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Surveys, lectures, books on Optimal transportation.

[30], [3], [62].
[5] (Part II), [8], [52], [53], [63], [64].

Convex functions, optimal transport maps and their regularity.

[2], [32].
[14], [15],[21], [7], [6], [31], [33], [34], [35], [38], [57], [60], [61], [43].
[17], [19], [18], [20].

Metric and differentiable side of optimal transportation.

[12], [42], [50], [49], [39], [40], [59].

Evolution problems, Gradient flows, error estimates.

[5] (Part I), [11], [13], [16], [26], [28], [27], [29], [37], [41], [51], [45], [44], [56], [55], [54].

Evolution problems in P2(Rn).

[1], [22], [23], [24], [25], [36], [47], [48], [49], [58], [46], [9], [10], [4],
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[57] L. Rüschendorf, On c-optimal random variables, Statist. Probab. Lett., 27 (1996),
pp. 267–270.
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