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Quasi-Geostrophic flow equation

The Q-G equation is a 2-D “Navier Stokes” type equation. ID,2-
Navier Stokes simplifies considerably since

a) Incompressibility, diw = 0, implies that(—v», v1) is a gradient:
(—v2,v1) = V.
b) curlVis a scalarf = curlvV = Ap.



Navier Stokes equation thus becomes a system:
) 6+ VVO = A0
i) curlv=20

For the Q-G equation, we still have that

(—VQ,Vl) = VQO .

But the potentialy is related to vorticity by) = —AY/2¢. That is, the
final system becomes

O + VV0 = (AY?)0

(—Vv2,v1) = R16, R0 whereR; are the Riesz transforms 6f



Riesz transforms and the dependence o 6

More precisely, we can deduce this relation through Fourier
transform:

f=1Clp and V= (-Cp,GP) -

. G2, Q154
= (—224,>L4
Y <|<|’|<|>

In particular

The muItipIiersé—i| are classical operators, called Riesz transforms
that correspond in physical spaceo convolution with kernels

Xi
R(X)ZW



V(%) Z/R(x—y)ﬁ(y) dy

Note that on one hand

IVlIzrey = [Vllz@ey < ”é”LZ(Rn)

that is, the Riesz transforms are bounded operators ffrotn L. On
the other handRis not integrable neither at zero nor at infinity. It is a
remarkable theorem that because of the spherical canoeliz R
(mean value zero and smoothness) we have:

The operatoR *x § = vis a bounded operator frolrf to LP for any

1 < p < oo (Calderon-Zygmund). Unfortunately, it is easy to show
thatsingular integral operatorsre not bounded frorh™ to L°°.

They are bounded, though, froBMO to BMO.



BMO spaces

What is BMO? It is the space of functions with bounded mean
oscillation.

That is, in any cub® the “average ofi minus its average” is bounded
by a constanC

6 /Q ‘U(X) - % eu(y) dy‘dxg c

The smallesC good for all cubes defines a seminorm (it does not
distinguishes constant that we may factor out). The spatnctions
uin BMO is smaller than aniP (p < oo) but not included irn.>
((log|x|)~ is a typical example).

In fact functionsu in BMO have “exponential” integrability

/ Ul < oo
1



Proof of regularity

The regularity theory for the Quasi Geostrophic Equatidoaised on
two linear transport regularity theorems:

Theorem 1

Letd be a (weak) solution of

0 +VvVo = AY20 in R x[0,00)

for some incompressible vector field v (with no apriori bosinand
initial data g in L2.
Then

16X, )| < C[I0(%, 0)|.2 -



Having shown boundness, for the QG equation, our stituasiow
the following: We have a solutiof that satisfies the energy bound:
SlthHe(t)HEz(Rn) + ||D1/29Hﬂin++1 <C
and also ||| = (xy < 1 (#)
We want to prove that is Holder continuous.

To do that we need to reproduce the local in space De Giordiodet
Of the velocity field, we may assume now (being the Riesz foaus
of 0, that

Sltjp(HV”EZ(Rn) + |V|BMO(R")) <C. (%)

We decouples from 0, and will prove a linear theorem, where for
satisfying(x) andd satisfying(#) and the equation

0; + VvV = AY?9

we have thad is locally C“.



A review of De Giorgi’'s Theorem

The proof we will present is strongly based in the ideas treatabrgi
developed to solve the 19th Hilbert problem.
The problem consisted in showing the regularity of minimsae, to

Lagrangians
/ F(Vw) dx
Q

Such a minimizer satisfies
div Fj(Vw) =0

but, when solving the minimization problem we only know that
Vw € L2 (if F is strictly convex).



10

If we knew thatVw was continuous, Shauder theory will apply and
solve the problem. First derivativeg = DU, satisfy the equation

DiFij(Vwo)Dj(wp)e = 0.
De Giorgi studied then solutionsof
Dig; (x)Dju =0
with no assumption og;j, except uniform ellipticity:
I < aj <Al

and showed that is C*.
Applying this theorem t@wyg)e, he solved the Hilbert problem.
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Theorem 2

Let u be a solution of @;D;u = 0in By of RN with
0 < Al < ajj(x) < Al (i.e., g is uniformly elliptic). Then
u € C*(Byp) with

lullce @y < Cllulleey
(@ = a(\, A1),

Proof.

The proof is based on the interplay between Sobolev indgutiat
says that|u||_2+- is controlled by||Vul|, > and the energy inequality,
that says that in turny being a solution of the equation

|Vug || 2 is controlled byl|uy||, > for every truncatiord :  up = (u—6)" .

O
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We recall Sobolev and energy inequalities:

Sobolev:
If vis supported irB;, then
IVlleey) < ClIVVIL2ey)

for somep(n) > 2.
If we are not too picky we can prove it by representing
VV(X) - Xo

X ix= Vv« G.

V(Xp) =
bo) = J X

SinceG belongs “almost” td_n%l, anyp < % would do.
p= % requires another proof.
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Energy inequality:
If u> 0, Dja;Dju > 0 andy € C3°(By) then

/ (Veou)2dx < Csup\vgo\z/ u .
B1 BiNsuppye

(Note that there is a loss going from one term to the otR&su
versusu.)

Proof.
We multiply Lu by ©?u. Since everything is positive we get

/VT uwAvVU > 0.

We have to transfer @ from the leftV to the rightV.
We use that whenever we have a term of the form

[ TTeuauT) <& [ TTuAT (o) + = [ v
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The proof of the theorem is split in two parts:

Lemma 3

(From anL? to anL> bound)If U™ 2(g,) is small enough
(< do(n, A, A), then

suput < 1.

Bi/2

Before going into the proof, let me give a simple, geometnialagy
to Lemma 1 with a simple proof.

Suppose tha® is a domain inR" anddf? is a minimal surface when
restricted tdBy, in the sense that the boundary of any perturbation
insideB; will have larger area.
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We want to prove that
Lemma

If volumg 2 N B1) < o, @ small enough constant, then
\ol (Q M Bl/Z) =0.
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For that purpose we will take diadic balB,, = B1_ , «, converging
to By, and ringsR;, = Br(H) — By,; and we will find anon linear
recurrence relation fovi = Vol (2 N By, ) for k even, that will imply
that Vi goes to zero, in particulaf never reacheBy .

In this analogy Volume replaces the square oflth@orm ofu and
Area the energyf (Vu)?.

The argument is based on the interplay of area and volume.
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A, controlsV forr > ry:

‘/"‘j Vi< Vr < [Aread"V,")|V" !t =
' (two parts)= [A; + AreadQ N B,]"/"1

A/“ (33 0‘9-) By minimality < [2A,]"/"—2
(this is the “energy inequality”)

Vi controlsA, for somer in R, 1:

Ve Vol (0,08 |

'k

VOI(*Vi" \ “Viga") ~ | A >27% infA,

Mt 1 M1 <r<rg
If we combine both estimates we get (hotice the differenbernts)
n n/(n—1)n
Vk+1 S (ZAr)n/n—l S z(m)kvk /( )
Mk+1<r<rg

If Vo < e, the build up in the exponent as we iterate, beats the large
geometric coefficient, andy goes to zero.
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We now pass to the proof of the lemma. The origin becomes nosv pl
infinity, ||ul| 2 plays the role of volume, angVul| 2, that of area. We
have the added complication of having to truncate in space.

Proof.
We will consider a sequence of truncations

PkUk

whereypy is a sequence of shrinking cut off functions converging to
XBy/2+ _
More precisely

=1 for x< 1+ 2 k+1)
Pk =
=0 forx>1+2%X

|Vk| < C2¢.
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Note thatyx = 1 on Supppk+1

I

While uy is a sequence of monotone truncations converging to
(u—1)+:

\_,-V—J
B1/2

U = [u(l —279]*.
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Note that wherei 1 > 0, u, > 2~ &1 Thereforeif
(Prp1Uis1) > 0, then, (gu) > 2~ K+,

We will now show that, ifijul[ 2(g,) = Ao is small enough then

Ac= /(@kuk)z — 0.

In particular(u — 1)+|Bl/2 = O a.e., thatis, ifB; /, U never goes
above 1.

This is done through anpn lineat!) recurrence relation foAy.
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We have

Sobolev inequality:

2/p
[/(Spk+1uk+l)p} < C/(V(pk+1uk+1)2.

But, from Holder

2/p
/(¢k+1uk+1)2 < [/(¢k+luk+l)p] - {orsaUir1 > O}

so we get

Ac1<C / V(e ) {ptesaters > O} -



23

We now control the RHS by through the energy inequality:
From energy we get

/ V(prp1l1)? < C 2% / T

SUPP@k+1

(But ok = 1 on suppok1)
< C2% / (oruK)? = C 2%A, .
To control the last term, we observe that

[{PkitUirs > O} < [{iouhe > 2737 .
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And by Chebyshev:

< 22k5</((pkuk)>€ '

Ak-‘rl S C 24k(Ak)l+E )

Then, forAg = § small enoughd, — 0 (prove it). The buildup of the
exponent indy, forcesA, to go to zero. In factAg has faster than
geometric decay, i.e., for amyl > 0, A, < M~Xif Ag(M) is smalll
enough.

So we get

Corollary 4

If uis a solution of Lu= 0in By, then

[Ullioe By < Cllullizgy) -
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Step 2.

Oscillation decay: Let ogtu = sugy u — infp u.

Theorem 5

If u is a solution of Lu= 0in B; then there exists (A, A,m) < 1such
that

oscu < o 0ScU .
Bi/2 B1
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Lemma 6
Let0 <v<1 Lv>0inB;. Assume thaB,, N {v= 0} = p
(n>0). Thensupsmv <1-—o(p).

In other words, ifvt is a subsolution okv, smaller than one iB;,
and is “far from 1” in a set of non trivial measure, it cannot g
close to 1 inBy 5.
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The proof is based on the following idea: suppose thaB;irju| < 1,
i.e., oscu < 2. Thenuis positive or negative, at least half of the time.
Say it is negative, i.e.,

1
{u" =0} = Byl

Then, onBl/Z, u should not be able to be too close to one.
Foru harmonic, for instance, this just follows from the mean ealu
theorem. If we know that

ut=0j/> (1-3) 8.

then
‘|U+H52(Bl) <9d/2

and the previous lemma would tell us thets, , < 1/2.
So we must bridge the gap betweg¢n™ = 0} > 3|B;| and
{ut =0} > (1- §)Bs.
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A main tool is the De Giorgi isoperimetric inequality thatadishes
that a functiony, with finite Dirichlet energy, needs “some room in
between” to go from a value (say zero) to another one (say. one)

It may be considered a quantitative version of the fact ttiahation
with a jump discontinuity cannot be if?.



29

Sublemma
LetO <w< 1.

|Al = [{w =0} N By
IC] = {w =1} N By
ID| = {0 <w < 1} N By/y

Then if [ [Vw|? < C3

Co|D| > Ca(|A/[C])? .
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Proof

For Xp in B we reconstructv by integrating along any of the rays that
go fromXp to a point inA

%O@:% ) 1=w(x) = /Wr dr or
I~
/B &\% Q2 S@) |A| < areaS(A) < / %
=l D .
k///—\/ V
i |vw|rn_1dVdf
- <Wr e
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IntegratingXo on C

e = [ mwtn( [ o Pe ) @

Among allC with the same measut€| the integral inXp is
maximized by the ball of radiutC|'/", centered aX

/WS\CH/”.
C

1/2
MCE |<:|1/“( / |Vw|2> D[V2.
D

Since [ |[Vw|2 < C3 the proof is complete.

So
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With this sublemma, we go to the proof:
Idea of the proof

We will consider a diadic sequence of truncations approgcbne
Vi =[v—(1—27]*
and their renormalizations
Wi = 24V,

Bi/2

A —

V3

/_,\ V.
NI, N & 2
[/ /777N
™\ [ AN Vi
\
{v=0}=>p>0
From the isoperimetric inequality, each time we truncateewgect
the measure of the support to decay.
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After a finite number of steps, the measure of the supponipivill
fall below the critical valugy/2, andw will only be able to reach
halfway towards one, i.e.,

V|Bl/2 <1- 2t
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We will be interested in the s@ = {v > 2~ &Y} = {wy > 1/2}.
Its complemen#y = {v = 0} and the transitionDy = [Cx — Cy_1]

Ck-1

We will show that by applying the isoperimetric inequalitydethe
previous lemma in a finite number of stegg, ko(\, A, 1),

1Cio| = 0.

Theno () = 27%.
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Note that
a) Ao=pu, (u=1/2will do for our case)
b) By the energy inequality, sindew|g, < 1,

/ Vw2 < C
Bi/2

c) If Cy gets small enough
4 o< i <3,

we apply the first lemma tovi and 2/vk\51/4 < 1,done
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Proof of the theorem

We interate this argument with 2 ndin, %) = w. If Cy stays bigger
than¢ after a finite number of stepgg = k(d, 1), we get

>~ |Dk| > [By/»| impossibleso for somek < ko, [Cy| < d that makes
|Ck+1| = O from the first part of the proof.

Corollary 7

0s@ U< Ao0sa, U

Corollary 8
u € C%(By/p) with A = 27 (definesn).

Corollary 9

If ||uf| o (rry < C = uis constant.
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Note.

The argument in Lemma 1 is very useful (and powerful) when two
guantities of different homogeneity compete with each otaeea and
volume (in a minimal surface) or area and harmonic measure, 0
harmonic measure and volume as in free boundary problems.
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0.1. The fractional Laplacian and harmonic extensions

The fractional Laplacian)\“#, can be defined as convolution with a
singular kerne(0 < o < 1)

a%0(xa) = cla) [ 1000 ox

or through Fourier transform

TAh(E) = [¢20(¢)
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0.2.
Note that the kernel
K — C(a)|x|—(n+2a)

is singular near zero, so, in principle, some cancellatomis
expected for the integral to converge. For instathb®unded and in
C? nearX suffices. AlsoC(a) ~ (1 — «) guarantees that as— 1,
A%f converges ta\d.
A particularly interesting case is the case-= 1/2, since in this case
—(AY?)u coincides with the Dirichlet to Neuman map. More
precisely, giverd(X) in R", we extend it ta*(x, y) in (R™1)* by
convolving with the Poisson kernel:

Cy

Py(X) = W =y "P1(X/y)
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Thenf*(x,y) satisfies
Ax7y9* - O
and it can be checked that'/29(Xo) = Dy6*(Xo, 0) in two ways:
a) Represenf*(Xp, h) as
0" (Xo, ) = [Ph * 0](Xo)
and take limit on the increment quotient

0* (Xo, h) — 6*(Xo, 0)
h

Dyf" (X0, 0) = lim

or
b) Fourier-transform irX:

6*(¢,y) satisfies|¢[?0* = Dyyf*
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Thus R R
0*(&,y) = 0(&)e V!

In particular

~ ~

DyA(£,0) = —B(&)¢| = (A20)(€)

In particular, we can make sense of the Green’s and “enemwitla
for the half Laplacian.

Let o(x), (x) be two “nice, decaying” functions definedRf', and
7(x,y), (x,y) decaying extensions inf@®"*1)*.

Then, we have

/ O'(é)l, == / VX’ya'V(X’y)é +/ 5’Ax7y§
n (Rn+1)+ (Rn+l)+
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If we chooséd(x, y), the harmonic extensio®;, the termd, (x, 0)
becomes-A1/29, andA#* = 0, giving us

/ J(—Al/z)ﬁz/ VoVeo*
RN (Rn+l)+

Further, if we choose
o=(0-N" and 7= (0"—\)"

(i.e., thetruncationof the extensiorof ) we get

/ (0 — N (—AY2g) = / V(0" — A)*2dxdy
Rn

(RH)+
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To complete our discussion, we point out that the harmortierston
0* of 4, is the one that minimizes Dirichlet energy

E(0%) = / (V6*)?

and that this minimum defines ti&"2 norm ofé. In particular, we
obtain

/n(a NT(=AY2)9 // 12 dx dy

> / / V(6 — A dxdy= (6 — N)]/%:

(since theharmonic extension of the truncatitiasless energyhan
thetruncation of the harmonic extensipn
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To recapitulate:

The operatoAY/2 is interesting because:
a) It can be understood as a “surface diffusion” process.
b) Itis the “Euler Lagrange equation” of th¢'/2 energy.
c) Being of “order one”, diffusion competes with transport.
In fact, the derivatives of:

Dx0 = R(AY20) and AY2(6) = Ri(Dx0)

whereR;, the Riez transform, is the singular integral operator with
symbol¢&;/|€|.
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Quasi-Geostrophic flow equation

The Q-G equation is a 2-D “Navier Stokes” type equation. ID,2-
Navier Stokes simplifies considerably since

a) Incompressibility, diw = 0, implies that(—v», v1) is a gradient:
(—v2,v1) = V.
b) curlVis a scalarf = curlvV = Ap.
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Navier Stokes equation thus becomes a system:
) 6+ VVO = A0
i) curlv=20

For the Q-G equation, we still have that

(—VQ,Vl) = VQO .

But the potentialy is related to vorticity by) = —AY/2¢. That is, the
final system becomes

O + VV0 = (AY?)0

(—Vv2,v1) = R16, R0 whereR; are the Riesz transforms 6f
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Riesz transforms and the dependence o 6

More precisely, we can deduce this relation through Fourier
transform:

f=1Clp and V= (-Cp,GP) -

. G2, Q154
= (—224,>L4
Y <|<|’|<|>

In particular

The muItipIiersé—i| are classical operators, called Riesz transforms
that correspond in physical spaceo convolution with kernels

Xi
R(X)ZW
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V(%) Z/R(x—y)ﬁ(y) dy

Note that on one hand

IVlIzrey = [Vllz@ey < ”é”LZ(Rn)

that is, the Riesz transforms are bounded operators ffrotn L. On
the other handRis not integrable neither at zero nor at infinity. It is a
remarkable theorem that because of the spherical canoeliz R
(mean value zero and smoothness) we have:

The operatoR *x § = vis a bounded operator frolrf to LP for any

1 < p < oo (Calderon-Zygmund). Unfortunately, it is easy to show
thatsingular integral operatorsre not bounded frorh™ to L°°.

They are bounded, though, froBMO to BMO.
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BMO spaces

What is BMO? It is the space of functions with bounded mean
oscillation.

That is, in any cub® the “average ofi minus its average” is bounded
by a constanC

6 /Q ‘U(X) - % eu(y) dy‘dxg c

The smallesC good for all cubes defines a seminorm (it does not
distinguishes constant that we may factor out). The spatnctions
uin BMO is smaller than aniP (p < oo) but not included irn.>
((log|x|)~ is a typical example).

In fact functionsu in BMO have “exponential” integrability

/ Ul < oo
1
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Proof of regularity

The regularity theory for the Quasi Geostrophic Equatidoaised on
two linear transport regularity theorems:

Theorem 10

Letd be a (weak) solution of

0 +VvVo = AY20 in R x[0,00)

for some incompressible vector field v (with no apriori bosinand
initial data g in L2.
Then

16X, )| < Cl0(%, 0)|.2 -



51

Remarks

i) All we ask fromv is that the energy inequality makes sense for any
functionh(#) with linear growth:
Formally, if we multiply and integrate, we may write

/T Rnh VVH_//VVH ://diva(Q):
(H'(8) = h(6)

Therefore the contribution of the transport term in the gner
inequality vanishes.
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In the case of the Q-G equation this can be attained by rigbyou
constructingd in a particular way, for instance as a limit of solutions
in increasing ballsBk.

if) From the scaling of the equation: For any
1
0, = —9()\X, )\t)
A
is again a solution (with a differem), we obtain
—n/2
160x,to) Lz = tolley (%, )| = toll Bty (X, 0)1| = t5 "o,z

That is uniform decay for large times.
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The proof of Theorem 1 is a baby version of the DeGiorgi theore
based in the interplay between the

e Energy Inequality (that controls the derivativesddsy 0 itself).
and the

e Sobolev Inequality (that controlsby its derivatives)

Baby version because, as in the minimal surface example,tnaffc
in space is necessary.
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The Energy Inequality is attained, as usual, by multiplytimg
equation with a truncation df,

(Ox) = (0 =N
and integrating irR" x [Ty, To].

As we pointed out before, the term corresponding to tramspor
vanishes, and we get:

J 620,72~ @2 Tody o= [ sty
nX[T]_,Tz]
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The last term corresponds, for the harmonic extengigr, z) to

/T b dt ( / (0)A (Y, 0,t)D(6*)(y, O, t) dy>

1

T
_ / / V(%) (.2, V6" (y, 2.t) dy dz
T Ry

T2
_ —/ dt// (V6512 dydz
T Ry

Note that(6*), is notthe harmonic extension @f,, but the truncation
of the extension of, i.e., (0* — \)T
Nevertheless, it is an extension@f and as such,

||9§HH1(R”++1) > ||9)\HH1/2(RH)
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Therefore we end up with the following energy inequality

T2
167 (-, T2)[IF2 +/T 10 [172/2 At < [16x(T1)IE2

1

We will denote byA the term on the leftAr, 1,) andB (Br,) the one
on the right.
ThereforeBr, controls in particular (from Sobolev inequality) all of
the future: -

suplo(O)Z + [~ 1601 < B,

t>T T

This combination, in turn, actually controls

1611Ee o (7y.00)

for someq, with 2 < g < p the following way:
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Every suchg is a convex combination
1 1
g=a2+(1—-a)p= F2+ gp

for r, sappropriate conjugate exponents.

Therefore, fixing such g, we have for each time;

Jos (1) ()"

We chooses = p/2 (> 1) and integrate it: For the corresponding,
we get

2 o 1
101y < SUPION ey - [ 101 < (B = (B2
1

2
We callCy, = |’9H|_é?Rn><[t,oo]
i.e- CTl S BTl
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We are ready to prove tHe* bound. For that purpose, we will find a
recurrence relation for the constants

Cr, (6k)

of a sequence of increasing cut-offg= 1 — 2K of 6 (i.e., 0 = 0x)
and cut-offs in time, = 1 — 2, that will imply that
O = (6 — 1)t =0fort > 1.
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Indeed, on one hand, from Sobolev:
Cric(0k) < Bry (6k) -

We now invert the relation. Fdr= [Ty_1, Tx] X R" we have

//Im < U/mr/q|{9k>o}m|l/q_a ;

(by Holder with#? andyg,>o) With g the conjugate exponent tp'2).
Inturna < Cy,_,(6k—1) and by going fronk tok — 1, we can
estimate: (should sound familiar by now)

1/
= {1 > 275} N1 \1/ 1< [zqk / / (ek_l)ﬂ (by Chebichef)
|

(sinceby < H_1 and furthey > 0 impliesf_1 > 27%).
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Thatisg < 2°[Cr, ,(fk—1)]" and putting together the estimates for

o andg:
[[007 <2 [en oa)

[
But then,

inf  By(6) < 2K2%k. [C PR
[Tke1<t<Ty] (B < [ T (Ok 1)]

We obtain the recurrence relation
Cr, (6) < 2% [Cr, (0-1)]

Due to the 14 ¢ nonlinearity,Cr, (6k) — 0 if Co(61) was small
enough, i.e., if|6o|| 2 < do then||f(x, 1)L~ < 1, fort > 1.
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Having shown boundness, for the QG equation, our stitugasiow
the following: We have a solutiof that satisfies the energy bound:

SUP|(1) IE2(n) + 1Dy 20I5rss < C
and also ||| = (xy < 1 (#)
We want to prove that is Holder continuous.

To do that we need to reproduce the local in space De Giordiadet
Of the velocity field, we may assume now (being the Riesz toanms
of 4, that

Slth(HVHEZ(Rn) + |V|BMO(R")) <C. (*)

We decouples from 0, and will prove a linear theorem, where for
satisfying(x) andé satisfying(#) and the equation

0 +vWo = AY?p

Theorem: 6 is locally C.
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To simplify the notation we will assume thétexists fort > —4 and
will focus on the point(X,t) = (0,0). The Holder continuity will be
proven through an oscillation Lemma, i.e., we will provettba a
geometric sequence of cylinders

T'x =By« X [4_k, 0]

the oscillation oy

wk = [supfd — inf 6]
Tk Tk

decreases geometrically, i.e.,
w1 < pwg for p <1

This is proved in several steps, following théto L> and the
oscillation Lemmas, discussed before.
The underlying idea is the following:
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Suppose that on the cylindEp = By x [—1, 0], 6 lies between-1
and 1.

Then at least half of the time it will be below or above zero.

Let us say that it is below zero. Then, because of the diffusio
process, by the time we are at the top of the cylinder, andtoezaro,
0 should have gone uniformly, strictly below one, so now

—1< 6 <1- ¢ andthe oscillatiomw has been reduced.

If we achieve this result, we renormalize and repeat. How do w
achive this oscillation reduction? For the heat equatiois, will just
follow from simple properties of the fundamental solution.
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Here, following DeGiorgi, we proceed in two steps. First, shew
that if 6 is “most of the time negative” or very tiny iB; x [—1, 0],
then indeed it cannot stick to one close to the top of the dglirand it
goes strictly below one in s& /4 x [~1/4,0].

Next we have to close the gap between “being negative mokeof t
time” and “being negative half of the time”, since this lasitement is
what we can verify at each step

This takes a finite sequence of cut-offs and renormalization
exploiting the fact that foé to go from a level (say zero), to another
(say one), some minimal amount of energy is necessary (the

De Giorgi isoperimetric inequality). Finally, once thisshaeen
reached, we can iterate.
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In our case, the arguments are complicated by the globahctearof
the diffusion that may cancel the local effect we descrillsalva.
Luckily we may encode the global effect locally into the hanic
extension, but this requires some careful treatment.

The first technical complication is that we must now trunceieonly
in 8 andt but also inX, but this does not have the effect of fully
localizing the energy inequality.
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In the light of the iterative interaction between Soboled anergy
inequality, let’'s explore a little bit what kind of energyrfoulas we
may expect after a cut-off in space.

Let us start with a cut-off ix andz, for 6(x, t) and its harmonic
extensiond*(x, z, t).

That is,n is a smooth nonnegative functionxfz, with support inB},
and as usual we multiply the equation4?p; (that coincides witt),
for z= 0) and integrate.

We get the following terms:

T
/T 1 / 12650, dx dt = / n2(0,)2(T2) dx - / 200X T)dx ()
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Next we have the transport term, an extra term not usuallgyepitein
the energy inequality.

n?0\wWodxdt= [ [ n?div[v(6y)?] dxdt
/! /!

_ / / 27V [V(62)7] dx dt

We split the term in the two factor&/»n)vé, andnf,, the logic being
thatv is almost bounded and thus the first term is almost like the
standard right hand side in the energy inequality while dwwed
would be absorbed by the energy.

(In

For each fixed, we get

T
I < /T 10l <[V 7O e
1

T, 5 1
< [ ellntalanes + ZIV O s

1
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But nﬁfl < 2, so we can split by HoldgR77]0 in L2 andv in a (large)
LP, more precisely.?" since we that that is in everyLP.

That is

T2 2 1 (" 2 2
h<e / 70 [Z2njns + = / VSN
T eJn

(Remember that by hypothesﬂsHLm(Bz) < Cfor everyt.)
l.e.

Il < eC ||nex||L2n/n1+ 1c / NN
Ty
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Finally, Ill is our energy term, i.e.,

1l ://nzexAl/ze.

Using the harmonic extensidlf we get that

= — / / 20,07 dx dt = — / / Vo 2(11265) V" dx dz it

By the standard energy inequality computation, we get that

< —///[vx,znei]zdxdzdw ///(vn)z(ei)z.

We may choose to be a cut-off inx andz or to integrate to infinity in
z, if we have control of) in z
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(Note: If for some reason we know thédy) = 0in By x {2} for
somezy, we may cut-off only inx and still stop the integration aj.)

Putting together I, Il and 11l we get

T
sup nneanz-+./ﬁ IV (o)1
1

Ti<t<T

T
guwxnmé+sﬁ 1765 | Zaos

1

1 T 2 kK * (12
+2¢ [ IomalR+ [ Ivmel, d
g T T 8

1
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Notice thatp03 is one extension aff, and therefore the term in the
left

To ) To 5
IV controls [ b
T1 T1

so the left hand side controls, by Sobolev inequality, theate

To 5
/ 1765yl
Ty

and absorbs theterm on the right.
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In fact, if it weren't because of the term on the right

T2
ez,
T :
involving the extra variable, everything would reduce @&", and we
have the usual interplay between the Sobolev and energyaiigg
as in the global case, and a straightforward adaptationecfeicond
order case would work.

In light of this obstruction let’s reassess the situatios.we
mentioned before our first lemma would be (following thedtae
scheme) to show that if, say thé norm of6+ is very small (and
6% < 2),inBy x [—4,0], thendT is strictly less than two in

B1 x [—1,0]; (T < 70 < 2 for someyo).

Let us see how that can work:
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A geometric description of the argument

Starting up: We decomposé in two parts
67 goes to zero linearly as— 0 for|x| < 1/2

5 has a very small trace
in L2, so it becomes very
small inL* asz grows.
Givend, we may assume
thatd* (X, 0) < CJ since
we can chooséd|| - as
small as we please
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Therefore, the first truncatio@i/{(J is controlled by its trace, with very

smallL? norm, and the very narrow sides (si?e whose influence
decays exponentially moving inwardsXn

We will try now to perpetuate, in our inductive scheme, this
configuration.
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The idea of the inductive scheme is then as follows:

1) In X, we will cut diadically (as in De Giorgi) converging g, ,
2) In 6, also diadically converging ta, (1 < A < 2)

3) In Z, though, we will cut at a very fast geometric rate, going to
zero(6).
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The reason we may hope to maintain this configuration, isuseca
inherent to the De Giorgi argument is the very fast, (fagtant
geometric decay) of the? norm of the truncatior.

The idea is that, on one hand the fast cut ofZj¥ will make the
influence of the tiny sides decay so muchXithat at the level of the
next cut off (inX) it will be wiped out by the diadic cut off i.
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While the contribution of the tracg will decay so fast (faster than
M~ if we choosecy very small) that

O (X, ) < O Pye < [|6lli2/IPsxl 2
will also be wiped out by the consecutive truncation.

At the end of the process at tinigwe have only information on the
traced, but we can go inwards by harmonicity.
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S s

£nd e ration:
of termtdon: final fime “&2-1
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Proof of the first step: In this first step, we prove that a solutidh,
between zero and two, with very smbf norm, separates frogh= 2
in a smaller cylinder.

Lemma 11

We assume that [|V[| o _408momy)) + SUP < Co.

—4<t<0

/B v(t, x) dx

Then, there existsy > 0, and A > 0 such that for every solution to
(1) the following property holds true.
If we have:

L.

9* <2  in [-4,0] x B,
and 0
(6")2 dxdz dst / / (6)% dxds< <o,
x —4.JB,
then:
(). <2-X on[-10] x By.
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Proof
The proof follows the strategy discussed above.
First, some previous tools.

Since the method was based on the contrd@l*dby two harmonic
functions, before starting the proof we build two usefulrieas:
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by (X, z
l( ) b1:2inz:1

z=1/2

by=2in|x=1| [p1<2-4A<Pp b1 =2in|x =1

bi=0inz=0

If e by is harmonic inBj
e by =2in0Bj exceptz=0
e by =0inoB; N {z= 0}
Then for some G< A

by <2-4X<2in By,



82

el has linear dcco~1 as \|- O.
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o x=-1 A | x=1
z=+5)/
If e by is harmonic inD |
b, =0forz+ 6
b, = 1forx; =1, sz =0forx; = -1
Then b, < Ccos=e (1-x)/6

in particular, if 1—x; =h>§

b, < Cce? C=(cos)?
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Remark

Exponential decay also holds fBxa; D; by applying Harnack
inequality to the intervalt, = {k < x3 < k+ 1}.

Now we are ready to set the main inductive steps as discusese .a

When we do so, we will realize that we have to start the profagss
some advanced valueof the step.

So we will go back and do a first large step to cover the stadfrtbe
process.
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Setting of the constants

We recall that\ > 0 is defined by the fact that the barrier function
e by <2-4XinBj,
e C = (cos )~!is the constant in the bound for the barrier
function b,
e Cp the smallness constant in the hypothesis of Lemma 10 will
be chosen later ag(A, M).
We need to fix constantd for the rate of decay of the? norm of the
truncationdy ando for the rate of decay of the support, anof ;.
We require:
) nCe= @)™ < \2-k=2 (5 small so the side contribution is
absorbed by the cut off)
i) O"(M&MKIP(1)[| 2 < A27%2  (M(0) large to keep the
support of the trunction in thé strip)
iy M~k > c§M~(k=3(+1/M) for k > 12n (so that the inductive
decay gives us the fast geometric decay)
P(1) denotes the restriction of the Poisson kerRék, z) toz= 1.
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The proof is easy. We construct figsto verify the first inequality in

the following way. Ifé < 1/4, the inequality is true fok > ko due to

the exponential decay. If necessary, we then chéasealler to make
the inequality also valid fok < ky. Now thatd has been fixed, we

have to choos# large to satisfy the remaining inequalities. Note that
the second inequality is equivalent to:

2 < A"
"M ) APz

It is so sufficient to take:

Mzsup<2 M) .

FIADY T
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The third inequality is equivalent to:

M\ KN

M > M3AFI/N)
(o -

For this case it is sufficient to takd > sup(1, C3V). Indeed, this

ensuresvi2/C3N > M and so:

M\ KN
<_> > MW@ > 8
) z
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The main inductive step will be the following:
Step 3. Induction: We set

Ok = (0 — Ci)+ ,

with Cx = 2 — A\(1 + 27). We consider a cut-off function ixonly
such that:

k
B, w1} SkS e, 00 V| < C2%,

and we denote:

0 5
Ac=2 / / V()2 dxdzdt-  sup [ (mkfk)? dx dt.
—1-2-k JOoJRN [_1_2—k71} RN

We want to prove that for evety> 0:

A<M @)
nk0; is supported in 6< z < 6. (2)
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We first prove inductively (2). Suppose it is true fqiwe want to
prove it fork + 1.

Sincef;, | < 05 — A2+, we do it by estimating;; in the “flat
rectangle’B,  ,-« x [0, 5] wheren is supported.

On the topz = 6K, 6 = 0 by induction.

On the bottom¢y ; < nkfg and hence the contribution froéj, , is
smaller than its harmonic extension

Ok * P(2) (the Poisson kernel)
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The influence from each of the narrow lateral sides is boulyetie
rescaling ofo, that shrinks the intervdD, 1] in zinto [0, §X].

Therefore, from the edge = 1+ 27X tox = 1 + 2~ (1 b, decays

_ 1z
bye 2 5.

Overall onBy ,-«+1, the support ofj 16k, 1, we obtain forgy the

estimate
sz

— 1
Of < b+ P+ Ce 2o
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The term
b * P(k+1)

we bound by
bkl L2 [P(Bksa) e < M™9257 "D P(0) | 2

To forcedj, ; = 0 forz= &%, we then need

K
M /25~ (4D p(1)]| 2 + NC & 4 ok < A2~ (k+D)

For this to happen, we need, for instank®, > 4, k large (say bigger
thanko) and (for instance) 2< 1/2.
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Second technical lemma

In the first technical lemma, we have established thatdf @, < 2
and its energy or norm is very small, B}, then,0, <2 — \in Bj,
i.e., the oscillation of actually decays.

We want now to get rid of the “very small” hypothesis.

This second lemma proves thavif < 0 “half of the time and it
needs very little roomy, to go from{6, < 0} to {6 > 1}, itis
becausdd — 1)™ has very small norm to start with. This produces a
dichotomy: or the support @f decreases substantially, bbecomes
small anyway.
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Lemma 12

For everye; > 0, there exists a constant > 0 with the following

property:
For every solutiord to (1) with v verifying(2) and:

6* <2 in Qj,
1Q;l
2 M

{(x,zt) € Q; 0*(x,2t) <O} >

we have the following implication:
If
[(x,21) € Qf; 0< {0*(x,z,t) < 1} < &

then:

/ (0 — 12 dxdt+ /Q (6" — 1)2 dxdzdt< C\/zL
1

*
1
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This lemma is, of course, the adapted version of the De Ggorgi
isoperimetric inequality.

The idea of the proof is the following:

We first throw away a small set of times, for which

Iy = fB; (Vu*)? dx dzis very large:

KZ
lt > —=
e
This is a tiny set of times
S < Ce?/K?
since
//(Vu*)zdx dzdt< C

Outside ofS, for each timd, the isoperimetric inequality is valid

|Al[B] < D[ K/e1
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But for somet, sayt < =7, we may choose a slice whellg > &
and|D| < 6.

Then|B| < (64)25 K /g1 < Kep if 6 ~ €2
In particular(¢ — 1)* has very smalL? norm for thatt: || | < kex

But the energy inequality then controls th&norm of (§ — 1) into
the future

The same iteration as De Giorgi’'s completes the proof.
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Proposition 13
There exists\* > 0 such that for every solutiof of (1) with v
verifying (2), if:
0* <2 in Q1
1
{(tx2) € Qi 6" <0} > 5,

then:
0 <2-—)\* in Qi/ls.
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Up to here, the proof did not distinguish thé2tpower of the
Laplacian from any other power. We could have replaced i\Byfor
o > 0, and used the extension in Caffarelli-Silvestre (Arnag)o
Itis in the iteration process thatbecomes critical:

Indeed, to iterate, we rescale

Ok = %Hk—l <%X, %t)
that satisfies the same (linear) equation with a rescalevield v.
(Here we use thaVd and A/29 have the same homogeneity.)
The only detail is that, to keejpv|| 2m bounded by théjv||smo, we
have to make sure thgtv = 0.
For that we make the change of variabkes x — J(t), where
(@) =/v
This produces finite distortion (in fact vanishing distorij since
er v grows very slowly due to its exponential integrability.



