Morita invariance in Hopf-(co)cyclic (co)homology.

Laiachi El Kaoutit Joint work with Niels Kowalzig

Universidad de Granada. Spain.
kaoutit@ugr.es

Congreso de la Real Sociedad Matemática Española.
Sesion: Teoría de anillos no conmutativos.
Santiago de Compostela, 21-25 enero 2013.

Motivations, overviews.

Motivations, overviews.

Problem. Give an algebraic formulation of the following geometric results:

Motivations, overviews.

Problem. Give an algebraic formulation of the following geometric results:

Motivations, overviews.

Problem. Give an algebraic formulation of the following geometric results:

Motivations, overviews.

Problem. Give an algebraic formulation of the following geometric results:

In Lie algebroids Theory
ןеләиәб әдоW
Two Morita equivalent Lie algebroids, they have isomorphic cohomology.

Motivations, overviews.

Motivations, overviews.

A Lie algebroid is a vector bundle $\mathcal{E} \rightarrow \mathcal{M}$ over a smooth manifold, together with a map of vector bundles $\omega: \mathcal{E} \rightarrow T \mathcal{M}$ and Lie structure $[-,-]$ on the vector space $\Gamma(\mathcal{E})$ of global smooth sections of \mathcal{E}, such that the induced map $\Gamma(\omega): \Gamma(\mathcal{E}) \rightarrow \Gamma(T \mathcal{M})$ is a Lie algebra map which satisfy: for all $X, Y \in \Gamma(\mathcal{E})$ and any $f \in \mathcal{C}^{\infty}(\mathcal{M})$ one has

$$
[X, f Y]=f[X, Y]+\Gamma(\omega)(X)(f) Y
$$

Motivations, overviews.

A Lie algebroid is a vector bundle $\mathcal{E} \rightarrow \mathcal{M}$ over a smooth manifold, together with a map of vector bundles $\omega: \mathcal{E} \rightarrow T \mathcal{M}$ and Lie structure $[-,-]$ on the vector space $\Gamma(\mathcal{E})$ of global smooth sections of \mathcal{E}, such that the induced map $\Gamma(\omega): \Gamma(\mathcal{E}) \rightarrow \Gamma(T \mathcal{M})$ is a Lie algebra map which satisfy: for all $X, Y \in \Gamma(\mathcal{E})$ and any $f \in \mathcal{C}^{\infty}(\mathcal{M})$ one has

$$
[X, f Y]=f[X, Y]+\Gamma(\omega)(X)(f) Y
$$

Two Lie algebroids $\left(\mathcal{E}_{i}, \mathcal{M}_{i}\right), i=1,2$, are said to be Morita equivalent provided that there exist surjective submersions $\varphi_{i}: Q \rightarrow \mathcal{M}_{i}$ with simply connected fibers such that:

Motivations, overviews.

A Lie algebroid is a vector bundle $\mathcal{E} \rightarrow \mathcal{M}$ over a smooth manifold, together with a map of vector bundles $\omega: \mathcal{E} \rightarrow T \mathcal{M}$ and Lie structure $[-,-]$ on the vector space $\Gamma(\mathcal{E})$ of global smooth sections of \mathcal{E}, such that the induced map $\Gamma(\omega): \Gamma(\mathcal{E}) \rightarrow \Gamma(T \mathcal{M})$ is a Lie algebra map which satisfy: for all $X, Y \in \Gamma(\mathcal{E})$ and any $f \in \mathcal{C}^{\infty}(\mathcal{M})$ one has

$$
[X, f Y]=f[X, Y]+\Gamma(\omega)(X)(f) Y
$$

Two Lie algebroids $\left(\mathcal{E}_{i}, \mathcal{M}_{i}\right), i=1,2$, are said to be Morita equivalent provided that there exist surjective submersions $\varphi_{i}: Q \rightarrow \mathcal{M}_{i}$ with simply connected fibers such that:

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?
We know that to each Lie algebroid $(\mathcal{E}, \mathcal{M})$ we can associated a left Hopf algebroid $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$. In fact there is a functor

$$
\text { Lie-Algd }{ }_{\mathcal{M}} \longrightarrow \text { (left)Hopf-Algd } \mathcal{C}^{\infty}(\mathcal{M})
$$

such that the (co)homology of $(\mathcal{E}, \mathcal{M})$ coincides, up to isomorphism, with the (co)cyclic (co)homolgy of $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$.

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?
We know that to each Lie algebroid $(\mathcal{E}, \mathcal{M})$ we can associated a left Hopf algebroid $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$. In fact there is a functor

$$
\text { Lie-Algd }_{\mathcal{M}} \longrightarrow(\text { left }) \text { Hopf-Algd } \mathcal{C}^{\infty}(\mathcal{M})
$$

such that the (co)homology of $(\mathcal{E}, \mathcal{M})$ coincides, up to isomorphism, with the (co)cyclic (co)homolgy of $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$.
In this way, the algebraic objects which we are looking for are then Hopf algebroids and theirs cyclic theories!

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?
We know that to each Lie algebroid $(\mathcal{E}, \mathcal{M})$ we can associated a left Hopf algebroid $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$. In fact there is a functor

$$
\text { Lie-Algd }{ }_{\mathcal{M}} \longrightarrow \text { (left)Hopf-Algd } \mathcal{C}^{\infty}(\mathcal{M})
$$

such that the (co)homology of $(\mathcal{E}, \mathcal{M})$ coincides, up to isomorphism, with the (co)cyclic (co)homolgy of $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V}\lceil(\mathcal{E}))\right.$.

In this way, the algebraic objects which we are looking for are then Hopf algebroids and theirs cyclic theories!

Questions:

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?
We know that to each Lie algebroid $(\mathcal{E}, \mathcal{M})$ we can associated a left Hopf algebroid $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$. In fact there is a functor

$$
\text { Lie-Algd }{ }_{\mathcal{M}} \longrightarrow \text { (left)Hopf-Algd } \mathcal{C}^{\infty}(\mathcal{M})
$$

such that the (co)homology of $(\mathcal{E}, \mathcal{M})$ coincides, up to isomorphism, with the (co)cyclic (co)homolgy of ($\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V}\lceil(\mathcal{E})$).

In this way, the algebraic objects which we are looking for are then Hopf algebroids and theirs cyclic theories!

Questions:
(1) Do Morita equivalent Lie algebroids have Morita equivalent associated (left) Hopf algebroids?

Motivations, overviews.

Which algebraic objects then encode the previous geometric informations?
We know that to each Lie algebroid $(\mathcal{E}, \mathcal{M})$ we can associated a left Hopf algebroid $\left(\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$. In fact there is a functor

$$
\text { Lie-Algd }{ }_{\mathcal{M}} \longrightarrow \text { (left)Hopf-Algd } \mathcal{C}^{\infty}(\mathcal{M})
$$

such that the (co)homology of $(\mathcal{E}, \mathcal{M})$ coincides, up to isomorphism, with the (co)cyclic (co)homolgy of ($\left.\mathcal{C}^{\infty}(\mathcal{M}), \mathcal{V} \Gamma(\mathcal{E})\right)$.
In this way, the algebraic objects which we are looking for are then Hopf algebroids and theirs cyclic theories!

Questions:
(1) Do Morita equivalent Lie algebroids have Morita equivalent associated (left) Hopf algebroids?
(2) Are two Morita equivalent (left) Hopf algebroids $(R, U) \stackrel{M}{\sim}(S, V)$, have isomorphic Hochschild (co)homology (co)cyclic (co)homology? i.e., Morita invaraiance of $\mathrm{HH}_{\mathbf{\bullet}}, \mathrm{HH}^{\bullet}, \mathrm{HC}_{\mathbf{0}}, \mathrm{HC}^{\bullet}$?

Motivations, overviews.

So far, no answer to these questions is known! We do not even know what Morita equivalent (left) Hopf algebroids (with different base rings) means?

Motivations, overviews.

So far, no answer to these questions is known! We do not even know what Morita equivalent (left) Hopf algebroids (with different base rings) means?

A naive answer to Morita invariance of ${H H_{\bullet}, ~}_{\text {, }}{ }^{\bullet}, H C_{\bullet}, H C^{\bullet}$ is given here! Explicitly, we assume a Morita base change between two (left) Hopf algebroids of the form (R, U) and (S, \tilde{U}), where R is Morita equivalent to S and \tilde{U} is constructed from U.

Motivations, overviews.

So far, no answer to these questions is known! We do not even know what Morita equivalent (left) Hopf algebroids (with different base rings) means?

A naive answer to Morita invariance of ${H H_{\bullet}, ~}_{\mathrm{H}}{ }^{\bullet}, \mathrm{HC}_{\mathbf{\bullet}}, H C^{\bullet}$ is given here! Explicitly, we assume a Morita base change between two (left) Hopf algebroids of the form (R, U) and (S, \tilde{U}), where R is Morita equivalent to S and \tilde{U} is constructed from U.

As we will see this approach is not far from some geometric application. To this end, we construct a Morita base change left Hopf algebroid over noncommutative 2-torus (with rational parameter) and show that its cyclic homology can be computed by means of the homology of the Lie algebroid of vector fields on the classical 2-torus.

Motivations, overviews.

So far, no answer to these questions is known! We do not even know what Morita equivalent (left) Hopf algebroids (with different base rings) means?

A naive answer to Morita invariance of ${H H_{\bullet}, ~}_{\mathrm{H}}{ }^{\bullet}, \mathrm{HC}_{\mathbf{\bullet}}, H C^{\bullet}$ is given here! Explicitly, we assume a Morita base change between two (left) Hopf algebroids of the form (R, U) and (S, \tilde{U}), where R is Morita equivalent to S and \tilde{U} is constructed from U.

As we will see this approach is not far from some geometric application. To this end, we construct a Morita base change left Hopf algebroid over noncommutative 2-torus (with rational parameter) and show that its cyclic homology can be computed by means of the homology of the Lie algebroid of vector fields on the classical 2-torus.

Based on the paper:
(L. El Kaoutit and N. Kowalzig, Morita base change in Hopf-cyclic (co)homology. To appear in Lett. Math. Phys.

Left Hopf algebroids.

Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring \mathbb{k} with $1, R^{\mathrm{e}}=R \otimes_{\mathrm{k}} R^{\circ}$ is the enveloping ring of R.

Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring \mathbb{k} with $1, R^{\mathrm{e}}=R \otimes_{k} R^{o}$ is the enveloping ring of R.
Left Hopf algebroids are characterised by their categories of left modules. Explicitly, given U an R^{e}-ring, we denote by $\eta_{*}:{ }_{U}$ Mod $\rightarrow{ }_{R^{\mathrm{e}}}$ Mod the scalers restriction functor.

Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring \mathbb{k} with $1, R^{\mathrm{e}}=R \otimes_{k} R^{\circ}$ is the enveloping ring of R.
Left Hopf algebroids are characterised by their categories of left modules. Explicitly, given U an R^{e}-ring, we denote by $\eta_{*}:{ }_{U}$ Mod $\rightarrow{ }_{R^{c}}$ Mod the scalers restriction functor.
The following assertions are equivalent:
(i) U is a left Hopf R-algebroid;
(ii) The category of left modules \cup Mod is a monoidal category with η_{*} is a strict monoidal functor and preserves left inner-hom functors.

Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring \mathbb{k} with $1, R^{\mathrm{e}}=R \otimes_{k} R^{\circ}$ is the enveloping ring of R.
Left Hopf algebroids are characterised by their categories of left modules. Explicitly, given U an R^{e}-ring, we denote by $\eta_{*}:{ }_{U}$ Mod $\rightarrow{ }_{R^{c}}$ Mod the scalers restriction functor.
The following assertions are equivalent:
(i) U is a left Hopf R-algebroid;
(ii) The category of left modules U Mod is a monoidal category with η_{*} is a strict monoidal functor and preserves left inner-hom functors.

The underlying bimodule ${ }_{R^{c}} U$ admits then a structure of an R-coring such that we can define the categories u Comod, Comod ${ }_{U}$ of left and right U-comodules.

Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring \mathbb{k} with $1, R^{\mathrm{e}}=R \otimes_{k} R^{\circ}$ is the enveloping ring of R.
Left Hopf algebroids are characterised by their categories of left modules. Explicitly, given U an R^{e}-ring, we denote by $\eta_{*}:{ }_{U}$ Mod $\rightarrow{ }_{R^{c}}$ Mod the scalers restriction functor.
The following assertions are equivalent:
(i) U is a left Hopf R-algebroid;
(ii) The category of left modules U Mod is a monoidal category with η_{*} is a strict monoidal functor and preserves left inner-hom functors.

The underlying bimodule ${ }_{R^{c}} U$ admits then a structure of an R-coring such that we can define the categories u Comod, Comod ${ }_{U}$ of left and right U-comodules.

En general, Mod ${ }_{U}$ need not to be monoidal, and there is no such characterisation using comodules.

Left Hopf algebroids.

Left Hopf algebroids.

The fact that η_{*} preserves left inner-hom functors, makes a difference between the notions of (left) Hopf algebroids and (left) bialgebroids. As in the case of Hopf algebra this leads to the notion of "antipode", although in this case its formulation is not obvious.

Left Hopf algebroids.

The fact that η_{*} preserves left inner-hom functors, makes a difference between the notions of (left) Hopf algebroids and (left) bialgebroids. As in the case of Hopf algebra this leads to the notion of "antipode", although in this case its formulation is not obvious.

The Hopf-Galois map is defined by

$$
\beta: U_{1 \otimes R^{0}} \otimes_{R^{0}} 1 \otimes R^{\circ} U \rightarrow 1 \otimes R^{0} U \otimes_{R} R \otimes 1^{\circ} U, \quad u \otimes_{R^{0}} v \mapsto u_{(1)} \otimes_{R} u_{(2)} v .
$$

The key is that: The functor η_{*} preserves left inner-hom functors if, and only if the map β is bijective.

Left Hopf algebroids.

The fact that η_{*} preserves left inner-hom functors, makes a difference between the notions of (left) Hopf algebroids and (left) bialgebroids. As in the case of Hopf algebra this leads to the notion of "antipode", although in this case its formulation is not obvious.

The Hopf-Galois map is defined by

$$
\beta: U_{1 \otimes R^{o}} \otimes_{R^{0}} 1 \otimes R^{\circ} U \rightarrow 1 \otimes R^{\circ} U \otimes_{R} R \otimes 1^{\circ} U, \quad u \otimes_{R^{0}} v \mapsto u_{(1)} \otimes_{R} u_{(2)} v .
$$

The key is that: The functor η_{*} preserves left inner-hom functors if, and only if the map β is bijective.
We use Sweedler-type notation

$$
u_{+} \otimes_{R^{\circ}} u_{-}:=\beta^{-1}\left(u \otimes_{R} 1\right), \quad \text { for all } u \in U,
$$

for the translation map

$$
\beta^{-1}\left(-\otimes_{R} 1\right): U \rightarrow U_{1 \otimes R^{\circ}} \otimes_{R^{o}} 1 \otimes R^{\circ} U,
$$

which plays the rôle of the antipode as in the classical case.

Cyclic (co)homology for left Hopf algebroids.

Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with compatible left R-action, which we also assume a Stable anti Yetter-Drinfel'd module.

Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with compatible left R-action, which we also assume a Stable anti Yetter-Drinfel'd module.
The associated cyclic object is

$$
\text { C. }(U, M):=M \otimes_{R^{0}}\left(1 \otimes R^{0} U_{1 \otimes R^{\circ}}\right)^{\otimes_{R^{0}}},
$$

whose structure maps are given by:

Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with compatible left R-action, which we also assume a Stable anti Yetter-Drinfel'd module.
The associated cyclic object is

$$
C .(U, M):=M \otimes_{R^{\circ}}\left(1 \otimes R^{\circ} U_{1 \otimes R^{\circ}}\right)^{\otimes_{R^{\circ}}}
$$

whose structure maps are given by:

$$
d_{i}\left(m \otimes_{R^{o}} x\right)=\left\{\begin{array}{lc}
m \otimes_{R^{o}} u^{1} \otimes_{R^{\circ}} \cdots \otimes_{R^{o}}\left(u^{n-1}\left(1 \otimes \varepsilon\left(u^{n}\right){ }^{o}\right)\right), \quad \text { if } i=0, \\
m \otimes_{R^{o}} \cdots \otimes_{R^{o}}\left(u^{n-i} u^{n-i+1}\right) \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=1, \ldots, n-1, \\
\left(m u^{1}\right) \otimes_{R^{o}} u^{2} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=n
\end{array}\right.
$$

Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with compatible left R-action, which we also assume a Stable anti
Yetter-Drinfel'd module.
The associated cyclic object is

$$
\text { C. }(U, M):=M \otimes_{R^{\circ}}\left(1 \otimes R^{\circ} U_{1 \otimes R^{\circ}}\right)^{\otimes_{R^{\circ}}}
$$

whose structure maps are given by:

$$
\begin{aligned}
& d_{i}\left(m \otimes_{R^{o}} x\right)=\left\{\begin{array}{lc}
m \otimes_{R^{o}} u^{1} \otimes_{R^{o}} \cdots \otimes_{R^{o}}\left(u^{n-1}\left(1 \otimes \varepsilon\left(u^{n}\right)^{o}\right)\right), & \text { if } i=0, \\
m \otimes_{R^{o}} \cdots \otimes_{R^{o}}\left(u^{n-i} u^{n-i+1}\right) \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=1, \ldots, n-1, \\
\left(m u^{1}\right) \otimes_{R^{o}} u^{2} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=n
\end{array}\right. \\
& s_{i}\left(m \otimes_{R^{o}} x\right)= \begin{cases}m \otimes_{R^{o}} u^{1} \otimes_{R^{0}} \cdots \otimes_{R^{o}} u^{n} \otimes_{R^{o}} 1, & \text { if } i=0, \\
m \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n-i} \otimes_{R^{o}} 1 \otimes_{R^{o}} u^{n-i+1} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, \text { if } i=1, \ldots, n \\
m \otimes_{R^{o}} 1 \otimes_{R^{o}} u^{1} \otimes_{R^{o}} u^{2} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=n\end{cases}
\end{aligned}
$$

Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with compatible left R-action, which we also assume a Stable anti
Yetter-Drinfel'd module.
The associated cyclic object is

$$
\text { C. }(U, M):=M \otimes_{R^{\circ}}\left(1 \otimes R^{\circ} U_{1 \otimes R^{\circ}}\right)^{\otimes_{R^{\circ}}}
$$

whose structure maps are given by:

$$
\begin{aligned}
& d_{i}\left(m \otimes_{R^{o}} x\right)=\left\{\begin{array}{lc}
m \otimes_{R^{o}} u^{1} \otimes_{R^{o}} \cdots \otimes_{R^{o}}\left(u^{n-1}\left(1 \otimes \varepsilon\left(u^{n}\right)^{o}\right)\right), & \text { if } i=0, \\
m \otimes_{R^{o}} \cdots \otimes_{R^{o}}\left(u^{n-i} u^{n-i+1}\right) \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=1, \ldots, n-1, \\
\left(m u^{1}\right) \otimes_{R^{o}} u^{2} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=n
\end{array}\right. \\
& s_{i}\left(m \otimes_{R^{o}} X\right)= \begin{cases}m \otimes_{R^{o}} u^{1} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n} \otimes_{R^{0}} 1, & \text { if } i=0, \\
m \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n-i} \otimes_{R^{o}} 1 \otimes_{R^{o}} u^{n-i+1} \otimes_{R^{0}} \cdots \otimes_{R^{o}} u^{n}, \text { if } i=1, . ., n \\
m \otimes_{R^{0}} 1 \otimes_{R^{0}} u^{1} \otimes_{R^{o}} u^{2} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}, & \text { if } i=n\end{cases} \\
& t_{n}\left(m \otimes_{R^{\circ}} x\right)=\left(m_{(0)} u_{+}^{1}\right) \otimes_{R^{\circ}} u_{+}^{2} \otimes_{R^{\circ}} \cdots \otimes_{R^{\circ}} u_{+}^{n} \otimes_{R^{\circ}}\left(u_{-}^{n} \cdots u_{-}^{1} m_{(-1)}\right)
\end{aligned}
$$

where $x:=u^{1} \otimes_{R^{o}} \cdots \otimes_{R^{o}} u^{n}$.

Cyclic (co)homology for left Hopf algebroids.

Cyclic (co)homology for left Hopf algebroids.

Now its associated cocyclic object is

$$
C \cdot(U, M):=\left(R \otimes 1^{\circ} U_{R \otimes 1^{0}}\right)^{\otimes_{R} \bullet} \otimes_{R} M,
$$

with structure maps in degree n given by

$$
\delta_{i}\left(z \otimes_{R} m\right)= \begin{cases}1 \otimes_{R} u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } i=0 \\ u^{1} \otimes_{R} \cdots \otimes_{R} \Delta\left(u^{i}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } 1 \leq i \leq n \\ u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } i=n+1 .\end{cases}
$$

Cyclic (co)homology for left Hopf algebroids.

Now its associated cocyclic object is

$$
C \cdot(U, M):=\left(R \otimes 1^{\circ} U_{R \otimes 1^{\circ}}\right)^{\otimes_{R} \bullet} \otimes_{R} M,
$$

with structure maps in degree n given by

$$
\begin{gathered}
\delta_{i}\left(z \otimes_{R} m\right)= \begin{cases}1 \otimes_{R} u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } i=0 \\
u^{1} \otimes_{R} \cdots \otimes_{R} \Delta\left(u^{i}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } 1 \leq i \leq n \\
u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } i=n+1 .\end{cases} \\
\delta_{j}(m)= \begin{cases}1 \otimes_{R} m, & \text { if } j=0 \\
m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } j=1\end{cases}
\end{gathered}
$$

Cyclic (co)homology for left Hopf algebroids.

Now its associated cocyclic object is

$$
C \cdot(U, M):=\left(R \otimes 1^{0} U_{R \otimes 1^{0}}\right)^{\otimes_{R} \bullet} \otimes_{R} M
$$

with structure maps in degree n given by

$$
\begin{aligned}
& \delta_{i}\left(z \otimes_{R} m\right)= \begin{cases}1 \otimes_{R} u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } i=0 \\
u^{1} \otimes_{R} \cdots \otimes_{R} \Delta\left(u^{i}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } 1 \leq i \leq n \\
u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } i=n+1 .\end{cases} \\
& \delta_{j}(m)= \begin{cases}1 \otimes_{R} m, & \text { if } j=0 \\
m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } j=1\end{cases} \\
& \sigma_{i}\left(z \otimes_{R} m\right)=u^{1} \otimes_{R} \cdots \otimes_{R} \varepsilon\left(u^{i+1}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m \quad 0 \leq i \leq n-1,
\end{aligned}
$$

Cyclic (co)homology for left Hopf algebroids.

Now its associated cocyclic object is

$$
C^{\bullet}(U, M):=\left({ }_{R \otimes 1^{0}} U_{R \otimes 1^{0}}\right)^{\otimes_{R} \bullet} \otimes_{R} M
$$

with structure maps in degree n given by

$$
\begin{aligned}
& \delta_{i}\left(z \otimes_{R} m\right)= \begin{cases}1 \otimes_{R} u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } i=0 \\
u^{1} \otimes_{R} \cdots \otimes_{R} \Delta\left(u^{i}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m, & \text { if } 1 \leq i \leq n \\
u^{1} \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } i=n+1 .\end{cases} \\
& \delta_{j}(m)= \begin{cases}1 \otimes_{R} m, & \text { if } j=0 \\
m_{(-1)} \otimes_{R} m_{(0)}, & \text { if } j=1\end{cases} \\
& \sigma_{i}\left(z \otimes_{R} m\right)=u^{1} \otimes_{R} \cdots \otimes_{R} \varepsilon\left(u^{i+1}\right) \otimes_{R} \cdots \otimes_{R} u^{n} \otimes_{R} m \quad 0 \leq i \leq n-1, \\
& \tau_{n}\left(z \otimes_{R} m\right)=u_{-(1)}^{1} u^{2} \otimes_{R} \cdots \otimes_{R} u_{-(n-1)}^{1} u^{n} \otimes_{R} u_{-(n)}^{1} m_{(-1)} \otimes_{R} m_{(0)} u_{+}^{1},
\end{aligned}
$$

where we abbreviate $z:=u^{1} \otimes_{R} \cdots \otimes_{R} u^{n}$.
$\sqrt{\text { Morita }}$ theory．

$$
4 \square>4 \text { 岛 } \downarrow \text { 引 三 }
$$

$\sqrt{\text { Morita theory. }}$

Let R and S two rings together with two bimodules ${ }_{S} P_{R}$ and ${ }_{R} Q_{S}$ with isomorphisms of bimodules:

$$
\phi: P \otimes_{R} Q \xrightarrow{\simeq} S, \quad \psi: Q \otimes_{S} P \xrightarrow{\simeq} R .
$$

$\sqrt{\text { Morita theory. }}$

Let R and S two rings together with two bimodules ${ }_{S} P_{R}$ and ${ }_{R} Q_{S}$ with isomorphisms of bimodules:

$$
\phi: P \otimes_{R} Q \xrightarrow{\simeq} S, \quad \psi: Q \otimes_{S} P \xrightarrow{\simeq} R .
$$

Thus (R, S, P, Q, ϕ, ψ) can be considered as a Morita context.

$\sqrt{\text { Morita }}$ theory.

Let R and S two rings together with two bimodules ${ }_{S} P_{R}$ and ${ }_{R} Q_{S}$ with isomorphisms of bimodules:

$$
\phi: P \otimes_{R} Q \xrightarrow{\simeq} S, \quad \psi: Q \otimes_{S} P \xrightarrow{\simeq} R .
$$

Thus (R, S, P, Q, ϕ, ψ) can be considered as a Morita context. This can be extended to a Morita context ($\left.R^{\mathrm{e}}, S^{\mathrm{e}}, P^{\mathrm{e}}, Q^{\mathrm{e}}, \phi^{\mathrm{e}}, \psi^{\mathrm{e}}\right)$, where $P^{\mathrm{e}}:=P \otimes_{\mathbb{k}} Q^{\mathrm{o}}, Q^{\mathrm{e}}:=Q \otimes_{\mathbb{k}^{k}} P^{\mathrm{o}}$ and $\phi^{\mathrm{e}}, \psi^{\mathrm{e}}$ are obvious.

$\sqrt{\text { Morita }}$ theory.

Let R and S two rings together with two bimodules ${ }_{S} P_{R}$ and ${ }_{R} Q_{S}$ with isomorphisms of bimodules:

$$
\phi: P \otimes_{R} Q \xrightarrow{\simeq} S, \quad \psi: Q \otimes_{S} P \xrightarrow{\simeq} R .
$$

Thus (R, S, P, Q, ϕ, ψ) can be considered as a Morita context. This can be extended to a Morita context ($\left.R^{\mathrm{e}}, S^{\mathrm{e}}, P^{\mathrm{e}}, Q^{\mathrm{e}}, \phi^{\mathrm{e}}, \psi^{\mathrm{e}}\right)$, where $P^{\mathrm{e}}:=P \otimes_{\mathfrak{k}} Q^{\mathrm{o}}, Q^{\mathrm{e}}:=Q \otimes_{\mathfrak{k}} P^{\mathrm{o}}$ and $\phi^{\mathrm{e}}, \psi^{\mathrm{e}}$ are obvious.
 sense of Takeuchi.

Morita theory.

Let R and S two rings together with two bimodules ${ }_{S} P_{R}$ and ${ }_{R} Q_{S}$ with isomorphisms of bimodules:

$$
\phi: P \otimes_{R} Q \xrightarrow{\simeq} S, \quad \psi: Q \otimes_{S} P \xrightarrow{\simeq} R .
$$

Thus (R, S, P, Q, ϕ, ψ) can be considered as a Morita context. This can be extended to a Morita context ($\left.R^{\mathrm{e}}, S^{\mathrm{e}}, P^{\mathrm{e}}, Q^{\mathrm{e}}, \phi^{\mathrm{e}}, \psi^{\mathrm{e}}\right)$, where $P^{\mathrm{e}}:=P \otimes_{\mathbb{k}} Q^{\mathrm{o}}, Q^{\mathrm{e}}:=Q \otimes_{\mathfrak{k}} P^{\mathrm{o}}$ and $\phi^{\mathrm{e}}, \psi^{\mathrm{e}}$ are obvious.
 sense of Takeuchi.
By Schauenburg's result, starting with a left Hopf algebroid (R, U) we can endow the $S^{\text {e}}$-ring

$$
\tilde{U}:=P^{e} \otimes_{R^{e}} U \otimes_{R^{e}} Q^{e}
$$

with a structure of left S-Hopf algebroid. The pair (S, \tilde{U}) is called the Morita base change (left) Hopf algebroid of (R, U).

Morita invariance for Hopf-(co)cyclic (co)homology.

Morita invariance for Hopf-(co)cyclic (co)homology.

We can construct a quasi-isomorphisms between the chain complexes $C_{0}(U, M)$ and $C_{0}(\tilde{U}, \tilde{M})$ (resp., between the cochain complexes $C^{\bullet}(U, M)$ and $\left.C^{\bullet}(\tilde{U}, \tilde{M})\right)$. The following is our main result.

Morita invariance for Hopf-(co)cyclic (co)homology.

We can construct a quasi-isomorphisms between the chain complexes $C_{.}(U, M)$ and $C_{.}(\tilde{U}, \tilde{M})$ (resp., between the cochain complexes $C^{\bullet}(U, M)$ and $\left.C^{\bullet}(\tilde{U}, \tilde{M})\right)$. The following is our main result.

Theorem
Let (R, U) be a left Hopf algebroid, M a left U-comodule right U-module which is SaYD, and (R, S, P, Q, ϕ, ψ) a Morita context.
Consider the Morita base change left S-Hopf algebroid and the image of M

$$
\tilde{U}:=P^{\mathrm{e}} \otimes_{R^{\mathrm{e}}} \cup \otimes_{R^{\mathrm{e}}} Q^{\mathrm{e}}, \quad \tilde{M}:=P \otimes_{R} M \otimes_{R} Q .
$$

Morita invariance for Hopf-(co)cyclic (co)homology.

We can construct a quasi-isomorphisms between the chain complexes $C_{0}(U, M)$ and $C_{0}(\tilde{U}, \tilde{M})$ (resp., between the cochain complexes $C \cdot(U, M)$ and $C \cdot(\tilde{U}, \tilde{M}))$. The following is our main result.

Theorem

Let (R, U) be a left Hopf algebroid, M a left U-comodule right U-module which is SaYD, and (R, S, P, Q, ϕ, ψ) a Morita context.
Consider the Morita base change left S-Hopf algebroid and the image of M

$$
\tilde{U}:=P^{\mathrm{e}} \otimes_{R^{\mathrm{e}}} \cup \otimes_{R^{\mathrm{e}}} Q^{\mathrm{e}}, \quad \tilde{M}:=P \otimes_{R} M \otimes_{R} Q .
$$

We then have the following natural \mathbb{k}-module isomorphisms:

$$
\begin{array}{ll}
H_{\cdot}(U, M) \cong H H_{\cdot}(\tilde{U}, \tilde{M}), & H H^{\bullet}(U, M) \cong H H^{\bullet}(\tilde{U}, \tilde{M}) \\
H C_{\cdot}(U, M) \cong H C_{\cdot}(\tilde{U}, \tilde{M}), & H C^{\bullet}(U, M) \cong H C^{\bullet}(\tilde{U}, \tilde{M})
\end{array}
$$

between the Hochschild (co)homologies and (co)cyclic (co)homologies of the (co)cyclic objects $C_{0}(U, M)$ and $C_{.}(\tilde{U}, \tilde{M})$ (resp., $C \cdot(U, M)$ and $C \cdot(\tilde{U}, \tilde{M})$).

The Universal Enveloping of Lie Rinehart algebra.

The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra ($\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{\mathfrak{k}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R.
The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra ($\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{k_{k}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R. Consider L a \mathbb{k}-Lie algebra with a structure of R-module, and $\omega: L \rightarrow \operatorname{Der}_{\mathbb{k}}(R)$ a morphism of \mathbb{k}-Lie algebras.
The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra ($\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{\mathfrak{k}_{\mathrm{k}}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R.Consider L a \mathbb{k}-Lie algebra with a structure of R-module, and $\omega: L \rightarrow \operatorname{Der}_{\mathbb{k}}(R)$ a morphism of \mathbb{k}-Lie algebras.
Following Rinehart, the pair (R, L) is called Lie-Rinehart algebra with anchor map ω, provided that for all $X, Y \in L$ and $a, b \in R$, we have

$$
(a X)(b)=a(X(b)), \quad[X, a Y]=a[X, Y]+X(a) Y
$$

where $X(a)$ stand for $\omega(X)(a)$.

The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra ($\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{\mathfrak{k}_{\mathrm{k}}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R.Consider L a \mathbb{k}-Lie algebra with a structure of R-module, and $\omega: L \rightarrow \operatorname{Der}_{\mathbb{k}}(R)$ a morphism of \mathbb{k}-Lie algebras.
Following Rinehart, the pair (R, L) is called Lie-Rinehart algebra with anchor map ω, provided that for all $X, Y \in L$ and $a, b \in R$, we have

$$
(a X)(b)=a(X(b)), \quad[X, a Y]=a[X, Y]+X(a) Y
$$

where $X(a)$ stand for $\omega(X)(a)$.

Example

Here are the basic examples which will be handled, and which in fact stimulate the above general definition.
(i) The pair $\left(R, \operatorname{Der}_{\mathrm{k}}(R)\right)$ admits trivially a structure of Lie-Rinehart algebra.

The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra ($\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{k_{k}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R.Consider L a \mathbb{k}-Lie algebra with a structure of R-module, and $\omega: L \rightarrow \operatorname{Der}_{\mathbb{k}}(R)$ a morphism of \mathbb{k}-Lie algebras.
Following Rinehart, the pair (R, L) is called Lie-Rinehart algebra with anchor map ω, provided that for all $X, Y \in L$ and $a, b \in R$, we have

$$
(a X)(b)=a(X(b)), \quad[X, a Y]=a[X, Y]+X(a) Y
$$

where $X(a)$ stand for $\omega(X)(a)$.

Example

Here are the basic examples which will be handled, and which in fact stimulate the above general definition.
(i) The pair $\left(R, \operatorname{Der}_{k}(R)\right)$ admits trivially a structure of Lie-Rinehart algebra.
(ii) Let $(\mathcal{E}, \mathcal{M})$ be a Lie algebroid. Then the pair $\left(\mathcal{C}^{\infty}(\mathcal{M}), \Gamma(\mathcal{E})\right)$ is obviously a Lie-Rinehart algebra.

The Universal Enveloping of Lie Rinehart algebra.

 Assume that R is a commutative \mathbb{k}-algebra $(\mathbb{Q} \subset \mathbb{k}$ is a ground field) and denote by $\operatorname{Der}_{\mathrm{k}}(R)$ the Lie algebra of all \mathbb{k}-linear derivation of R.Consider L a \mathbb{k}-Lie algebra with a structure of R-module, and $\omega: L \rightarrow \operatorname{Der}_{\mathbb{k}}(R)$ a morphism of \mathbb{k}-Lie algebras.
Following Rinehart, the pair (R, L) is called Lie-Rinehart algebra with anchor map ω, provided that for all $X, Y \in L$ and $a, b \in R$, we have

$$
(a X)(b)=a(X(b)), \quad[X, a Y]=a[X, Y]+X(a) Y
$$

where $X(a)$ stand for $\omega(X)(a)$.

Example

Here are the basic examples which will be handled, and which in fact stimulate the above general definition.
(i) The pair $\left(R, \operatorname{Der}_{k}(R)\right)$ admits trivially a structure of Lie-Rinehart algebra.
(ii) Let $(\mathcal{E}, \mathcal{M})$ be a Lie algebroid. Then the pair $\left(\mathcal{C}^{\infty}(\mathcal{M}), \Gamma(\mathcal{E})\right)$ is obviously a Lie-Rinehart algebra.
(iii) A smooth manifold \mathcal{M} is a Poisson manifold if, and only if its cotangte bundle ($T^{*} \mathcal{M}, \mathcal{M}$) is a Lie algebroid. Hence $\left(\mathcal{C}^{\infty}(\mathcal{M}), \Gamma\left(T^{*} \mathcal{M}\right)\right.$) is a Lie-Rinehart algebra for a Poisson manifold \mathcal{M}.

The Universal Enveloping of Lie Rinehart algebra.

The Universal Enveloping of Lie Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L), there is a universal object denoted by $(R, \mathcal{V} L)$:

The Universal Enveloping of Lie Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L), there is a universal object denoted by ($R, \mathcal{V} L$): Let $U(L)$ be the enveloping Lie algebra of L. Since L acts on R by derivations, we can consider the smash product $R \# U(L)$, and so take its factor R-algebra

$$
\Pi: R \# U(L) \longrightarrow \mathcal{V} L:=\frac{R \# U(L)}{\mathcal{J}_{L}}, \mathcal{J}_{L}:=\langle a \# X-1 \# a X\rangle_{a \in R, x \in L}
$$

The Universal Enveloping of Lie Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L), there is a universal object denoted by ($R, \mathcal{V} L$): Let $U(L)$ be the enveloping Lie algebra of L. Since L acts on R by derivations, we can consider the smash product $R \# U(L)$, and so take its factor R-algebra

$$
\Pi: R \# U(L) \longrightarrow \mathcal{V} L:=\frac{R \# U(L)}{\mathcal{J}_{L}}, \mathcal{J}_{L}:=\langle a \# X-1 \# a X\rangle_{a \in R, X \in L} .
$$

The usual \mathbb{k}-bialgebra structure of $U(L)$ can be lifted to a structure of R-bialgebroid on $\mathcal{V} L$, which gives in fact a structure of left Hopf R-algebroid. The comultiplication and counit are obvious, the translation map is given on generator by

$$
a_{+} \# a_{-}:=a \# 1, \quad X_{+} \# X_{-}:=X \# 1-1 \# X, \quad \text { modulo } \mathcal{J}_{L} .
$$

The Universal Enveloping of Lie Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L), there is a universal object denoted by ($R, \mathcal{V} L$): Let $U(L)$ be the enveloping Lie algebra of L. Since L acts on R by derivations, we can consider the smash product $R \# U(L)$, and so take its factor R-algebra

$$
\Pi: R \# U(L) \longrightarrow \mathcal{V} L:=\frac{R \# U(L)}{\mathcal{J}_{L}}, \mathcal{J}_{L}:=\langle a \# X-1 \# a X\rangle_{a \in R, X \in L} .
$$

The usual \mathbb{k}-bialgebra structure of $U(L)$ can be lifted to a structure of R-bialgebroid on $\mathcal{V} L$, which gives in fact a structure of left Hopf R-algebroid. The comultiplication and counit are obvious, the translation map is given on generator by

$$
a_{+} \# a_{-}:=a \# 1, \quad X_{+} \# X_{-}:=X \# 1-1 \# X, \quad \text { modulo } \mathcal{J}_{L} .
$$

Obviously there are two morphisms $\iota_{R}: R \longrightarrow \mathcal{V} L, \iota_{L}: L \longrightarrow \mathcal{V} L$ of \mathbb{k}-algebras and \mathbb{k}-Lie algebras, respectively, which satisfy
$\iota_{R}(a) \iota_{L}(X)=\iota_{L}(a X), \iota_{L}(X) \iota_{R}(a)-\iota_{R}(a) \iota_{L}(X)=\iota_{R}(X(a)), \forall a \in R, X \in L$.
By construction, the algebra $\mathcal{V} L$ and the maps ι_{R}, ι_{L} form an universal object subject to these equations.

Application to noncommutative 2-torus.

Vector bundles versus $\sqrt{\text { Morita }}$ theories.

Application to noncommutative 2-torus.

Vector bundles versus $\sqrt{\text { Morita }}$ theories.
Assume we are given a finitely generated and projective module P_{R} which is faithful, in the sense that any equation of the form $P a=0$, for some $a \in R$, implies $a=0$. Then it is well known that R is Morita equivalent to the endomorphisms ring End $\left(P_{R}\right)$. This is because R is a commutative ring.

Application to noncommutative 2-torus.

Vector bundles versus $\sqrt{\text { Morita }}$ theories.
Assume we are given a finitely generated and projective module P_{R} which is faithful, in the sense that any equation of the form $\mathrm{Pa}=0$, for some $a \in R$, implies $a=0$. Then it is well known that R is Morita equivalent to the endomorphisms ring End $\left(P_{R}\right)$. This is because R is a commutative ring.
Now assume that we are given a (complex) smooth vector bundle $\pi: \mathcal{P} \rightarrow \mathcal{M}$ of constant rank ≥ 1, then it is well know that the global smooth sections $\Gamma(\mathcal{P})$ form a finitely generated and projective $\mathcal{C}^{\infty}(\mathcal{M})$-module of constant rank over the complex valued smooth functions algebra on \mathcal{M}. This module is in fact always faithful (this can also follows directly from an argument on maximal ideals associated to points).

Application to noncommutative 2-torus.

Vector bundles versus $\sqrt{\text { Morita }}$ theories.
Assume we are given a finitely generated and projective module P_{R} which is faithful, in the sense that any equation of the form $P a=0$, for some $a \in R$, implies $a=0$. Then it is well known that R is Morita equivalent to the endomorphisms ring End $\left(P_{R}\right)$. This is because R is a commutative ring.
Now assume that we are given a (complex) smooth vector bundle $\pi: \mathcal{P} \rightarrow \mathcal{M}$ of constant rank ≥ 1, then it is well know that the global smooth sections $\Gamma(\mathcal{P})$ form a finitely generated and projective $\mathcal{C}^{\infty}(\mathcal{M})$-module of constant rank over the complex valued smooth functions algebra on \mathcal{M}. This module is in fact always faithful (this can also follows directly from an argument on maximal ideals associated to points).
In this way $\mathcal{C}^{\infty}(\mathcal{M})$ is Morita equivalent to the endomorphisms algebra $\operatorname{End}\left(P_{\mathcal{C}}{ }^{\infty}(\mathcal{M})\right) \cong \Gamma(\operatorname{End}(\mathcal{P}))$, where $\operatorname{End}(\mathcal{P})$ is the complex endomorphism algebra bundle.

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Consider the Lie group $\mathbb{S}^{1}=\{z \in \mathbb{C} \backslash\{0\}| | z \mid=1\}$ as a real 1 -dimensional torus by identifying it with the additive quotient $\mathbb{R} / 2 \pi \mathbb{Z}$. The real d-dimensional torus $\mathbb{T}^{d}:=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ is by the same way identified with $\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}$.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Consider the Lie group $\mathbb{S}^{1}=\{z \in \mathbb{C} \backslash\{0\}| | z \mid=1\}$ as a real 1 -dimensional torus by identifying it with the additive quotient $\mathbb{R} / 2 \pi \mathbb{Z}$. The real d-dimensional torus $\mathbb{T}^{d}:=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ is by the same way identified with $\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}$.

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element $\mathrm{q} \in \mathbb{S}^{1}$ whose argument is rational modulo 2π, and take $N \in \mathbb{N}$ to be the smallest natural number such that $\mathrm{q}^{N}=1$.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Consider the Lie group $\mathbb{S}^{1}=\{z \in \mathbb{C} \backslash\{0\}| | z \mid=1\}$ as a real 1 -dimensional torus by identifying it with the additive quotient $\mathbb{R} / 2 \pi \mathbb{Z}$. The real d-dimensional torus $\mathbb{T}^{d}:=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ is by the same way identified with $\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}$.

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element $\mathrm{q} \in \mathbb{S}^{1}$ whose argument is rational modulo 2π, and take $N \in \mathbb{N}$ to be the smallest natural number such that $\mathrm{q}^{N}=1$.

Consider the semidirect product group $\mathcal{G}:=\mathbb{Z}_{N}^{2} \ltimes \mathbb{S}^{1}$ where $\mathbb{Z}_{N}=\mathbb{Z} / N \mathbb{Z}$, and operation

$$
(m, n, \theta)\left(m^{\prime}, n^{\prime}, \theta^{\prime}\right)=\left(m+m^{\prime}, n+n^{\prime}, \theta \theta^{\prime} \mathrm{q}^{m n^{\prime}}\right)
$$

for every pair of elements $(m, n, \theta),\left(m^{\prime}, n^{\prime}, \theta^{\prime}\right) \in \mathcal{G}$.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Consider the Lie group $\mathbb{S}^{1}=\{z \in \mathbb{C} \backslash\{0\}| | z \mid=1\}$ as a real 1 -dimensional torus by identifying it with the additive quotient $\mathbb{R} / 2 \pi \mathbb{Z}$.
The real d-dimensional torus $\mathbb{T}^{d}:=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ is by the same way identified with $\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}$.

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element $\mathrm{q} \in \mathbb{S}^{1}$ whose argument is rational modulo 2π, and take $N \in \mathbb{N}$ to be the smallest natural number such that $\mathrm{q}^{N}=1$.

Consider the semidirect product group $\mathcal{G}:=\mathbb{Z}_{N}^{2} \ltimes \mathbb{S}^{1}$ where $\mathbb{Z}_{N}=\mathbb{Z} / N \mathbb{Z}$, and operation

$$
(m, n, \theta)\left(m^{\prime}, n^{\prime}, \theta^{\prime}\right)=\left(m+m^{\prime}, n+n^{\prime}, \theta \theta^{\prime} \mathrm{q}^{m n^{\prime}}\right)
$$

for every pair of elements $(m, n, \theta),\left(m^{\prime}, n^{\prime}, \theta^{\prime}\right) \in \mathcal{G}$.
Then there is a right action of the group \mathcal{G} on the torus \mathbb{T}^{3} given as follows:

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z})(m, n, \theta)=\left(\mathrm{q}^{m} \mathrm{x}, \mathrm{q}^{n} \mathrm{y}, \theta \mathrm{z} \mathrm{y}^{m}\right), \quad(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathbb{T}^{3}, \text { and }(m, n, \theta) \in \mathcal{G}
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Now, we can show that the following map

$$
\begin{gathered}
\mathbb{T}^{3} \xrightarrow{p} \mathbb{T}^{2} \\
(\mathrm{x}, \mathrm{y}, \mathrm{z}) \longmapsto\left(\mathrm{x}^{N}, \mathrm{y}^{N}\right)
\end{gathered}
$$

satisfies the following properties:

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Now, we can show that the following map

satisfies the following properties:
(i) \mathbf{p} is a surjective submersion.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Now, we can show that the following map

satisfies the following properties:
(i) \mathbf{p} is a surjective submersion.
(ii) \mathcal{G} acts freely on \mathbb{T}^{3} and the orbits of this action coincide with the fibers of \mathbf{p}.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Now, we can show that the following map

satisfies the following properties:
(i) \mathbf{p} is a surjective submersion.
(ii) \mathcal{G} acts freely on \mathbb{T}^{3} and the orbits of this action coincide with the fibers of \mathbf{p}.

As consequence, one can claim by a classical results from differential geometry, that $\left(\mathbb{T}^{3}, \mathbf{p}, \mathbb{T}^{2}, \mathcal{G}\right)$ is a principal fiber bundle.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Now, we can show that the following map

$$
\begin{gathered}
\mathbb{T}^{3} \xrightarrow{p} \mathbb{T}^{2} \\
(\mathrm{x}, \mathrm{y}, \mathrm{z}) \longmapsto\left(\mathrm{x}^{N}, \mathrm{y}^{N}\right)
\end{gathered}
$$

satisfies the following properties:
(i) \mathbf{p} is a surjective submersion.
(ii) \mathcal{G} acts freely on \mathbb{T}^{3} and the orbits of this action coincide with the fibers of \mathbf{p}.

As consequence, one can claim by a classical results from differential geometry, that ($\left.\mathbb{T}^{3}, \mathbf{p}, \mathbb{T}^{2}, \mathcal{G}\right)$ is a principal fiber bundle.
Now, by extending the \mathcal{G}-action on \mathbb{T}^{3} to the trivial bundle $\mathbb{T}^{3} \times \mathbb{C}^{N} \rightarrow \mathbb{T}^{3}$, we can construct as follows the associated vector bundle.

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
First, this is possible by considering the following left \mathcal{G}-action on \mathbb{C}^{N}

$$
\begin{gathered}
\mathcal{G} \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{N}\right) \\
(m, n, \theta) \longmapsto\left[\omega \mapsto \theta U_{0}^{n} V_{0}^{-m} \omega\right],
\end{gathered}
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.
First, this is possible by considering the following left \mathcal{G}-action on \mathbb{C}^{N}

$$
\begin{gathered}
\mathcal{G} \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{N}\right) \\
(m, n, \theta) \longmapsto\left[\omega \mapsto \theta U_{0}^{n} V_{0}^{-m} \omega\right]
\end{gathered}
$$

where U_{0}, V_{0} are the following $(N \times N)$-matrices

$$
U_{0}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right), \quad V_{0}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & q & 0 & \cdots & 0 \\
0 & 0 & q^{2} & \cdots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & q^{N-1}
\end{array}\right)
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.
First, this is possible by considering the following left \mathcal{G}-action on \mathbb{C}^{N}

$$
\begin{gathered}
\mathcal{G} \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{N}\right) \\
(m, n, \theta) \longmapsto\left[\omega \mapsto \theta U_{0}^{n} V_{0}^{-m} \omega\right]
\end{gathered}
$$

where U_{0}, V_{0} are the following $(N \times N)$-matrices

$$
U_{0}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right), \quad V_{0}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & q & 0 & \cdots & 0 \\
0 & 0 & q^{2} & \cdots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & q^{N-1}
\end{array}\right)
$$

which satisfy the relations

$$
U_{0} V_{0}=q V_{0} U_{0}, \quad U_{0}^{N}=V_{0}^{N}=\mathbb{I}_{N} .
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Therefore, we have a left \mathcal{G}-action on $\mathbb{T}^{3} \times \mathbb{C}^{N}$ defined by

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Therefore, we have a left \mathcal{G}-action on $\mathbb{T}^{3} \times \mathbb{C}^{N}$ defined by

$$
\begin{aligned}
&((\mathrm{x}, \mathrm{y}, \mathrm{z}) ; \omega)(m, n, \theta)=\left((\mathrm{x}, \mathrm{y}, \mathrm{z})(m, n, \theta) ;(m, n, \theta)^{-1} \omega\right) \\
&=\left(\left(\mathrm{q}^{m} \mathrm{x}, \mathrm{q}^{n} \mathrm{y}, \theta \mathrm{zy} \mathrm{y}^{m}\right) ; \theta^{-1} U_{0}^{-n} V_{0}^{m} \omega\right) .
\end{aligned}
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Therefore, we have a left \mathcal{G}-action on $\mathbb{T}^{3} \times \mathbb{C}^{N}$ defined by

$$
\begin{aligned}
((\mathrm{x}, \mathrm{y}, \mathrm{z}) ; \omega)(m, n, \theta)=((\mathrm{x}, \mathrm{y}, \mathrm{z})(m, n, \theta) ; & \left.(m, n, \theta)^{-1} \omega\right) \\
& =\left(\left(\mathrm{q}^{m} \mathrm{x}, \mathrm{q}^{n} \mathrm{y}, \theta \mathrm{zy}^{m}\right) ; \theta^{-1} U_{0}^{-n} V_{0}^{m} \omega\right)
\end{aligned}
$$

We are now able to associate a non trivial vector bundle to the trivial bundle $\mathbb{T}^{3} \times \mathbb{C}^{N} \rightarrow \mathbb{T}^{3}$. That is, we can claim that there is a morphism of vector bundles

$\left(\mathcal{E}_{\mathrm{q}}\right.$ is the orbits space of $\left.\mathbb{T}^{3} \times \mathbb{C}^{N}\right)$

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Therefore, we have a left \mathcal{G}-action on $\mathbb{T}^{3} \times \mathbb{C}^{N}$ defined by

$$
\begin{aligned}
&((\mathrm{x}, \mathrm{y}, \mathrm{z}) ; \omega)(m, n, \theta)=\left((\mathrm{x}, \mathrm{y}, \mathrm{z})(m, n, \theta) ;(m, n, \theta)^{-1} \omega\right) \\
&=\left(\left(\mathrm{q}^{m} \mathrm{x}, \mathrm{q}^{n} \mathrm{y}, \theta \mathrm{zy}^{m}\right) ; \theta^{-1} U_{0}^{-n} V_{0}^{m} \omega\right)
\end{aligned}
$$

We are now able to associate a non trivial vector bundle to the trivial bundle $\mathbb{T}^{3} \times \mathbb{C}^{N} \rightarrow \mathbb{T}^{3}$. That is, we can claim that there is a morphism of vector bundles

$\left(\mathcal{E}_{\mathrm{q}}\right.$ is the orbits space of $\left.\mathbb{T}^{3} \times \mathbb{C}^{N}\right)$

As a conclusion, the algebra $\mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)$ of all smooth complex valued functions on \mathbb{T}^{2} is Morita equivalent to the endomorphisms algebra of global smooth sections $\operatorname{End}\left(\Gamma\left(\mathcal{E}_{\mathrm{q}}\right)\right) \cong \Gamma\left(\operatorname{End}\left(\mathcal{E}_{\mathrm{q}}\right)\right)$.

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Let $u=e^{i 2 \pi t}$ and $v=e^{i 2 \pi s}$ be the coordinate functions on the torus \mathbb{T}^{2}. There is a \mathbb{C}-algebra isomorphism

$$
\Gamma\left(E n d\left(\mathcal{E}_{\mathrm{q}}\right)\right) \cong \mathcal{C}^{\infty}\left(\mathbb{T}_{\mathrm{q}}^{2}\right) \quad \text { sending }\left(u U_{0}\right) \mapsto U, \quad\left(v V_{0}\right) \mapsto V
$$

where the algebra $\mathcal{C}^{\infty}\left(\mathbb{T}_{\mathrm{q}}^{2}\right)$ is the complex noncommutative 2 -torus whose elements are formal power Laurent series in U, V with rapidly decreasing sequence of coefficients, subject to the relation

$$
U V=q V U .
$$

Application to noncommutative 2-torus.

Noncommutative torus revisited.
Let $u=e^{i 2 \pi t}$ and $v=e^{i 2 \pi s}$ be the coordinate functions on the torus \mathbb{T}^{2}. There is a \mathbb{C}-algebra isomorphism

$$
\Gamma\left(\operatorname{End}\left(\mathcal{E}_{\mathrm{q}}\right)\right) \cong \mathcal{C}^{\infty}\left(\mathbb{T}_{\mathrm{q}}^{2}\right) \quad \text { sending }\left(u U_{0}\right) \mapsto U, \quad\left(v V_{0}\right) \mapsto V
$$

where the algebra $\mathcal{C}^{\infty}\left(\mathbb{T}_{\mathrm{q}}^{2}\right)$ is the complex noncommutative 2 -torus whose elements are formal power Laurent series in U, V with rapidly decreasing sequence of coefficients, subject to the relation

$$
U V=q V U .
$$

In conclusion we have the following Morita context

$$
\left(\mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right), \mathcal{C}^{\infty}\left(\mathbb{T}_{q}^{2}\right), \Gamma\left(\mathcal{E}_{q}\right), \Gamma\left(\mathcal{E}_{q}\right)^{*}\right)
$$

Application to noncommutative 2-torus.

Corollary

Let $\mathrm{q} \in \mathbb{S}^{1}$ be a root of unity (with rational argument $\bmod 2 \pi$), and consider the Morita context

$$
\left(\mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right), \mathcal{C}^{\infty}\left(\mathbb{T}_{\mathrm{q}}^{2}\right), \Gamma\left(\mathcal{E}_{\mathrm{q}}\right), \Gamma\left(\mathcal{E}_{\mathrm{q}}\right)^{*}, \phi, \psi\right)
$$

Consider the Lie-Rinehart algebra $\left(R=\mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right), K=\operatorname{Der}_{\mathbb{C}}\left(\mathcal{C}^{\infty}\left(\mathbb{T}^{2}\right)\right)\right.$) of the Lie algebroid of vector fields on the complex torus \mathbb{T}^{2} and its associated left Hopf algebroid ($R, \mathcal{V} K$). Let M be a right $\mathcal{V} K$-module and left $\mathcal{V} K$-comodule. We then have the following natural \mathbb{C}-module isomorphisms

$$
\begin{array}{ll}
H_{\bullet}(\mathcal{V} K, M) \simeq H_{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M}), & H C_{\bullet}(\mathcal{V} K, M) \simeq H H_{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M}) \\
H^{\bullet}(\mathcal{V} K, M) \simeq H^{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M}), & H C^{\bullet}(\mathcal{V} K, M) \simeq H^{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M})
\end{array}
$$

where $\widetilde{\mathcal{V K}}$ is the Morita base change left Hopf algebroid over the noncommutative torus $\mathcal{C}^{\infty}\left(\mathbb{T}_{q}^{2}\right)$.

Application to noncommutative 2-torus.

Furthermore, assume that M be R-flat. Then we have that

$$
\begin{array}{ll}
H_{\bullet}(\widetilde{V K}, \tilde{M}) \simeq H_{\bullet}(K, M), & H C_{\cdot}(\widetilde{V K}, \tilde{M}) \simeq \bigoplus_{i \geq 0} H_{\bullet-2 i}(K, M), \\
H^{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M}) \simeq M \otimes_{R} \Lambda_{R}^{\bullet} K, & H P^{\bullet}(\widetilde{\mathcal{V} K}, \tilde{M}) \simeq \bigoplus_{i \equiv \bullet \bmod 2} H_{i}(K, M)
\end{array}
$$

are natural \mathbb{C}-module isomorphisms, where $H_{\bullet}(K, M):=\operatorname{Tor}^{\nu}{ }^{\mathcal{K}}(M, R)$, and where $H P^{\bullet}$ denotes periodic cyclic cohomology.
．G．Böhm Hopf algebroids，Handbook of algebra，Vol．6，North－Holland， Amsterdam，2009，pp．173－236．
T－D．C．Ravenel，Complex Cobordism and Stable Homotopy Groups of Spheres．Pure and Applied Mathematics Series，Academic Press，San Diego， 1986.
國 P．Schauenburg，Bialgebras over noncommutative rings and a structure theorem for Hopf bimodules，Appl．Categ．Structures 6 （1998），no．2， 193－222．
P．P．Schauenburg，Morita base change in quantum groupoids Locally compact quantum groups and groupoids（Strasbourg，2002），IRMA Lect． Math．Theor．Phys．，2，de Gruyter，Berlin，2003，pp．79－103．

R．SGA 3：Schémas en groupes．Vol．1，Propriétés générales des schémas en groupes．Lecture Notes in Mathematics 151．Springer－Verlag，Berlin， Heidelberg，New York， 1970.

䍰 M．Sweedler，Groups of simple algebras，Inst．Hautes Études Sci．Publ． Math．（1974），no．44，79－189．
T M．Takeuchi，Groups of algebras over $A \otimes \bar{A}$ ，J．Math．Soc．Japan 29 （1977），no．3，459－492．

Cyclic（co）Homology．
．G．Böhm and D．Ştefan，（Co）cyclic（co）homology of bialgebroids：an approach via（co）monads，Comm．Math．Phys． 282 （2008），no．1， 239－286．

目 A．Connes，Noncommutative differential geometry，Inst．Hautes Études Sci．Publ．Math．（1985），no．62，257－360．

R A．Connes，Hopf algebras，cyclic cohomology and the transverse index theorem，Comm．Math．Phys． 198 （1998），no．1，199－246．

R M．Crainic，Cyclic cohomology of Hopf algebras，J．Pure Appl．Algebra 166 （2002），no．1－2，29－66．

R．R．Dennis and K．Igusa，Hochschild homology and the second obstruction for pseudoisotopy，Algebraic K－theory，Part I（Oberwolfach， 1980），Lecture Notes in Math．，vol．966，Springer，Berlin，1982，pp．7－58．
國 B．Feĭgin and B．Tsygan，Additive K－theory，K－theory，arithmetic and geometry（Moscow，1984－1986），Lecture Notes in Math．，vol．1289， Springer，Berlin，1987，pp．67－209．
國 P．Hajac，M．Khalkhali，B．Rangipour，and Y．Sommerhäuser，Stable anti－Yetter－Drinfeld modules，C．R．Math．Acad．Sci．Paris 338 （2004）， no．8，587－590．

Cyclic (co)Homology.

N. Kowalzig, Hopf algebroids and their cyclic theory, Ph. D. thesis, Universiteit Utrecht and Universiteit van Amsterdam, 2009.
N. Kowalzig and U. Krähmer, Cyclic structures in algebraic (co)homology theories, Homology, Homotopy and Applications 13 (2011), no. 1, 297-318.
N. Kowalzig and H. Posthuma, The cyclic theory of Hopf algebroids, J. Noncomm. Geom. 5 (2011), no. 3, 423-476.
R. J.-L. Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998.

國 J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569-591.
W. Massey and F. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47-65.

R R. McCarthy, Morita equivalence and cyclic homology, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 6, 211-215.

Lie algebroids and Lie groupoids

圊 J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113.
G. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222.
庫 K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Note Series 124. Cambridge University Press. 1987.
K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids. London Math. Soc. Lecture Note Series 213. Cambridge University Press. 2005.

