Finite dimensional representations of abstract groupoids, representative functions and commutative Hopf algebroids

Laiachi El Kaoutit
Universidad de Granada. Spain.
kaoutit@ugr.es, http://www.ugr.es/~kaoutit

Brauer groups, Hopf algebras and monoidal categories.
In honour of Stef Caenepeel on the occasion of his 60 birthday.

Turin, May 2016.

The context, motivations and overviews.

The context, motivations and overviews.

Representative functions on group.

The context, motivations and overviews.

Representative functions on group.
Let G be an abstract group, and ρ a finite dimensional representation in \mathbb{k}-vector spaces.
Consider the subalgebra $\mathscr{V}(\rho)$ of the algebra $\operatorname{Maps}(G, \mathbb{k}):=\mathbb{k}^{G}$ generated by the functions of the form:

$$
a_{i j}^{-}: G \rightarrow \mathbb{k}
$$

where for $g \in G, \rho(g)=\left(a_{i j}^{g}\right)_{i, j}$ is the invertible matrix defining $\rho(g)$.

The context, motivations and overviews.

Representative functions on group.
Let G be an abstract group, and ρ a finite dimensional representation in \mathbb{k}-vector spaces.
Consider the subalgebra $\mathscr{V}(\rho)$ of the algebra $\operatorname{Maps}(G, \mathbb{k}):=\mathbb{K}^{G}$ generated by the functions of the form:

$$
a_{i j}^{-}: G \rightarrow \mathbb{k}
$$

where for $g \in G, \rho(g)=\left(a_{i j}^{g}\right)_{i, j}$ is the invertible matrix defining $\rho(g)$.
The algebra of representative functions on G, is then defined to be

$$
\mathscr{R}_{\mathbb{k}}(G)=\sum_{\rho \in \operatorname{rep}_{\mathbb{k}}(G)} \mathscr{V}(\rho) \subseteq \mathbb{k}^{G} .
$$

The context, motivations and overviews.

Representative functions on group.
Let G be an abstract group, and ρ a finite dimensional representation in \mathbb{k}-vector spaces.
Consider the subalgebra $\mathscr{V}(\rho)$ of the algebra $\operatorname{Maps}(G, \mathbb{k}):=\mathbb{k}^{G}$ generated by the functions of the form:

$$
a_{i j}^{-}: G \rightarrow \mathbb{k}
$$

where for $g \in G, \rho(g)=\left(a_{i j}^{g}\right)_{i, j}$ is the invertible matrix defining $\rho(g)$.
The algebra of representative functions on G, is then defined to be

$$
\mathscr{R}_{\mathbb{k}}(G)=\sum_{\rho \in \operatorname{rep}_{k}(G)} \mathscr{V}(\rho) \subseteq \mathbb{K}^{G} .
$$

This is a commutative Hopf \mathbb{k}-algebra which "codifies" almost all informations about the group G (excluding extreme cases, of course).

The context, motivations and overviews.

The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as well as profinite groups. While polynomial representative functions determines \mathbb{k}-algebraic groups when \mathbb{k} is an infinite field.

The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as well as profinite groups. While polynomial representative functions determines \mathbb{k}-algebraic groups when \mathbb{k} is an infinite field.

Duality between groups and Hopf algebras.

The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as well as profinite groups. While polynomial representative functions determines \mathbb{k}-algebraic groups when \mathbb{k} is an infinite field.

Duality between groups and Hopf algebras.
We have two contravariant functors

$$
\mathscr{R}_{\mathfrak{k}}: \operatorname{Grp} \longrightarrow \text { CHAlg }_{\mathrm{k}_{\mathrm{k}}}, \quad \chi_{\mathrm{k}}: \text { CHAlg } g_{\mathbb{k}} \longrightarrow \text { Grp },
$$

The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as well as profinite groups. While polynomial representative functions determines \mathbb{k}-algebraic groups when \mathbb{k} is an infinite field.

Duality between groups and Hopf algebras.
We have two contravariant functors

$$
\mathscr{R}_{\mathbb{k}}: \operatorname{Grp} \longrightarrow \text { CHAlg }_{\mathfrak{k}}, \quad \chi_{\mathbb{k}}: \text { CHAlg } g_{\mathbb{k}} \longrightarrow \text { Grp },
$$

where the second one is the character group $\chi_{\mathbb{k}}(H)$ of a Hopf algebra H, defined as the group of algebra maps from H to \mathbb{k} (the fibre group at the base field, if we think of H as an affine \mathbb{k}-group).

The context, motivations and overviews.

The Hopf algebra of representative functions determines finite groups as well as profinite groups. While polynomial representative functions determines \mathbb{k}-algebraic groups when \mathbb{k} is an infinite field.

Duality between groups and Hopf algebras.
We have two contravariant functors

$$
\mathscr{R}_{\mathbb{k}}: \operatorname{Grp} \longrightarrow \text { CHAlg }_{\mathfrak{k}}, \quad \chi_{\mathbb{k}}: \text { CHAlg } g_{\mathbb{k}} \longrightarrow \text { Grp },
$$

where the second one is the character group $\chi_{\mathbb{k}}(H)$ of a Hopf algebra H, defined as the group of algebra maps from H to \mathbb{k} (the fibre group at the base field, if we think of H as an affine \mathbb{k}-group).

There is a natural isomorphism, i.e., contravariant adjunction

$$
\operatorname{CHAlg}_{\mathfrak{k}}\left(-; \mathscr{R}_{\mathbb{k}}(+)\right) \cong \operatorname{Grp}\left(+; \chi_{\mathfrak{k}}(-)\right)
$$

which is known as a duality between groups and Hopf algebras.

The context, motivations and overviews.

The context, motivations and overviews.

In fact we have a diagram

The context, motivations and overviews.

In fact we have a diagram

where $C \widetilde{H A l g} g_{\mathbb{k}}$ the subcategory of commutative real Hopf algebras with gauge (i.e., a Hopf integral coming from the Haar measure) and with dense character group in the linear dual.

The context, motivations and overviews.

The context, motivations and overviews.

The ultimate goal of this research is to give a new approach to Tannaka-Krein duality for compact topological groupoids, and try to recognize the theory of compact Lie groupoids as a part of the theory of real affine algebraic groupoids.

The context, motivations and overviews.

The ultimate goal of this research is to give a new approach to Tannaka-Krein duality for compact topological groupoids, and try to recognize the theory of compact Lie groupoids as a part of the theory of real affine algebraic groupoids.
In a very simplest way, we are attempted to complete the following diagram

Grpd: abstract groupoids

CTGrpd: comapct topological groupoids

CLGrpd: compact Lie groupoids

The context, motivations and overviews.

The ultimate goal of this research is to give a new approach to Tannaka-Krein duality for compact topological groupoids, and try to recognize the theory of compact Lie groupoids as a part of the theory of real affine algebraic groupoids.
In a very simplest way, we are attempted to complete the following diagram

Grpd: abstract groupoids

CTGrpd: comapct topological groupoids

CLGrpd: compact Lie groupoids

In this talk, we will see how to construct the functor $\mathscr{R}_{\mathbb{k}}$ and show the main steps in building up the duality between the category of transitive groupoids and the category of (geometrically) transitive commutative Hopf algebroids.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

Let \mathbb{k} denotes a ground base field, Vect $t_{\mathbb{k}}$ its category of vector spaces, and vect ${ }_{\Sigma}$ the full subcategory of finite dimensional ones.

Finite dimensional representations of groupoids.

Let \mathbb{k} denotes a ground base field, Vect ${ }_{k}$ its category of vector spaces, and vect ${ }_{\Sigma}$ the full subcategory of finite dimensional ones.

For a given (small) groupoid

we consider the category of all \mathscr{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathscr{G}\right.$, Vect $\left._{k}\right]$ with identity object $I: G_{o} \rightarrow$ Vect $_{k}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

Finite dimensional representations of groupoids.

Let \mathbb{k} denotes a ground base field, Vect $\mathbb{k}_{\mathbb{k}}$ its category of vector spaces, and vect ${ }_{\Sigma}$ the full subcategory of finite dimensional ones.

For a given (small) groupoid

we consider the category of all \mathscr{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathscr{G}\right.$, Vect $\left._{k}\right]$ with identity object $I: G_{0} \rightarrow$ Vect $_{\mathbb{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

For any \mathscr{G}-representation \mathcal{V} the image of an object $x \in G_{0}$ is denoted by \mathcal{V}_{x}, and referred to as the fibre of \mathcal{V} at x.

Finite dimensional representations of groupoids.

Let \mathbb{k} denotes a ground base field, Vect $\mathbb{k}_{\mathbb{k}}$ its category of vector spaces, and vect ${ }_{\Sigma}$ the full subcategory of finite dimensional ones.

For a given (small) groupoid

we consider the category of all \mathscr{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathscr{G}\right.$, Vect $\left._{k}\right]$ with identity object $I: G_{0} \rightarrow$ Vect $_{\mathbb{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

For any \mathscr{G}-representation \mathcal{V} the image of an object $x \in G_{0}$ is denoted by \mathcal{V}_{x}, and referred to as the fibre of \mathcal{V} at x.

The disjoint union of all the fibres of a \mathscr{G}-representation \mathcal{V} is denoted by $\overline{\mathcal{V}}=\bigcup_{x \in G_{0}} \mathcal{V}_{x}$ and the canonical projection by $\pi_{\gamma}: \overline{\mathcal{V}} \rightarrow G_{0}$. This called the associated vector \mathscr{G}-bundle of the representation \mathcal{V}.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

Examples of groupoids.

Finite dimensional representations of groupoids.

Examples of groupoids.
(1) Given any set X, one can associated the so called the groupoid of pairs \mathscr{G}^{X}, its set of arrows is defined by $G_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $s=p r_{2}$ and $t=p r_{1}$, the second and the first projections, and the map of identity arrows is ι the diagonal map.

Finite dimensional representations of groupoids.

Examples of groupoids.

(1) Given any set X, one can associated the so called the groupoid of pairs \mathscr{G}^{X}, its set of arrows is defined by $G_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $s=p r_{2}$ and $t=p r_{1}$, the second and the first projections, and the map of identity arrows is ι the diagonal map.
(2) Let $v: X \rightarrow Y$ be a map. Then we can consider the groupoid

Finite dimensional representations of groupoids.

Examples of groupoids.

(1) Given any set X, one can associated the so called the groupoid of pairs \mathscr{G}^{X}, its set of arrows is defined by $G_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $s=p r_{2}$ and $t=p r_{1}$, the second and the first projections, and the map of identity arrows is ι the diagonal map.
(2) Let $v: X \rightarrow Y$ be a map. Then we can consider the groupoid $X_{v} x_{v} X \underset{p}{\rightleftarrows} \underset{p_{1}^{2}}{p_{2}} X$, where the set of arrows is the fibre product.
(3) Assume that $\mathcal{R} \subseteq X \times X$ is an equivalence relation on the set X. One can construct a groupoid $\mathcal{R} \underset{\Longrightarrow}{\leftrightarrows} X$, with structure maps as before. This groupoid is known as the groupoid of equivalence relation.

Finite dimensional representations of groupoids.

Examples of groupoids.

(1) Given any set X, one can associated the so called the groupoid of pairs \mathscr{G}^{X}, its set of arrows is defined by $G_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $s=p r_{2}$ and $t=p r_{1}$, the second and the first projections, and the map of identity arrows is ι the diagonal map.
(2) Let $v: X \rightarrow Y$ be a map. Then we can consider the groupoid $X_{v} x_{v} X \underset{p}{\rightleftarrows} \underset{1}{p_{2}} \underset{\sim}{\leftrightarrows} X$, where the set of arrows is the fibre product .
(3) Assume that $\mathcal{R} \subseteq X \times X$ is an equivalence relation on the set X. One can construct a groupoid $\mathcal{R} \underset{\Longrightarrow}{\leftrightarrows} X$, with structure maps as before. This groupoid is known as the groupoid of equivalence relation.
(4) Any group G can be seen as a groupoid by taking $G_{1}=G$ and $G_{0}=\{*\}$. Now if X is a right G-set with action $\rho: X \times G \rightarrow X$, then one can define the so called the action groupoid: $G_{1}=X \times G$ and $G_{0}=X$, the source and the target are $s=\rho$ and $t=p r_{1}$, the identity map sends $x \mapsto(e, x)=\iota_{x}$, where e is the identity element of G.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left.{ }_{k}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left.{ }_{k}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.
A \mathscr{G}-representation \mathcal{V} in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(G_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left.{ }_{k}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.
A \mathscr{G}-representation \mathcal{V} in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(G_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote the resulting category by $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Clearly,

$$
\operatorname{rep}_{\mathrm{k}}(\mathscr{G})=\left[\mathscr{G}, \operatorname{vect}_{k}\right], \text { when } \pi_{0}(\mathscr{G}) \text { is a finite set. }
$$

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.
A \mathscr{G}-representation \mathcal{V} in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(G_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote the resulting category by $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Clearly,

$$
\operatorname{rep}_{\mathbb{k}}(\mathscr{G})=\left[\mathscr{G}, \operatorname{vect}_{k}\right], \text { when } \pi_{0}(\mathscr{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Then

$$
d_{v \ominus w}=d_{v}+d_{w}, \quad d_{\mathscr{D} v}=d_{v}, \quad \text { and } \quad d_{v \otimes w}=d_{v} d_{w} .
$$

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.
A \mathscr{G}-representation \mathcal{V} in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(G_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote the resulting category by $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Clearly,

$$
\operatorname{rep}_{\mathbb{k}}(\mathscr{G})=\left[\mathscr{G}, \operatorname{vect}_{k}\right], \text { when } \pi_{0}(\mathscr{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Then

$$
d_{v \ominus w}=d_{v}+d_{w}, \quad d_{\mathscr{D} v}=d_{v}, \quad \text { and } \quad d_{v \otimes w}=d_{v} d_{w} .
$$

Therefore, the category $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category.

Finite dimensional representations of groupoids.

Let \mathcal{V} be a \mathscr{G}-representation in $\left[\mathscr{G}\right.$, vect $\left.{ }_{t_{太}}\right]$, we define its dimension function as the map

$$
d_{v}: G_{0} \longrightarrow \mathbb{N}, \quad\left(x \mapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right),
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathscr{G}) \rightarrow \mathbb{N}$.
A \mathscr{G}-representation \mathcal{V} in $\left[\mathscr{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(G_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote the resulting category by $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Clearly,

$$
\operatorname{rep}_{\mathbb{k}}(\mathscr{G})=\left[\mathscr{G}, \operatorname{vect}_{k}\right], \text { when } \pi_{0}(\mathscr{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$. Then

$$
d_{v \ominus w}=d_{v}+d_{w}, \quad d_{\mathscr{D} v}=d_{v}, \quad \text { and } \quad d_{v \otimes w}=d_{v} d_{w} .
$$

Therefore, the category $\operatorname{rep}_{k_{k}}(\mathscr{G})$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category. But NOT locally finite, in general.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

Example of representations.

Finite dimensional representations of groupoids.

Example of representations.
Consider the set $X=\{1,2\}$ and denote by $\mathscr{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $G_{0}=\{1,2\}$ and $G_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.

Finite dimensional representations of groupoids.

Example of representations.
Consider the set $X=\{1,2\}$ and denote by $\mathscr{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $G_{0}=\{1,2\}$ and $G_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An objet in $\operatorname{rep}_{\mathbb{k}}\left(\mathscr{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.

Finite dimensional representations of groupoids.

Example of representations.

Consider the set $X=\{1,2\}$ and denote by $\mathscr{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $G_{0}=\{1,2\}$ and $G_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An objet in $\operatorname{rep}_{\mathbb{k}}\left(\mathscr{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.
The vector spaces of homomorphisms are given by

$$
\operatorname{rep}_{\mathbb{k}}\left(\mathscr{G}^{\{1,2\}}\right)((n, N),(m, M))=M_{m, n}(\mathbb{k}),
$$

the \mathbb{k}-vector space of $m \times n$ matrices with matrix multiplication.

Finite dimensional representations of groupoids.

Example of representations.

Consider the set $X=\{1,2\}$ and denote by $\mathscr{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $G_{0}=\{1,2\}$ and $G_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An objet in $\operatorname{rep}_{k}\left(\mathscr{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.
The vector spaces of homomorphisms are given by

$$
\operatorname{rep}_{\mathbb{k}}\left(G^{(1,2\}}\right)((n, N),(m, M))=M_{m, n}(\mathbb{k}),
$$

the \mathbb{k}-vector space of $m \times n$ matrices with matrix multiplication.
The other operations in $\operatorname{rep}_{\mathbb{k}}\left(\mathscr{G}^{\{1,2\}}\right)$ are

$$
\begin{gathered}
(n, N) \oplus(m, M)=\left(n+m,\left(\begin{array}{cc}
N & 0 \\
0 & M
\end{array}\right)\right), \quad \mathcal{D}(n, N)=\left(n, N^{t}\right) \\
(n, N) \otimes(m, M)=\left(n m,\left(N b_{i j}\right)_{1 \leq i, j \leq m}\right), \text { where } M=\left(b_{i j}\right), \text { and } I=(1,1) . \\
\operatorname{Tr}(n, N)=n .
\end{gathered}
$$

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

The transitive case.

Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid \mathscr{G} is said to be transitive if for any two objects $x, y \in G_{0}$, there is an arrow $g \in G_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathscr{G})$ is a singleton, i.e., a set with only one element.

Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid \mathscr{G} is said to be transitive if for any two objects $x, y \in G_{0}$, there is an arrow $g \in G_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathscr{G})$ is a singleton, i.e., a set with only one element.
Let \mathscr{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.

Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid \mathscr{G} is said to be transitive if for any two objects $x, y \in G_{0}$, there is an arrow $g \in G_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathscr{G})$ is a singleton, i.e., a set with only one element.
Let \mathscr{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category. Furthermore, $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in G_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{vect}_{\underline{k}}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right)
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \boldsymbol{\omega}_{y}$, for any $x, y \in G_{0}$.

Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid \mathscr{G} is said to be transitive if for any two objects $x, y \in G_{0}$, there is an arrow $g \in G_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathscr{G})$ is a singleton, i.e., a set with only one element.
Let \mathscr{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.
Furthermore, $\operatorname{rep}_{k}(\mathscr{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in G_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{vect}_{k}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right)
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \boldsymbol{\omega}_{y}$, for any $x, y \in G_{0}$.
On the other hand, we have that $\mathbb{k} \cong \operatorname{End}_{\text {rep }_{k}(\mathscr{G})}(I)$, where I is the identity \mathscr{G}-representation.

Finite dimensional representations of groupoids.

The transitive case. Recall that a groupoid \mathscr{G} is said to be transitive if for any two objects $x, y \in G_{0}$, there is an arrow $g \in G_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathscr{G})$ is a singleton, i.e., a set with only one element.
Let \mathscr{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.
Furthermore, $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in G_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{vect}_{k}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right) .
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \boldsymbol{\omega}_{y}$, for any $x, y \in G_{0}$.
On the other hand, we have that $\mathbb{k} \cong \operatorname{End}_{\mathrm{rep}_{k}(\mathscr{G})}(I)$, where I is the identity \mathscr{G}-representation.
Summarizing $\left(\operatorname{rep}_{\mathfrak{l}}(\mathscr{G}), \boldsymbol{\omega}_{\mathrm{x}}\right)$ is a (neutral) Tannakian category in the sense of Saavedra-Rivano, Deligne and Milne.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

The fibre functor on $\operatorname{rep}_{\underline{k}}(\mathscr{G})$.

Finite dimensional representations of groupoids.

The fibre functor on $\operatorname{rep}_{\mathbb{I}}(\mathscr{G})$.
Let \mathscr{G} be a groupoid and denote by $A_{0}(\mathscr{G}):=\mathbb{K}^{G_{0}}$ its base algebra and by $A_{1}(\mathscr{G}):=\mathbb{k}^{G_{1}}$ its total algebra. By reflecting the groupoid structure of \mathscr{G}, we have a diagram of algebras:

$$
A_{0}(\mathscr{G}) \varlimsup_{t}^{*}{ }^{*} \rightleftarrows A_{1}(\mathscr{G}) .
$$

Finite dimensional representations of groupoids.

The fibre functor on $\operatorname{rep}_{\mathbb{I}}(\mathscr{G})$.
Let \mathscr{G} be a groupoid and denote by $A_{0}(\mathscr{G}):=\mathbb{k}^{G_{0}}$ its base algebra and by $A_{1}(\mathscr{G}):=\mathbb{k}^{G_{1}}$ its total algebra. By reflecting the groupoid structure of \mathscr{G}, we have a diagram of algebras:

Let \mathcal{V} be a finite dimensional \mathscr{G}-representation and denote by $d_{v}\left(G_{0}\right):=\left\{n_{1}, n_{2}, \cdots, n_{N}\right\}$ ordered as $n_{1}<n_{2}<\cdots<n_{N}$ (where obviously the maximal and minimal indices depend upon \mathcal{V}).

Finite dimensional representations of groupoids.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathscr{G})$.
Let \mathscr{G} be a groupoid and denote by $A_{0}(\mathscr{G}):=\mathbb{k}^{G_{0}}$ its base algebra and by $A_{1}(\mathscr{G}):=\mathbb{k}^{G_{1}}$ its total algebra. By reflecting the groupoid structure of \mathscr{G}, we have a diagram of algebras:

$$
A_{0}(\mathscr{G}) \varlimsup_{t}{ }^{*}=\Longrightarrow A_{1}(\mathscr{G}) .
$$

Let \mathcal{V} be a finite dimensional \mathscr{G}-representation and denote by $d_{v}\left(G_{0}\right):=\left\{n_{1}, n_{2}, \cdots, n_{N}\right\}$ ordered as $n_{1}<n_{2}<\cdots<n_{N}$ (where obviously the maximal and minimal indices depend upon \mathcal{V}).

The set of objects G_{0} is then a disjoint union $G_{0}=\bigcup_{i=1}^{N} G_{v}^{i}$, where each of the G_{v}^{i} 's is the inverse image $G_{v}^{i}:=d_{v}^{-1}\left(\left\{n_{i}\right\}\right)$, for any $i=1, \cdots, N$.

Finite dimensional representations of groupoids.

Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra $A_{0}(\mathscr{G})$:

$$
A_{0}(\mathscr{G})=B_{1} \times \cdots \cdots \times B_{N},
$$

where each of B_{i} 's is the algebra of functions on G_{v}^{i}.

Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra $A_{0}(\mathscr{G})$:

$$
A_{0}(\mathscr{G})=B_{1} \times \cdots \cdots \times B_{N},
$$

where each of B_{i} 's is the algebra of functions on G_{γ}^{i}.
We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathscr{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathscr{G})$-module which corresponds to the above decomposition.

Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra $A_{0}(\mathscr{G})$:

$$
A_{0}(\mathscr{G})=B_{1} \times \cdots \cdots \times B_{N},
$$

where each of B_{i} 's is the algebra of functions on G_{γ}^{i}.
We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathscr{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathscr{G})$-module which corresponds to the above decomposition. By identifying a \mathscr{G}-representation in $\operatorname{rep}_{k}(\mathscr{G})$ with its associated vector \mathscr{G}-bundle, we can consider the \mathbb{k}-vector space of "global sections":

$$
\Gamma(\mathcal{V}):=\left\{s: G_{0} \rightarrow \overline{\mathcal{V}} \mid \pi_{v} \circ s=i d_{G_{0}}\right\} .
$$

Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra $A_{0}(\mathscr{G})$:

$$
A_{0}(\mathscr{G})=B_{1} \times \cdots \cdots \times B_{N},
$$

where each of B_{i} 's is the algebra of functions on G_{v}^{i}.
We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \boldsymbol{\operatorname { r e p }}_{\mathbb{k}}(\mathscr{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathscr{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathscr{G})$-module which corresponds to the above decomposition. By identifying a \mathscr{G}-representation in $\operatorname{rep}_{k}(\mathscr{G})$ with its associated vector \mathscr{G}-bundle, we can consider the \mathbb{k}-vector space of "global sections":

$$
\Gamma(\mathcal{V}):=\left\{s: G_{0} \rightarrow \overline{\mathcal{V}} \mid \pi_{\nu} \circ s=i d_{G_{0}}\right\} .
$$

Both functors $\boldsymbol{\omega}$ and Γ are symmetric monoidal faithful functors. Moreover, there is a tensorial natural isomorphism $\omega \cong \Gamma$.

The representative functions functor.

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid.

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid. Let us recall first some general facts.

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid. Let us recall first some general facts. Assume we are given a pair ($\mathcal{T}, \omega)$ consisting of a symmetric monoidal rigid \mathbb{k}-linear (essentially small) category and a non trivial symmetric monoidal faithful functor $\omega: \mathcal{T} \rightarrow \operatorname{proj}(A)$, where A is a commutative \mathbb{k}-algebra.

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid. Let us recall first some general facts. Assume we are given a pair ($\mathcal{T}, \omega)$ consisting of a symmetric monoidal rigid \mathbb{k}-linear (essentially small) category and a non trivial symmetric monoidal faithful functor $\omega: \mathcal{T} \rightarrow \operatorname{proj}(A)$, where A is a commutative \mathbb{k}-algebra.

Associated to these data, there are at least two universal problems, which have a common solution:

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid. Let us recall first some general facts. Assume we are given a pair (\mathcal{T}, ω) consisting of a symmetric monoidal rigid \mathbb{k}-linear (essentially small) category and a non trivial symmetric monoidal faithful functor $\omega: \mathcal{T} \rightarrow \operatorname{proj}(A)$, where A is a commutative \mathbb{k}-algebra.

Associated to these data, there are at least two universal problems, which have a common solution:

PR-1 The functor: A-Corings \longrightarrow Sets,
$C \longrightarrow\{$ the set of funtorial right C-comodules structure on $\omega\}$
is representable.

The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid. Let us recall first some general facts. Assume we are given a pair (\mathcal{T}, ω) consisting of a symmetric monoidal rigid \mathbb{k}-linear (essentially small) category and a non trivial symmetric monoidal faithful functor $\omega: \mathcal{T} \rightarrow \operatorname{proj}(A)$, where A is a commutative \mathbb{k}-algebra.

Associated to these data, there are at least two universal problems, which have a common solution:

PR-1 The functor: A-Corings \longrightarrow Sets,
$C \longrightarrow\{$ the set of funtorial right C-comodules structure on $\omega\}$
is representable.
PR-2 The functor: $(A \otimes A)-$ CAlg $_{\text {g }} \longrightarrow$ Sets,

$$
(A \underset{\rightarrow \rightarrow}{\text { —s }} C) \longrightarrow \operatorname{Iso}^{\otimes}\left(t^{*} \omega, s^{*} \omega\right)
$$

is representable.

The representative functions functor.

The representative functions functor.

The universal solution for both PR-1-2 is given by the following A-bimodule

$$
\mathcal{L}_{\mathbb{k}}(\mathcal{T}, \omega):=\frac{\bigoplus_{P \in \mathcal{T}} \omega(P)^{*} \otimes_{T_{P}} \omega(P)}{\mathcal{J}},
$$

The representative functions functor.

The universal solution for both PR-1-2 is given by the following A-bimodule

$$
\mathcal{L}_{\mathfrak{k}}(\mathcal{T}, \omega):=\frac{\bigoplus_{P \in \mathcal{T}} \omega(P)^{*} \otimes_{T_{P}} \omega(P)}{\mathcal{J}},
$$

where T_{P} is the endomorphism algebra of an object $P \in \mathcal{T}$ and \mathcal{J} is the A-sub-bimodule generated by

$$
\mathcal{J}:=\left\langle\psi \lambda \otimes_{T_{P}} p-\psi \otimes_{T_{Q}} \lambda p\right\rangle_{\left\{\psi \in \omega(Q)^{*}, p \in \omega(P), \lambda: P \rightarrow Q \in \mathcal{T}\right\}}
$$

The representative functions functor.

The universal solution for both PR-1-2 is given by the following A-bimodule

$$
\mathcal{L}_{\mathfrak{k}}(\mathcal{T}, \omega):=\frac{\bigoplus_{P \in \mathcal{T}} \omega(P)^{*} \otimes_{T_{P}} \omega(P)}{\mathcal{J}},
$$

where T_{P} is the endomorphism algebra of an object $P \in \mathcal{T}$ and \mathcal{J} is the A-sub-bimodule generated by

$$
\mathcal{J}:=\left\langle\psi \lambda \otimes_{T_{P}} p-\psi \otimes_{T_{Q}} \lambda p\right\rangle_{\left\{\psi \in \omega(Q)^{*}, p \in \omega(P), \lambda: P \rightarrow Q \in \mathcal{T}\right\}}
$$

It turns out that $\left(A, \mathcal{L}_{k}(\mathcal{T}, \omega)\right)$ is a commutative Hopf algebroid, such that there is a commutative diagram:

where $\operatorname{comod}_{\mathcal{L}_{k}(\mathcal{T}, \omega)}$ is the full subcategory of comodules with finitely generated and projective underlying A-modules.

The representative functions functor.

The representative functions functor.

Let \mathscr{G} be a groupoid and consider the pair $\left(\operatorname{rep}_{\mathbb{k}}(\mathscr{G}), \omega\right)$. Applying the previous general constructions, we obtain a commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathcal{L}_{\mathfrak{k}}\left(\operatorname{rep}_{k_{k}}(\mathscr{G}), \omega\right)\right)$, which we denote by $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$.

The representative functions functor.

Let \mathscr{G} be a groupoid and consider the pair $\left(\operatorname{rep}_{\mathbb{k}}(\mathscr{G}), \boldsymbol{\omega}\right)$. Applying the previous general constructions, we obtain a commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathcal{L}_{\mathbb{k}}\left(\boldsymbol{r e p}_{\mathbf{k}_{k}}(\mathscr{G}), \boldsymbol{\omega}\right)\right)$, which we denote by $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$.
The commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$ is called the representative functions algebra of the groupoid \mathscr{G}.

The representative functions functor.

Let \mathscr{G} be a groupoid and consider the pair $\left(\operatorname{rep}_{\mathbb{k}}(\mathscr{G}), \omega\right)$. Applying the previous general constructions, we obtain a commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathcal{L}_{\mathbb{k}}\left(\operatorname{rep}_{\mathbf{k}_{k}}(\mathscr{G}), \boldsymbol{\omega}\right)\right)$, which we denote by $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$.
The commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$ is called the representative functions algebra of the groupoid \mathscr{G}.

The terminology "functions" is justified by the following $\left(A_{0}(\mathscr{G}) \otimes_{k} A_{0}(\mathscr{G})\right)$-algebra map:

$$
\xi: \mathscr{R}_{\mathbb{k}}(\mathscr{G}) \longrightarrow A_{1}(\mathscr{G}),
$$

where $A_{1}(\mathscr{G})$ is an $A_{0}(\mathscr{G}) \otimes_{\nwarrow} A_{0}(\mathscr{G})$-algebra, as before by reflecting the groupoid structure of \mathscr{G}.

The representative functions functor.

Let \mathscr{G} be a groupoid and consider the pair $\left(\mathbf{r e p}_{k}(\mathscr{G}), \boldsymbol{\omega}\right)$. Applying the previous general constructions, we obtain a commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathcal{L}_{k}\left(\right.\right.$ rep $\left.\left._{k}(\mathscr{G}), \boldsymbol{\omega}\right)\right)$, which we denote by $\left(A_{0}(\mathscr{G}), \mathscr{R}_{k}(\mathscr{G})\right)$.
The commutative Hopf algebroid $\left(A_{0}(\mathscr{G}), \mathscr{R}_{1}(\mathscr{G})\right)$ is called the representative functions algebra of the groupoid \mathscr{G}.

The terminology "functions" is justified by the following $\left(A_{0}(\mathscr{G}) \otimes_{k} A_{0}(\mathscr{G})\right.$)-algebra map:

$$
\xi: \mathscr{R}_{k}(\mathscr{G}) \longrightarrow A_{1}(\mathscr{G}),
$$

where $A_{1}(\mathscr{G})$ is an $A_{0}(\mathscr{G}) \otimes_{\star} A_{0}(\mathscr{G})$-algebra, as before by reflecting the groupoid structure of \mathscr{G}.
The representative functions establish a contravariant functor:

$$
\mathscr{R}_{k}: \text { Grpd } \longrightarrow \text { CHAlg } g_{k}
$$

from the category of abstract groupoids to the category of commutative Hopf algebroids.

Examples of representative functions algebra.

Examples of representative functions algebra.

(•) If G is a groupoids with only one object, that is, a group, then $\mathscr{R}_{\mathbb{R}}(G)$ is the usual Hopf algebra of representative funcions on the group G. This is isomorphic to the finite dual $\mathbb{k}[G]^{0}$ of the group algebra $\mathbb{k}[G]$.

Examples of representative functions algebra.

(\bullet) If G is a groupoids with only one object, that is, a group, then $\mathscr{R}_{\mathbb{k}}(G)$ is the usual Hopf algebra of representative funcions on the group G. This is isomorphic to the finite dual $\mathbb{k}[G]^{\circ}$ of the group algebra $\mathbb{k}[G]$.
(-) Let $X=\{1,2\}$ be a set of two elements and consider as before the groupoid $\mathscr{G}^{\{1,2\}}$ of pairs and denote by $A:=\mathbb{k} \times \mathbb{k}$ its base algebra. Then

$$
\mathscr{R}_{\mathbf{k}}(\mathscr{G})=\frac{\bigoplus_{n \in \mathbb{N}} A^{n} \otimes_{M_{n}(\boxed{k})} A^{n}}{\left\langle v \otimes_{M_{n}(\mathbb{k})} \lambda w-\lambda^{t} v \otimes_{M_{m}(k)} w\right\rangle_{v \in A^{n}, w \in A^{m}, \lambda \in M_{m \times n}(\mathbb{k})}} .
$$

Examples of representative functions algebra.

(\bullet) If G is a groupoids with only one object, that is, a group, then $\mathscr{R}_{\mathbb{k}}(G)$ is the usual Hopf algebra of representative funcions on the group G. This is isomorphic to the finite dual $\mathbb{k}[G]^{0}$ of the group algebra $\mathbb{k}[G]$.
(-) Let $X=\{1,2\}$ be a set of two elements and consider as before the groupoid $\mathscr{G}^{\{1,2\}}$ of pairs and denote by $A:=\mathbb{k} \times \mathbb{k}$ its base algebra. Then

$$
\mathscr{R}_{\mathbf{k}}(\mathscr{G})=\frac{\bigoplus_{n \in \mathbb{N}} A^{n} \otimes_{M_{n}(\boxed{)}} A^{n}}{\left\langle V \otimes_{M_{n}(\boxed{x})} \lambda w-\lambda^{t} v \otimes_{M_{m}(\boxed{)}} w\right\rangle_{V \in A^{n}, w \in A^{m}, \lambda \in M_{m \times n}(\mathbb{k})}} .
$$

(\bullet) Let $\mathscr{G}: G \times X \underset{\Longrightarrow}{\leftrightharpoons} X$ be an action groupoid. Then there is a morphism of Hopf algebroids:

$$
\left(\mathbb{k}^{X}, \mathbb{k}^{X} \otimes \mathscr{R}_{\mathbb{k}}(G) \otimes \mathbb{k}^{X}\right) \longrightarrow\left(\mathbb{k}^{X}, \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right) .
$$

Furthermore, if the action is transitive, then any isotropy Hopf algebra $\left(\mathbb{k}_{x}, \mathscr{R}_{\mathbb{k}}(\mathscr{G})^{x}\right)$, for $x \in X$, is isomorphic to ($\left.\mathbb{k}_{,}, \mathscr{R}_{\mathbb{k}}(G)\right)$.
In general, $\mathscr{R}_{\mathbb{k}}(\mathscr{G})$ is not a split Hopf algebroid (i.e., not isomorphic to $\left.\mathbb{k}^{X} \otimes \mathscr{R}_{\mathbb{k}}(G)\right)$

The contravariant adjunction.

The contravariant adjunction.

The properties of $\mathscr{R}_{k}(\mathscr{G})$ when \mathscr{G} is transitive.

The contravariant adjunction.

The properties of $\mathscr{R}_{\mathbb{1}}(\mathscr{G})$ when \mathscr{G} is transitive. Let \mathscr{G} be a transitive groupoid, then its algebra of representative functions enjoys the following properties:

The contravariant adjunction.

The properties of $\mathscr{R}_{1 k}(\mathscr{G})$ when \mathscr{G} is transitive. Let \mathscr{G} be a transitive groupoid, then its algebra of representative functions enjoys the following properties:

- $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$ is a transitive Hopf algebroid, in the sense that each of the fibers of its associated presheaf of groupoids is actually a transitive groupoids (i.e., each of the groupoids $\left(\mathscr{R}_{k}(\mathscr{G})(C), A_{0}(\mathscr{G})(C)\right)$ is transitive, for any commutative algebra C). The notation is $R(C):=\operatorname{Alg}_{\mathbb{k}}(R, C)$.

The contravariant adjunction.

The properties of $\mathscr{R}_{k}(\mathscr{G})$ when \mathscr{G} is transitive. Let \mathscr{G} be a transitive groupoid, then its algebra of representative functions enjoys the following properties:

- $\left(A_{0}(\mathscr{G}), \mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$ is a transitive Hopf algebroid, in the sense that each of the fibers of its associated presheaf of groupoids is actually a transitive groupoids (i.e., each of the groupoids $\left(\mathscr{R}_{k}(\mathscr{G})(C), A_{0}(\mathscr{G})(C)\right)$ is transitive, for any commutative algebra C). The notation is $R(C):=\operatorname{Alg}_{k}(R, C)$.
- The fibre functor $\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{K}}(\mathscr{G}) \rightarrow \operatorname{proj}\left(A_{0}(\mathscr{G})\right)$ induces a monoidal equivalence between the category $\operatorname{rep}_{k}(\mathscr{G})$ and the category $\operatorname{comod}_{\mathscr{R}_{k}(\mathscr{G})}$ of comodules with finitely generated underlying module.

The contravariant adjunction.

The properties of $\mathscr{R}_{k}(\mathscr{G})$ when \mathscr{G} is transitive. Let \mathscr{G} be a transitive groupoid, then its algebra of representative functions enjoys the following properties:

- $\left(A_{0}(\mathscr{G}), \mathscr{R}_{k}(\mathscr{G})\right)$ is a transitive Hopf algebroid, in the sense that each of the fibers of its associated presheaf of groupoids is actually a transitive groupoids (i.e., each of the groupoids $\left(\mathscr{R}_{k}(\mathscr{G})(C), A_{0}(\mathscr{G})(C)\right)$ is transitive, for any commutative algebra C). The notation is $R(C):=\operatorname{Alg}_{k}(R, C)$.
- The fibre functor $\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{K}}(\mathscr{G}) \rightarrow \operatorname{proj}\left(A_{0}(\mathscr{G})\right)$ induces a monoidal equivalence between the category $\operatorname{rep}_{k}(\mathscr{G})$ and the category $\operatorname{comod}_{\mathscr{R}_{k}(\mathscr{G})}$ of comodules with finitely generated underlying module.
- Any comodule M in $\operatorname{comod}_{\mathscr{R}_{\star}(\mathscr{G})}$ is a locally free $A_{0}(\mathscr{G})$-module with constant rank, in the sense that, if for some $x \in G_{0}$, we have $\operatorname{dim}_{\mathbb{k}}\left(M_{x}\right)=n$, then so is the dimension of any other fibre.

The contravariant adjunction.

The contravariant adjunction.

The character functor and the counit. Let (A, \mathcal{H}) be a commutative Hopf algebroid such that $A \neq 0$ and $\operatorname{Alg}_{\mathbb{k}}(A, \mathbb{K}) \neq \emptyset$. The groupoid

$$
\mathscr{H}(\mathbb{k}): A \lg (\mathcal{H}, \mathbb{k}) \bar{t}_{t}^{*} \Longrightarrow A g_{\mathbb{k}}(A, \mathbb{k}),
$$

is referred to as the character groupoid of (A, \mathcal{H}).

The contravariant adjunction.

The character functor and the counit. Let (A, \mathcal{H}) be a commutative Hopf algebroid such that $A \neq 0$ and $\operatorname{Alg}_{\mathbb{k}}(A, \mathbb{k}) \neq \emptyset$. The groupoid

$$
\mathscr{H}(\mathbb{k}): \operatorname{Alg}_{\mathbb{k}}(\mathcal{H}, \mathbb{k}) \bar{t}_{t}^{s^{*}} \leftrightharpoons A \lg _{\mathbb{k}}(A, \mathbb{k})
$$

is referred to as the character groupoid of (A, \mathcal{H}).
This establishes a contravariant functor

$$
\chi_{\mathbb{k}}: \text { CHAlgd } d_{\underline{k}} \longrightarrow \text { Grpd }
$$

from the category of commutative Hopf algebroids to the category of groupoids.

The contravariant adjunction.

The character functor and the counit. Let (A, \mathcal{H}) be a commutative Hopf algebroid such that $A \neq 0$ and $\operatorname{Alg}_{\mathbb{k}}(A, \mathbb{k}) \neq \emptyset$. The groupoid

$$
\mathscr{H}(\mathbb{k}): A l g_{\mathbb{k}}(\mathcal{H}, \mathbb{k}) \bar{t}_{t^{*}}^{s^{*} \Longrightarrow} A l_{\mathbb{k}}(A, \mathbb{K}),
$$

is referred to as the character groupoid of (A, \mathcal{H}).
This establishes a contravariant functor

$$
\chi_{\underline{k}}: \text { CHAlgd }_{k} \longrightarrow \text { Grpd }
$$

from the category of commutative Hopf algebroids to the category of groupoids.
Furthermore, for any groupoid \mathscr{G}, we have a natural transformation:

$$
\mathscr{G} \longrightarrow \chi_{\mathbb{K}} \circ \mathscr{R}_{\mathbb{k}}(\mathscr{G}),
$$

which is not in general a monomorphism. When it is, the groupoid $\chi_{\mathfrak{k}}\left(\mathscr{R}_{\mathbb{k}}(\mathscr{G})\right)$ is sometimes called the algebraic cover of \mathscr{G}.

The contravariant adjunction.

[^0]
The contravariant adjunction.

The unit. Let (A, \mathcal{H}) be a transitive Hopf algebroid. Then

The contravariant adjunction.

The unit. Let (A, \mathcal{H}) be a transitive Hopf algebroid. Then

- (A, \mathcal{H}) is a flat Hopf algebroid. The category $\operatorname{comod}_{\mathcal{H}}$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category, and any object in this category is finitely generated and projective A-module;

The contravariant adjunction.

The unit. Let (A, \mathcal{H}) be a transitive Hopf algebroid. Then

- (A, \mathcal{H}) is a flat Hopf algebroid. The category $\operatorname{comod}_{\mathcal{H}}$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category, and any object in this category is finitely generated and projective A-module;
- the canonical map

$$
\mathscr{L}_{\mathbb{k}}\left(\operatorname{comod}_{\mathcal{H}}, O\right) \longrightarrow \mathcal{H}, \quad \text { where } O: \operatorname{comod}_{\mathcal{H}} \rightarrow \operatorname{proj}(A),
$$

is an isomorphism of Hopf algebroids;

- there is a symmetric monoidal functor

$$
\mathcal{F}: \operatorname{comod}_{\mathcal{H}} \longrightarrow \operatorname{rep}\left(\chi_{\mathfrak{k}}(\mathcal{H})\right),
$$

which is a morphism of fibre functors.

The contravariant adjunction.

The unit. Let (A, \mathcal{H}) be a transitive Hopf algebroid. Then

- (A, \mathcal{H}) is a flat Hopf algebroid. The category $\operatorname{comod}_{\mathcal{H}}$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category, and any object in this category is finitely generated and projective A-module;
- the canonical map

$$
\mathscr{L}_{k}\left(\operatorname{comod}_{\mathcal{H}}, O\right) \longrightarrow \mathcal{H}, \quad \text { where } O: \operatorname{comod}_{\mathcal{H}} \rightarrow \operatorname{proj}(A),
$$

is an isomorphism of Hopf algebroids;

- there is a symmetric monoidal functor

$$
\mathcal{F}: \operatorname{comod}_{\mathcal{H}} \longrightarrow \operatorname{rep}\left(\chi_{\mathbb{k}}(\mathcal{H})\right),
$$

which is a morphism of fibre functors.

- there is a natural morphism of Hopf transitive Hopf algebroids:

$$
(A, \mathcal{H}) \longrightarrow\left(A_{0}\left(\chi_{\mathfrak{k}}(\mathcal{H})\right), \mathscr{R}_{\mathbb{k}}\left(\chi_{\mathbb{k}}(\mathcal{H})\right)\right)
$$

The contravariant adjunction.

[^1]
The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids, and by TCHAlgd ${ }_{\text {k }}$ the full subcategory of transitive commutative Hopf algebroids.

The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids, and by TCHAlgd ${ }_{k}$ the full subcategory of transitive commutative Hopf algebroids.

As we have seen before, the represenative functions functor define a contravariant functor

$$
\mathscr{R}_{\mathbb{k}}: \text { TGrpd } \longrightarrow \text { TCHAlgd }_{\underline{k}}, \quad \mathscr{G} \longrightarrow \mathscr{R}_{\mathbb{k}}(\mathscr{G}) .
$$

The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids, and by TCHAlgd ${ }_{\text {k }}$ the full subcategory of transitive commutative Hopf algebroids.

As we have seen before, the represenative functions functor define a contravariant functor

$$
\mathscr{R}_{\mathbf{k}}: \text { TGrpd } \longrightarrow \text { TCHAlgd }_{\mathrm{k}}, \quad \mathscr{G} \longrightarrow \mathscr{R}_{\mathbf{k}}(\mathscr{G}) .
$$

On the other hand, the character functor obviously define a contravariant functor

$$
\chi_{\mathbb{k}}: \text { TCHAlgd }_{\mathbb{k}} \longrightarrow \text { TGrpd }^{2} \quad(A, \mathcal{H}) \longrightarrow \chi_{k}(\mathcal{H}) .
$$

The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids, and by TCHAlgd ${ }_{\text {k }}$ the full subcategory of transitive commutative Hopf algebroids.

As we have seen before, the represenative functions functor define a contravariant functor

$$
\mathscr{R}_{\mathbf{k}}: \text { TGrpd } \longrightarrow \text { TCHAlgd }_{\mathrm{k}}, \quad \mathscr{G} \longrightarrow \mathscr{R}_{\mathbf{k}}(\mathscr{G}) .
$$

On the other hand, the character functor obviously define a contravariant functor

$$
\chi_{\mathfrak{k}}: \text { TCHAlgd }_{\mathbb{k}} \longrightarrow \text { TGrpd }^{2}, \quad(A, \mathcal{H}) \longrightarrow \chi_{\mathbb{k}}(\mathcal{H})
$$

There is a natural isomorphism

$$
\operatorname{TGrpd}\left(-, \chi_{\mathbb{k}}(+)\right) \cong \operatorname{TCHAlgd}_{\mathbb{k}}\left(+, \mathscr{R}_{\mathbb{k}}(-)\right) .
$$

HAPPY BIRTHDAY STEF

[^0]:

[^1]:

