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Definitions and assumptions

By the nonautonomous competitive system of partial differential
equations (PDEs) of Kolmogorov type we mean the system
∂ui

∂t
= µi∆ui + fi (t, x , u1, . . . , uN)ui , t > 0, x ∈ Ω, i = 1, . . . ,N

Biui = 0, t > 0, x ∈ ∂Ω, i = 1, . . . ,N,
(R)

ui (t, x) – population density of the i-th species at time t and
spatial location x ∈ Ω̄,
Ω ⊂ Rn – bounded habitat,
µi > 0 – migration rate of the i-th species,
fi (t, x , u1, . . . , uN) – local per capita growth rate of the i-th
species,
Bi is the Neumann boundary operator, or the Dirichlet
boundary operator or the Robin boundary operator.
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Denote by λi the principal eigenvalue of the elliptic eigenproblem{
∆ϕi + λiϕi = 0 on Ω,

Biϕi = 0 on ∂Ω.

If we have Dirichlet boundary conditions then λi > 0. By the
standard elliptic maximum principles a principal eigenfunction ϕi
corresponding to λi can be chosen so that ϕi (x) > 0 for all x ∈ Ω.
We assume that ϕi is normalized so that max

x∈Ω̄
ϕi (x) = 1.

In the Neumann boundary conditions we have λi = 0 and ϕi ≡ 1.
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We deal with the positive solutions.

Definition
The solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of (R) is positive if
ui (t, x) > 0 for all i = 1, . . . ,N, t ∈ (0, τmax) and x ∈ Ω.

Now we introduce the following assumptions for a function fi
(A1) fi : [0,∞)× Ω̄× [0,∞)N → R (1 ≤ i ≤ N), as well as their

first derivatives ∂fi/∂t (1 ≤ i ≤ N), ∂fi/∂uj (1 ≤ i , j ≤ N),
and ∂fi/∂xk (1 ≤ i ≤ N, 1 ≤ k ≤ n), are continuous.

(A2) The functions [ [0,∞)× Ω̄ 3 (t, x) 7→ fi (t, x , 0, . . . , 0) ∈ R ],
1 ≤ i ≤ N, are bounded.

For 1 ≤ i ≤ N the function fi (t, x , 0, . . . , 0) is called the intrinsic
growth rate of the i-th species.
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Define

ai := inf{ fi (t, x , 0, . . . , 0) : t ≥ 0, x ∈ Ω̄ },
ai := sup{ fi (t, x , 0, . . . , 0) : t ≥ 0, x ∈ Ω̄ }.

Note that we do not assume here that ai > 0.
(A3) (∂fi/∂uj)(t, x , u) ≤ 0 for all t ≥ 0, x ∈ Ω̄, u ∈ [0,∞)N ,

1 ≤ i , j ≤ N, i 6= j .
(∂fi/∂uj)(t, x , u1, . . . , uN) measures the influence of the j-th
species on the growth rate of the i-th species. Systems of type (R)
for which (A3) holds we call competitive.

(A4) There exist bii > 0 such that (∂fi/∂ui )(t, x , u) ≤ −bii for all
t ≥ 0, x ∈ Ω̄, u ∈ [0,∞)N , 1 ≤ i ≤ N.
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Fix a positive solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of system
(R). For each 1 ≤ i ≤ N let ξi (t), t ∈ [0,∞), be the positive
solution of the following problem

ξ′i =
(
max
x∈Ω̄

fi (t, x , 0, . . . , 0)− biiξi
)
ξi ,

ξi (0) = sup
x∈Ω̄

ui (0, x).
(1)

Lemma 1

Assume (A1) through (A4) and let āi > 0. Then for each solution
ξi (t) of the problem (1) there holds

lim sup
t→∞

ξi (t) ≤ āi

bii
, 1 ≤ i ≤ N.
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ξi (t) of the problem (1) there holds

lim sup
t→∞

ξi (t) ≤ āi
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Lemma 2
Assume (A1) through (A4). Then for any positive solution
u(t, x) = (u1(t, x), . . . , uN(t, x)) of system (R), and any 1 ≤ i ≤ N
there holds

ui (t, x) ≤ ξi (t), t ∈ [0, τmax), x ∈ Ω̄,

where ξi (t) is the solution of the problem (1).
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Lemma 3 [dissipativity]

Assume (A1) through (A4) and āi > 0. Then for any maximally
defined positive solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of
system (R) there holds
(i) τmax =∞, and
(ii)

lim sup
t→∞

ui (t, x) ≤ ai

bii
, 1 ≤ i ≤ N, (2)

uniformly for x ∈ Ω̄.
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(A5) The derivatives ∂fi/∂uj , 1 ≤ i , j ≤ N, are bounded and
Lipschitz continuous on sets of the form [0,∞)× Ω̄× B,
where B is a bounded subset of [0,∞)N .

Definition
For 1 ≤ i , j ≤ N and ε0 ≥ 0 we define

bij(ε0) := sup
{
− ∂fi
∂uj

(t, x , u) : t ≥ 0, x ∈ Ω̄,

u ∈
[
0,

a1

b11
+ ε0

]
× · · · ×

[
0,

aN

bNN
+ ε0

]}
,

bij(0) := bij .

Assumptions (A3) and (A4) imply that bij(ε0) ≥ 0, 1 ≤ i , j ≤ N,
and bii (ε0) > 0, 1 ≤ i ≤ N, whereas it follows from (A5) that
bij(ε0) <∞, and limε0→0+ bij(ε0) = bij , for 1 ≤ i , j ≤ N.
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Averaging

Definition
We define the lower average of a function fi as

m[fi ] := lim inf
t−s→∞

1
t − s

t∫
s

min
x∈Ω̄

fi (τ, x , 0, . . . , 0) dτ,

Definition
We define the upper average of a function fi as

M[fi ] := lim sup
t−s→∞

1
t − s

t∫
s

max
x∈Ω̄

fi (τ, x , 0, . . . , 0) dτ.

(A6) m[fi ] > 0, 1 ≤ i ≤ N.
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Permanence in Kolmogorov Systems of PDEs

Definition
System (R) is permanent, if there exist positive constants δi and Ri
such that for each positive solution u(t, x) = (u1(t, x), . . . ,
uN(t, x)) of system (R) there exists T = T (u) > 0 with the
property

δiϕi (x) ≤ ui (t, x) ≤ Ri (permanence)

for all 1 ≤ i ≤ N, t ≥ T , x ∈ Ω̄.

Average conditions for permanence in systems of PDEs

m[fi ] > λiµi +
N∑

j=1
j 6=i

bijM[fj ]
bjj

, 1 ≤ i ≤ N, (AC)
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Theorem 1 [Main Theorem]

Assume (A1) through (A6). If (AC) holds then system (R) is
permanent.

Note that in this Main Theorem we do not assume that ai > 0.
J. Balbus and J. Mierczyński,Time-averaging and permanence
in nonautonomous competitive systems of PDEs via
Vance–Coddington estimates, Discrete and continuous
dynamical systems series B, (17), 2012 p. 1407 – 1425.

The following result will be useful to prove Theorem 1.
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Permanence in logistic equation of ODEs

Theorem 2 [Vance - Coddington Estimates]

Let c : [t0,∞)→ R, where t0 ≥ 0, be a bounded continuous
function, where c∗ > 0 and c∗ > 0 are such that −c∗ ≤ c(t) ≤ c∗

for all t ≥ t0, and let d > 0. Assume moreover that there are L > 0
and β > 0 such that

1
L

t+L∫
t

c(τ) dτ ≥ β

for all t ≥ t0.
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Theorem 2 [Vance - Coddington Estimates] continued

Then for any solution ζ(t) of the initial value problem{
ζ ′ = (c(t)− dζ)ζ

ζ(t0) = ζ0,

where ζ0 > 0, there holds

β

d
e−L(c∗+β) ≤ lim inf

t→∞
ζ(t) ≤ lim sup

t→∞
ζ(t) ≤ c∗

d
.

(permanence-logistic)

R. R. Vance and E. A. Coddington, A nonautonomous model
of population growth, J. Math. Biol. 27 (1989), no. 5,
491–506.
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Theorem 2 [Vance - Coddington Estimates] continued

Then for any solution ζ(t) of the initial value problem{
ζ ′ = (c(t)− dζ)ζ

ζ(t0) = ζ0,

where ζ0 > 0, there holds

β

d
e−L(c∗+β) ≤ lim inf

t→∞
ζ(t) ≤ lim sup

t→∞
ζ(t) ≤ c∗

d
.

(permanence-logistic)

R. R. Vance and E. A. Coddington, A nonautonomous model
of population growth, J. Math. Biol. 27 (1989), no. 5,
491–506.
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sketch of the proof of Theorem 1

The right-hand side of the inequality (permanence) is satisfied by
Lemma 3 (ii). By assumption (A5) we can choose ε0 > 0 such that

m[fi ] > λiµi +
N∑

j=1
j 6=i

bij(ε0)M[fj ]
bjj

for all 1 ≤ i ≤ N.
Fix a positive solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of system
(R). Let ξi (t), 1 ≤ i ≤ N, t ≥ 0, be the solutions of (1). Fix
1 ≤ i ≤ N.
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sketch of the proof of Theorem 1 [continued]

Let t0 > 0 be such a moment that

u(t, x) ∈
[
0,

a1

b11
+ ε0

]
× · · · ×

[
0,

aN

bNN
+ ε0

]
for t > t0 and x ∈ Ω̄.
Let ηi (t), t ≥ t0, be the positive solution of the following problem
η′i =

(
min
x∈Ω̄

fi (t, x , 0, . . . , 0)− λiµi − bii (ε0)ηi −
N∑

j=1
j 6=i

bij(ε0)ξj(t)
)
ηi

ηi (t0) = inf
x∈Ω

ui (t0,x)
ϕi (x) .

(3)
It is easy to see that ui (t, x) ≥ ηi (t)ϕi (x) for all t ≥ t0 and x ∈ Ω̄.
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sketch of the proof of Theorem 1 [continued]

Now we apply Theorem 2 to (3) where

c(t) = min
x∈Ω̄

fi (t, x , 0, . . . , 0)−λiµi−
N∑

j=1
j 6=i

bij(ε0)ξj(t) i d = bii (ε0).
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sketch of the proof Theorem 1 [continued]

To prove the permanence of system (R) we show that the
parameters in Theorem 2 do not depend on the solution u(t, x), for
sufficiently large t.
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Practical persistence

Now we replace conditions (AC) with

m[fi ] > λiµi +
N∑

j=1
j 6=i

bijaj

bjj
(4)

Then we can give the lower estimates on the numbers δi (in the
definition of permanence) in terms of the parameters of system (R):

δi ≥
β

bii
exp
(
−L(m[fi ]− ai )

)
. (5)
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Permanence in Kolmogorov Systems of ODEs

A special case of Kolmogorov systems for PDEs is a Kolmogorov
systems for ODEs

u′i = fi (t, u1, . . . , uN)ui 1 ≤ i ≤ N. (K)

We can treat such systems as systems of partial differential
equations

∂ui

∂t
= ∆ui + fi (t, u1, . . . , uN)ui (S)

with the Neumann boundary conditions.
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Definition
System (K) is permanent if there exist positive constants δi , Ri
such that for any positive solution u(t) = (u1(t), . . . , uN(t)) of
system (K) there exists T = T (u) > 0 with the property

δi ≤ ui (t) ≤ Ri

for 1 ≤ i ≤ N, t ≥ T .

Average conditions for permanence in systems of ODEs

m[fi ] >
N∑

j=1
j 6=i

bijM[fj ]
bjj

, 1 ≤ i ≤ N, (AC)ODE
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Definition
System (K) is permanent if there exist positive constants δi , Ri
such that for any positive solution u(t) = (u1(t), . . . , uN(t)) of
system (K) there exists T = T (u) > 0 with the property

δi ≤ ui (t) ≤ Ri

for 1 ≤ i ≤ N, t ≥ T .

Average conditions for permanence in systems of ODEs

m[fi ] >
N∑

j=1
j 6=i

bijM[fj ]
bjj

, 1 ≤ i ≤ N, (AC)ODE
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Theorem 3
Assume (A1) through (A6). If (AC)ODE holds then system (K) is
permanent.

Theorem 3 is a special case of the Theorem 1.
Note that again we do not assume that ai > 0.
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Theorem 3
Assume (A1) through (A6). If (AC)ODE holds then system (K) is
permanent.

Theorem 3 is a special case of the Theorem 1.
Note that again we do not assume that ai > 0.
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Attractivity in Kolmogorov Systems of ODEs

Definition
System (K) is globally attractive if any two positive solutions
u(t) = (u1(t), . . . , uN(t)) and v(t) = (v1(t), . . . , vN(t)) of system
(R) satisfy

lim
t→∞

(ui (t)− vi (t)) = 0

for 1 ≤ i ≤ N.

Sufficient conditions for attractivity in systems of ODEs are not
special cases of sufficient conditions for attractivity in systems of
PDEs.
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Lemma 4 is very technical.

Lemma 4
Assume (A1) through (A5) and (AC)ODE . Let α1, . . . , αN > 0 be
positive constants such that for i = 1, . . . ,N there holds

αibii >

N∑
j=1
j 6=i

αjbji . (6)

Then there exist Z > 0 and γ > 0 such that for each pair of a
positive solutions u(t) = (u1(t), . . . , uN(t)) and
v(t) = (v1(t), . . . , vN(t)) of system (K) there exists t0 ≥ 0 such
that
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Lemma 4 [continued]

N∑
i=1

|ui (t)− vi (t)| ≤ Z
N∑

i=1

|ui (t0)− vi (t0)| · e−γ(t−t0)

for t ≥ t0.

Conditions (6) are called column diagonal dominance.
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sketch of the proof

Fix a positive solutions u(t) = (u1(t), . . . , uN(t)) and
v(t) = (v1(t), . . . , vN(t)) of system (K). We introduce a Lyapunov
function

Θ(t) :=
N∑

i=1

αi

∣∣∣∣ln ui (t)

vi (t)

∣∣∣∣ . (7)
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sketch of the proof continued
We prove that there exists ε > 0 such that

D+Θ(t) ≤ −ε
N∑

i=1

|ui (t)− vi (t)| dla t ≥ t0, (8)

where D+ is the upper derivative of Θ.
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sketch of the proof continued

Then using the fact that the system (K) is permanent we have that
there exist 0 < δ∗ < δ∗ <∞ such that δ∗ ≤ ui (t), vi (t) < δ∗. By
mean value theorem it follows that

1
δ∗
|ui (t)− vi (t)| ≤

∣∣∣∣ln ui (t)

vi (t)

∣∣∣∣ ≤ 1
δ∗
|ui (t)− vi (t)|. (9)

Using (7), (8) and (9) we see that there exist Z > 0, γ > 0 such
that

N∑
i=1

|ui (t)− vi (t)| ≤ Z
N∑

i=1

|ui (t0)− vi (t0)| · e−γ(t−t0) (10)
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Theorem

Assume (A1) – (A5) and (AC)ODE . Then system (K) is globally
attractive.

Proof.
By [S. Ahmad and A. C. Lazer, Average conditions for global
asymptotic stability in a nonautonomous Lotka-Volterra system,
Nonlinear Anal. Ser A: Theory Methods 40 (2000), no. 1-8, 37-49,
Lemma 3.2] it follows that if (AC)ODE holds then there exist
constants αi > 0, i = 1, . . . ,N, such that

αibii >
N∑

j=1
j 6=i

αjbji for i = 1, . . . ,N.

Now it suffices to apply Lemma 4.
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Attractivity in Kolmogorov Systems of PDEs

Now we consider system (R)
∂ui

∂t
= µi∆ui + fi (t, x , u1, . . . , uN)ui , t > 0, x ∈ Ω, i = 1, . . . ,N

Biui = 0, t > 0, x ∈ ∂Ω, i = 1, . . . ,N,
(R)

where Bi is the Neumann boundary conditions.

Definition
System (R) is globally attractive if any two positive solutions
u(t, x) = (u1(t, x), . . . , uN(t, x)) and
v(t, x) = (v1(t, x), . . . , vN(t, x)) of (R) satisfy

lim
t→∞

(ui (t, x)− vi (t, x)) = 0

for 1 ≤ i ≤ N, uniformly in x ∈ Ω̄.
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Again we have a very technical lemma.

Lemma 5

Assume (A1) through (A5) and (AC). Let

δ bii >

N∑
j=1
j 6=i

δ b̄ij , 1 ≤ i ≤ N, (11)

where 0 < δ ≤ δ <∞ be such that for any positive solution
u(t, x) = (u1(t, x), . . . , uN(t, x)) of system (R) there holds

δ ≤ ui (t, x) ≤ δ

for sufficiently large t and all x ∈ Ω̄, 1 ≤ i ≤ N.
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Lemma 5 [continued]

Then there exist Z > 0 and γ > 0 with the property that for each
pair of positive solutions u(t, x) = (u1(t, x), . . . , uN(t, x)) and
v(t, x) = (v1(t, x), . . . , vN(t, x)) of system (R) there exists t0 ≥ 0
such that

N∑
i=1

sup
x∈Ω̄

|ui (t, x)− vi (t, x)| ≤ Z
N∑

i=1

sup
x∈Ω̄

|ui (t0, x)− vi (t0, x)|

·e(−γ(t−t0))

(12)

for t ≥ t0.
In particular, system (R) is globally attractive.
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sketch of the proof

Fix positive solutions u(t, x) = (u1(t, x), . . . , uN(t, x)) and
v(t, x) = (v1(t, x), . . . , vN(t, x)) of system (R). A well known
result from the matrix theory states that there exist α1, . . . , αN > 0
such that

αiδ bii >

N∑
j=1
j 6=i

αjδ bji (ε), 1 ≤ i ≤ N. (13)

We introduce a Lyapunov functional

Θ(t) =
N∑

i=1

αiΘi (t), where Θi (t) := sup
x∈Ω̄

∣∣∣∣ln ui (t, x)

vi (t, x)

∣∣∣∣ . (14)

Fix 1 ≤ i ≤ N.
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sketch of the proof continued
We prove that

D+Θi (t) ≤ −δ biiΘi (t) + δ

N∑
j=1
j 6=i

bij(ε)Θj(t), t ≥ t0. (15)

Note that by (13)

N∑
i=1

αi

(
−δ biiΘi (t) + δ

N∑
j=1
j 6=i

bij(ε)Θj(t)

)
≤ −ε

N∑
i=1

Θi (t),

(16)
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sketch of the proof continued

Hence by (15), (16) and the definition of Θ we have that

N∑
i=1

sup
x∈Ω̄

|ui (t, x)− vi (t, x)| ≤ Z
N∑

i=1

sup
x∈Ω̄

|ui (t0, x)− vi (t0, x)|

·e(−γ(t−t0))

(17)
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