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INTERACTING MANY-BODY QUANTUM SYSTEMS

x = (x1, x2, . . . , xN) ∈ R3N position of the particles.

Symmetric wave function: ψN(x1, . . . , xN) ∈ L2(R3N)

HN =
N∑
j=1

[
−∆xj + U(xj)

]
+ λ

∑
i<j

V (xi − xj)

U is a one-body background (“trapping”) potential

V is the interaction potential

i∂tψN,t = HNψN,t, i∂tγN,t =
[
H, γN,t

]
, [A,B] = AB −BA

with γN,t := |ψN,t〉〈ψN,t| = ψ(x1, x2 · · ·xN)ψ(x′1, x
′
2 · · ·x

′
N) density

matrix (1 dim. projection).

One particle density matrix:

γ
(1)
ψ (x, y) :=

∫
ψ(x, x2 · · ·xN)ψ(y, x2 · · ·xN)dx2 · · · dxN
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Time-independent BEC in Scaling Limit

HN =
N∑
j=1

[
−∆xj + U(xj)

]
+

1

N

∑
i<j

N3V (N(xi − xj))

Approx Dirac delta interaction with range 1/N (“hard core”)

[Dyson, Lieb-Seiringer-Yngvason, Lieb-Seiringer]

• Ground state energy is given by the Gross-Pitaevskii functional

lim
N→∞

inf spec
HN
N

= inf
ϕ,‖ϕ‖=1

EGP (8πa0, ϕ), a0 = scatt. length of V

EGP (σ, ϕ) :=
∫
|∇ϕ|2 + U |ϕ|2 +

σ

2
|ϕ|4

• Complete condensation in ground state:

γ
(1)
N (x;x′)→ φ(x)φ(x′), φ = minimizer of EGP
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Time Dependent GROSS-PITAEVSKII (GP) Theory

The GP energy functional also describes the evolution:

γ
(1)
N,0 → ϕ(x)ϕ̄(x′) =⇒ γ

(1)
N,t → ϕt(x)ϕ̄t(x

′)

The condensate wave fn. evolves according to a NLS

i∂tϕt =
[
−∆ + U + 8πa0|ϕt|2

]
ϕt, ϕt=0 = ϕ

Many-body effects & corr → non-linear on-site self-interaction

Experiments of Bose-Einstein Condensation: Trap Bose gas and

observe its evolution after the trap removed.

Dynamics: The ground state of trapped BEC is a highly excited

state for the system without traps. GP describes also excited

states and their evolution!

Cannot be completely correct. Now set U = 0.
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HN =
N∑
j=1

−∆xj+
1

N

∑
i<j

Vβ(xi−xj), Vβ(x) := N3βV (Nβx), 0 < β ≤ 1

THEOREM: [Erdős-Schlein-Y, 2008] Assume V ≥ 0 and

V (x) ≤ C(1 + |x|)−5. Suppose the initial state satisfies

γ
(1)
N,0(x, y)→ u0(x)ū0(y), u ∈ H1(R3)

Then for every k ≥ 1 and t > 0 fixed

γ
(k)
N,t → |ut〉〈ut|

⊗k N →∞

i∂tut = −∆ut + σ|ut|2φt, σ =

{
b0 if 0 < β < 1
8πa0 if β = 1

where a0 is the scatt. length of V and b0 =
∫

dxV (x) 6= 8πa0

Adami, Bardos, Golse, Teta: one dim result. Use δ ≤ −∆ in R.
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SCATTERING LENGTH

(
−∆ +

1

2
V (x)

)
(1− w(x)) = 0 with w(x)→ 0 for |x| → ∞ .

w(x) =
a0

|x|
for |x| → ∞

∫
dxV (x)(1− w(x)) = 8πa0

Dyson’s trial function for ground state:

WN(x) =
∏
j<k

[
1− w(N(xj − xk))

]
States with and without short range structure:

ψN(x) = WN(x)
N∏
j=1

u0(xj), φN =
N∏
j=1

u0(xj)

lim
N→∞

N−1〈ψN , HNψN〉 =
∫
|∇u(x)|2 + 4πa0|u(x)|4

lim
N→∞

N−1〈φN , HNφN〉 =
∫
|∇u0(x)|2 +

b0
2
|u(x)|4
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One Body Problem: Fix ` � N−1/3. Consider the Neumann

problem on {x ∈ R3 : |x| ≤ `}:

(−∆ +
N2

2
V (Nx))(1− w`(x)) = e`(1− w(x)) .

Normalization: w`(x) = 0 for |x| = ` .

Lowest eigenvalue: e` '
a0

N`3
.

Lowest eigenfunction: 1− w`(x) ' 1−
a0

N |x|
for a0/N � |x| � `1

Extend w(x) = 0 for |x| ≥ `. Then(
−∆ +

1

2
VN(x)

)
(1− w`(x)) = q(x)(1− w`(x))

with

q(x) = a`−3χ(|x| ≤ `)
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The theorem for β = 1 holds for ψN and φN .

Our Theorem shows that the local singular structure is preserved

by the N-body evolution for initial state ψN . For product initial

state, it shows that the local structure emerges .

i∂tφN,t = HNφN,t, φN,t=0 = φN

N−1〈φN,t, HNφN,t〉 = N−1〈φN , HNφN〉

→ EGP (b0, u0) 6= EGP (8πa0, u0) = EGP (8πa0, ut)

For product initial state, the GP energy functional (with the

coupling constant 8πa0) does not describe the energy of the

N-body system . But the time dependent one particle density

matrices in a weak limit is still given by the GP equation with

coupling constant 8πa0.
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Mathematically: The convergence of the time dependent density

matrices is so weak that the energy does not converge.

Physically: For states with product initial data, the short scale

behavior will show the characteristic 1−w(N(xi− xj)) structure

after a short initial layer. This lowers the energy of the system

locally. The energy lost was transfered to energy in other scales.
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Summary of Lecture 1

i∂tψN,t = HNψN,t, i∂tγN,t =
[
H, γN,t

]
, [A,B] = AB −BA

with γN,t := |ψN,t〉〈ψN,t| = ψ(x1, x2 · · ·xN)ψ(x′1, x
′
2 · · ·x

′
N) density

matrix (1 dim. projection).

State ψ can also be identified with γ = |ψ〉〈ψ|, the operator of

projection onto Span{ψ} (pure state).

In general: γ =
∑
i ci|ψi〉〈ψi|, 0 ≤ ci ≤ 1,

∑
i ci = 1 (mixed state).

Def: Density matrix is a self-adjoint operator γ with 0 ≤ γ ≤ 1

We will identify it with its (operator) kernel, γ(x;x′).
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HN =
N∑
j=1

[
−∆xj + U(xj)

]
+

1

N

∑
i<j

N3V (N(xi − xj))

(
−∆ +

1

2
V (x)

)
(1− w(x)) = 0 with w(x)→ 0 for |x| → ∞ .

w(x) =
a0

|x|
for |x| → ∞

∫
dxV (x)(1− w(x)) = 8πa0

In order to obtain the correct coupling constant related to the
scattering length, we need short range correlation structure of
Dyson type:

WN(x) =
∏
j<k

[
1− w(N(xj − xk))

]
A good ansatz for states with short range structure:

ψN(x) = WN(x)
N∏
j=1

u(xj)
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lim
N→∞

N−1〈ψN , HNψN〉 =
∫
|∇u(x)|2 + 4πa0|u(x)|4

One particle density matrix:

γ
(1)
ψ (x, y) :=

∫
ψ(x, x2 · · ·xN)ψ(y, x2 · · ·xN)dx2 · · · dxN

Two key open questions for the time indep theory:

[Dyson, Lieb-Seiringer-Yngvason, Lieb-Seiringer]

• Ground state energy is given by the Gross-Pitaevskii functional

lim
N→∞

inf spec
HN
N

= inf
ϕ,‖ϕ‖=1

EGP (8πa0, ϕ), a0 = scatt. length of V

EGP (σ, ϕ) :=
∫
|∇ϕ|2 + U |ϕ|2 +

σ

2
|ϕ|4



• Complete condensation in ground state:

γ
(1)
N (x;x′)→ φ(x)φ(x′), φ = minimizer of EGP

It is a dilute limit, not a mean-field limit.



MATHEMATICAL DEFINITION OF BEC

Let γN be the ground state or a very low temperature state

(e−βHN , β � 1) of the interacting Bose-system and recall that

γ
(1)
N is its one-particle density matrix.

Spectral decomposition: γ(1)
N =

∑
j λj|φj〉〈φj|.

DEFINITION: γN is a condensate state if

lim inf
N→∞

max
j

λj > 0

and γN is a state with a complete condensation if

lim inf
N→∞

max
j

λj = 1

The corresponding eigenfn. is the condensate wave function.

Problem 1: Condensation is expected in d ≥ 3 for β > βcrit at

positive density even without trapping potential. Seems very
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hard: there is no gap and there are infinitely many low energy

states available.

Problem 2. Next order correction to the energy. Prove (or

disprove) the Huang-Lee-Yang formula).

Key observation of time dependent theory:

1. States need short range correlation to have the correct scat-

tering length. But even for states without short range correlation

evolve according to NLS with correct coefficient given by scat-

tering length.

Expected reason: there is an initial layer so that short range

structure forms for arbitrary initial data whose one particle den-

sity matrix is a pure state.



2. GP theory is an effective theory in the large scale where all

short scale structure is summarized in the scattering length.

3. For product initial state φN =
∏
u0(xj), the initial energy is

given by

N−1〈φN , HNφN〉 → EGP (b0, u0)

After initial layer, the two scale structure was expected to form.

For states with two scale structure given by our ansatz, the

energy is expected to be EGP (8πa0, u0).

However, energy is a conserved quantity in Schrödinger equation

and we have a contradiction. Explanation: The ansatz catches

short range and long range structures, but not immediate ranges.

Key observation: One can prove one particle density matrix con-

verges to solution of the GP equation, but not its energy.



Outline of the lectures:

1. Mean-field limit and Hartree eq.

2. Sobolev space in “infinite dimension“”.

3. Identification of correlations via the second moment of energy.

Connection with wave operator and a new type of Sobolev in-

equality.

4. Uniqueness of BBGKY hierarchy. Feynman diagram (Combi-

natorics and Estimates) as a replacement for Stricharz inequality

in infinite dimension.

Klainerman-Machedon has a different proof of uniqueness, but

no a priori estimate.
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II.1. HARTREE EQUATION FROM BOSON DYNAMICS

HN =
N∑
j=1

[
−∆xj + U(xj)

]
+

1

N

∑
i<j

V (xi − xj)

EXPECT: If Ψ0 =
∏
j ϕ0(xj), then Ψt ≈

∏
j ϕt(xj) as N →∞

where i∂tϕt = (−∆ + U)ϕt +
(
V ? |ϕt|2

)
ϕt

Each particle: subject to the same mean-field pot. (LLN for xj)

1

N

N∑
j=1

V (x− xj)|ϕ(xj)|2 ≈ (V ? |ϕ|2)(x)

Implicitly assumes that the state remains roughly a product (prop-

agation of chaos). This fact needs to be proven.
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More precisely, the N-body wavefunction at t > 0 cannot be fully
described, but its limiting marginals can:

THEOREM: If the initial state is factorized,

γN,0(x,x′) =
N∏
i=1

γ0(xi, x
′
i),

and γN,t solves i∂tγN,t = [HN , γN,t], then

γ
(1)
t := lim

N→∞
γ

(1)
N,t

exists and it satisfies the Hartree-equation

i∂tγ
(1)
t =

[
−∆x + U + V ? %

(1)
t , γ

(1)
t

]
, γ

(1)
t=0 = γ

(1)
0

Moreover, propagation of chaos holds:

lim
N→∞

γ
(k)
N,t =

[
γ

(1)
t

]⊗k
For pure states, γ(1) = |ϕ〉〈ϕ|, Hartree reduces to NLS:

i∂tϕt = (−∆ + U)ϕt +
(
V ? |ϕt|2

)
ϕt
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History of the derivation of NLS/Hartree eq.

• Hepp, 1974. Smooth potential

• Ginibre-Velo, 1979: Special quasifree states

• Spohn, 1980: Bounded potential. Method via BBGKY hiearchy.

• Bardos-Golse-Mauser 2001: weak compactness of BBGKY
hierarchy for Coulomb (not enough estimates for uniqueness)

• E-Yau, 2001: Coulomb potential (with uniqueness)
Spohn’s BBGKY method + Method of energy moments.

• Schlein-Rodnianski 2008: Coulomb potential with error esti-
mate of order 1/

√
N . Base on Ginibre-Velo method.
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• Fröhlich-Knowles-Pizzo: h = 1
N , Wick quantization

• Elgart-Schlein: Pseudorelativistic case, (1−∆)1/2, with po-

tential V (x) = λ
|x| up to the borderline λ > λcrit = −4/π

i∂tut = (1−∆)1/2ut +
(
V ∗ |ut|2

)
ut

There are also proofs for the classical model (probability theory):

Kac, McKean, Dobrushin, Spohn.

The problem is harder as the interaction potential becomes more

singular.
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V. GENERAL TOOLS FOR N-BODY DYNAMICS

V.1. FUNDAMENTAL DIFFICULTY

What is a good norm/measure for N-particle quantum state?

L2-norm is preserved, but it is too strong!

EXAMPLE 1:

ψ = f(x1) · · · f(xN), ψ′ = g(x1) · · · g(xN). ‖ψ‖2 = ‖ψ′‖2 = 1

‖ψ − ψ′‖2 = 2− 2
[
〈f , g〉

]N
→ 2

Any two distinct product states are “almost” orthogonal!

Other norms are hopeless:

‖ψ‖2 = 1 =⇒ ‖ψ‖p ∼ e±CN , p 6= 2
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EXAMPLE 2:

Let f, f ′, g be orthogonal normalized one body states.

Let Ψ = Symm
[
f ⊗

⊗N
j=2 g

]
and Ψ′ = Symm

[
f ′ ⊗

⊗N
j=2 g

]
‖Ψ−Ψ′‖2

L2(R3N) = ‖f − f ′‖2
L2(R3) = 2

though only one electron behaves badly. L2 norm is too strong.

But γ(1)
Ψ (x, x′) = 1

N

[
f(x)f̄(x′) + (N − 1)g(x)ḡ(x′)

]

Tr
∣∣∣∣γ(1)

Ψ − γ(1)
Ψ′

∣∣∣∣ = O( 1
N ) – controlling only marginals is better.
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EXAMPLE 3: (Fundamental stability question.)

Is there a “norm” so that a change of interaction of order one

produces an order one change for typical particle?

Suppose |V − V ′| ∼ ε and ψ′N,t is solution with V ′. Then

∂t‖ψt − ψ′t‖2 ∼
〈
ψt − ψ′t ,

1

N

∑
`<j

(V − V ′)(x` − xj)ψt
〉
∼ Nε

But we know ‖ψt − ψ′t‖ ≤ ‖ψt‖+ ‖ψ′t‖ = 2

This instability makes the analysis of singular potentials very

hard: only N-dependent cutoffs are possible.
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L2-norm is too strong, it monitors all particles: Ψ(x1, . . . xN)

carries info of all particles (too detailed).

As Example 2 shows, the marginals could be better (they carry

less information, hence they are less sensitive than the L2-norm.)

Keep only information about the k-particle correlations:

γ
(k)
Ψ (Xk, X

′
k) :=

∫
Ψ(Xk, YN−k)Ψ(X ′k, YN−k)dYN−k

where Xk = (x1, . . . xk). It monitors only k particles.

Recall: it is an operator acting on the k-particle space

Good news: Most physical observables involve only k = 1,2-

particle marginals. Enough to control them.

Bad news: there is no closed equation for them.
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III. BASIC TOOL: BBGKY HIERARCHY

H = −
N∑
j=1

∆j +
1

N

∑
j<k

V (xj − xk)

V = VN may depend on N so that
∫
VN = O(1).

Take the k-th partial trace of the Schr. eq. i∂tγN,t = [H, γN,t]

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆j, γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi − xj), γ

(k)
N,t

]

+
N − k
N

k∑
j=1

Trxk+1

[
V (xj − xk+1), γ(k+1)

N,t

]
A system of N coupled coupled equation. (k = 1,2, . . . , N)

The last one is just the original N-body Schr. eq.

Seems tautological. (?)
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N = 2

i∂tγ
(1)(x′, x) = i∂t

∫
ψ̄(x′, y)ψ(x, y)dy

=
∫

[∆x′ −∆x] ψ̄(x′, y)ψ(x, y)dy

+
∫ [

V (x′ − y)− V (x′ − y)
]
ψ̄(x′, y)ψ(x, y)dy
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i∂tγ
(k)
N,t=

k∑
j=1

[
−∆j, γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi−xj), γ(k)

N,t

]
+
N − k
N

k∑
j=1

Trk+1

[
V (xj−xk+1), γ(k+1)

N,t

]

i∂tγ
(k)
N,t =

[
H0
k , γ

(k)
N,t

]
+Bkγ

(k+1)
N,t + εk(N), k = 1 · · ·N

H0
k := −

k∑
j=1

∆j, εk(N) = O
(k2

N

)
(negligible)

Bkγ
(k+1) :=

k∑
j=1

Trxk+1

[
V (xj − xk+1), γ(k+1)

]
Bk is called the connecting operator. With kernel notation:

(Bkγ
(k+1))(Xk;X ′k) =

k∑
j=1

∫
dy
(
V (xj−y)−V (x′j−y)

)
γ(k+1)(Xk, y;X ′k, y)

[xk+1 = x′k+1 needs to be defined properly !]
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Special case: k = 1:

i∂tγ
(1)
N,t(x1;x′1) = (−∆x1 + ∆x′1

)γ(1)
N,t(x1;x′1)

+
∫

dx2

(
V (x1 − x2)− V (x′1 − x2)

)
γ

(2)
N,t(x1, x2;x′1, x2) + o(1) .

To get a closed equation for γ(1)
N,t , we need some relation between

γ
(1)
N,t and γ

(2)
N,t . Most natural: independence

Propagation of chaos: No production of correlations

If initially γ
(2)
N,0 = γ

(1)
N,0 ⊗ γ

(1)
N,0, then hopefully γ

(2)
N,t ≈ γ

(1)
N,t ⊗ γ

(1)
N,t

No exact factorization for finite N , but maybe it holds for N →∞.

Suppose γ
(k)
∞,t is a (weak) limit point of γ(k)

N,t with

γ
(2)
∞,t(x1, x2;x′1, x

′
2) = γ

(1)
∞,t(x1, x

′
1)γ(1)
∞,t(x2;x′2).
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i∂tγ
(1)
N,t(x1;x′1) = (−∆x1 + ∆x′1

)γ(1)
N,t(x1;x′1)

+
∫

dx2

(
V (x1 − x2)− V (x′1 − x2)

)
γ

(2)
N,t(x1, x2;x′1, x2)︸ ︷︷ ︸

→ γ
(1)
∞,t(x1,x

′
1)γ(1)
∞,t(x2;x2)

+o(1)

With the notation %t(x) := γ
(1)
∞,t(x;x) , it converges, to

i∂tγ
(1)
∞,t(x1;x′1) = (−∆x1 + ∆x′1

)γ(1)
∞,t(x1;x′1)

+
(
V ∗ %t(x1)− V ∗ %t(x′1)

)
γ

(1)
∞,t(x1;x′1)

=⇒ Hartree-Equation for γ(1)
∞,t

i∂tγ
(1)
∞,t =

[
−∆ + V ∗ %t , γ

(1)
∞,t

]
,

For pure states, γ(1) = |ϕ〉〈ϕ|, it is just i∂tϕ = (−∆ + V ∗ |ϕ|2)ϕ
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Main technical goal: justify propagation of chaos (Closure).

BUT: ψN,t =
∏
j ut(xj) never solves Schr. eq. with interaction.

Propagation of chaos for interacting systems can hold only as

N →∞ and only in a weaker form:

lim
N
γ

(k)
N = lim

N
⊗k1γ

(1)
N

for each fixed k.

This indicates to study BBGKY in the N → ∞ limit instead of

Schrödinger.

What kind of equations will γ(k)
∞ := limN→∞ γ

(k)
N satisfy?

27



By taking the (formal) limit of the N-particle BBGKY hierar-

chy, we obtain an infinite hierarchy of coupled equations, called

Hartree (or infinite BBGKY) hierarchy.

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆j, γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi − xj), γ

(k)
N,t

]

+
N − k
N

k∑
j=1

Trxk+1

[
V (xj − xk+1), γ(k+1)

N,t

]
formally converges to (k = 1,2, . . .)

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆j, γ

(k)
∞,t

]
+

k∑
j=1

Trxk+1

[
V (xj − xk+1), γ(k+1)

∞,t

]
i.e.

i∂tγ
(k)
∞,t =

[
H0
k , γ

(k)
∞,t

]
+Bkγ

(k+1)
∞,t
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IV. GENERAL SCHEME TO DERIVE NLS (HARTREE)

i∂tγ
(k)
N,t=

k∑
j=1

[
−∆j, γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi−xj), γ(k)

N,t

]
+
N − k
N

k∑
j=1

Trk+1

[
V (xj−xk+1), γ(k+1)

N,t

]
formally converges to the ∞ Hartree hierarchy: (k = 1,2, . . .)

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆j, γ

(k)
∞,t

]
+

k∑
j=1

Trxk+1

[
V (xj−xk+1), γ(k+1)

∞,t

]
(∗)

{
γ

(k)
t = ⊗k1γ

(1)
t

}
k=1,2...

solves (∗) ⇐⇒ i∂tγ
(1)
t =

[
−∆+V ∗%t , γ

(1)
t

]

If we knew that

 (*) had a unique solution, and

limN γ
(k)
N,t exists and satisfies (*),

then the limit must be the factorized one

=⇒ Propagation of chaos + convergence to Hartree eq.
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Step 1: Prove apriori bound on γ
(k)
N,t uniformly in N .

Need a good norm and space H! (maybe Sobolev)

Step 2: Choose a convergent subsequence: γ(k)
N,t → γ

(k)
∞,t in H

Step 3: γ(k)
∞,t satisfies the infinite hierarchy (need regularity)

Step 4: Let γ(1)
t solve NLHE/NLS. Then γ

(k)
t = ⊗γ(1)

t solves
the ∞-hierarchy in H. [Trivial]

Step 5: Show that the ∞-hierarchy has a unique solution in H.

Key mathematical steps: Apriori bound and uniqueness

Part I. Apriori bound: use conservation laws
(e.g. Hk is conserved)

Part II. Uniqueness: Expand the BBGKY into Dyson series, con-
trol the last (error) term by the apriori bound.
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IV.1. CASE OF A BOUNDED POTENTIAL (SPOHN 1980)

Part I: Apriori bound. Here it is trivial:

Fact: Trγ(k)
N,t = 1. =⇒ natural space/norm. H = trace class.

Control in trace norm passes to the limit, Trγ(k)
∞,t ≤ 1.

Part II: Uniqueness. Hartree hierarchy in integral form:

i∂tγ
(k)
t =

[
H0
k , γ

(k)
t

]
+Bkγ

(k+1)
t =⇒

γ
(k)
t = Uk(t)γ(k)

0 − i
∫ t

0
ds Uk(t− s)Bkγ

(k+1)
s

Uk(t)γ = e−itH
0
k γeitH

0
k

Expansion can be continued (Dyson series)
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γ
(k)
t = Uk(t)γ(k)

0 − i
∫ t

0
ds Uk(t− s)Bkγ

(k+1)
0

+(−i)2
∫ t

0
ds1

∫ s1

0
ds2Uk(t− s1 − s2)BkUk+1(s1)Bk+1γ

(k+2)
s2

=
m−1∑
n=0

∫∫∑
k sk=t

ds0 . . .dsnU(s0)BU(s1)B . . . BU(sn)γ(k+n)
0

+
∫∫∑

k sk=t
ds0 . . .dsmU(s0)BU(s1)B . . . U(sm−1)Bγ(k+m)

sm

For uniqueness, only the last term needs to be controlled. Use:

Tr|Uω| = Tr|ω|, |A| :=
√
A∗A

Tr|Bkω| ≤ 2k‖V ‖∞Tr|ω|

Tr|last term| ≤
(
2‖V ‖∞

)m
k(k+1) . . . (k+m−1)

∫∫∑
k sk=t

ds1 . . .dsm

Note that Trγ(k+m)
sm = 1 was crucially used!
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Use that ∫∫∑
k sk=t

ds0 . . .dsm =
tm

m!

Tr|last term| ≤
(
2‖V ‖∞

)m
k(k + 1) . . . (k +m− 1)

∫∫∑
k sk=t

ds1 . . .dsm

≤
(
2t‖V ‖∞

)m(k +m− 1)!

(k − 1)!m!
≤ 2k

(
4t‖V ‖∞

)m
→ 0

if t ≤ 1/(4‖V ‖∞).

Gives short time uniqueness in trace norm.

For long time: simply continue, using that the apriori bound
gives control on the trace norm uniformly in time.

Notice that the k(k + 1) . . . (k +m− 1) ∼ m! from the combina-
torics was exactly compensated by the time ordered integration
to give a geometric series control. (this was noted by Lanford
and Hepp earlier)
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IV. 2. CASE OF THE COULOMB POTENTIAL (E-YAU 2001)

For singular potentials: need stronger norm. E.g. for Coulomb

1

|x|2
≤ −∆ =⇒ Tr|Bkω| ≤ 2k‖ω‖H1 (∗)

with Sobolev-like norm

‖ω‖H1 := Tr|∇ω∇|+ Tr|ω| ∼ TrSωS, S =
√

1−∆

To see (*),

Tr|Bkω| . Tr

√
ω

1

|x1 − x2|2
ω

≤ Tr
√
ωS2ω = Tr

√
Sω2S ≤ Tr

√
SωS2ωS = TrSωS

To close the estimate in H1 – need derivatives in each variable:

‖γ(k)‖Hk := Tr
∣∣∣S1 . . . Skγ

(k)Sk . . . S1

∣∣∣, Si =
√

1−∆xi

For the apriori estimate: Use the conservation of Hk
N
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Method of moments (E-Yau, 2001: V (x) = ±1/|x|):∫
|∇1 · · ·∇kψt(x1, · · · , xN)|2dx ≤

∫
ψ̄t

(
H +N

N

)k
ψt dx

Sketch of the proof for k = 2: (with Vij = |xi − xj|−1)

(H+N)2 =
(∑

j

S2
j +

1

N

∑
ij

Vij

)2
≥
∑
ij

S2
i S

2
j +

1

N

∑
ij

[
S2
i Vij+VijS

2
i

]
(all other terms are positive, e.g. S2

kVij ≥ 0 if k 6= i, j.)

S2
i Vij+h.c. ≥ ∇i(∇V )ij+∇∗iV∇i ≥ −ε

−1S2
i −ε|(∇V )ij|2 (Schwarz)

Cutoff V on a short scale (N−1/2) then remove by weak stability.

|(∇V )ij|2 ∼
1

|xi − xj|4
≤

N

|xi − xj|2
≤ NS2

i (Hardy )

1

N

∑
ij

[
S2
i Vij + VijS

2
i

]
≥ −

1

N

∑
ij

[
ε−1S2

i + εNS2
i

]
≥ −

1√
N

∑
ij

S2
i S

2
j

(higher powers are a bit more complicated)
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summary:

‖γ(k)‖H1 := Tr
∣∣∣S1 . . . Skγ

(k)Sk . . . S1

∣∣∣, Si =
√

1−∆xi

1. The error term in the Duhamel expansion of BBGKY can
be estimated via the H1 norm in the Coulomb case—-use Hardy
inequality.

|x|−2 ≤ −∆

2. The error term has a combinatoric factor of m!. This is
cancelled by a 1/m! factor from the time integration due to the
time ordering.

3. The H1 estimate can be obtained via the momentum of
energy. The commutator term between −∆ and V is again
controlled by the Hardy inequality.

Method of moments ( V (x) = ±1/|x|):∫
|∇1 · · ·∇kψt(x1, · · · , xN)|2dx ≤

∫
ψ̄t

(
H +N

N

)k
ψt dx
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IV.3. CASE OF THE MORE SINGULAR POTENTIALS

No Hardy ineq. beyond |x|−2. In particular, if V → N3βV (Nβx),

β > 0 (approx. delta function), then δ 6≤ −∆.

The following “nonstandard” Sobolev ineq. holds

V (x− y) ≤ ‖V ‖1(1−∆x)(1−∆y)

=⇒ δ(x− y) ≤ (1−∆x)(1−∆y)

but after iteration

. . . δ(xk−1 − xk)δ(xk − xk+1) . . . ≤ . . . (1−∆k)2 . . .

We would need 4 derivative per variable, but only 2 are available:

(const)N2 ≥ TrH2γ = Tr
[∑
j

(−∆j)
2 +

∑
i,j

∆j∆i + . . .
]
γ

≥ NTr ∆2
1γ

(1) +N2Tr ∆1∆2γ
(2)

We will keep H1 norm and improve on the uniqueness.
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V. EMERGENCE OF THE SCATTERING LENGTH

i∂tγ
(1)
N,t(x1;x′1) = (−∆x1 + ∆x′1

)γ(1)
N,t(x1;x′1)

+
∫

dx2N
3
(
V (N(x1 − x2))− V (N(x′1 − x2))

)
γ

(2)
N,t(x1, x2;x′1, x2)

Most difficult part: show that, as N →∞,∫
dx2NVN(x1 − x2)γ(2)

N,t(x1, x2;x′1, x2), VN(x) = N2V (Nx)

→ 8πa0γ
(2)
∞,t(x1, x1;x′1, x1)
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Good approximation to the ground state [Dyson]

W (x) =
∏
i<j

f(N(xi − xj)), (−∆ + V/2)f = 0, f = 1− w

Ansatz for states near the ground state:

ψN(x) = W (x)︸ ︷︷ ︸
short scale

· φN(x)︸ ︷︷ ︸
large scale

with φN(x) '
N∏
j=1

φ(xj) .
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If the time evolution preserves the form

ψN,t(x) = W (x)φN,t(x) φN,t(x) '
N∏
j=1

φt(xj)

then γ
(2)
N,t(x1, x2;x′1, x

′
2) ' f(N(x1 − x2))[x→ x′]︸ ︷︷ ︸

short scale corr.

γ
(1)
N,t(x1;x′1)[1→ 2]︸ ︷︷ ︸

no corr.

N3
∫

dx2 V (N(x1 − x2))︸ ︷︷ ︸
short scale

γ
(2)
N,t(x1, x2;x′1, x2)→ 8πa0γ

(1)
∞,t(x1;x′1)%(1)

t (x1)

since
∫
V f = 8πa0

(
compare with

∫
V = b0

)

=⇒ i∂tγ
(1)
∞,t =

[
−∆ + 8πa0%t, γ

(1)
∞,t

]
GPE with a0

The change of the constant is the signature of the correlation !
The short scale structure vanishes in trace norm, so propagation
of chaos still holds in large scale, but it is relevant in energy
norm. It still influences the dynamics by changing b0 to 8πa0.
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Using
∫
V (1− w) = 8πa0, prove first that∫

dx2 [NVN(x1 − x2)(1− wN(x1 − x2))− 8πa0δ(x1 − x2)]

× (1− wN(x1 − x2))−1γ
(2)
N,t(x1, x2;x′1, x2)→ 0

and then use that in the weak limit the factor

(1− wN(x1 − x2))−1γ
(2)
N,t(x1, x2;x′1, x2)→ γ

(2)
∞,t(x1, x2;x′1, x2)

=⇒ In terms of wave function we need regularity of

φ12(x) = (1− wN(x1 − x2))−1ψN,t(x) in x1, x2.



VI. APRIORI BOUNDS IN THE GP CASE

We now consider the Hamiltonian

HN =
N∑
j=1

−∆xj +
∑
i<j

VN(xi − xj), VN(x) = N2V (Nx)

that should lead to GP. Scattering length of VN is a = O(1/N).

〈Ψt, H
kΨt〉 is still conserved, but Hk does not control the Sobolev

norm; the inequality

〈Ψ, HkΨ〉 ≥ (CN)k
∫
|∇1 . . .∇kΨ|2

is incorrect, the short scale structure is too singular; wN ∼ 1
N |x|+1∫ ∣∣∣∇1∇2(1− wN(x1 − x2))

∣∣∣2 ≥ ∫ N4

(N |x|+ 1)6
dx = O(N)

Solution: Remove the singular part:
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VI.1. APRIORI BOUND FOR H2

Proposition: Suppose that % := ‖V ‖1 + ‖V ‖∞ is small. Define

Φ12(x) :=
Ψ(x)

fN(x1 − x2)
, fN(x) = 1− wN(x).

Then

〈Ψ, H2Ψ〉 ≥ (CN)2
∫
|∇1∇2Φ12|2

(Of course 1,2 can be changed to any i 6= j).

It is a remarkable inequality! Finiteness of H2 forces the specific

short scale structure since Φ is smoother than Ψ.

Weak limit of (the marginals of) ΨN and ΦN are equal, but ΦN

can be controlled in Sobolev space. Use compactness for ΦN !

Since the limit ΦN is smooth, so is the limit of ΨN , although

ΨN ’s themselves were not!
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HOW CAN H2 DETECT LOCAL SINGULARITY?

Consider a one-body model problem:

h := −∆ +N2V (Nx)

h2 = ∆∆−∆N2V (Nx)−N2V (Nx)∆ +N4V (Nx)2

Suppose ψ is smooth, then〈
ψ,−∆N2V (Nx)ψ

〉
= O(N−1)

〈
ψ,N4V (Nx)2ψ

〉
= O(N)

therefore 〈ψ, h2ψ〉 → ∞.

More precisely analysis shows that if 〈ψ, h2ψ〉 remains finite, then

ψ must have a definite singularity structure characterized by the

zero energy scattering solution.
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Let f(Nx) be the zero energy solution to h = hN ,

f(Nx) ∼ 1−
a0

N |x|
, |x| ≥ O(N−1)

and write ψ = fφ.

〈ψ, h2ψ〉 =
∫
|hfφ|2 ≥

∫
f2|∆φ|2 −

∫
f2(∆ log f)|∇φ|2 + (l.o.t.)

Hardy inequality =⇒ ∆ log f ∼
a0

N |x|3
≤

c

|x|2

so for small a0 we have

〈ψ, h2ψ〉 ≥ C
∫
f2|∆φ|2 + (l.o.t.) =⇒ φ is regular

Note that f → 1, so the pointwise limits of ψ and φ are the

same.
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Corollary: If the initial data satisfies the H2 bound, then

〈ψN,t, H2ψN,t〉 = 〈ψN,0, H2ψN,0〉 ≤ CN2 .

=⇒
∫
W2|∇i∇jφN,t|2 ≤ C (ψN,t = WφN,t)∫
|∇i∇jψN,t|2 ≤ C is WRONG!

so one cannot pass to ψ∞ in the Sobolev space directly.

But our initial data 〈ψN,0, H2ψN,0〉 → ∞.

Corollary: The limiting marginals γ
(k)
∞,t := limN→∞ γ

(k)
N,t of ΨN

satisfy

TrSiSjγ
(k)
∞,tSiSj ≤ C, i 6= j
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one-particle Hamiltonian h = −∆ + (1/2)V (x)

Proposition Suppose V ≥ 0, with V ∈ L1(R3). Then:

i) (Existence of the wave operator). The limit

W = lim
t→∞

eihtei∆t

exists.

ii) (Completeness of the wave operator). W is a unitary opera-

tor on L2(R3) with

W ∗ = W−1 = lim
t→∞

e−i∆te−iht

iii) (Intertwining relations). On D(h) = D(−∆), we have

W ∗hW = −∆ (1)
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iv) (Yajima’s bounds). Suppose moreover that V (x) ≤ C〈x〉−σ,
for some σ > 5. Then, for every 1 ≤ p ≤ ∞, W and W ∗ map
Lp(R3) into Lp(R3), that is

‖W‖Lp→Lp <∞ for all 1 ≤ p ≤ ∞

WN wave op associated with hN = −∆ + (1/2)VN(x), with
VN(x) = N2V (Nx).

Proposition Suppose V ≥ 0, V ∈ L1(R3)

〈ψN , H2
NψN〉 ≥ CN

2
∫

dx
∣∣∣∣(∇i · ∇j)2

W ∗N,(i,j)ψN

∣∣∣∣2
where WN,(i,j) denotes the wave operator WN acting on the vari-
able v = xj − xi.

W ∗Nψ ∼ [1− w(Nv)]−1ψ

Idea: W ∗ = limt→∞ e−i∆te−iht eliminates all modes except zero
modes to h. So W ∗N,v[1− w(Nv)]→ 1.



Notice that ∣∣∣(∇1 · ∇2)2ψ
∣∣∣2 � ∣∣∣(∇1∇2)2ψ

∣∣∣2

A special Sobolev ineq.:

Lemma Suppose V ∈ L1(R3). Then

|〈ψ, V (x1 − x2)ψ〉| ≤ C‖V ‖1 〈ψ,
(
(∇1 · ∇2)2 −∆1 −∆2 + 1

)
ψ〉

Proof

N−2〈ψ,H2
N ψ〉

≥
〈
ψ,

(
−∆1 +

1

2
VN(x1 − x2)

)(
−∆2 +

1

2
VN(x1 − x2)

)
ψ

〉
.

u =
x1 + x2

2
, and v = x1 − x2, hv = −∆v +

1

2
VN(v) .



=

〈
ψ,

[(
−

1

4
∆u + hv

)2
− (∇u · ∇v)2

]
ψ

〉
.

Using

(∇u · ∇v)2 ≤ (−∆u) (−∆v) ≤ (−∆u) hv ,

we obtain

N−2〈ψN , H2
N ψN〉 ≥

〈
ψ,

(
−

1

4
∆u − hv

)2
ψ

〉
.

=

〈
W ∗N,vψN ,

(
1

4
∆u −∆v

)2
W ∗N,vψ

〉
.

∇1 · ∇2 = (1/4)∆u −∆v



VII. HIGHER ORDER ENERGY ESTIMATES

Choose `� N−1 with N`3 � 1 and for j = 1, . . . , N define

θj(x) '
{

1 if |xi − xj| � ` ∀i 6= j
0 otherwise

Proposition (higher order energy estimates):

〈ψN , (HN+N)kψN〉 ≥ CkNk
∫

dx θ1(x) . . . θk(x) |∇x1 . . .∇xkψN(x)|2

Corollary: we have, uniformly in N and t,∫
dx θ1(x) . . . θk(x) |∇x1 . . .∇xkψN,t(x)|2 ≤ Ck

Proof:∫
dx θ1(x) . . . θk(x) |∇x1 . . .∇xkψN,t(x)|2

≤ CkN−k〈ψN,t, (HN +N)kψN,t〉
≤ CkN−k〈ψN , (HN +N)kψN〉 = Ck
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Proposition (higher order energy estimates):

〈ψN , (HN+N)kψN〉 ≥ CkNk
∫

dx θ1(x) . . . θk(x) |∇x1 . . .∇xkψN(x)|2

We use

Tr(HN +N)kγ(k)
N,t = Tr(HN +N)kγ(k)

N,0 ≤ C
k (∗)

(Bound on initial data needs to be proven separately, see next

section)

Taking the weak limit of γ(k)
N , from the Propostion and (*) one

can derive

Theorem (Apriori bound) Let γ(k)
∞,t be any weak limit point of

γ
(k)
N,t, then

‖γ(k)
∞,t‖Hk := Tr(1−∆1)(1−∆2) . . . (1−∆k)γ(k)

∞,t ≤ C
k
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The actual cutoff function θ is more complicated.

Main trouble with kinetic energy localization

|∇θ(x)| ≤ (const.)θ(x)

holds for no compactly supported function.

When controlling objects like∫
θ2|∇∇ . . .∇Ψ|2 (∗)

and using integration by parts (as above in the H2-proof), one

picks up ∇θ that cannot be controlled by (*).

However,

|∇θ2| ≤ 2θ|∇θ| ≤ (const.)`−1θ

if ` the lengthscale of θ.
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To define our localization function, first define

h(x) := exp
(
−
√

1 +
(x
`

)2
)

θi(x) : = exp
(
−

1

`ε

∑
j 6=i

h(xi − xj)
)

=

{
≈ 1 if no other particle is near xi
exp. small otherwise

θ
(n)
i :=

(
θn
)2n

=⇒ |∇jθ
(n)
i | ≤ C`

−1θ
(n−1)
i

Finally, our localization function for the Hk-analysis:

Θk(x) := θ
(k)
1 (x) · θ(k)

2 (x) · . . . · θ(k)
k (x)

ensures that there is no particle near x1, x2, . . . , xk.

Choice of `: N`3 � 1 and N`2 � 1.
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VII.4. REGULARIZATION OF THE INITIAL STATE

In the previous apriori bound, we used that Tr(HN + N)kγ(k)
N,0 ≤

Ck, which, as it stands, is wrong for product states if k > 1,

since H2
N contains squares of (almost) deltafunctions.

Define the following regularized initial state

ψ̃N :=
χ(κHN/N)ψN
‖χ(κHN/N)ψN‖

i.e. cutoff in the energy at threshold κ−1N . (κ� 1).

Proposition: We have the following facts:

〈ψ̃N , Hk
N ψ̃N〉 ≤ C

kNkκ−k (1)

sup
N
‖ψN − ψ̃N‖ ≤ κ1/2 (2)
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If the asymptotic factorization is satisfied for ψN , then the marginals

of ψ̃N also factorize

γ̃
(k)
N → |ϕ〉〈ϕ|⊗k (3)

Therefore we can run the whole proof for ψ̃N since (1) gives the

apriori bound. At the end, using the uniform comparison (2), we

can let κ → 0 to compare γ
(k)
N,t and γ̃

(k)
N,t, so from (3) the same

relation will hold for γ(k)
N,t as well.



VIII. UNIQUENESS OF THE GP-HIERARCHY IN SOBOLEV NORM

i∂tγ
(k)
t =

k∑
j=1

[
−∆j, γ

(k)
t

]
− iσ

k∑
j=1

Trxk+1

[
δ(xj − xk+1), γ(k+1)

t

]
Recall the Sobolev norm:

‖γ(k)‖Hk := Tr(1−∆1)(1−∆2) . . . (1−∆k)γ(k)

Our goal is to show:

Theorem: Given a family of initial densities, {γ(k)}k=1,2... with

‖γ(k)‖Hk ≤ Ck, then there exists at most one solution {γ(k)
t } to

the hierarchy above with γ(k)
t=0 = γ(k) and such that ‖γ(k)

t ‖Hk ≤ Ck

holds uniformly in t.
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i∂tγ
(k)
t =

k∑
j=1

[
−∆j, γ

(k)
t

]
− iσ

k∑
j=1

Trxk+1

[
δ(xj − xk+1), γ(k+1)

t

]

Iterate it in integral form:

γ
(k)
t = U(t)γ(k)

0 +
∫ t

0
ds U(t− s)B(k)U(s)γk+1

0 + . . .

+
∫∑

k sk=t
ds1 . . .dsn U(s1)B(k)U(s2)B(k+1) . . . B(k+n−1)γk+n

sn

B(k)γ(k+1) := −iσ
k∑

j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

]

U(t)γ(k) := e
it
∑k
j=1 ∆jγ(k)e

−it
∑k
j=1 ∆j

Problem 1. ‖B(k)γ(k+1)‖Hk ≤ C‖γ(k+1)‖Hk+1 is wrong because
δ(x) 6≤ (1−∆). Need smoothing from U !!
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γ
(k)
t = U(t)γ(k)

0 +
∫ t

0
ds U(t− s)B(k)U(s)γk+1

0 + . . .

+
∫∑

k sk=t
ds1 . . .dsn U(s1)B(k)U(s2)B(k+1) . . . B(k+n−1)γk+n

sn

Stricharz inequality? Space-time smoothing of eit∆.

∥∥∥eit∆ψ∥∥∥∥
Lp(Lq(dx)dt)

=

 ∫ dt
( ∫

dx|eit∆ψ|q
)p/q1/p

≤ C‖ψ‖2

Problem 2. B(k)B(k+1) . . . B(k+n−1) ≈ n!, because B(k) =
∑k

1

[
. . .

]
.

This can destroy convergence. Gain back from time integral∫∑
k sk=t

ds1 . . .dsn ≤
1

n!

Here L1(ds) was critically used, Stricharz destroys convergence.

We expand it into Feynman graphs and do all integrals carefully.
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VIII.1 FEYNMAN GRAPHS

Iteration of the ∞-hierarchy: γ∞,t = Utγ0 +
∫ t
0 ds Ut−sBγ∞,s

γ
(k)
∞,t =

n∑
m=0

Ξ(k)
m (t) + Ω(k)

n (t)

Ω(k)
n =

∫
. . .
∫

ds1ds2 . . .dsn Ut−s1BUs1−s2B . . .Usn−1−snBγ
(k+n)
∞,sn

Ξ(k)
m are similar but with the initial condition γ0 at the end.

Feynman graphs: convenient representation of Ξ and Ω.
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Lines represent free propagators.

E.g. the propagator line of the j-th particle between times s and
t represent exp[−i(s− t)∆j]:

=e−i(s−t)∆ j

s t
Time axis

x j

Vertices represent B, e.g. V (x1 − x2)γ(x1, x2;x′1, x
′
2)δ(x2 − x′2)

x

x
x1

2

1

1

2x

x

x

1
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Ξ(k)
m =

∫
. . .
∫

ds1ds2 . . .dsm Ut−s1BUs1−s2B . . .Usm−1−smBUsmγ
(k+m)
∞,0

corresponds to summation over all graphs Γ of the form:

...............

...............

variables of γ (k+m)

2(k+m) incoming
2k outgoing

variables of Ξ
(k)

m

m vertices

0sssst
1 2 3 m

Time axis

Roots:
Leaves:

Tr OΞ(k)
m =

∑
Γ

Val(Γ)
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Value of a graph Γ in momentum space

Val(Γ) =
∫ ∫ ∏

e∈E
dαedpe

∏
e

1

αe − p2
e + iηe

∏
v∈V

δ

(∑
e∈v

αe

)
δ

(∑
e∈v

pe

)
× e−it

∑
e∈Root(αe−iηe)O(pe : e ∈ Root) γ0(pe : e ∈ Leaves)

pe ∈ R3 is the momentum on edge e

αe ∈ R variable dual to time running on the edge e.

ηe = O(1) regularizations satisfying certain compatibitility cond.

Two main issues to look at

• What happens to the m! problem (combinatorial complexity of

the BBGKY hiearchy)?

• What happens to the singular interaction = large p problem

In other words: why is Val(Γ) UV-finite?
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VIII.2 COMBINATORIAL RESUMMATION

Let k = 1 for simplicity, i.e. we have a tree (not a forest).

The Duhamel expansion keeps track of the full time ordering and
it counts the following two graphs separately:

1

2

3

4

1

2

3

4

1

2

3

4

+ =

Number of graphs on m vertices with time ordering: m!
(the j-th new vertex can join each of the (j − 1) earlier ones)

Number of graphs on m vertices without time ordering = Number
of binary trees = Catalan numbers 1

m+1

(
2m
m

)
≤ Cm.

The resummation reduced m! to Cm. The factorial was fake!
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VIII.3. ULTRAVIOLET REGIME: FINITENESS OF VAL(Γ)

|Val(Γ)| ≤
∫ ∫ ∏

e∈E
dαedpe

∏
e

1

〈αe − p2
e 〉

∏
v∈V

δ

(∑
e∈v

αe

)
δ

(∑
e∈v

pe

)
×O(pe : e ∈ Root) γ0(pe : e ∈ Leaves)

‖γ0‖H(m+1) guarantees a 〈pe〉−5/2 decay on each leaf.

Perform integration over all α and p, starting from the leaves

and moving towards the roots. At each vertex, we propagate

the decay from the son-edges to the father-edge.
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Typical example.

Integrate first the α-variables of the son-edges∫
dαudαvdαw

δ(αr = αu + αv − αw)

〈αu − p2
u〉〈αv − p2

v〉〈αw − p2
w〉
≤

const

〈αr − p2
u − p2

v + p2
w〉1−ε

Then integrate over the momenta of the son-edges∫ dpudpvdpw
|pu|2+λ|pv|2+λ|pw|2+λ

δ(pr = pu + pv − pw)

〈αr − p2
u − p2

v + p2
w〉1−ε

≤
const

|pr|2+λ

Momentum decay propagated!

r u

v

w

α  α  

α  

α   

p p

p

pw

v

ur

"Son" edges"Father" edge
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|Val(Γ)| ≤
∫ ∫ ∏

e∈E
dαedpe

∏
e

1

〈αe − p2
e 〉

∏
v∈V

δ

(∑
e∈v

αe

)
δ

(∑
e∈v

pe

)
×O(pe : e ∈ Root) γ0(pe : e ∈ Leaves)

Power counting (k = 1, one root case).

# of edges = 3m+ 2, no. of leaves = 2m+ 2

# of effective pe (and αe) variables: (3m+ 2)−m = 2m+ 2

2m+ 2 propagators are used for the convergence of αe integrals

Remaining m propagators give 〈p2〉 decay each.

Total p-decay: 5
2(2m+ 2) + 2m = 7m+ 5 in 3(2m+ 2) dim.

There is some room, but each variable must be checked. We

follow the momentum decay on legs as we successively integrate

out each vertex. There are 7 types of edges, 12 types of vertex

integrations that form a closed system. �
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IX. CONCLUSIONS

• We derived the GP equation from many-body Ham. with in-
teraction on scale 1/N . Coupling const. = scattering length.
GP theory is also valid far from equilibrium/ground state

• A specific short scale correlation structure is preserved or even
emerges along the dynamics. In the N →∞ limit, this structure
is negligible in L2 sense (ensuring a closed eq. for the orbitals)
but not in energy sense, thus it influences the dynamics via the
emergence of the scatt. length.

• For interaction on scale 1/Nβ, β < 1, the coupling constant is
the Born approximation to scattering length.

• Conservation of Hk can imply bounds in Sobolev space

• Stricharz can be strengthened with Feynman diagrams in many
body problems
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X. OPEN PROBLEMS

• Remove the positivity condition on V

• What happens for negative scattering length? Metastability?

• Understand the mesoscopic scales. What happened to the

excess energy for the product initial state?

• Fermi systems (bound pairs of fermions are bosons)

• Combine many-body and random potential
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II.2. VLASOV EQUATION FROM FERMION DYNAMICS
(DETOUR)

Trapped fermions have energy/particle ≈ N2/3

Time scale ≈ N−1/3

Wavelength ≈ N−1/3 � potential lengthscale ≈ O(1) =⇒ SC

iε∂tΨ =

− ε2∑
j

∆j +
1

N

∑
k<j

V (xk − xj)

Ψ, ε := N−1/3

Typical semiclassical fermionic state

Ψ =
∧
j

ϕj, ϕj(x) = eikjxg(x), |kj| . N1/3

and γ(1)(x;x′) is supported near |x− x′| ∼ ε.

Wigner transform of γ(1) at scale ε

W
(1)
ε (x, v) :=

∫
γ(1)(x+ εη, x− εη)eiηvdv

Similarly for k-particle density matrices, γ(k)(x1, . . . xk;x′1, . . . x
′
k)
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iε∂tΨ =
[
− ε2∑

j

∆j +
1

N

∑
k<j

V (xk − xj)
]
Ψ, ε := N−1/3

THEOREM: If the initial state asymptotically factorizes,

W
(k)
N,ε ≈ ⊗

k
1W , then W

(k)
N,ε(t) ≈

⊗k
1Wt (propagation of chaos)

Then the weak limit Wt = limW
(1)
N,ε(t) satisfies

∂tWt(x, v) + v · ∇xWt(x, v) = ∇x(V ∗ %t) · ∇vWt(x, v)

%t(x) :=
∫
Wt(x, v)dv

Limit equation is classical (nonlinear Vlasov equation)

(Unlike Hartree/NLS for bosons that are quantum equations.)

[Narnhofer-Sewell]: V is analytic, [Spohn]: V ∈ C2
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NL Vlasov equation is the SC limit of the Hartree eq.

iε∂tϕ
ε
t = −ε2∆ϕεt +

(
V ? |ϕεt |2

)
ϕεt

iε∂tγ
ε
t =

[
− ε2∆ + V ? %εt , γ

ε
t

]
, %εt(x) := γεt (x, x)

Let W̃ ε(t, x, v) be the rescaled Wigner transform of γεt .

THEOREM [Elgart-E-Schlein-Yau]: V analytic
Suppose for k ≤ 2 logN and bounded k-body observables O(k),∣∣∣∣〈O(k),W

(k)
N,ε(0)−

k⊗
j=1

W (1)(0)
〉∣∣∣∣ ≤ 1

N

Then for short time∣∣∣∣〈O(k),W
(k)
N,ε(t)−

k⊗
j=1

W̃ ε(t)
〉∣∣∣∣ ≤ 1

N

Hartree eq. exact up to O(ε3). Open: remove analyticity.
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