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Categories, functors and natural transformations.

Categories: definition and examples.

A category (precisely a Hom-set category) consists of the following data:

A collections of objects C0 (or the ’class’ of object ob(C)),

for any two objects X,Y in C0, there is a set of arrows, or morphisms
denoted by C(X,Y), where any of the sets C(X, X) contains a special
element denote 1X called the identity morphism of X. The set of all
morphism is denoted by C1.

Together with an associative and unital composition law:

HomC(X,Y) × HomC(Y,Z) −→ HomC(X,Z), ( f , g) 7−→ g ◦ f

If the ’class’ of object C0 is actually a set, then C is said to be a small category.
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Categories, functors and natural transformations.

Examples of categories.

A category with one object is a monoid. If every arrow is invertible, then
we have a group, instead.

Any directed graph can be considered as a category,

The collection of all sets and maps between them form the category
S ets.

Abelian groups and their morphisms from the category Ab.

More general for any ring A right A-modules and their morphisms form a
category ModA.

Given a group G, we have the category Repk(G) of k-representations of
G, as well as the category of G-sets.

Given a poset (P,≤) one can consider the category whose collection of
objects is the set P it self and P(p, q) contains one element if p ≤ q and
empty otherwise. Take for instance a topological space X and consider it
poset Open(X) of all open subsets with inclusion as partial order.
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Categories, functors and natural transformations.

More examples of categories.

Let X be a topological space and k a
topological base field (e.g., k = R or C). A k-vector bundle E = (E, π) over X
consists of:

1 a family {Ex}x ∈ X of finite-dimensional k-vector spaces,

2 The disjoint union E =
⊎

x ∈ X Ex admits a topology, which induces the natural
topology on each (fibre) Ex, such that the canonical projection π : E → X is
continuous.

3 for every point x ∈ X, there exist a neighbourhood U of x, finite-dimensional
k-vector space V and a homeomorphism ϕ : U × V → π−1(U) such that the
diagram

U × V

pr1 ''

ϕ // π−1(U)

π
|π−1(U)ww

U

commutes, and such that for every point the obvious map ϕy : V → Ey is k-linear.
such that EU is a isomorphic to a trivial bundle.

Morphism of vector bundles are intuitively defined and the category VBk(X) so
is obtained, is referred to as the category of k-vector bundle over X.
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Categories, functors and natural transformations.

Functors between categories.

A functor is a kind of "morphism” between
two categories. Precisely, a functor F : C → D consists of the following data:

An assignment F0 : C0 → D0,

A map F1 : C(X,Y) −→ D(F0(X),F0(Y)) which satisfies

F1(g ◦ f ) = F1(g) ◦ F1( f ) (covariant), F (1X) = 1F0(X).

Examples of functors.

The way in which we forget the structure of an abelian group and take its
underlying set is a functor O : Ab→ S ets. Similarly, we have:
O : Repk(G)→ Vectk and O : ModA → Ab.

The identity functor idC of a category C. For an object X in C, we have the
covariant functor C(X,−) : C → S ets and the contravariant functor:
C(−, X) : C → S ets.

Let k|k0 be a field extension and V a k-vector space. We can then
consider the functor − ⊗k0 V : Vectk0 → Vectk.
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Categories, functors and natural transformations.

Natural transformations.

Given two functors F ,G : C → D, a natural
transformation η : F → G is the following data and constraints:

A collection of morphisms ηX : F (X)→ G(X),
For any morphism f : X → Y in C the diagram commutes:

F (X)
ηX //

F ( f )
��

G(X)
G( f )
��

F (Y)
ηY // G(Y)

Examples of natural transformation. Let F : C → D be a functor and
consider the associated functor D(F(−),+) : Cop ×D → S ets. Then any
arrow f : X → Y in C1 determines a natural transformation

ζ− : D(F(Y),−) 7−→ D(F(X),−),(
ζP : D(F(Y), P) 7−→ D(F(X), P),

[
g 7−→ g ◦ F ( f )

])
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Adjunctions and equivalence between categories.

Adjunction between functors.

An adjunction between two functors
F : C → D and G : D → C is a natural isomorphism (on both
components)

D(F (X), P)
ΦX, P // C(X,G(P))

for any pair of objects X in C and P in D. Notation: F a G

Example of Adjunction.
Consider a field extension k|k0 and V a k-vector space. Then
− ⊗k0 V a Vectk(V,−).
Let Top denote the category of topological spaces and their
continuous maps and S S ets the category of simplicial sets. The
geometric realization | − | : S S ets→ Top and the singular
S(−) : Top→ S sets functors define the adjunction | − | a S.

For a given small category C the associated simplicial set
· · · C2

//
//
// C1oo

oo //
// C0

oo is called the nerve of C.
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Pull-backs

Let C be a category and consider a diagram

X
f
��

Y
g // Z

of morphisms in C.

The pull-back of this diagram, if it exists, is an object of C denoted by
X f× g Y with the following universal property:

U

��

..

''
X f× g Y //

��

X
f
��

Y
g // Z
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Abstract groupoids: Definition and examples.

Abstract groupoid.

A groupoid is a small category G where every
arrow is invertible (or any morphism is an isomorphism).
That is a pair of sets (G1,G0) and a diagram

G2

//

//
· // G1oo

oo ��
s //
t // G0ιoo

where G2 := G1 s× t G1 · // G1 is the multiplication (opposite to the
composition), and the rest of the maps are the obvious ones.

Whenever pull-backs are allowed groupoid objects are allowed as well:

Categories Groupoid objects
Top Topological groupoids

Diff-manifolds Lie groupoids
Algebraic Varieties Algebraic groupoids

Groups Crossed modules
(pre) Sheaves (pre) Stacks
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Abstract groupoids: Definition and examples.

Some examples of groupoids.

Any set can be considered as a discrete category (only identities
arrow). This what is known as a trivial groupoid.
Any group is a groupoid with one object. The multiplication is that
of the group. Thus every arrow is a loop.
The groupoid of pairs is a groupoid of the form (X × X, X) with
source an target the first and second projection. The multiplication
goes as follows: (x, y) (y, z) = (x, z), (x, y)−1 = (y, x).
Any equivalence relation R ⊆ X × X defines what is known as the
equivalence relation groupoid whose structure is analogue to the
previous one.
The action groupoid is a groupoid of the form (X ×G, X) where X a
right G-set. The source is the action while the target is the first
projection. The multiplication and the inverse are given by:
(x, g) (y, h) = (x, gh), (x, g)−1 = (gx, g−1).
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Abstract groupoids: Definition and examples.

The Poincaré groupoid.

This seems to be one of the first example of groupoids (in
mathematics) which was perhaps discovered by Henri Poincaré.
Of course, there are more other examples of groupoids, specially, in
differential geometry, and were mostly promoted by Charles
Ehresmann.
Let X be a topological space, and denoted by [γ] the homotopy
equivalence class of a path γ : [0, 1]→ X whose source is denoted by
s([γ]) := γ(0) and its target by t([γ]) := γ(1). Consider, for every x ∈ X,
the class ιx := [ix] of the constant ix path on x.
The partial multiplication and the inverse of homotopy-classes are
given by: [γ] [δ] = [γ · δ] and [γ]−1 = [−γ], where

γ · δ :=

γ(2t) if 0 ≤ t ≤ 1
2

δ(2t − 1) if 1
2 ≤ t ≤ 1

(−γ)(t) = γ(1 − t)

The groupoid so is constructed is denoted by π(X).
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mathematics) which was perhaps discovered by Henri Poincaré.

Of course, there are more other examples of groupoids, specially, in
differential geometry, and were mostly promoted by Charles
Ehresmann.
Let X be a topological space, and denoted by [γ] the homotopy
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Morphism of groupoids.

A morphism of groupoids φ : H → G is a functor between the
underlying categories.

That is, φ = (φ0, φ1)), where φ0 : H0 → G0 and
φ1 : H1 → G1 satisfying the pertinent compatibility conditions:

φ1 ◦ ι = ι ◦ φ0, φ0 ◦ s = s ◦ φ1, φ0 ◦ t = t ◦ φ1, φ1( f g) = φ1( f )φ1(g),

whenever the multiplication f g in H1 is permitted.
Some examples.

For any groupoid G then inclusion G(i) ↪→ G is a morphism of
groupoids.
Let ϕ : G → H be a morphism of groups, consider X and Y
respectively a right G and H sets with equivariant map f : X → Y.
Then we have a morphism of groupoids

X ×G
//
//

f×ϕ
��

Xoo

f
��

Y × H
//
// Yoo
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Left and right stars and the isotropy groups.

Left and right stars.

Given G a groupoid and an object x ∈ G0. We
define the left star of x as the set of all incoming arrow to x and the
right star of x as the set of all out-coming arrows from x:

t−1({x}) :=
{
g ∈ G1| t(g) = x

}
, s−1({x}) :=

{
g ∈ G1| s(g) = x

}
Clearly there is a bijection

t−1({x}) −→ s−1({x}), (
g 7−→ g−1

)
.

The isotropy group of x is the group of loops above x:

Gx :=
{
g ∈ G1| s(g) = t(g) = x

}
The fundamental groups π1(X, x) are the isotropy groups of π(X) at the
point x.
The isotropy groupoid is the bundle of groups G(i) =

⋃
x ∈G0 G

x → G0.
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Symmetry and groups.

Some classical definition.

The ancient notion of symmetry.

(Vitruvius, 1st Century BC):

”Symmetry is proportioned correspondence of the elements of the work itself, a
response, in any given part, of the separate parts to the appearance of the entire
figure as a whole. Just as in the human body there is a harmonious quality of
shapeliness expressed in terms of the cubit, foot, palm, digit, and other small units, so
it is in completing the work of architecture”.

The modern notion of symmetry.

(Hermann Weyl, 1952):

”Given a spatial configuration F, those automorphisms of space which leave F

unchanged form a group Γ, and this group describes exactly the symmetry possessed
by F”.
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Symmetries and groupoids.

Example of Weyl’s symmetry: The snowflake

By considering all possible transformation interchanging the equivalent
part, the symmetry of this spatial configuration is governed by the

dihedral group D6.
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Symmetries and groupoids.

The Hydrogen Transition.

Spectral lines of the Hydrogen Atom
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Symmetries and groupoids.

The Hydrogen Transition.

Spectral lines of the Hydrogen Atom
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Symmetries and groupoids.

Groupoid and the birth of non-commutative geometry.

The different levels of energies E(n)1≤ n≤7, form a groupoids of pairs,
this seems was first observed by Alain Connes and was perhaps one
of his motivation to formulate his non commutative geometry.
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Symmetries and groupoids.

Molecular vibrations and vector bundle.

Consider the space of motions of
Carbon Tetrachloride. At equilibrium the carbon atom lies at the center, and
the four chlorine atoms at the vertices of a regular tetrahedron.

4

C

1

2

3

vc ∈ E
C

v 1
∈

E 1

v 3
∈

E 3

v4
∈

E
4

v2
∈

E
2

Figura: Molecular model of Carbon Tetrachloride.

In a small displacement from equilibrium, each of the atoms moves in its own
three-dimensional vector space: E1, E2, E3, E4 and EC.
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Symmetries and groupoids.

Molecular vibrations and vector bundle.

A displacement of the molecule
as a whole moves each of the atoms, and so is a function f such that
f (C) ∈ EC and f (i) ∈ Ei, for i = 1, 2, 3, 4, which tells how each atom has been
displaced from its equilibrium.
Now, let us see how the group S 4 acts on the set of displacements. Consider,
for example, the action of the element (123) ∈ S 4. On the molecule itself, at
equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1, 2 and 3 and
leaves 4 fixed:

4

C

1

2

3
(123)
−→

4

C

1

2

3

Figura: The action of the element (123) ∈ S 4 on the displacements of Carbon Tetrachloride.
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Now, let us see how the group S 4 acts on the set of displacements. Consider,
for example, the action of the element (123) ∈ S 4. On the molecule itself, at
equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1, 2 and 3 and
leaves 4 fixed:

4

C

1

2

3
(123)
−→

4

C

1

2

3

Figura: The action of the element (123) ∈ S 4 on the displacements of Carbon Tetrachloride.
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Homogeneous vector bundles.

Molecular vibrations and vector bundle.

Set M = {1, 2, 2, 3, 4,C} to be the
set of atoms, in the previous example. Then (E, π), where E =

⊎
x ∈M Ex and

π : E → M is the obvious maps, is a S 4-equivariant vector bundle, or
homogeneous vector bundle, whose associated module of global sections:

Γ(E) :=
{
σ : M → E| π ◦ σ = identity

}
is the space of displacements of the molecule as a whole, and the action of
S 4 on Γ(E) might be considered as the action of the symmetry group on the
space of displacements.
In general let us assume that a group G acts on set M and consider it
associated action groupoid G := (G × M,M). Then any G-equivariant vector
bundle over M leads to a linear representation on G. The converse also holds
true, thus, any finite-dimensional (having the same dimension at each fibre)
linear representation of G, gives rise to a G-equivariant vector bundle.
There is in fact an equivalence of (symmetric monoidal) categories between
the category of G-equivariant bundles over M and that of linear
representations of G.

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 23 / 42



Homogeneous vector bundles.

Molecular vibrations and vector bundle. Set M = {1, 2, 2, 3, 4,C} to be the
set of atoms, in the previous example. Then (E, π), where E =

⊎
x ∈M Ex and

π : E → M is the obvious maps, is a S 4-equivariant vector bundle, or
homogeneous vector bundle, whose associated module of global sections:

Γ(E) :=
{
σ : M → E| π ◦ σ = identity

}
is the space of displacements of the molecule as a whole, and the action of
S 4 on Γ(E) might be considered as the action of the symmetry group on the
space of displacements.

In general let us assume that a group G acts on set M and consider it
associated action groupoid G := (G × M,M). Then any G-equivariant vector
bundle over M leads to a linear representation on G. The converse also holds
true, thus, any finite-dimensional (having the same dimension at each fibre)
linear representation of G, gives rise to a G-equivariant vector bundle.
There is in fact an equivalence of (symmetric monoidal) categories between
the category of G-equivariant bundles over M and that of linear
representations of G.

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 23 / 42



Homogeneous vector bundles.

Molecular vibrations and vector bundle. Set M = {1, 2, 2, 3, 4,C} to be the
set of atoms, in the previous example. Then (E, π), where E =

⊎
x ∈M Ex and

π : E → M is the obvious maps, is a S 4-equivariant vector bundle, or
homogeneous vector bundle, whose associated module of global sections:

Γ(E) :=
{
σ : M → E| π ◦ σ = identity

}
is the space of displacements of the molecule as a whole, and the action of
S 4 on Γ(E) might be considered as the action of the symmetry group on the
space of displacements.
In general let us assume that a group G acts on set M and consider it
associated action groupoid G := (G × M,M). Then any G-equivariant vector
bundle over M leads to a linear representation on G. The converse also holds
true, thus, any finite-dimensional (having the same dimension at each fibre)
linear representation of G, gives rise to a G-equivariant vector bundle.

There is in fact an equivalence of (symmetric monoidal) categories between
the category of G-equivariant bundles over M and that of linear
representations of G.

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 23 / 42



Homogeneous vector bundles.

Molecular vibrations and vector bundle. Set M = {1, 2, 2, 3, 4,C} to be the
set of atoms, in the previous example. Then (E, π), where E =

⊎
x ∈M Ex and

π : E → M is the obvious maps, is a S 4-equivariant vector bundle, or
homogeneous vector bundle, whose associated module of global sections:

Γ(E) :=
{
σ : M → E| π ◦ σ = identity

}
is the space of displacements of the molecule as a whole, and the action of
S 4 on Γ(E) might be considered as the action of the symmetry group on the
space of displacements.
In general let us assume that a group G acts on set M and consider it
associated action groupoid G := (G × M,M). Then any G-equivariant vector
bundle over M leads to a linear representation on G. The converse also holds
true, thus, any finite-dimensional (having the same dimension at each fibre)
linear representation of G, gives rise to a G-equivariant vector bundle.
There is in fact an equivalence of (symmetric monoidal) categories between
the category of G-equivariant bundles over M and that of linear
representations of G.

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 23 / 42



1 Rappels on categories and equivalences.
Categories, functors and natural transformations.
Adjunctions and equivalence between categories.
The pull-back in general categories.

2 Groupoids and Symmetries.
Abstract groupoids: Definition and examples.
Left and right stars and the isotropy groups.
Symmetries and groupoids.
Homogeneous vector bundles

3 Linear representations of abstract groupoids.
The context, motivations and overviews.
Linear representations of groupoids.
The representative functions functor.
The contravariant adjunction.
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The context, motivations and overviews.

Not only groups and their representations are used in physics but also their
algebra of representatives functions, that is, Hopf algebras (e.g., in the
normalization process in QFT).
The classical picture of groups is represented by the following diagram

Grp

Rk
''

duality CHAlgk
χk

gg

CTGrp

continous
((

anti-equivalence
� ?

OO

C̃HAlgRhh
?�

k=R

OO

CLGrp

smooth
((

anti-equivalence
� ?

OO

C̃HalgRhh
?�

OO

where ˜CHAlgk the subcategory of commutative real Hopf algebras with gauge
(i.e., a Hopf integral coming from the Haar measure) and with dense
character group in the linear dual.
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The context, motivations and overviews.

The ultimate goal of our research on linear representations of groupoids is to
give a new approach to Tannaka-Krein duality for compact topological
groupoids, and try to recognize the theory of compact Lie groupoids as a part
of the theory of real affine algebraic groupoids.
In a very simplest way, we are attempted to complete the following diagram

Grpd

Rk
''

duality CHAlgdk
χk

hh Grpd: abstract groupoids

CTGrpd
&&

anti-equivalence
� ?

OO

?hh
?�

k=R

OO

CTGrpd: comapct topological groupoids

CLGrpd
&&

anti-equivalence
� ?

OO

?hh
?�

OO

CLGrpd: compact Lie groupoids

In this talk, we will see how to construct the functor Rk and show the main
steps in building up the duality between the category of transitive groupoids
and the category of (geometrically) transitive commutative Hopf algebroids.
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Finite dimensional representations of groupoids.

Let k denotes a ground base field, Vectk its category of vector spaces, and
vectk the full subcategory of finite dimensional ones.

For a given groupoid
G : G1

s //
t // G0ιoo ,

we consider the category of all G-representations as the symmetric monoidal
k-linear abelian category of functors

[
G, Vectk

]
with identity object

I : G0 → Vectk, x→ k, g→ 1k.

For any G-representation V the image of an object x ∈ G0 is denoted by Vx,
and referred to as the fibre of V at x.

The disjoint union of all the fibres of a G-representation V is denoted by
V =

⋃
x ∈G0
Vx and the canonical projection by πV : V → G0. This called the

associated vector G-bundle of the representation V.
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Finite dimensional representations of groupoids.

Let V be a G-representation in
[
G, vectk

]
, we define its dimension function as

the map
dV : G0 −→ N,

(
x 7−→ dimk

(
Vx

))
,

which clearly extends to a map dV : π0(G)→ N.
A G-representation V in

[
G, vectk

]
is called a finite dimensional representation,

provided that the dimension function dV has a finite image, that is, dV(G0) is a
finite subset of the set of positive integers N.
We denote by repk(G) the category of finite dimensional representation over
G. Clearly, we have that

repk(G) =
[
G, vectk

]
, when π0(G) is a finite set.

Let V andW be two representations in repk(G). Then

dV⊕W = dV + dW, dDV = dV, and dV⊗W = dV dW.

Therefore, the category repk(G) is a symmetric rigid monoidal k-linear abelian
category. But NOT locally finite, in general.
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Finite dimensional representations of groupoids.

Example of representations.
Consider the set X = {1, 2} and denote by G{1,2} the associated groupoid of
pairs. Thus G0 = {1, 2} and G1 =

{
(1, 1), (1, 2), (2, 1), (2, 2)

}
.

An object in repk(G{1,2}) is then a pair (n,N), where n is a positive integer, and
N ∈ GLn(k).
The vector spaces of homomorphisms are given by

repk(G
{1,2})

(
(n,N), (m,M)

)
= Mm, n(k),

the k-vector space of m × n matrices with matrix multiplication.

The other operations in repk(G{1,2}) are

(n,N) ⊕ (m,M) =
(
n + m,

(
N 0
0 M

) )
, D(n,N) = (n,N t)

(n,N) ⊗ (m,M) =
(
nm, (N bi j)1≤i, j≤m

)
, where M = (bi j), and I = (1, 1).

Tr(n,N) = n.
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Finite dimensional representations of groupoids.

The transitive case.

Recall that a groupoid G is said to be transitive if for any
two objects x, y ∈ G0, there is an arrow g ∈ G1 such that s(g) = x and t(g) = y, or
equivalently, π0(G) is a singleton, i.e., a set with only one element.
Let G be a transitive groupoid. Then, the category repk(G) is a symmetric rigid
monoidal locally finite k-linear abelian category.
Furthermore, repk(G) admits a non trivial fibre functor to the category of finite
dimensional vector spaces. Namely, fix an object x ∈ G0, and consider the
functor

ωx : repk(G) −→ vectk,
(
V −→ Vx

)
.

Then ωx is a non trivial fibre functor, and ωx � ωy, for any x, y ∈ G0.
On the other hand, we have that k � Endrepk(G)(I), where I is the identity
G-representation.
Summarizing (repk(G),ωx) is a (neutral) Tannakian category in the sense of
Saavedra-Rivano, Deligne and Milne.
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Finite dimensional representations of groupoids.

The fibre functor on repk(G).

Let G be a groupoid and denote by A0(G) := kG0 its base algebra and by
A1(G) := kG1 its total algebra. By reflecting the groupoid structure of G, we have
a diagram of algebras:

A0(G)
s∗ //

t∗ // A1(G).ι∗oo

Let V be a finite dimensional G-representation and denote by
dV(G0) :=

{
n1, n2, · · · , nN

}
ordered as n1 < n2 < · · · < nN (where obviously the

maximal and minimal indices depend upon V).

The set of objects G0 is then a disjoint union G0 =
⋃N

i=1 Gi
V
, where each of the

Gi
V
’s is the inverse image Gi

V
:= d−1

V

(
{ni}

)
, for any i = 1, · · · ,N.
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Finite dimensional representations of groupoids.

This leads to a decomposition of the base algebra A0(G):

A0(G) = B1 × · · · · · · × BN ,

where each of Bi’s is the algebra of functions on Gi
V
.

We can then define the functor which acts on objects by:

ω : repk(G) −→ proj(A0(G)), V −→ PV = Bn1
1 × · · · × BnN

N

an A0(G)-module which corresponds to the above decomposition.
By identifying a G-representation in repk(G) with its associated vector
G-bundle, we can consider the k-vector space of ”global sections":

Γ(V) :=
{
s : G0 →V | πV ◦ s = idG0

}
.

Both functors ω and Γ are symmetric monoidal faithful functors. Moreover,
there is a tensorial natural isomorphism ω � Γ.
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The representative functions functor.

Tannakian reconstruction process and the universal Hopf algebroid.

Let us recall first some general facts. Assume we are given a pair (T , ω)
consisting of a symmetric monoidal rigid k-linear (essentially small) category
and a non trivial symmetric monoidal faithful functor ω : T → proj(A), where A
is a commutative k-algebra.

Associated to these data, there are at least two universal problems, which
have a common solution:

PR-1 The functor: A-Corings −→ Sets,

C −→
{
the set of funtorial right C-comodules structure on ω

}
is representable.

PR-2 The functor: (A ⊗ A)-CAlgk −→ Sets,(
A s //

t // C
)
−→ Iso⊗

(
t∗ω, s∗ω

)
is representable.
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The representative functions functor.

The universal solution for both PR-1-2 is given by the following A-bimodule

Lk(T , ω) :=

⊕
P ∈T

ω(P)∗ ⊗TP
ω(P)

J
,

where TP is the endomorphism algebra of an object P ∈ T and J is the
A-sub-bimodule generated by

J :=
〈
ψλ ⊗TP

p − ψ ⊗TQ
λp

〉{
ψ ∈ω(Q)∗, p ∈ω(P), λ:P→Q ∈T

}
It turns out that

(
A,Lk(T , ω)

)
is a commutative Hopf algebroid, such that there

is a commutative diagram:

T

ω ((

// comodLk(T ,ω)

Ouu
proj(A)

where comodLk(T ,ω) is the full subcategory of comodules with finitely
generated and projective underlying A-modules.
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The representative functions functor.

Let G be a groupoid and consider the pair
(
repk(G),ω

)
. Applying the previous

general constructions, we obtain a commutative Hopf algebroid(
A0(G),Lk

(
repk(G),ω

))
, which we denote by

(
A0(G),Rk(G)

)
.

The commutative Hopf algebroid
(
A0(G),Rk(G)

)
is called the representative

functions algebra (or algebroid) of the groupoid G.

The terminology ”functions” is justified by the following
(A0(G) ⊗k A0(G))-algebra map:

ξ : Rk(G) −→ A1(G),

where A1(G) is an A0(G) ⊗k A0(G)-algebra, as before by reflecting the groupoid
structure of G.
The representative functions establish a contravariant functor:

Rk : Grpd −→ CHAlgk
from the category of abstract groupoids to the category of commutative Hopf
algebroids.
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Representative functions algebroid.

Examples.

(•) If G is a groupoids with only one object, that is, a group, then Rk(G) is the
usual Hopf algebra of representative funcions on the group G. This is
isomorphic to the finite dual k[G]o of the group algebra k[G].

(•) Let X = {1, 2} be a set of two elements and consider as before the
groupoid G{1,2} of pairs and denote by A := k × k its base algebra. Then

Rk(G) =

⊕
n ∈N

An ⊗Mn (k) An

〈v ⊗Mn (k) λw − λtv ⊗Mm(k) w〉v ∈ An, w ∈ Am, λ ∈Mm×n(k)
.

(•) Let G: G × X
% //

pr1 // Xιoo be an action groupoid. Then there is a morphism
of Hopf algebroids:

(kX , kX ⊗ Rk(G) ⊗ kX) −→ (kX ,Rk(G)).

Furthermore, if the action is transitive, then any isotropy Hopf algebra
(kx,Rk(G)x), for x ∈ X, is isomorphic to (k,Rk(G)).
In general, Rk(G) is not a split Hopf algebroid (i.e., not isomorphic to
kX ⊗ Rk(G))

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 36 / 42



Representative functions algebroid.

Examples.

(•) If G is a groupoids with only one object, that is, a group, then Rk(G) is the
usual Hopf algebra of representative funcions on the group G. This is
isomorphic to the finite dual k[G]o of the group algebra k[G].

(•) Let X = {1, 2} be a set of two elements and consider as before the
groupoid G{1,2} of pairs and denote by A := k × k its base algebra. Then

Rk(G) =

⊕
n ∈N

An ⊗Mn (k) An

〈v ⊗Mn (k) λw − λtv ⊗Mm(k) w〉v ∈ An, w ∈ Am, λ ∈Mm×n(k)
.

(•) Let G: G × X
% //

pr1 // Xιoo be an action groupoid. Then there is a morphism
of Hopf algebroids:

(kX , kX ⊗ Rk(G) ⊗ kX) −→ (kX ,Rk(G)).

Furthermore, if the action is transitive, then any isotropy Hopf algebra
(kx,Rk(G)x), for x ∈ X, is isomorphic to (k,Rk(G)).
In general, Rk(G) is not a split Hopf algebroid (i.e., not isomorphic to
kX ⊗ Rk(G))

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 36 / 42



Representative functions algebroid.

Examples.

(•) If G is a groupoids with only one object, that is, a group, then Rk(G) is the
usual Hopf algebra of representative funcions on the group G. This is
isomorphic to the finite dual k[G]o of the group algebra k[G].

(•) Let X = {1, 2} be a set of two elements and consider as before the
groupoid G{1,2} of pairs and denote by A := k × k its base algebra. Then

Rk(G) =

⊕
n ∈N

An ⊗Mn (k) An

〈v ⊗Mn (k) λw − λtv ⊗Mm(k) w〉v ∈ An, w ∈ Am, λ ∈Mm×n(k)
.

(•) Let G: G × X
% //

pr1 // Xιoo be an action groupoid. Then there is a morphism
of Hopf algebroids:

(kX , kX ⊗ Rk(G) ⊗ kX) −→ (kX ,Rk(G)).

Furthermore, if the action is transitive, then any isotropy Hopf algebra
(kx,Rk(G)x), for x ∈ X, is isomorphic to (k,Rk(G)).
In general, Rk(G) is not a split Hopf algebroid (i.e., not isomorphic to
kX ⊗ Rk(G))

Departamento de Álgebra (UGR) Basic Theory of Abstract Groupoids. TETUÁN, December 2018. 36 / 42



The contravariant adjunction.

The properties of Rk(G) when G is transitive. Let G be a transitive groupoid,
then its algebra of representative functions enjoys the following properties:

(A0(G),Rk(G)) is a transitive Hopf algebroid, in the sense that each of the
fibers of its associated presheaf of groupoids is actually a transitive
groupoids
(i.e., each of the groupoids

(
Rk(G)(C), A0(G)(C)

)
is transitive, for any

commutative algebra C). The notation is R(C) := Algk(R,C).

The fibre functor ω : repk(G)→ proj(A0(G)) induces a monoidal
equivalence between the category repk(G) and the category comodRk(G)
of comodules with finitely generated underlying module.

Any comodule M in comodRk(G) is a locally free A0(G)-module with
constant rank, in the sense that, if for some x ∈ G0, we have
dimk(Mx) = n, then so is the dimension of any other fibre.
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The contravariant adjunction

The character functor and the counit. Let (A,H) be a commutative Hopf
algebroid such that A , 0 and Algk(A, k) , ∅. The groupoid

H(k) : Algk(H , k)
s∗ //

t∗ // Algk(A, k),ι∗oo

is referred to as the character groupoid of (A,H).

This establishes a contravariant functor

χk : CHAlgdk −→ Grpd

from the category of commutative Hopf algebroids to the category of
groupoids.
Furthermore, for any groupoid G, we have a natural transformation:

G −→ χk ◦ Rk(G),

which is not in general a monomorphism. When it is, the groupoid χk(Rk(G)) is
sometimes called the algebraic cover of G.
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The contravariant adjunction

The unit. Let (A,H) be a transitive Hopf algebroid. Then

(A,H) is a flat Hopf algebroid. The category comodH is a symmetric rigid
monoidal k-linear abelian category, and any object in this category is
finitely generated and projective A-module;

the canonical map

Lk(comodH ,O) −→ H , where O : comodH → proj(A),

is an isomorphism of Hopf algebroids;

there is a symmetric monoidal functor

F : comodH −→ rep
(
χk(H)

)
,

which is a morphism of fibre functors.

there is a natural morphism of Hopf transitive Hopf algebroids:

(A,H) −→
(
A0(χk(H)),Rk(χk(H))

)
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The contravariant adjunction.

Notations: Denotes by TGrpd the full subcategory of transitive groupoids, and
by TCHAlgdk the full subcategory of transitive commutative Hopf algebroids.

As we have seen before, the represenative functions functor define a
contravariant functor

Rk : TGrpd −→ TCHAlgdk, G −→ Rk(G).

On the other hand, the character functor obviously define a contravariant
functor

χk : TCHAlgdk −→ TGrpd, (A,H) −→ χk(H).

There is a natural isomorphism

TGrpd
(
− , χk(+)

)
� TCHAlgdk

(
+ , Rk(−)

)
.
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Alain, Connes:

“It is fashionable among mathematicians to despise groupoids and to
consider that only groups have an authentic mathematical status,

probably because of the pejorative suffix ’oid’. ”

Alan Weinstein:

“I hope to have convinced the reader that groupoids are worth knowing
about and worth looking out for.”

“Spero di aver convinto il lettore che i gruppoidi sono qualcosa che
valga la pena conoscere e investigare.”

“Espero haber convencido al lector de que merece la pena conocer los
groupoids y quedarse a la expectativa.”

“J’espère avoir convaincu le lecteur que les groupoïdes valent la peine
d’être connus et méritent d’être recherchés.”
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