OPTIMAL EXPERIMENTAL DESIGN

The Construction of locally D-optimal designs by canonical forms to an extension for the logistic model.

Dr. Raúl Martín Martín

๑UCLM Irene García Camacha Gutiérrez

OUTLINE

- Introduction to OED
- Canonical Forms
- Real Case:

1. Model.
2. Design.
3. Information matrix.
4. Optimality Criterion.
5. Canonical Forms.

- Results.
- References.

INTRODUCCTION TO OED

"Data analysis will be informative only if the data are themselves" (Rodríguez Torreblanca C. et al. 1999)

- What does the OED consist of ?

To select where and how many observations we must collect in order to validate the study
(in sense of obtaining the results which we are pursuing)

- Model: $y(x)=\eta(x, \theta)+\varepsilon(x) \equiv \theta^{t} f(x)+\varepsilon(x), \quad x \in \chi$

$$
E[\varepsilon(x)]=0, \quad \operatorname{Var}[\varepsilon(x)]=\sigma^{2}(x)=\frac{\sigma^{2}}{\lambda(x)}
$$

- Design space (closed and compact): χ.
- Parameters vector: $\theta \in \mathbb{R}^{k}$.
- What values of $x \in \chi$ should it be taken the observations y in? How many are necessaries?
- Exact Designs:
$N \in \mathbb{N}=$ number of experiments (or observations)

$$
\xi=\left\{\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{m} \\
n_{1} & n_{2} & \ldots & n_{m}
\end{array}\right\}, \quad n_{1}+n_{2}+\ldots+n_{m}=N
$$

- Approximate Designs:

Defining a probability measure on χ,

$$
\begin{aligned}
& \xi=\left\{\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}\right\}, \sum_{i=1}^{n} p_{i}=1 \quad\left(\text { defining } p_{i}=\frac{n_{i}}{N}\right) \\
& \Xi=\{\text { design measures }\}, \quad \text { Support }=S_{\xi}=\{x \in \chi, \xi(x)>0\}
\end{aligned}
$$

- Continuous Designs:

Considering whatever probability measure (Atkinson, 1992)

- Variances-Covariances Matrix: $\operatorname{cov}(\hat{\theta})=\sigma^{2} N^{-1} M^{-1}(\xi)$ $M(\xi)=\sum_{x \in \mathcal{X}} f(x) f^{t}(x) \xi(x)$ (Information Matrix).
- Assuming $\sigma^{2}=1$, the information matrix to a design:

$$
\begin{gathered}
M(\xi)=\sum_{i=1}^{n} p_{i} \frac{\partial \eta\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \eta\left(x_{i}, \theta\right)}{\partial \theta^{t}}=X^{t} \Omega X \\
\Omega=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)
\end{gathered}
$$

- The information matrix set is compact and convex:

$$
\mathcal{M}=\{M(\xi): \xi \in \Xi\}
$$

- Caratheodory's theorem: Each element \mathcal{M} can be expressed as a convex linear combination.

$$
\sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right) f^{t}\left(x_{i}\right)
$$

where $m \leq \frac{k(k+1)}{2}+1$.

- Criterion function: $\Phi: \mathcal{M} \rightarrow \mathbb{R} \cup\{\infty\}$

Convex: $\Phi\left[\gamma M_{1}+(1-\gamma) M_{2}\right] \leq \gamma \Phi\left(M_{1}\right)+(1-\gamma) \Phi\left(M_{2}\right)$
-Decreasing: $M(\xi) \geq M(\eta) \Rightarrow \Phi[M(\xi)] \geq \Phi[M(\eta)]$
-Homogeneous: $\Phi[\delta M]=\frac{1}{\delta} \Phi[M], \quad \delta>0$

- The ϕ-optimal design ξ^{*} is which minimizes ϕ.
- If ϕ is strictly convex (in non-singular matrixes), there is a only minimum $M\left(\xi^{*}\right)$.

CRITERIA:

- D-optimization:

$$
\phi_{D}[M(\xi)]=\log \left[\operatorname{det} M(\xi)^{-1 / k}\right]
$$

(minimizes the volume of the confidence ellipsoid of the parameters)

- G-optimization:

$$
\begin{aligned}
& \Phi_{G}[M(\xi)]=\max _{x} d(x, \xi)=\max _{x} f(x) M^{-1}(\xi) f^{t}(x) \\
& \quad \text { (minimizes the maximum value of the variance) }
\end{aligned}
$$

- A-optimization:

$$
\Phi_{A}[M(\xi)]=\operatorname{Tr} M^{-1}(\xi)
$$

(minimizes the variance promethium of the parameter estimators)

- E-optimization:

$$
\Phi_{E}[M(\xi)]=\frac{1}{\lambda_{\xi}} \text { being } \lambda_{\xi} \text { the minimun eigenvalue of } M(\xi)
$$

(minimizes the axis of the confidence ellipsoid)

Note: There are other criteria in which the interest is to know some or a linear combinations of the parameters

How to know if a design is optimal ?

General Equivalence theorem (GET):
The following conditions are equivalents:
(1) $\quad \max _{\xi \in \mathbb{Z}}|M(\xi)|=\left|M\left(\xi^{*}\right)\right|$
(2) $\min _{\xi \in \Xi} \sup _{x \in X} d(x, \xi)=\sup _{x \in X} d\left(x, \xi^{*}\right)$

Moreover, $\quad \sup _{x \in \chi} d\left(x, \xi^{*}\right)=\left\{\begin{array}{l}=k \text { if } x \in \operatorname{Supp}\left(\xi^{*}\right) \\ <k \text { if } x \notin \operatorname{Supp}\left(\xi^{*}\right)\end{array}\right\}$
$\equiv \sup _{x \in \chi} d\left(x, \xi^{*}\right)-k=\left\{\begin{array}{c}0 \text { if } x \in \operatorname{Supp}\left(\xi^{*}\right) \\ <0 \text { if } x \notin \operatorname{Supp}\left(\xi^{*}\right)\end{array}\right\}$
\equiv directional derivative of ϕ_{D}

CANONICAL FORMS

- Optimal experimental design for non-linear problems depend on the values of the unknown parameters in the model.
- For various reasons, there is interest in providing explicit formulae for the optimal designs as a function of the unknown parameters.
- Certain class of generalized lineal models can be reduced to a canonical form to simplify the problem.
- The designs are constructed with a single variable using geometric and other arguments.
- It is necessary to have a design criterion invariant under transformation of the form: $\mathbf{x} \rightarrow \mathbf{z = B x}$, where B is a nonsingular $k x k$ matrix and x is mapped to z resulting in an introduced design space Z.
- The dependence of optimal design on the true value of Θ for given space χ is replaced by a design space which varies with Θ.
- In the literature it exists several studies with geometrical rules to construct the optimal design to the most important criteria and models.

Motivations

- There are many natural phenomena or external factors to which males and females respond differently.
- Atkinson et al. (1995) consider an experiment based on the dose-response to a fly insecticide males and females respond in a different way.

- The experiment consists of supplying a dose of insecticide on and analyzing its effectiveness.
- The characterization of this process is the impossibility to sex flies before and during the treatment application.
- In this work, it is proposed the use of canonical forms, Ford et al. (1992), in order to compute D-optimal designs.

1.
 MODEL

Logistic Model for Binary Data:

$y \mid x \sim \operatorname{Bi}(1, \eta)$ where $\eta(\theta, x)=\frac{e^{\alpha+\beta x+q \gamma}}{1+e^{\alpha+\beta x+q \gamma}}=F(\alpha+\beta x+\mathrm{q} \gamma), a^{*} \leq x \leq b^{*}$
being $\quad y$: number of deaths
x : dose level
η : probability of death
q : factor (scores o males / 1 females)
$\vartheta=(\alpha, b, \gamma)$ parameter's vector
doing the logarithm of the probability ratio, it can be linearized:

$$
\log \left(\frac{\eta}{1-\eta}\right)=\alpha+\beta x+q \gamma=\mu
$$

2.

- Approximate design:
(Caratheodory's theorem sure us that the number of support points is finite and bounded)

$$
\xi=\left\{\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}\right\}
$$

defined on the spatial region $\chi=\left[a^{*}, b^{*}\right]$ and being the p_{i} the weight on the support points and verifying:

$$
\sum_{i=1}^{n} p_{i}=1
$$

3. INFORMATION MATRIX

According to the previous design, the information matrix to a single observation x on an insect of known sex is :
$M_{i, j}(x, \theta)=\omega(x, \theta) \frac{\partial \mu}{\partial \theta_{i}} \frac{\partial \mu}{\partial \theta_{j}} \quad$ being $\omega(x, \theta)=\lambda(x, \theta)=\eta(1-\eta)$
In spite of the experimental limitations about the lack of sex knowledge, it necessary to modify the above matrix to take into account this uncertainly. The information matrix for a fly whose sex is unknown is:

$$
M(x, \theta)=0.5 \omega_{M}\left(\begin{array}{ccc}
1 & x & 1 \\
x & x^{2} & x \\
1 & x & 1
\end{array}\right)+0.5 \omega_{F}\left(\begin{array}{ccc}
1 & x & 0 \\
x & x^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

4. OPTIMALITY CRITERION

- D - optimality:

D-optimal criterion minimizes the volume of the confidence ellipsoid of the parameters.

$$
\phi_{D}[M(\xi, \theta)]=\log \left[\operatorname{det} M(\xi, \theta)^{-1 / k}\right]
$$

where k is the number of parameters in the model.

5. CANONICAL FORMS

- Reformulating the problem :

$$
\eta(\theta, x)=\frac{e^{\alpha+\beta x+\mathrm{q} \delta}}{1+e^{\alpha+\beta x+\mathrm{q} \delta}}=F(\alpha+\beta x+\mathrm{q} \delta) \text { con } a^{*} \leq x \leq b^{*}
$$

Note: Knowing the insect' sex, next step is valid for both males and females.

The change of variable $z=\alpha+b x$ reduces the model:

$$
\eta=F(z+\mathrm{q} \delta)=\frac{e^{z+\mathrm{q} \delta}}{1+e^{z+\mathrm{q} \delta}},
$$

$\alpha+\beta a^{*} \leq z \leq \alpha+\beta b^{*}$ or $\alpha+\beta a^{*} \geq z \geq \alpha+\beta b^{*}$ if $\beta<0$

- It is necessary to apply this type of changes to write the information matrix:

Thus,

$$
M_{x}(\xi)=\sum_{i=1}^{n} p_{i} v\left(x_{i}\right) v\left(x_{i}\right)^{t}
$$

$$
v(x)=\frac{1}{\sqrt{\lambda(x, \theta)}}\{\underbrace{\left\{\frac{\partial F(z+\mathrm{q} \delta)}{\partial(z+\mathrm{q} \delta)} \frac{\partial(z+\mathrm{q} \delta)}{\partial \alpha}, \frac{\partial F(z+\mathrm{q} \delta)}{\partial(z+\mathrm{q} \delta)} \frac{\partial(z+\mathrm{q} \delta)}{\partial \beta}, \frac{\partial F(z+\mathrm{q} \delta)}{\partial(z+\mathrm{q} \delta)} \frac{\partial(z+\mathrm{q} \delta)}{\partial \delta}\right.}_{\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)}\}^{t}=\frac{f(z+\mathrm{q} \delta)}{\sqrt{F(z+\mathrm{q} \delta)(1-F(z+\mathrm{q} \delta))}}\left(\begin{array}{l}
1 \\
x \\
\mathrm{q}
\end{array}\right)
$$

the information matrix for n dose levels is:

$$
\begin{gathered}
M_{x}(\xi)=\sum_{i=1}^{n} \frac{p_{i}}{F\left(z_{i}+\mathrm{q} \delta\right)\left(1-F\left(z_{i}+\mathrm{q} \delta\right)\right)} H\left(x_{i}\right) H\left(x_{i}\right)^{t}=\sum_{i=1}^{n} p_{i} \frac{f\left(z_{i}+\mathrm{q} \delta\right)^{2}}{F\left(z_{i}+\mathrm{q} \delta\right)\left(1-F\left(z_{i}+\mathrm{q} \delta\right)\right)}\left(\begin{array}{c}
1 \\
x_{i} \\
\mathrm{q}
\end{array}\right)\left(\begin{array}{ll}
1 & x_{i} \quad \mathrm{q}
\end{array}\right)= \\
=\sum_{i=1}^{n} p_{i} \omega\left(z_{i}+\mathrm{q} \delta\right)\left(\begin{array}{c}
1 \\
x_{i} \\
\mathrm{q}
\end{array}\right)\left(\begin{array}{lll}
1 & x_{i} & \mathrm{q})=\sum_{i=1}^{n} p_{i} v\left(x_{i}\right) v\left(x_{i}\right)^{t}
\end{array}\right.
\end{gathered}
$$

$$
\text { Note: } \quad \omega(z+\mathrm{q} \delta)=\frac{f(z+\mathrm{q} \delta)^{2}}{F(z+\mathrm{q} \delta)(1-F(z+\mathrm{q} \delta))}
$$

Considering now the linear transformation in the components:

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
z \\
q
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
\alpha & \beta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
x \\
\mathrm{q}
\end{array}\right)=B\left(\begin{array}{l}
1 \\
x \\
q
\end{array}\right) \text { and denoting } \\
& g(z)=B v(x)=\frac{f(z+\mathrm{q})}{\sqrt{F(z+\mathrm{q} \delta)(1-F(z+\mathrm{q} \delta))}}\left(\begin{array}{lll}
1 & 0 & 0 \\
\alpha & \beta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
x \\
\mathrm{q}
\end{array}\right)=\frac{f(z+\mathrm{q} \delta)}{\sqrt{F(z+\mathrm{q} \delta)(1-F(z+\mathrm{q} \delta))}}
\end{aligned}\left(\begin{array}{l}
1 \\
z \\
\mathrm{q}
\end{array}\right) .
$$

So that we can write: $v(x)=B^{-1} g(z)$ (B is not singular; $\beta \neq 0$)

Then, the information matrix can be written equivalently as

$$
M_{x}(\xi)=B^{-1} M_{z}(\xi) B .
$$

Due to the D-optimal criterion does not vary by non-singular linear transformations of the design space, the maximization problem of $M_{x}(\xi)$ determinant reduces to maximize $M_{z}(\xi)$.

- The Information matrix for n dose levels and unknown sex will be:
$M_{z}(\xi)=\sum_{i=1}^{n} p_{i} \omega\left(z_{i}+q \gamma\right)\left(\begin{array}{c}1 \\ z_{i} \\ \mathrm{q}\end{array}\right)\left(\begin{array}{lll}1 & z_{i} & \mathrm{q})=\sum_{i=1}^{n} p_{i} g\left(z_{i}\right) g\left(z_{i}\right)^{t}, \quad \omega\left(z_{i}+\mathrm{q} \gamma\right)=\frac{f\left(z_{i}+\mathrm{q} \gamma\right)^{2}}{F\left(z_{i}+\mathrm{q} \gamma\right)\left(1-F\left(z_{i}+\mathrm{q} \gamma\right)\right)}\end{array}\right.$
- Adding it the uncertainty about sex:
$M_{z}(\xi)=0.5 \sum_{i=1}^{n} p_{i}\left[g\left(z_{i}\right) g\left(z_{i}\right)^{t}+h\left(z_{i}\right) h\left(z_{i}\right)^{t}\right], g(z)=\left(\begin{array}{c}\sqrt{\omega(z+\delta)} \\ z \sqrt{\omega(z+\delta)} \\ \sqrt{\omega(z+\delta)}\end{array}\right)$ and $h(z)=\left(\begin{array}{c}\sqrt{\omega(z)} \\ z \sqrt{\omega(z)} \\ 0\end{array}\right)$
- Expressed in a simplified way:

$$
M_{z}(\xi)=0.5 \sum_{k=1}^{2 n} \xi\left(z_{k}\right) f_{i}\left(z_{k}\right) f_{j}\left(z_{k}\right)
$$

6. RESULTS

Formula for computing the determinant:
Considering $\chi=\left\{x_{1}, \ldots, x_{n}\right\}$ with $n \geq k$:

$$
\operatorname{det} M(\xi)=\sum_{k_{1}<\cdots<k_{k}} \xi\left(x_{k_{1}}\right) \ldots \xi\left(x_{k_{k}}\right) \operatorname{det}\left[\left\{f_{i}\left(x_{k_{j}}\right)\right\}\right]^{2}
$$

being k_{i} the S_{n} 's elements, which is the symmetric group of the four-order permutations.

6.1 TWO POINTS DESIGN

Basing on that, it results:

$$
\left|M_{z_{1}, z_{2}}(\xi)\right|=0.5\left[p^{2}(1-p) E+p(1-p)^{2} F\right]
$$

where E and F are the squares of the determinants which result of combining the column matrixes $g\left(z_{i}\right)$, $h\left(z_{i}\right)$ with $i=1,2$ and operating them conveniently.

- Analytical Expression to the Optimal Weighs:

$$
\begin{gathered}
\frac{\partial\left|M_{z_{1}, z_{2}}(\xi)\right|}{\partial p}=0.5\left[3(F-E) p^{2}+2(E-2 F) p+F\right]=0, \\
p^{*}=\frac{2 F-E \pm \sqrt{F^{2}-E F+E^{2}}}{3(F-e)}
\end{gathered}
$$

Maximizing the determinant expression,

 it results:$$
\begin{array}{ccc}
\alpha=1.804, \beta=1.757, \quad Y=-1 \\
x_{i}^{*} & -1.467 & -0.018 \\
\hline p_{i}^{*} & 0.5 & 0.5 \\
\hline
\end{array}
$$

Testing the results:

Using the extension of equivalence theorem:
$d\left(x, \xi^{*}, \theta\right)=0.5 w_{M}(x, \theta) f_{M}^{t}(x) M^{-1}\left(\xi^{*}, \theta\right) f_{M}(x)+0.5 w_{F}(x, \theta) f_{F}^{t}(x) M^{-1}\left(\xi^{*}, \theta\right) f_{F}(x) \leq k$
where $k=3$ is the number of parameters. The equality is produced in the points of the optimal design. Plotting this function to the obtained results, it is checked that a D-optimal design has been obtained.

6.2 THREE POINTS DESIGN

From previous studies (Atkinson et al. 1995) it is checked that the optimal weights are symmetrical to the three-point case:

$$
\xi=\left\{\begin{array}{ccc}
Z_{1} & Z_{2} & z_{3} \\
p & q=1-2 p & p
\end{array}\right\}
$$

In this case, to calculate the determinant:

$$
\left|M_{z_{1}, z_{2}, z_{3}}(\xi)\right|=0.5\left\{A p^{3}+B p^{2}+C p\right\}
$$

where A, B and C are the squares of the determinants which result from applying the formula to its fast calculation gathering them conveniently.

- Analytical Expression to the Optimal Weighs: $p^{*}=\frac{-B \pm \sqrt{B^{2}-3 A C}}{3 C}$

Maximizing the determinant expression, it results:

$\begin{aligned} & \alpha=1.804 \\ & \beta=1.757 \end{aligned}$	$\nu=-2.599$			$\gamma=-3$			$\gamma=-5$		
$x_{i}{ }^{*}$	-1.347	-0.287	0.772	-1.378	-0.173	1.032	-1.349	0.396	2.141
$p_{i}{ }^{*}$	0.375	0.250	0.375	0.339	0.322	0.339	0.316	0.368	0.316

- Testing the results:

Through the equivalence theorem, it is checked that the obtained design are D-optimal.

REFERENCES

[1] Atkinson, A.C., Demetrio, C.G.B. and Zochhi, S.S. (1995). Optimun Dose Levels when Males and Females Differ en Response. Appl. Statist. 44 (2), 213-226.
[2] Ford, I., Tosney, B. and Wu, C.F.J. (1992). The use of a canonical form in the construction of locally optimal designs for non-linear problems. J. R. Statist. Soc. B. 54 (2), 569-583.

Thank you for your attention.

