OPTIMAL EXPERIMENTAL DESIGN

The Construction of locally D-optimal designs by
canonical forms to an extension for the logistic model.
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INTRODUCCTION TO OED

"Data analysis will be informative only if the data are
themselves”
(Rodriguez Torreblanca C. et al. 1999)

What does the OED consist of ?

To select where and how many observations we must
collect in order to validate the study

(in sense of obtaining the results which we are pursuing)




Model: y(x) = n(x,0) + e(x) = 6'f(x) + e(x), x€yx

0.2

Ele(x)] = 0, Var[e(x)] = 6% (x) = m

Design space (closed and compact): .
Parameters vector: 6 € R*.
What values of x € y should it be taken the

observations yin? How many are
necessaries?



Exact Designs:
N € N = number of experiments (or observations)

X1 X3 Y
'f_{nl n, .. N,

}, nn+n,+ ..+ n, =N

Approximate Designs:
Defining a probability measure on y,
n

£ = {;i ;i ;Z}, ;pi =1 (defining p; = %)

Z = {design measures}, Support =S; = {xey, {(x) > 0}

Continuous Designs:
Considering whatever probability measure (Atkinson, 1992)




Variances-Covariances Matrix: cov(8) = o* N~ *M~1(¢)
M(§) = Zf(x)ft(x)f(x) (Information Matrix).

XEY

Assuming 2 = 1, the information matrix to a

design: 8 o0, 8) (e, 6)
nX', nX',
M@:Zpi aé aelt = XX
i=1

QO =diag(py, ..., Pn)

The information matrix set is compact and
convex: M={M®E&): &eE)



Caratheodory’s theorem: Each element pr can be
expressed as a convex linear combination.

D A feft ()
i=1

k(k + 1)
where m=s———+1,

Criterion function: @®: M — R U {0}

Convex: @lyM; + (1 —y)M;| < y®(M;) + (1 —y)P(My)
Decreasing: M(§) = M(n) = ®[M(§)] = ®[M(n)]

Homogeneous: o[sM] =<®[M], 5>0



The ¢-optimal design &* is which minimizes .

If § is strictly convex (in non-singular matrixes),
there is a only minimum M(&*).

CRITERIA:

D-optimization:
¢p[M($)] = log[det M (§)~"/¥]

(minimizes the volume of the confidence ellipsoid of the parameters)

G-optimization:
D [M(£)] = maxd(x,§) = max f ()M (E)f" (x)

(minimizes the maximum vaIue of the variance)



A-optimization:

y[M(E)] =TrM~(§)
(minimizes the variance promethium of the parameter estimators)

E-optimization:
1
Oy [M(&)] = — being A; the minimun eigenvalue of M(¢)

A
(minimizes the axis of the confidence ellipsoid)

Note: There are other criteria in which the interest is to
know some or a linear combinations of the parameters



How to know if a design is optimal ?

General Equivalence theorem (GET):

The following conditions are equivalents:

(1) Y?Ea?X|M(€)| = [M($)
(2) minsupd(x, &) = supd(x,&*)

EEE XEY XEY
=k if x € Supp(¢”)
Moreover d(x, ¢ ={ ' }
oreover, ilelf (x,$%) < kif x & Supp(¢")

_ o _ [ 0if x € Supp(§”)
= il:fd(x»f) k {<0ifxe5upp(€*)}

= directional derivative of ¢p



CANONICAL FORMS

Optimal experimental design for non-linear problems
depend on the values of the unknown parameters in the
model.

For various reasons, there is interest in providing
explicit formulae for the optimal designs as a function of
the unknown parameters.

Certain class of generalized lineal models can be
reduced to a canonical form to simplify the problem.

The designs are constructed with a single variable using
geometric and other arguments.
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It is necessary to have a design criterion invariant under
transformation of the form: x = z=Bx, where B is a non-
singular kxk matrix and x is mapped to z resulting in an
introduced design space Z.

The dependence of optimal design on the true value of
© for given space x is replaced by a design space
which varies with ©.

In the literature it exists several studies with
geometrical rules to construct the optimal design to the
most important criteria and models.
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Motivations

There are many natural phenomena or external factors to
which males and females respond differently.

Atkinson et al. (1995) consider an experiment 0‘.
based on the dose-response to a fly |nsect|C|de
males and females respond in a different way.

The experiment consists of supplying a dose of |nsect|C|de
on and analyzing its effectiveness.

The characterization of this process is the impossibility
to sex flies before and during the treatment application.

In this work, it is proposed the use of canonical forms,
Ford et al. (1992), in order to compute D-optimal designs.
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1. MODEL

Logistic Model for Binary Data:

e @ tBx +qy

=F(a+pBx+qy) ,a" <x<b"

y|x ~ Bi(1,n) where n(8,x) = e Ty
being  y: number of deaths
x: dose level
n: probability of death
g: factor (scores 0 males /1 females)
9=(, 8, y) parameter’s vector

doing the logarithm of the probability ratio, it can be linearized :

log(lnTn)za+,8x+qy=,u
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2. DESIGN

Approximate design:
(Caratheodory’s theorem sure us that the number
of support points is finite and bounded)

(X1 Xz e Xy
$ = {P1 Pz - Pn}
defined on the spatial region y =[a",b*] and
being the p, the welght on the support points and

verifying: z
pi =1



3. INFORMATION MATRIX

According to the previous design, the information matrix to a
single observation x on an insect of known sex is :

ou 0 :
Myj(x,0) = w(x,0) g5 being w(x,0) = A(x,0) =n(1—n)

In spite of the experimental limitations about the lack of sex
knowledge, it necessary to modify the above matrix to take into
account this uncertainly. The information matrix for a fly whose
sex is unknown is:

1 x 1 1 x O
M(x,9)=0.5a)M<x x? x>+0.5a)F<x x? O)

1 x 1 0O 0 O
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4. OPTIMALITY CRITERION

D - optimality:
D-optimal criterion minimizes the volume of the
confidence ellipsoid of the parameters.

By

¢p[M(E,6)] = log[det M(§,6)71/¥]

4

e where k is the number of
parameters in the model.

Y

0,



5. CANONICAL FORMS

Reformulating the problem::

ea+[§x +qd

n(0,X) = T —meas = F(@+ Bx +qd) cona” <x < b’

Note: Knowing the insect’ sex, next step is valid for both
males and females.

The change of variable z=0+8x reduces the model:
ez+q6

n=F(z+qd) =

14+e2ztqd’
at+fa" <z<a+pbora+fa =Zz=Za+pb7if £ <0
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It is necessary to apply this type of changes to write the

information matrix: M, (£) = zp" ()0 (x)!
i=1

Thus,
o(x) = 1 {6F(z+q5)6(z+q6) 0F(z+q6)d(z+qd) 0F(z+qd) d(z + qd) }t 3 f(z+qd) ch
o laiz+ad)  da " a(z+qs) 9B " d(z+qs) 96 - JFE+a®)(I-F(z+q6) \q
“ W Y
H(x;)

the information matrix for n dose levels is:

X D . N f(+08)? ! o
() = Z Fatad)(d - Fatasy) o) = Z P F(2+98)(1 - F(z+q5)) (’f]) (x D=
n 1 n
= z p; w(z; +qf) <Xi> 1 x q)= Z p; v(x)v(x;)"
i=1 q i=1
Note: (z+q6) = f(z +a8)”

F(z+q8)(1—F(z+q9))
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Considering now the linear transformation in the components:

1 1 0 0\ /1 1
BRI ——
q 0 0 1/ \q q

1 0 0\/1
2(2) = Bolx) = f(z +qd) (a ; 0) <x> _ f(z+qo)
\/F(z+q6)(1 —F(z+q8))\0 0 1/\q \/F(z+q6)(1 —F(z +q9))

So that we can write:w(x) = B *g(z) (B is not singular; z0)

Then, the information matrix can be written equivalently as

M (£)=BM,(§) B.
Due to the D-optimal criterion does not vary by non-singular

linear transformations of the design space, the maximization
problem of M, () determinant reduces to maximize M,(¢).

(

1
z

q

|
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The Information matrix for n dose levels and

unknown sex will be:

1

Mz<s)=zpiw<zi+qy)<zi)<1 2 @)= pgEg@), ol +ay) =
i=1 q i=1

f(z; + qy)?
F(zi +qv)(1 = F(z; + qp))

Adding it the uncertainty about sex:

Jo(z +9) m
M,(§) =05%"pi[9(z)9(z)" + h(z)h(z)], 9@ = <Z\/‘U(Z+ 5)> and h(z) = (z@)
Jo(z +96) 0

Expressed in a simplified way:

2n
M) =05 ) £(5) fila)f ()
k=1
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6. RESULTS

Formula for computing the determinant:

Considering y = {xq, ..., x,} with n > k :

detM(§) = z &(xk, ) - €(xkk)det:{ﬁ'(xkj)}]2

kg <<kp

being &; the S, ’s elements, which is the
symmetric group of the four-order
permutations.



6.2 TWO POINTS DESIGN

Basing on that, it results:
My, ,,(©)| = 0.5[p*(1 = p) E + p(1 —p)* F]

where E and F are the squares of the determinants
which result of combining the column matrixes g(z,),
h(z)with i=1,2and operating them conveniently.

Analytical Expression to the Optimal Weighs:

0|M,, ,, (&)
dp

=05[3(F—-E)p*+2(E-2F)p+F]=0,

. 2F —E+VF*—EF + E*
pe= 3(F — e)
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Maximizing the determinant expression,
it results:

a=1.804, B=1.757, y=-1
X.* -1.467 -0.018

P * 0.5 0.5
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Testing the results:

Using the extension of equivalence theorem:

d(x,§%,0) = 05wy (x,0) fiy COM™ (&, 0)fi (x) + 0.5 wp(x,0) fif ()M~ (§",0)fr(x) < k

where k=3 is the number of
parameters. The equality is
produced in the points of the
optimal design. Plotting this
function to the obtained results,
it is checked that a D-optimal
design has been obtained.
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6.2 THREE POINTS DESIGN

From previous studies (Atkinson et al. 1995) it is checked that the
optimal weights are symmetrical to the three-point case:

(%4 Z2 Z3
¢ = {p q=1-2p p}
In this case, to calculate the determinant:
|MZ1,Zz,Z3 (€)| — 0'5 {A p3 + B pz + Cp}

where A, B and C are the squares of the determinants which
result from applying the formula to its fast calculation gathering
them conveniently.

-B ++VB2 —3AC

Analytical Expression to the Optimal Weighs: p* = o
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Maximizing the determinant expression,

it results:

-1.347

-0.287 0.772

-1.378 -0.173 1.032

-1.349 0.396 2.141

0.375

0.250 0.375

0.339 0.322 0.339

0.316 0.368 0.316
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Testing the results:

Through the equivalence theorem, it is checked that the
obtained design are D-optimal.
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