Ł̂[f](s, x)

)
ds,

i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}, σ ∈ {1,2},

where the following notation has been used for any given vector
f (t,x): f̂ σ

ij (t,x) = f σ
ij (t,x+ vj cos(θi)t,y+ vj sin(θi)t).
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On the initial value problem

Existence theory

H.1. For all positive R, there exists a constant Cη > 0 so that
0 < η(ρ)≤ Cη , whenever 0≤ ρ≤ R.

H.2. Both the encounter rate η[ρ] and the transition probability
Aσ

hk,pq(ij)[ρ] are Lipschitz continuous functions of the macroscopic
density ρ, i.e., that there exist constants Lη,LA is such that

| η[ρ1]−η[ρ2] |≤ Lη | ρ1−ρ2 |,

| Aσ

hk,pq(ij)[ρ1]−Aσ

hk,pq(ij)[ρ2] |≤ LA | ρ1−ρ2 |,

whenever 0≤ ρ1 ≤ R, 0≤ ρ2 ≤ R, and all i,h,p = 1, ..,n and
j,k,q = 1, ..,m.
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On the initial value problem

• Let φσ
ij ∈ L∞∩L1, φσ

ij ≥ 0, then there exists φ0 so that, if ‖ φ ‖1≤ φ0, there
exist T , a0, and R so that a unique non-negative solution to the initial value
problem exists and satisfies:

f ∈ XT , sup
t∈[0,T]

‖ f (t) ‖1≤ a0 ‖ φ ‖1,

ρ(t,x)≤ R, ∀t ∈ [0,T], x ∈Ω .

Moreover, if ∑
2
σ=1 ∑

n
i=1 ∑

m
j=1 ‖ φσ

ij ‖∞≤ 1, and ‖ φ ‖1 is small, one has
ρ(t,x)≤ 1, ∀t ∈ [0,T], x ∈Ω.
• There exist φr, (r = 1, ...,p−1) such that if ‖ φ ‖1≤ φr, there exists ar so
that it is possible to find a unique non-negative solution to the initial value
problem satisfying for any r ≤ p−1 the following f (t) ∈ X[0,(p−1)T],

sup
t∈[0,T]

‖ f (t+(r−1)T) ‖1≤ ar−1 ‖ φ ‖1,

and ρ(t+(r−1)T,x)≤ R, ∀t ∈ [0,T], x ∈Ω. Moreover,
ρ(t+(r−1)T,x)≤ 1, ∀t ∈ [0,T], x ∈Ω.
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Numerical Results

Case-study 1
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Numerical Results

Case-study 1
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Numerical Results

Case-study 2
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Numerical Results

Case-study 2
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Numerical Results

Case-study 2 - Top view
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Numerical Results

Questions?
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