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Quasi-Geostrophic flow equation

The Q-G equation is a 2-D “Navier Stokes” type equation. In 2-D,
Navier Stokes simplifies considerably since

a) Incompressibility, div~v = 0, implies that(−v2, v1) is a gradient:
(−v2, v1) = ∇ϕ.

b) curl~v is a scalar,θ = curl~v = ∆ϕ.
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Navier Stokes equation thus becomes a system:

i) θt +~v∇θ = ∆θ

ii) curl~v = θ

For the Q-G equation, we still have that

(−v2, v1) = ∇ϕ .

But the potentialϕ is related to vorticity byθ = −∆1/2ϕ. That is, the
final system becomes

θt +~v∇θ = (∆1/2)θ

(−v2, v1) = R1θ, R2θ whereRi are the Riesz transforms ofθ.
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Riesz transforms and the dependence ofv on θ

More precisely, we can deduce this relation through Fourier
transform:

θ̂ = |ζ|ϕ̂ and v̂ = (−ζ2ϕ̂, ζ1ϕ̂) .

In particular

v̂ =

(
− ζ2

|ζ| θ̂,
ζ1

|ζ| θ̂
)

The multipliers
ξi

|ξ| are classical operators, called Riesz transforms

that correspond in physical spacex, to convolution with kernels

Ri(x) =
xi

|x|n+1
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i.e.

v1
i (x) =

∫
Ri(x− y)θ(y) dy

Note that on one hand

‖v‖L2(Rn) = ‖v̂‖L2(Rn) ≤ ‖θ̂‖L2(Rn)

that is, the Riesz transforms are bounded operators fromL2 to L2. On
the other hand,R is not integrable neither at zero nor at infinity. It is a
remarkable theorem that because of the spherical cancellation onR
(mean value zero and smoothness) we have:
The operatorR∗ θ = v is a bounded operator fromLp to Lp for any
1 < p < ∞ (Calderon-Zygmund). Unfortunately, it is easy to show
thatsingular integral operatorsare not bounded fromL∞ to L∞.
They are bounded, though, fromBMO to BMO.
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BMO spaces

What is BMO? It is the space of functions with bounded mean
oscillation.
That is, in any cubeQ the “average ofu minus its average” is bounded
by a constantC

1
|Q|

∫

Q

∣∣∣u(x) − 1
Q

∫

θ
u(y) dy

∣∣∣dx≤ C

The smallestC good for all cubes defines a seminorm (it does not
distinguishes constant that we may factor out). The space offunctions
u in BMO is smaller than anyLp (p < ∞) but not included inL∞

((log |x|)− is a typical example).
In fact functionsu in BMO have “exponential” integrability

∫

Q1

eC|u| ≤ ∞
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Proof of regularity

The regularity theory for the Quasi Geostrophic Equation isbased on
two linear transport regularity theorems:

Theorem 1

Letθ be a (weak) solution of

θt + v∇θ = Λ1/2θ in Rn × [0,∞)

for some incompressible vector field v (with no apriori bounds) and
initial data θ0 in L2.
Then

‖θ(X, 1)‖L∞ ≤ C‖θ(x, 0)‖L2 .
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Having shown boundness, for the QG equation, our stituationis now
the following: We have a solutionθ that satisfies the energy bound:






sup
t
‖θ(t)‖2

L2(Rn) + ‖D1/2θ‖2
R

n+1
+

≤ C

and also‖θ‖L∞(X,t) ≤ 1
We want to prove thatθ is Hölder continuous.

(#)

To do that we need to reproduce the local in space De Giorgi method.
Of the velocity field, we may assume now (being the Riesz transform
of θ, that

sup
t

(
‖v‖2

L2(Rn) + |v|BMO(Rn)

)
≤ C . (∗)

We decouplev from θ, and will prove a linear theorem, where forv
satisfying(∗) andθ satisfying(#) and the equation

θt + v∇θ = ∆1/2θ ,

we have thatθ is locally Cα.
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A review of De Giorgi’s Theorem

The proof we will present is strongly based in the ideas that De Giorgi
developed to solve the 19th Hilbert problem.
The problem consisted in showing the regularity of minimizers w0 to
Lagrangians ∫

Ω
F(∇w) dx

Such a minimizer satisfies

div Fj(∇w) = 0

but, when solving the minimization problem we only know that
∇w ∈ L2 (if F is strictly convex).
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If we knew that∇w was continuous, Shauder theory will apply and
solve the problem. First derivatives,ue = Deu0, satisfy the equation

DiFij (∇w0)Dj(w0)e = 0 .

De Giorgi studied then solutionsu of

Diaij (x)Dju = 0

with no assumption onaij , except uniform ellipticity:

I ≤ aij ≤ ΛI

and showed thatu is Cα.
Applying this theorem to(w0)e, he solved the Hilbert problem.
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Theorem 2

Let u be a solution of Diaij Dju = 0 in B1 of RN with
0 < λI ≤ aij (x) ≤ ΛI (i.e., aij is uniformly elliptic). Then
u ∈ Cα(B1/2) with

‖u‖Cα(B1/2) ≤ C‖u‖L2(B1)

(α = α(λ,Λ, n)).

Proof.

The proof is based on the interplay between Sobolev inequality, that
says that‖u‖L2+ε is controlled by‖∇u‖L2 and the energy inequality,
that says that in turn,u being a solution of the equation

‖∇uθ‖L2 is controlled by‖uθ‖L2 for every truncationθ : uθ = (u−θ)+ .
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We recall Sobolev and energy inequalities:

Sobolev:

If v is supported inB1, then

‖v‖Lp(B1) ≤ C‖∇v‖L2(B1)

for somep(n) > 2.
If we are not too picky we can prove it by representing

v(x0) =

∫

B1

∇v(x) · x0 − x
|x− x0|n

dx = ∇v ∗ G .

SinceG belongs “almost” toL
n

n−1 , anyp < 2n
n−2 would do.

p = 2n
n−2 requires another proof.
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Energy inequality:

If u ≥ 0, Diaij Dju ≥ 0 andϕ ∈ C∞
0 (B1) then

∫

B1

(∇ϕu)2 dx≤ Csup|∇ϕ|2
∫

B1∩suppϕ
u2 .

(Note that there is a loss going from one term to the other:∇ϕu
versusu.)

Proof.

We multiply Lu by ϕ2u. Since everything is positive we get

−
∫

∇T(ϕ2u)A∇u ≥ 0 .

We have to transfer aϕ from the left∇ to the right∇.
We use that whenever we have a term of the form

∫
∇TϕuAu(∇ϕ) ≤ ε

∫
∇T(ϕu)A∇(ϕu) +

1
ε

∫
|∇ϕ|2u2‖A‖ .

(Try it!!)
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The proof of the theorem is split in two parts:

Lemma 3

(From anL2 to anL∞ bound)If ‖u+‖L2(B1) is small enough
(< δ0(n, λ,Λ), then

sup
B1/2

u+ ≤ 1 .

Before going into the proof, let me give a simple, geometric analogy
to Lemma 1 with a simple proof.
Suppose thatΩ is a domain inRn and∂Ω is a minimal surface when
restricted toB1, in the sense that the boundary of any perturbation
insideB1 will have larger area.
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We want to prove that

Lemma

If volume(Ω ∩ B1) ≤ ε0, a small enough constant, then
Vol(Ω ∩ B1/2) = 0.
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For that purpose we will take diadic balls,Brk = B1
2+2−k, converging

to B1/2 and ringsRrk = Br(k−1)
− Brk; and we will find anon linear

recurrence relation forVk = Vol(Ω ∩ Brk) for k even, that will imply
thatVk goes to zero, in particular,Ω never reachesB1/2.

In this analogy Volume replaces the square of theL2 norm ofu and
Area the energy

∫
(∇u)2.

The argument is based on the interplay of area and volume.
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Ar controlsVk for r ≥ rk:

Vk ≤ Vr ≤ [Area(∂“Vr ” )]
n/n−1 =

(two parts)= [Ar + Area∂Ω ∩ Br ]
n/n−1

By minimality ≤ [2Ar ]
n/n−2

(this is the “energy inequality”)

Vk controlsAr for somer in Rk+1:

Vol(“Vk” \ “Vk+1”) ∼
∫ rk

rk+1

Ar ≥ 2−k inf Ar
rk+1≤r≤rk

If we combine both estimates we get (notice the different exponents)

Vk+1 ≤ (2Ar)
n/n−1

rk+1≤r≤rk

≤ 2( n
n−1)kV

n/(n− 1) !!

k

If V0 < ε0, the build up in the exponent as we iterate, beats the large
geometric coefficient, andVk goes to zero.
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We now pass to the proof of the lemma. The origin becomes now plus
infinity, ‖u‖L2 plays the role of volume, and‖∇u‖L2, that of area. We
have the added complication of having to truncate in space.

Proof.

We will consider a sequence of truncations

ϕkuk

whereϕk is a sequence of shrinking cut off functions converging to
χB1/2

.
More precisely:

ϕk =





≡ 1 for x ≤ 1 + 2−(k+1)

≡ 0 for x ≥ 1 + 2−k

|∇ϕk| ≤ C 2k .
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Note thatϕk ≡ 1 on suppϕk+1

B1/2

While uk is a sequence of monotone truncations converging to
(u− 1)+:

uk = [u(1− 2−k)]+ .
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Note that whereuk+1 > 0, uk > 2−(k+1). Thereforeif
(ϕk+1uk+1) > 0, then,(ϕkuk) > 2−(k+1).

We will now show that, if‖u‖L2(B1) = A0 is small enough then

Ak =

∫
(ϕkuk)

2 → 0 .

In particular(u− 1)+
∣∣
B1/2

= 0 a.e., that is, inB1/2 u never goes

above 1.

This is done through a (non linear!!) recurrence relation forAk.



22

We have

Sobolev inequality:

[ ∫
(ϕk+1uk+1)

p
]2/p

≤ C
∫

(∇ϕk+1uk+1)
2 .

But, from Hölder

∫
(ϕk+1uk+1)

2 ≤
[ ∫

(ϕk+1uk+1)
p
]2/p

· |{ϕk+1uk+1 > 0}|ε

so we get

Ak+1 ≤ C
∫

[∇(ϕk+1uk+1)]
2 · |{ϕk+1uk+1 > 0}|ε .
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We now control the RHS byAk through the energy inequality:
From energy we get

∫
∇(ϕk+1uk+1)

2 ≤ C 22k
∫

suppϕk+1

u2
k+1 .

(But ϕk ≡ 1 on suppϕk+1)

≤ C 22k
∫

(ϕkuk)
2 = C 22kAk .

To control the last term, we observe that

|{ϕk+1uk+1 > 0}|ε ≤ |{ϕkuk > 2−k}|ε .
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And by Chebyshev:

≤ 22kε
(∫

(ϕkuk)

)ε

.

So we get
Ak+1 ≤ C 24k(Ak)

1+ε .

Then, forA0 = δ small enoughAk → 0 (prove it). The buildup of the
exponent inAk, forcesAk to go to zero. In fact,Ak has faster than
geometric decay, i.e., for anyM > 0, Ak < M−k if A0(M) is small
enough.

Corollary 4

If u is a solution of Lu= 0 in B1, then

‖u‖L∞(B1/k) ≤ C‖u‖L2(B1) .
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Step 2.

Oscillation decay: Let oscD u = supD u− infD u.

Theorem 5

If u is a solution of Lu= 0 in B1 then there existsσ(λ,Λ, m) < 1 such
that

osc
B1/2

u ≤ σ osc
B1

u .



26

Lemma 6

Let0 ≤ v ≤ 1, Lv≥ 0 in B1. Assume that|B1/2 ∩ {v = 0}| = µ
(µ > 0). ThensupB1/4

v ≤ 1− σ(µ).

In other words, ifv+ is a subsolution ofLv, smaller than one inB1,
and is “far from 1” in a set of non trivial measure, it cannot get too
close to 1 inB1/2.
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The proof is based on the following idea: suppose that, inB1, |u| ≤ 1,
i.e., oscu ≤ 2. Thenu is positive or negative, at least half of the time.
Say it is negative, i.e.,

|{u+ = 0}| ≥ 1
2
|B1| .

Then, onB1/2, u should not be able to be too close to one.
For u harmonic, for instance, this just follows from the mean value
theorem. If we know that

|{u+ = 0}| ≥
(

1− δ

2

)
|B1| ,

then
‖u+‖2

L2(B1)
≤ δ/2

and the previous lemma would tell us thatu+|B1/2
≤ 1/2.

So we must bridge the gap between|{u+ = 0}| ≥ 1
2|B1| and

|{u+ = 0}| ≥ (1− δ
2)B1.
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A main tool is the De Giorgi isoperimetric inequality that establishes
that a function,u, with finite Dirichlet energy, needs “some room in
between” to go from a value (say zero) to another one (say one).
It may be considered a quantitative version of the fact that afunction
with a jump discontinuity cannot be inH1.
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Sublemma

Let0 ≤ w ≤ 1.

|A| = |{w = 0} ∩ B1/2|
|C| = |{w = 1} ∩ B1/2|
|D| = |{0 < w < 1} ∩ B1/2|

Then if
∫
|∇w|2 ≤ C2

0

C0|D| ≥ C1(|A| |C|)2 .
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Proof

For X0 in B we reconstructw by integrating along any of the rays that
go fromX0 to a point inA

1 = w(x0) =

∫
wr dr or

|A| ≤ areaS(A) <

∫

D

|∇w(y)|dy
|X0 − Y|n−1

(
wr dv dσ ≤ |∇w|rn−1dv dσ

rn−1

)
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IntegratingX0 on C

|A| |C| ≤
∫

D
|∇w(Y)|

(∫

C

dX0

|X0 − Y|n−1

)
dy

Among allC with the same measure|C| the integral inX0 is
maximized by the ball of radius|C|1/n, centered atX0

∫

C
· · · ≤ |C|1/n .

So

|A| |C| ≤ |C|1/n
( ∫

D
|∇w|2

)1/2

|D|1/2 .

Since
∫
|∇w|2 ≤ C2

0 the proof is complete.
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With this sublemma, we go to the proof:

Idea of the proof

We will consider a diadic sequence of truncations approaching one

vk = [v− (1− 2−k)]+

and their renormalizations

wk = 2kvk

B1/2

v

v

v

v

|{v = 0}| ≥ µ > 0

v3

v2

v1

From the isoperimetric inequality, each time we truncate weexpect
the measure of the support to decay.
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After a finite number of steps, the measure of the support ofwk0 will
fall below the critical valueδ/2, andwk will only be able to reach
halfway towards one, i.e.,

v|B1/2
≤ 1− 2−k0
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We will be interested in the setCk = {vk > 2−(k+1)} = {wk > 1/2}.
Its complementAk = {vk = 0} and the transition:Dk = [Ck − Ck−1]

Ck

Dk

Ck-1

We will show that by applying the isoperimetric inequality and the
previous lemma in a finite number of steps,k0, k0(λ,Λ, µ),

|Ck0| = 0 .

Thenσ(µ) = 2−k0.
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Note that

a) A0 = µ , (µ = 1/2 will do for our case)

b) By the energy inequality, since|wk|B1 ≤ 1,
∫

B1/2

|∇wk|2 ≤ C

c) If Ck gets small enough

4
∫

(wk)
2 ≤ |Ck| < δ ,

we apply the first lemma to 2wk and 2wk|B1/4
≤ 1, done.
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Proof of the theorem

We interate this argument with 2 min(wk,
1
2) = w. If Ck stays bigger

thanδ after a finite number of stepsk0 = k(δ, µ), we get∑ |Dk| ≥ |B1/2| impossibleso for somek < k0, |Ck| ≤ δ that makes
|Ck+1| = 0 from the first part of the proof.

Corollary 7

oscB2−k u ≤ λk oscB1 u

Corollary 8

u ∈ Cα(B1/2) with λ = 2−α (definesα).

Corollary 9

If ‖u‖L∞(Rn) ≤ C ⇒ u is constant.
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Note.

The argument in Lemma 1 is very useful (and powerful) when two
quantities of different homogeneity compete with each other: area and
volume (in a minimal surface) or area and harmonic measure, or
harmonic measure and volume as in free boundary problems.
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0.1. The fractional Laplacian and harmonic extensions

The fractional Laplacian,∆αθ, can be defined as convolution with a
singular kernel(0 < α < 1)

∆αθ(X0) = C(α)

∫
[θ(X) − θ(X0)]

|X − X0|n+2α
dx

or through Fourier transform

−̂∆αθ(ξ) = |ξ|2αθ̂(ξ)
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0.2.

Note that the kernel

K = C(α)|X|−(n+2α)

is singular near zero, so, in principle, some cancellation in u is
expected for the integral to converge. For instanceθ bounded and in
C2 nearX0 suffices. Also,C(α) ∼ (1− α) guarantees that asα → 1,
∆αθ converges to∆θ.
A particularly interesting case is the caseα = 1/2, since in this case
−(∆1/2)u coincides with the Dirichlet to Neuman map. More
precisely, givenθ(X) in Rn, we extend it toθ∗(x, y) in (Rn+1)+ by
convolving with the Poisson kernel:

Py(X) =
C y

(y2 + |X|2) n+1
2

= y−nP1(X/y)
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Thenθ∗(x, y) satisfies
∆x,yθ

∗ = 0

and it can be checked that∆1/2θ(X0) = Dyθ
∗(X0, 0) in two ways:

a) Representθ∗(X0, h) as

θ∗(X0, h) = [Ph ∗ θ](X0)

and take limit on the increment quotient

Dyθ
∗(X0, 0) = lim

h→0

θ∗(X0, h) − θ∗(X0, 0)

h

or

b) Fourier-transform inX:

θ̂∗(ξ, y) satisfies|ξ|2θ̂∗ = Dyyθ̂∗
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Thus
θ̂∗(ξ, y) = θ̂(ξ)e−y|ξ|

In particular

Dyθ̂(ξ, 0) = −θ̂(ξ)|ξ| = ̂(∆1/2θ)(ξ)

In particular, we can make sense of the Green’s and “energy” formula
for the half Laplacian.
Let σ(x), θ(x) be two “nice, decaying” functions defined inRn, and
σ̄(x, y), θ̄(x, y) decaying extensions into(Rn+1)+.
Then, we have

∫

Rn
σ(θ̄)ν =

∫

(Rn+1)+
∇x,yσ̄∇(x,y)θ̄ +

∫

(Rn+1)+
σ̄∆x,yθ̄
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If we choosēθ(x, y), the harmonic extension,θ∗, the termθ̄ν(x, 0)
becomes−∆1/2θ, and∆θ∗ ≡ 0, giving us

∫

Rn
σ(−∆1/2)θ =

∫

(Rn+1)+
∇σ∇θ∗

Further, if we choose

σ = (θ − λ)+ and σ̄ = (θ∗ − λ)+

(i.e., thetruncationof theextensionof θ) we get
∫

Rn
(θ − λ)+(−∆1/2θ) =

∫

(Rn+1)+
[∇(θ∗ − λ)+]2 dx dy
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To complete our discussion, we point out that the harmonic extension
θ∗ of θ, is the one that minimizes Dirichlet energy

E(θ∗) =

∫
(∇θ∗)2

and that this minimum defines theH1/2 norm ofθ. In particular, we
obtain

∫

Rn
(θ − λ)+(−∆1/2)θ =

∫∫
[∇(θ∗ − λ)]2 dx dy

≥
∫∫

[∇(θ − λ)∗]2 dx dy= ‖(θ − λ)‖2
H1/2

(since theharmonic extension of the truncationhasless energythan
the truncation of the harmonic extension).
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To recapitulate:

The operator∆1/2 is interesting because:

a) It can be understood as a “surface diffusion” process.

b) It is the “Euler Lagrange equation” of theH1/2 energy.

c) Being of “order one”, diffusion competes with transport.

In fact, the derivatives ofθ:

DXiθ = Ri(∆
1/2θ) and ∆1/2(θ) =

∑
Ri(DXiθ)

whereRi, the Riez transform, is the singular integral operator with
symbolξi/|ξ|.
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Quasi-Geostrophic flow equation

The Q-G equation is a 2-D “Navier Stokes” type equation. In 2-D,
Navier Stokes simplifies considerably since

a) Incompressibility, div~v = 0, implies that(−v2, v1) is a gradient:
(−v2, v1) = ∇ϕ.

b) curl~v is a scalar,θ = curl~v = ∆ϕ.
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Navier Stokes equation thus becomes a system:

i) θt +~v∇θ = ∆θ

ii) curl~v = θ

For the Q-G equation, we still have that

(−v2, v1) = ∇ϕ .

But the potentialϕ is related to vorticity byθ = −∆1/2ϕ. That is, the
final system becomes

θt +~v∇θ = (∆1/2)θ

(−v2, v1) = R1θ, R2θ whereRi are the Riesz transforms ofθ.
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Riesz transforms and the dependence ofv on θ

More precisely, we can deduce this relation through Fourier
transform:

θ̂ = |ζ|ϕ̂ and v̂ = (−ζ2ϕ̂, ζ1ϕ̂) .

In particular

v̂ =

(
− ζ2

|ζ| θ̂,
ζ1

|ζ| θ̂
)

The multipliers
ξi

|ξ| are classical operators, called Riesz transforms

that correspond in physical spacex, to convolution with kernels

Ri(x) =
xi

|x|n+1
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i.e.

v1
i (x) =

∫
Ri(x− y)θ(y) dy

Note that on one hand

‖v‖L2(Rn) = ‖v̂‖L2(Rn) ≤ ‖θ̂‖L2(Rn)

that is, the Riesz transforms are bounded operators fromL2 to L2. On
the other hand,R is not integrable neither at zero nor at infinity. It is a
remarkable theorem that because of the spherical cancellation onR
(mean value zero and smoothness) we have:
The operatorR∗ θ = v is a bounded operator fromLp to Lp for any
1 < p < ∞ (Calderon-Zygmund). Unfortunately, it is easy to show
thatsingular integral operatorsare not bounded fromL∞ to L∞.
They are bounded, though, fromBMO to BMO.
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BMO spaces

What is BMO? It is the space of functions with bounded mean
oscillation.
That is, in any cubeQ the “average ofu minus its average” is bounded
by a constantC

1
|Q|

∫

Q

∣∣∣u(x) − 1
Q

∫

θ
u(y) dy

∣∣∣dx≤ C

The smallestC good for all cubes defines a seminorm (it does not
distinguishes constant that we may factor out). The space offunctions
u in BMO is smaller than anyLp (p < ∞) but not included inL∞

((log |x|)− is a typical example).
In fact functionsu in BMO have “exponential” integrability

∫

Q1

eC|u| ≤ ∞



50

Proof of regularity

The regularity theory for the Quasi Geostrophic Equation isbased on
two linear transport regularity theorems:

Theorem 10

Letθ be a (weak) solution of

θt + v∇θ = Λ1/2θ in Rn × [0,∞)

for some incompressible vector field v (with no apriori bounds) and
initial data θ0 in L2.
Then

‖θ(X, 1)‖L∞ ≤ C‖θ(x, 0)‖L2 .
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Remarks

i) All we ask fromv is that the energy inequality makes sense for any
functionh(θ) with linear growth:
Formally, if we multiply and integrate, we may write

∫ T2

T1

∫

Rn
h(θ)v∇θ =

∫ ∫
v∇H(θ) =

∫ ∫
div vH(θ) = 0

(H′(θ) = h(θ)

Therefore the contribution of the transport term in the energy
inequality vanishes.
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In the case of the Q-G equation this can be attained by rigorously
constructingθ in a particular way, for instance as a limit of solutions
in increasing balls,BK .

ii) From the scaling of the equation: For anyλ

θλ =
1
λ

θ(λx, λt)

is again a solution (with a differentv), we obtain

‖θ(x, t0)‖L∞

x
= t0‖θt0(x, 1)‖ = t0‖θt0(x, 0)‖ = t−n/2

0 ‖θ0‖L2

That is uniform decay for large times.
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The proof of Theorem 1 is a baby version of the DeGiorgi theorem
based in the interplay between the

• Energy Inequality (that controls the derivatives ofθ by θ itself).

and the

• Sobolev Inequality (that controlsθ by its derivatives)

Baby version because, as in the minimal surface example, no cut off
in space is necessary.
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The Energy Inequality is attained, as usual, by multiplyingthe
equation with a truncation ofθ,

(θλ) = (θ − λ)+

and integrating inRn × [T1, T2].

As we pointed out before, the term corresponding to transport
vanishes, and we get:

∫
(θλ)2(y, T2) − (θλ)2(y, T1) dy+ 0 =

∫∫

Rn×[T1,T2]
θλΛ1/2θ dy dt
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The last term corresponds, for the harmonic extensionθ∗(x, z) to

∫ T2

T1

dt

(∫
(θ∗)λ(y, 0, t)Dz(θ

∗)(y, 0, t) dy

)

= −
∫ T2

T1

∫∫

Rn+1
+

∇(θ∗)λ(y, z, t)∇θ∗(y, z, t) dy dz

= −
∫ T2

T1

dt
∫∫

Rn+1
+

[∇θ∗λ]2 dy dz

Note that(θ∗)λ is not the harmonic extension ofθλ, but the truncation
of the extension ofθ, i.e.,(θ∗ − λ)+

Nevertheless, it is an extension ofθλ and as such,

‖θ∗λ‖H1(Rn+1
+ ) ≥ ‖θλ‖H1/2(Rn)
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Therefore we end up with the following energy inequality

‖θλ(·, T2)‖2
L2 +

∫ T2

T1

‖θλ‖2
H1/2 dt ≤ ‖θλ(T1)‖2

L2

We will denote byA the term on the left(AT1,T2) andB (BT1) the one
on the right.
ThereforeBT1 controls in particular (from Sobolev inequality) all of
the future:

sup
t≥T1

‖θ(t)‖2
L2 +

∫ ∞

T1

‖θ(t)‖2
Lp ≤ BT1

This combination, in turn, actually controls

‖θ‖2
Lq(Rn×[T1,∞)

for someq, with 2 < q < p the following way:
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Every suchq is a convex combination

q = α2 + (1− α)p =
1
r

2 +
1
s

p

for r, s appropriate conjugate exponents.

Therefore, fixing such aq, we have for each time,t:

∫
θq ≤

(∫
θ2

)1/r

·
(∫

θp
)1/s

We chooses = p/2 (> 1) and integrate int: For the correspondingq,
we get

‖θ‖q
Lq(Rn×[t1,∞) ≤ sup

t
‖θ‖2/r

L2(Rn)
·
∫ ∞

T1

‖θ‖2
Lp ≤ (BT1)

1+ 1
r = (BT1)

q/2

We callCT1 = ‖θ‖2/q
Lq(Rn×[t,∞]

i.e. CT1 ≤ BT1
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We are ready to prove theL∞ bound. For that purpose, we will find a
recurrence relation for the constants

CTk(θk)

of a sequence of increasing cut-offsλk = 1− 2−k of θ (i.e.,θk = θλk)
and cut-offs in timetk = 1− 2−k, that will imply that
θ∞ = (θ − 1)+ ≡ 0 for t > 1.
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Indeed, on one hand, from Sobolev:

CTk(θk) ≤ BTk(θk) .

We now invert the relation. ForI = [Tk−1, Tk] × Rn we have

∫∫

I
(θk)

2 ≤
[∫∫

I
θq

k

]2/q

|{θk > 0} ∩ I |1/q̄ = α · β

(by Hölder withθ2 andχθk>0) with q̄ the conjugate exponent toq/2).
In turnα ≤ CTk−1(θk−1) and by going fromk to k− 1, we can
estimate: (should sound familiar by now)

β =
∣∣{θk−1 > 2−k} ∩ I

∣∣1/q̄ ≤
[
2qk

∫∫

I
(θk−1)

q
]1/q̄

(by Chebichef)

(sinceθk ≤ θk−1 and furtherθk > 0 impliesθk−1 > 2−k).
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That isβ ≤ 2Ck
[
CTk−1(θk−1)

]ε
and putting together the estimates for

α andβ: ∫∫

I
(θk)

2 ≤ 2Ck [
CTk−1(θk−1)

]1+ε

But then,

inf
[Tk−1<t<Tk]

Bt(θk) ≤ 2k2Ck ·
[
CTk−1(θk−1)

]1+ε

We obtain the recurrence relation

CTk(θk) ≤ 2C̄k [
CTk−1(θk−1)

]1+ε

Due to the 1+ ε nonlinearity,CTk(θk) → 0 if C0(θ
+) was small

enough, i.e., if‖θ0‖L2 ≤ δ0 then‖θ(x, t)‖L∞ ≤ 1, for t ≥ 1.
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Having shown boundness, for the QG equation, our stituationis now
the following: We have a solutionθ that satisfies the energy bound:






sup
t
‖θ(t)‖2

L2(Rn) + ‖D1/2θ‖2
R

n+1
+

≤ C

and also‖θ‖L∞(X,t) ≤ 1
We want to prove thatθ is Hölder continuous.

(#)

To do that we need to reproduce the local in space De Giorgi method.
Of the velocity field, we may assume now (being the Riesz transform
of θ, that

sup
t

(
‖v‖2

L2(Rn) + |v|BMO(Rn)

)
≤ C . (∗)

We decouplev from θ, and will prove a linear theorem, where forv
satisfying(∗) andθ satisfying(#) and the equation

θt + v∇θ = ∆1/2θ

Theorem: θ is locally Cα.
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To simplify the notation we will assume thatθ exists fort ≥ −4 and
will focus on the point(X, t) = (0, 0). The Hölder continuity will be
proven through an oscillation Lemma, i.e., we will prove that on a
geometric sequence of cylinders

Γk = B4−k × [4−k, 0]

the oscillation ofθ
ωk = [sup

Γk

θ − inf
Γk

θ]

decreases geometrically, i.e.,

ωk+1 ≤ µωk for µ < 1

This is proved in several steps, following theL2 to L∞ and the
oscillation Lemmas, discussed before.
The underlying idea is the following:
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Suppose that on the cylinderΓ0 = B1 × [−1, 0], θ lies between−1
and 1.

Then at least half of the time it will be below or above zero.

Let us say that it is below zero. Then, because of the diffusion
process, by the time we are at the top of the cylinder, and nearto zero,
θ should have gone uniformly, strictly below one, so now
−1 ≤ θ ≤ 1− δ and the oscillationω has been reduced.

If we achieve this result, we renormalize and repeat. How do we
achive this oscillation reduction? For the heat equation, this will just
follow from simple properties of the fundamental solution.
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Here, following DeGiorgi, we proceed in two steps. First, weshow
that if θ is “most of the time negative” or very tiny inB1 × [−1, 0],
then indeed it cannot stick to one close to the top of the cylinder and it
goes strictly below one in sayB1/4 × [−1/4, 0].

Next we have to close the gap between “being negative most of the
time” and “being negative half of the time”, since this last statement is
what we can verify at each step

This takes a finite sequence of cut-offs and renormalizations,
exploiting the fact that forθ to go from a level (say zero), to another
(say one), some minimal amount of energy is necessary (the
De Giorgi isoperimetric inequality). Finally, once this has been
reached, we can iterate.
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In our case, the arguments are complicated by the global character of
the diffusion that may cancel the local effect we described above.
Luckily we may encode the global effect locally into the harmonic
extension, but this requires some careful treatment.

The first technical complication is that we must now truncatenot only
in θ andt but also inX, but this does not have the effect of fully
localizing the energy inequality.
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In the light of the iterative interaction between Sobolev and energy
inequality, let’s explore a little bit what kind of energy formulas we
may expect after a cut-off in space.

Let us start with a cut-off inx andz, for θ(x, t) and its harmonic
extensionθ∗(x, z, t).

That is,η is a smooth nonnegative function ofx, z, with support inB∗
4,

and as usual we multiply the equation byη2θ∗λ (that coincides withθλ

for z = 0) and integrate.

We get the following terms:

∫ T2

T1

∫
η2θλθt dx dt≡

∫
η2(θλ)2(T2) dx−

∫
η2(θλ)2(T1) dx (I)
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Next we have the transport term, an extra term not usually present in
the energy inequality.

∫∫
η2θλv∇θ dx dt=

∫∫
η2 div[v(θλ)2] dx dt

=

∫∫
2η∇η [v(θλ)2] dx dt

(II)

We split the term in the two factors(∇η)vθλ andηθλ, the logic being
thatv is almost bounded and thus the first term is almost like the
standard right hand side in the energy inequality while the second
would be absorbed by the energy.

For each fixedt, we get

|II | ≤
∫ T2

T1

‖ηθλ‖L2n/n−1‖∇η[vθλ]‖L2n/n+1

≤
∫ T2

T1

ε‖ηθλ‖2
L2n/n−1 +

1
ε
‖∇η[vθλ]‖L2n/n+1
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But 2n
n+1 < 2, so we can split by Hölder[∇η]θ in L2 andv in a (large)

Lp, more preciselyL2m since we that thatv is in everyLp.
That is

II ≤ ε

∫ T2

T1

‖ηθλ‖2
L2n/n−1 +

1
ε

∫ T2

T1

‖v‖2
L2n(B2)

‖[∇η]θλ‖2
L2 .

(Remember that by hypothesis‖v‖L2n(B2) ≤ C for everyt.)
I.e.

II ≤ εC
∫ T2

T1

‖ηθλ‖2
L2n/n−1 +

1
ε

C
∫ T2

T1

‖[∇η]θλ‖2
L2
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Finally, III is our energy term, i.e.,

III =

∫∫
η2θλ∆1/2θ .

Using the harmonic extensionθ∗ we get that

III = −
∫∫

η2θλθ∗ν dx dt= −
∫∫∫

∇x,z(η
2θ∗λ)∇θ∗ dx dz dt.

By the standard energy inequality computation, we get that

III ≤ −
∫∫∫

[∇x,zηθ∗λ]2 dx dz dt+
∫∫∫

(∇η)2(θ∗λ)2 .

We may chooseη to be a cut-off inx andzor to integrate to infinity in
z, if we have control ofθ∗λ in z.
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(Note: If for some reason we know that(θ∗λ) ≡ 0 in B1 × {z0} for
somez0, we may cut-off only inx and still stop the integration atz0.)

Putting together I, II and III we get

sup
T1≤t≤T2

‖ηθλ‖2
L2 +

∫ T2

T1

‖∇(ηθ∗λ)‖2
L2

≤ ‖ηθλ(T1)‖2
L2 + ε

∫ T2

T1

‖ηθλ‖2
L2n/n−1

+
1
ε

C
∫ T2

T1

‖(∇η)θλ‖2
L2 +

∫ T2

T1

‖(∇η)θ∗λ‖2
L2

x,z
dt
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Notice thatηθ∗λ is one extension ofηθλ and therefore the term in the
left ∫ T2

T1

‖∇ηθ∗λ‖2
L2(x,z) controls

∫ T2

T1

‖ηθλ‖2
H1/2 ,

so the left hand side controls, by Sobolev inequality, the term

∫ T2

T1

‖ηθλ‖2
L2n/n−1 dt

and absorbs theε term on the right.
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In fact, if it weren’t because of the term on the right

∫ T2

T1

‖(∇η)θ∗λ‖2
L2

x,z

involving the extra variablez, everything would reduce toRn, and we
have the usual interplay between the Sobolev and energy inequality,
as in the global case, and a straightforward adaptation of the second
order case would work.

In light of this obstruction let’s reassess the situation. As we
mentioned before our first lemma would be (following the iterative
scheme) to show that if, say theL2 norm ofθ+ is very small (and
θ+ ≤ 2), in B4 × [−4, 0], thenθ+ is strictly less than two in
B1 × [−1, 0]; (θ+ ≤ γ0 < 2 for someγ0).

Let us see how that can work:
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A geometric description of the argument

Starting up: We decomposeθ∗ in two parts
θ∗1 goes to zero linearly asz→ 0 for|x| < 1/2

θ∗2 has a very small trace
in L2, so it becomes very
small inL∞ aszgrows.
Givenδ, we may assume
thatθ∗(X, δ) ≤ Cδ since
we can choose‖θ‖L2 as
small as we please
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Therefore, the first truncationθ∗λ0
is controlled by its trace, with very

smallL2 norm, and the very narrow sides (sizeδ), whose influence
decays exponentially moving inwards inX:

We will try now to perpetuate, in our inductive scheme, this
configuration.
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The idea of the inductive scheme is then as follows:

1) In X, we will cut diadically (as in De Giorgi) converging toχB1/2

2) In θ, also diadically converging toλ, (1 < λ < 2)

3) In Z, though, we will cut at a very fast geometric rate, going to
zero(δk).
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The reason we may hope to maintain this configuration, is because
inherent to the De Giorgi argument is the very fast, (faster than
geometric decay) of theL2 norm of the truncationθk.

The idea is that, on one hand the fast cut off inZ, δk will make the
influence of the tiny sides decay so much inX that at the level of the
next cut off (inX) it will be wiped out by the diadic cut off inθ.
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While the contribution of the traceθk will decay so fast (faster than
M−k if we choosec0 very small) that

θ∗k(X, δk) ≤ θk ⋆ Pδk ≤ ‖θk‖L2‖Pδk‖L2

will also be wiped out by the consecutive truncation.

At the end of the process at timet0 we have only information on the
traceθ, but we can go inwards by harmonicity.
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Proof of the first step: In this first step, we prove that a solution,θ,
between zero and two, with very smallL2 norm, separates fromθ = 2
in a smaller cylinder.

Lemma 11

We assume that ‖v‖L∞(−4,0;BMO(RN)) + sup
−4≤t≤0

∣∣∣∣
∫

B4

v(t, x) dx

∣∣∣∣ ≤ C0.

Then, there existsε0 > 0, andλ > 0 such that for everyθ solution to
(1) the following property holds true.
If we have:

θ∗ ≤ 2 in [−4, 0] × B∗
4,

and ∫ 0

−4

∫

B∗

4

(θ∗)2
+ dx dz ds+

∫ 0

−4

∫

B4

(θ)2
+ dx ds≤ ε0,

then:
(θ)+ ≤ 2− λ on [−1, 0] × B1.
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Proof

The proof follows the strategy discussed above.

First, some previous tools.

Since the method was based on the control ofθ∗ by two harmonic
functions, before starting the proof we build two useful barriers:



81

b1(x, z)
b1 = 2 in z = 1

b1 = 2 in |x| = 1

z = 1/2

b1 ≤ 2− 4λ < 2 b1 = 2 in |x| = 1

b1 = 0 in z = 0

If • b1 is harmonic inB∗
1

• b1 = 2 in ∂B∗
1 exceptz = 0

• b1 = 0 in ∂B∗
1 ∩ {z = 0}

Then for some 0< λ

b1 ≤ 2− 4λ < 2 in B∗
1/2
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b2

x1 = −1 x1 = 1

�
�

�7

��7z = ±δ

If • b2 is harmonic inD
b2 = 0 for z± δ
b2 = 1 for x1 = 1, b2 = 0 for x1 = −1

Then b2 ≤ C̄cos
z
δ

e−(1−x1)/δ

in particular, if 1− x1 = h ≫ δ

b2 ≤ Ce−h/δ C = (cos 1)−1
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Remark

Exponential decay also holds forDiaij Dj by applying Harnack
inequality to the intervalsIk = {k ≤ x1 ≤ k + 1}.

Now we are ready to set the main inductive steps as discussed above.

When we do so, we will realize that we have to start the processfor
some advanced valuek of the step.

So we will go back and do a first large step to cover the startingof the
process.
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Setting of the constants

We recall thatλ > 0 is defined by the fact that the barrier function
• b1 < 2− 4λ in B∗

1/2

• C̄ = (cos 1)−1 is the constant in the bound for the barrier
functionb2

• C0 the smallness constant in the hypothesis of Lemma 10 will
be chosen later asc0(λ, M).
We need to fix constantsM for the rate of decay of theL2 norm of the
truncationθk andδ for the rate of decay of the support, inz, of θ∗k .
We require:

i) nC̄e−(2δ)−k ≤ λ2−k−2 (δ small so the side contribution is
absorbed by the cut off)

ii) δn(Mδn)−k‖P(1)‖L2 ≤ λ2−k−2 (M(δ) large to keep the
support of the trunction in theδk strip)

iii) M−k ≥ ck
0M−(k−3)(n+1/n) for k ≥ 12n (so that the inductive

decay gives us the fast geometric decay)
P(1) denotes the restriction of the Poisson kernel,P(x, z) to z≡ 1.
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The proof is easy. We construct firstδ to verify the first inequality in
the following way. Ifδ < 1/4, the inequality is true fork > k0 due to
the exponential decay. If necessary, we then chooseδ smaller to make
the inequality also valid fork < k0. Now thatδ has been fixed, we
have to chooseM large to satisfy the remaining inequalities. Note that
the second inequality is equivalent to:

(
2

δnM

)
≤ λδn

4‖P(1)‖L2
.

It is so sufficient to take:

M ≥ sup

(
2
δn ,

8‖P(1)‖L2

λδn

)
.
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The third inequality is equivalent to:

(
M

CN
0

)k/N

≥ M3(1+1/N) .

For this case it is sufficient to takeM ≥ sup(1, C2N
0 ). Indeed, this

ensuresM2/C2N
0 ≥ M and so:

(
M

CN
0

)k/N

≥ Mk/(2N) ≥ M6



88

The main inductive step will be the following:
Step 3. Induction: We set

θk = (θ − Ck)+ ,

with Ck = 2− λ(1 + 2−k). We consider a cut-off function inx only
such that:

1{B1+2−k−1} ≤ ηk ≤ 1{B1+2−k} , |∇ηk| ≤ C2k ,

and we denote:

Ak = 2
∫ 0

−1−2−k

∫ δk

0

∫

RN
|∇(ηkθ

∗
k)|2 dx dz dt+ sup

[−1−2−k,1]

∫

RN
(ηkθk)

2 dx dt.

We want to prove that for everyk ≥ 0:

Ak ≤ M−k (1)

ηkθ
∗
k is supported in 0≤ z≤ δk . (2)
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We first prove inductively (2). Suppose it is true fork, we want to
prove it fork + 1.

Sinceθ∗k+1 ≤ θ∗k − λ2−(k+1), we do it by estimatingθ∗k in the “flat
rectangle”B1+2−(k) × [0, δk] whereη is supported.

On the top,z = δ−k, θ∗k = 0 by induction.

On the bottom,θ∗k+1 ≤ ηkθ
∗
k and hence the contribution fromθ∗k+1 is

smaller than its harmonic extension

ηkθ
∗
k ∗ P(z) (the Poisson kernel)
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The influence from each of the narrow lateral sides is boundedby the
rescaling ofb2 that shrinks the interval[0, 1] in z into [0, δk].

Therefore, from the edgexj = 1 + 2−k to xj = 1 + 2−(k+1), b2 decays

by e−
1
2( 2−k+1

δk .

Overall onB1+2−k+1, the support ofηk+1θk+1, we obtain forθ∗k the
estimate

θ∗k ≤ ηkθk ∗ Pz + C̄ e−
1
4

2−k

δk



91

The term
ηkθk ∗ P(δk+1)

we bound by

‖ηkθk‖L2‖P(δk+1)‖L2 ≤ M−k/2δ−n(k+1)‖P(0)‖L2

To forceθ∗k+1 = 0 for z = δk, we then need

M−k/2δ−(k+1)‖P(1)‖L2 + NC̄ e−
1
4

2−k

δk ≤ λ2−(k+1)

For this to happen, we need, for instance,Mδ > 4, k large (say bigger
thank0) and (for instance) 2δ < 1/2.
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Second technical lemma

In the first technical lemma, we have established that if 0≤ θ+ ≤ 2
and its energy or norm is very small, inB∗

4, then,θ+ ≤ 2− λ in Bj,
i.e., the oscillation ofθ actually decays.

We want now to get rid of the “very small” hypothesis.

This second lemma proves that ifθ+ ≤ 0 “half of the time and it
needs very little room,δ, to go from{θ+ ≤ 0} to {θ ≥ 1}, it is
because(θ − 1)+ has very small norm to start with. This produces a
dichotomy: or the support ofθ decreases substantially, orθ becomes
small anyway.
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Lemma 12

For everyε1 > 0, there exists a constantδ1 > 0 with the following
property:
For every solutionθ to (1) with v verifying(2) and:

θ∗ ≤ 2 in Q∗
4,

|{(x, z, t) ∈ Q∗
4; θ∗(x, z, t) ≤ 0}| ≥ |Q∗

4|
2

,

we have the following implication:
If

|(x, z, t) ∈ Q∗
4; 0 < {θ∗(x, z, t) < 1}| ≤ δ1

then:
∫

Q1

(θ − 1)2
+ dx dt+

∫

Q∗

1

(θ∗ − 1)2
+ dx dz dt≤ C

√
ε1.
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This lemma is, of course, the adapted version of the De Giorgi’s
isoperimetric inequality.
The idea of the proof is the following:
We first throw away a small set of times, for which
It =

∫
B∗

1
(∇u∗)2 dx dzis very large:

It ≥
K2

ε2
1

This is a tiny set of times

|S| ≤ Cε2/k2

since ∫∫
(∇u∗)2 dx dz dt≤ C0

Outside ofS, for each timet, the isoperimetric inequality is valid

|A| |B| ≤ |D| K/ε1
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But for somet, sayt < −1
64 , we may choose a slice where|A| > 1

64
and|D| ≤ δ.

Then|B| ≤ (64)2δ K/ε1 ≤ Kε1 if δ ∼ ε2

In particular,(θ − 1)+ has very smallL2 norm for thatt: ‖ ‖ ≤ kε1

But the energy inequality then controls theL2 norm of(θ − 1)+ into
the future

The same iteration as De Giorgi’s completes the proof.
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Proposition 13

There existsλ∗ > 0 such that for every solutionθ of (1) with v
verifying(2), if:

θ∗ ≤ 2 in Q∗
1

|{(t, x, z) ∈ Q∗
1; θ∗ ≤ 0}| ≥ 1

2
,

then:
θ∗ ≤ 2− λ∗ in Q∗

1/16.
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Up to here, the proof did not distinguish the 1/2-power of the
Laplacian from any other power. We could have replaced it by∆σ for
σ > 0, and used the extension in Caffarelli-Silvestre (Arxiv.org).
It is in the iteration process thatσ becomes critical:
Indeed, to iterate, we rescale

θk =
1
λ

θk−1

(
1
2

x,
1
2

t

)

that satisfies the same (linear) equation with a rescaled vector fieldv.
(Here we use that∇θ and∆1/2θ have the same homogeneity.)
The only detail is that, to keep‖v‖L2m bounded by the‖v‖BMO, we
have to make sure that

∫
� v ≡ 0.

For that we make the change of variablesx̄ = x− ~ϕ(t), where
(~ϕ)′ =

∫
� v

This produces finite distortion (in fact vanishing distortion) since∫
�

Qr
v grows very slowly due to its exponential integrability.


