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The context, motivations and overviews.

Representative functions on group.

Let G be an abstract group, and ρ a finite dimensional representation in
k-vector spaces.
Consider the subalgebra V (ρ) of the algebra Maps(G, k) := kG

generated by the functions of the form:

a−ij : G → k

where for g ∈ G, ρ(g) = (ag
ij )i,j is the invertible matrix defining ρ(g).

The algebra of representative functions on G, is then defined to be

Rk(G) =
∑

ρ ∈ repk(G)

V (ρ) ⊆ kG .

This is a commutative Hopf k-algebra which ”codifies” almost all
informations about the group G (excluding extreme cases, of course).
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The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as
well as profinite groups. While polynomial representative functions
determines k-algebraic groups when k is an infinite field.

Duality between groups and Hopf algebras.

We have two contravariant functors

Rk : Grp −→ CHAlgk, χk : CHAlgk −→ Grp,

where the second one is the character group χk(H) of a Hopf algebra H,
defined as the group of algebra maps from H to k (the fibre group at the
base field, if we think of H as an affine k-group).

There is a natural isomorphism, i.e., contravariant adjunction

CHAlgk
(
−; Rk(+)

)
� Grp

(
+; χk(−)

)
which is known as a duality between groups and Hopf algebras.
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The context, motivations and overviews.

In fact we have a diagram

Grp

Rk ''
duality CHAlgk
χk

gg

CTGrp

continous
((

anti-equivalence
� ?

OO

C̃HAlgRhh
?�

k=R

OO

CLGrp

smooth
((

anti-equivalence
� ?

OO

C̃HalgRhh
?�

OO

where ˜CHAlgk the subcategory of commutative real Hopf algebras with
gauge (i.e., a Hopf integral coming from the Haar measure) and with
dense character group in the linear dual.



The context, motivations and overviews.

In fact we have a diagram

Grp

Rk ''
duality CHAlgk
χk

gg

CTGrp

continous
((

anti-equivalence
� ?

OO

C̃HAlgRhh
?�

k=R

OO

CLGrp

smooth
((

anti-equivalence
� ?

OO

C̃HalgRhh
?�

OO

where ˜CHAlgk the subcategory of commutative real Hopf algebras with
gauge (i.e., a Hopf integral coming from the Haar measure) and with
dense character group in the linear dual.



The context, motivations and overviews.

In fact we have a diagram

Grp

Rk ''
duality CHAlgk
χk

gg

CTGrp

continous
((

anti-equivalence
� ?

OO

C̃HAlgRhh
?�

k=R

OO

CLGrp

smooth
((

anti-equivalence
� ?

OO

C̃HalgRhh
?�

OO

where ˜CHAlgk the subcategory of commutative real Hopf algebras with
gauge (i.e., a Hopf integral coming from the Haar measure) and with
dense character group in the linear dual.



The context, motivations and overviews.

The ultimate goal of this research is to give a new approach to
Tannaka-Krein duality for compact topological groupoids, and try to
recognize the theory of compact Lie groupoids as a part of the theory of
real affine algebraic groupoids.

In a very simplest way, we are attempted to complete the following
diagram

Grpd

Rk ''
duality CHAlgdk
χk

gg Grpd: abstract groupoids

CTGrpd
&&

anti-equivalence
� ?

OO

?hh
?�

k=R

OO

CTGrpd: comapct topological groupoids

CLGrpd
&&

anti-equivalence
� ?

OO

?hh
?�

OO

CLGrpd: compact Lie groupoids

In this talk, we will see how to construct the functor Rk and show the
main steps in building up the duality between the category of transitive
groupoids and the category of (geometrically) transitive commutative
Hopf algebroids.
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Finite dimensional representations of groupoids.

Let k denotes a ground base field, Vectk its category of vector spaces,
and vectk the full subcategory of finite dimensional ones.

For a given (small) groupoid

G : G1
s //
t // G0ιoo ,

we consider the category of all G -representations as the symmetric
monoidal k-linear abelian category of functors

[
G , Vectk

]
with identity

object I : G0 → Vectk, x → k, g → 1k.

For any G -representationV the image of an object x ∈ G0 is denoted by
Vx , and referred to as the fibre ofV at x.

The disjoint union of all the fibres of a G -representationV is denoted by
V =

⋃
x ∈G0
Vx and the canonical projection by πV : V → G0. This called

the associated vector G -bundle of the representationV.
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Finite dimensional representations of groupoids.

Examples of groupoids.

(1) Given any set X , one can associated the so called the groupoid of
pairs G X , its set of arrows is defined by G1 = X × X and the set of
objects by G0 = X ; the sourse and the target are s = pr2 and t = pr1,
the second and the first projections, and the map of identity arrows is
ι the diagonal map.

(2) Let ν : X → Y be a map. Then we can consider the groupoid
X ν× ν X

pr2 //
pr1 // Xιoo , where the set of arrows is the fibre product .

(3) Assume that R ⊆ X × X is an equivalence relation on the set X . One
can construct a groupoid R

pr2 //
pr1 // X ,ιoo with structure maps as

before. This groupoid is known as the groupoid of equivalence
relation.

(4) Any group G can be seen as a groupoid by taking G1 = G and
G0 = {∗}. Now if X is a right G-set with action ρ : X × G → X , then
one can define the so called the action groupoid: G1 = X × G and
G0 = X , the source and the target are s = ρ and t = pr1, the identity
map sends x 7→ (e, x) = ιx , where e is the identity element of G.
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Finite dimensional representations of groupoids.

LetV be a G -representation in
[
G , vectk

]
, we define its dimension

function as the map

dV : G0 −→ N,
(
x 7−→ dimk

(
Vx

))
,

which clearly extends to a map dV : π0(G )→ N.

A G -representationV in
[
G , vectk

]
is called a finite dimensional

representation, provided that the dimension function dV has a finite
image, that is, dV(G0) is a finite subset of the set of positive integers N.

We denote the resulting category by repk(G ). Clearly,

repk(G ) =
[
G , vectk

]
, when π0(G ) is a finite set.

LetV andW be two representations in repk(G ). Then

dV⊕W = dV + dW, dDV = dV, and dV⊗W = dV dW.

Therefore, the category repk(G ) is a symmetric rigid monoidal k-linear
abelian category. But NOT locally finite, in general.
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image, that is, dV(G0) is a finite subset of the set of positive integers N.

We denote the resulting category by repk(G ). Clearly,

repk(G ) =
[
G , vectk

]
, when π0(G ) is a finite set.

LetV andW be two representations in repk(G ). Then

dV⊕W = dV + dW, dDV = dV, and dV⊗W = dV dW.

Therefore, the category repk(G ) is a symmetric rigid monoidal k-linear
abelian category. But NOT locally finite, in general.
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Finite dimensional representations of groupoids.

Example of representations.
Consider the set X = {1, 2} and denote by G {1,2} the associated groupoid
of pairs. Thus G0 = {1, 2} and G1 =

{
(1, 1), (1, 2), (2, 1), (2, 2)

}
.

An objet in repk(G {1,2}) is then a pair (n,N), where n is a positive integer,
and N ∈ GLn(k).

The vector spaces of homomorphisms are given by

repk(G
{1,2})

(
(n,N), (m,M)

)
= Mm, n(k),

the k-vector space of m × n matrices with matrix multiplication.

The other operations in repk(G {1,2}) are

(n,N) ⊕ (m,M) =
(
n + m,

(
N 0
0 M

) )
, D(n,N) = (n,Nt )

(n,N) ⊗ (m,M) =
(
nm, (N bij)1≤i,j≤m

)
, where M = (bij), and I = (1, 1).

Tr(n,N) = n.
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Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid G is said to be transitive if for
any two objects x, y ∈ G0, there is an arrow g ∈ G1 such that s(g) = x
and t(g) = y, or equivalently, π0(G ) is a singleton, i.e., a set with only
one element.

Let G be a transitive groupoid. Then, the category repk(G ) is a
symmetric rigid monoidal locally finite k-linear abelian category.

Furthermore, repk(G ) admits a non trivial fibre functor to the category of
finite dimensional vector spaces. Namely, fix an object x ∈ G0, and
consider the functor

ωx : repk(G ) −→ vectk,
(
V −→ Vx

)
.

Then ωx is a non trivial fibre functor, and ωx � ωy , for any x, y ∈ G0.

On the other hand, we have that k � Endrepk(G )(I), where I is the
identity G -representation.

Summarizing (repk(G ),ωx) is a (neutral) Tannakian category in the
sense of Saavedra-Rivano, Deligne and Milne.
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Finite dimensional representations of groupoids.

The fibre functor on repk(G ).

Let G be a groupoid and denote by A0(G ) := kG0 its base algebra and by
A1(G ) := kG1 its total algebra. By reflecting the groupoid structure of G ,
we have a diagram of algebras:

A0(G )
s∗ //

t∗ // A1(G ).ι∗oo

LetV be a finite dimensional G -representation and denote by

dV(G0) :=
{
n1, n2, · · · , nN

}
ordered as n1 < n2 < · · · < nN (where

obviously the maximal and minimal indices depend uponV).

The set of objects G0 is then a disjoint union G0 =
⋃N

i=1 G i
V
, where each

of the G i
V
’s is the inverse image G i

V
:= d−1

V

(
{ni}

)
, for any i = 1, · · · ,N.
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Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra A0(G ):

A0(G ) = B1 × · · · · · · × BN,

where each of Bi ’s is the algebra of functions on G i
V
.

We can then define the functor which acts on objects by:

ω : repk(G ) −→ proj(A0(G )), V −→ PV = Bn1
1 × · · · × BnN

N

an A0(G )-module which corresponds to the above decomposition.

By identifying a G -representation in repk(G ) with its associated vector
G -bundle, we can consider the k-vector space of ”global sections":

Γ(V) :=
{
s : G0 →V | πV ◦ s = idG0

}
.

Both functors ω and Γ are symmetric monoidal faithful functors.
Moreover, there is a tensorial natural isomorphism ω � Γ.
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The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid.
Let us recall first some general facts. Assume we are given a pair (T , ω)
consisting of a symmetric monoidal rigid k-linear (essentially small)
category and a non trivial symmetric monoidal faithful functor
ω : T → proj(A), where A is a commutative k-algebra.

Associated to these data, there are at least two universal problems,
which have a common solution:

PR-1 The functor: A -Corings −→ Sets,

C −→
{
the set of funtorial right C-comodules structure on ω

}
is representable.

PR-2 The functor: (A ⊗ A)-CAlgk −→ Sets,(
A s //

t // C
)
−→ Iso⊗

(
t∗ω, s∗ω

)
is representable.
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The representative functions functor.

The universal solution for both PR-1-2 is given by the following
A -bimodule

Lk(T , ω) :=

⊕
P ∈T

ω(P)∗ ⊗TP
ω(P)

J
,

where TP is the endomorphism algebra of an object P ∈ T and J is the
A -sub-bimodule generated by

J :=
〈
ψλ ⊗TP

p − ψ ⊗TQ
λp

〉{
ψ ∈ω(Q)∗, p ∈ω(P), λ:P→Q ∈T

}
It turns out that

(
A ,Lk(T , ω)

)
is a commutative Hopf algebroid, such that

there is a commutative diagram:

T

ω ''

// comodLk(T ,ω)

Ouu
proj(A)

where comodLk(T ,ω) is the full subcategory of comodules with finitely
generated and projective underlying A -modules.
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The representative functions functor.

Let G be a groupoid and consider the pair
(
repk(G ),ω

)
. Applying the

previous general constructions, we obtain a commutative Hopf algebroid(
A0(G ),Lk

(
repk(G ),ω

))
, which we denote by

(
A0(G ),Rk(G )

)
.

The commutative Hopf algebroid
(
A0(G ),Rk(G )

)
is called the

representative functions algebra of the groupoid G .

The terminology ”functions” is justified by the following
(A0(G ) ⊗k A0(G ))-algebra map:

ξ : Rk(G ) −→ A1(G ),

where A1(G ) is an A0(G ) ⊗k A0(G )-algebra, as before by reflecting the
groupoid structure of G .

The representative functions establish a contravariant functor:

Rk : Grpd −→ CHAlgk

from the category of abstract groupoids to the category of commutative
Hopf algebroids.
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Examples of representative functions algebra.

(•) If G is a groupoids with only one object, that is, a group, then Rk(G)
is the usual Hopf algebra of representative funcions on the group G.
This is isomorphic to the finite dual k[G]o of the group algebra k[G].

(•) Let X = {1, 2} be a set of two elements and consider as before the
groupoid G {1,2} of pairs and denote by A := k × k its base algebra.
Then

Rk(G ) =

⊕
n ∈N

An ⊗Mn (k) An

〈v ⊗Mn (k) λw − λtv ⊗Mm (k) w〉v ∈An , w ∈Am , λ ∈Mm×n(k)
.

(•) Let G : G × X
% //

pr1 // Xιoo be an action groupoid. Then there is a
morphism of Hopf algebroids:

(kX , kX ⊗ Rk(G) ⊗ kX ) −→ (kX ,Rk(G )).

Furthermore, if the action is transitive, then any isotropy Hopf algebra
(kx ,Rk(G )x), for x ∈ X , is isomorphic to (k,Rk(G)).
In general, Rk(G ) is not a split Hopf algebroid (i.e., not isomorphic to
kX ⊗ Rk(G))
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The contravariant adjunction.

The properties of Rk(G ) when G is transitive. Let G be a transitive
groupoid, then its algebra of representative functions enjoys the following
properties:

I (A0(G ),Rk(G )) is a transitive Hopf algebroid, in the sense that
each of the fibers of its associated presheaf of groupoids is actually
a transitive groupoids
(i.e., each of the groupoids

(
Rk(G )(C),A0(G )(C)

)
is transitive, for

any commutative algebra C). The notation is R(C) := Algk(R ,C).

I The fibre functor ω : repk(G )→ proj(A0(G )) induces a monoidal
equivalence between the category repk(G ) and the category
comodRk(G ) of comodules with finitely generated underlying module.

I Any comodule M in comodRk(G ) is a locally free A0(G )-module with
constant rank, in the sense that, if for some x ∈ G0, we have
dimk(Mx) = n, then so is the dimension of any other fibre.
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The contravariant adjunction.

The character functor and the counit. Let (A ,H) be a commutative Hopf
algebroid such that A , 0 and Algk(A , k) , ∅. The groupoid

H (k) : Algk(H , k)
s∗ //

t∗ // Algk(A , k),ι∗oo

is referred to as the character groupoid of (A ,H).

This establishes a contravariant functor

χk : CHAlgdk −→ Grpd

from the category of commutative Hopf algebroids to the category of
groupoids.

Furthermore, for any groupoid G , we have a natural transformation:

G −→ χk ◦Rk(G ),

which is not in general a monomorphism. When it is, the groupoid
χk(Rk(G )) is sometimes called the algebraic cover of G .
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The contravariant adjunction.

The unit. Let (A ,H) be a transitive Hopf algebroid. Then

I (A ,H) is a flat Hopf algebroid. The category comodH is a
symmetric rigid monoidal k-linear abelian category, and any object
in this category is finitely generated and projective A -module;

I the canonical map

Lk(comodH ,O) −→ H , where O : comodH → proj(A),

is an isomorphism of Hopf algebroids;

I there is a symmetric monoidal functor

F : comodH −→ rep
(
χk(H)

)
,

which is a morphism of fibre functors.

I there is a natural morphism of Hopf transitive Hopf algebroids:

(A ,H) −→
(
A0(χk(H)),Rk(χk(H))

)
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The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids,
and by TCHAlgdk the full subcategory of transitive commutative Hopf
algebroids.

As we have seen before, the represenative functions functor define a
contravariant functor

Rk : TGrpd −→ TCHAlgdk, G −→ Rk(G ).

On the other hand, the character functor obviously define a contravariant
functor

χk : TCHAlgdk −→ TGrpd, (A ,H) −→ χk(H).

There is a natural isomorphism

TGrpd
(
− , χk(+)

)
� TCHAlgdk

(
+ , Rk(−)

)
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