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Motivations, overviews.

A Lie algebroid is a vector bundle E → M over a smooth manifold,
together with a map of vector bundles ω : E → TM and Lie structure
[−,−] on the vector space Γ(E) of global smooth sections of E , such
that the induced map Γ(ω) : Γ(E) → Γ(TM) is a Lie algebra map
which satisfy: for all X ,Y ∈ Γ(E) and any f ∈ C∞(M) one has

[X , fY ] = f [X ,Y ] + Γ(ω)(X )(f )Y .

Two Lie algebroids (Ei ,Mi), i = 1,2, are said to be Morita equivalent
provided that there exist surjective submersions ϕi : Q → Mi with
simply connected fibers such that:
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Motivations, overviews.
Which algebraic objects then encode the previous geometric
informations?

We know that to each Lie algebroid (E ,M) we can associated a left
Hopf algebroid (C∞(M),VΓ(E)). In fact there is a functor

Lie-AlgdM −→ (left)Hopf-AlgdC∞(M)

such that the (co)homology of (E ,M) coincides, up to isomorphism,
with the (co)cyclic (co)homolgy of (C∞(M),VΓ(E)).

In this way, the algebraic objects which we are looking for are then
Hopf algebroids and theirs cyclic theories!

Questions:

(1) Do Morita equivalent Lie algebroids have Morita equivalent
associated (left) Hopf algebroids?

(2) Are two Morita equivalent (left) Hopf algebroids (R,U)
M∼ (S,V ),

have isomorphic Hochschild (co)homology (co)cyclic
(co)homology? i.e., Morita invaraiance of HH•,HH•,HC•,HC•?
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Motivations, overviews.
So far, no answer to these questions is known! We do not even know
what Morita equivalent (left) Hopf algebroids (with different base
rings) means?

A naive answer to Morita invariance of HH•,HH•,HC•,HC• is given
here! Explicitly, we assume a Morita base change between two (left)
Hopf algebroids of the form (R,U) and (S, Ũ), where R is Morita
equivalent to S and Ũ is constructed from U.

As we will see this approach is not far from some geometric
application. To this end, we construct a Morita base change left Hopf
algebroid over noncommutative 2-torus (with rational parameter) and
show that its cyclic homology can be computed by means of the
homology of the Lie algebroid of vector fields on the classical 2-torus.

Based on the paper:

L. El Kaoutit and N. Kowalzig, Morita base change in Hopf-cyclic
(co)homology. To appear in Lett. Math. Phys.
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equivalent to S and Ũ is constructed from U.

As we will see this approach is not far from some geometric
application. To this end, we construct a Morita base change left Hopf
algebroid over noncommutative 2-torus (with rational parameter) and
show that its cyclic homology can be computed by means of the
homology of the Lie algebroid of vector fields on the classical 2-torus.

Based on the paper:

L. El Kaoutit and N. Kowalzig, Morita base change in Hopf-cyclic
(co)homology. To appear in Lett. Math. Phys.



. . . . . .

Motivations, overviews.
So far, no answer to these questions is known! We do not even know
what Morita equivalent (left) Hopf algebroids (with different base
rings) means?

A naive answer to Morita invariance of HH•,HH•,HC•,HC• is given
here! Explicitly, we assume a Morita base change between two (left)
Hopf algebroids of the form (R,U) and (S, Ũ), where R is Morita
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Left Hopf algebroids.

Let R be an associative algebra over a commutative ground ring k
with 1, Re = R ⊗k Ro is the enveloping ring of R.
Left Hopf algebroids are characterised by their categories of left
modules. Explicitly, given U an Re-ring, we denote by
η∗ : UMod → ReMod the scalers restriction functor.
The following assertions are equivalent:

(i) U is a left Hopf R-algebroid;

(ii) The category of left modules UMod is a monoidal category with
η∗ is a strict monoidal functor and preserves left inner-hom
functors.

The underlying bimodule ReU admits then a structure of an R-coring
such that we can define the categories UComod,ComodU of left and
right U-comodules.

En general, ModU need not to be monoidal, and there is no such
characterisation using comodules.
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Left Hopf algebroids.

The fact that η∗ preserves left inner-hom functors, makes a difference
between the notions of (left) Hopf algebroids and (left) bialgebroids.
As in the case of Hopf algebra this leads to the notion of ”antipode”,
although in this case its formulation is not obvious.

The Hopf-Galois map is defined by

β : U1⊗Ro ⊗Ro 1⊗Ro U → 1⊗Ro U ⊗R R⊗1o U, u ⊗Ro v 7→ u(1) ⊗R u(2)v .

The key is that: The functor η∗ preserves left inner-hom functors if,
and only if the map β is bijective.
We use Sweedler-type notation

u+ ⊗Ro u− := β−1(u ⊗R 1), for all u ∈ U,

for the translation map

β−1(−⊗R 1) : U → U1⊗Ro ⊗Ro 1⊗Ro U,

which plays the rôle of the antipode as in the classical case.
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Cyclic (co)homology for left Hopf algebroids.

Let M be simultaneously a left U-comodule and a right U-module with
compatible left R-action, which we also assume a Stable anti
Yetter-Drinfel’d module.
The associated cyclic object is

C•(U,M) := M ⊗Ro (1⊗Ro U1⊗Ro)⊗Ro •,

whose structure maps are given by:

di(m⊗Rox) =


m ⊗Ro u1 ⊗Ro · · · ⊗Ro

(
un−1(1 ⊗ ε(un)o)

)
, if i = 0,

m ⊗Ro · · · ⊗Ro (un−iun−i+1)⊗Ro · · · ⊗Ro un, if i = 1, ..., n − 1,
(mu1)⊗Ro u2 ⊗Ro · · · ⊗Ro un, if i = n

si(m⊗Rox) =


m ⊗Ro u1 ⊗Ro · · · ⊗Ro un ⊗Ro 1, if i = 0,
m ⊗Ro · · · ⊗Ro un−i ⊗Ro 1 ⊗Ro un−i+1 ⊗Ro · · · ⊗Ro un, if i = 1, .., n − 1,
m ⊗Ro 1 ⊗Ro u1 ⊗Ro u2 ⊗Ro · · · ⊗Ro un, if i = n

tn(m ⊗Ro x) = (m(0)u1
+)⊗Ro u2

+ ⊗Ro · · · ⊗Ro un
+ ⊗Ro (un

− · · ·u1
−m(−1))

where x := u1 ⊗Ro · · · ⊗Ro un.
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Cyclic (co)homology for left Hopf algebroids.

Now its associated cocyclic object is

C•(U,M) := (R⊗1o UR⊗1o)⊗R• ⊗R M,

with structure maps in degree n given by

δi(z ⊗R m) =


1 ⊗R u1 ⊗R · · · ⊗R un ⊗R m, if i = 0
u1 ⊗R · · · ⊗R ∆(ui)⊗R · · · ⊗R un ⊗R m, if 1 ≤ i ≤ n
u1 ⊗R · · · ⊗R un ⊗R m(−1) ⊗R m(0), if i = n + 1.

δj(m) =

{
1 ⊗R m, if j = 0
m(−1) ⊗R m(0), if j = 1

σi(z ⊗R m) = u1 ⊗R · · ·⊗R ε(ui+1)⊗R · · ·⊗R un ⊗R m 0 ≤ i ≤ n−1,

τn(z ⊗R m) = u1
−(1)u

2 ⊗R · · · ⊗R u1
−(n−1)u

n ⊗R u1
−(n)m(−1) ⊗R m(0)u1

+,

where we abbreviate z := u1 ⊗R · · · ⊗R un.
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√
Morita theory.

Let R and S two rings together with two bimodules SPR and RQS with
isomorphisms of bimodules:

φ : P ⊗R Q '−→ S, ψ : Q ⊗S P '−→ R.

Thus (R,S,P,Q, φ, ψ) can be considered as a Morita context.
This can be extended to a Morita context (Re,Se,Pe,Qe, φe, ψe),
where Pe := P ⊗k Qo, Qe := Q ⊗k Po and φe, ψe are obvious.

This is an induced
√

Morita equivalence between R and S, in the
sense of Takeuchi.
By Schauenburg’s result, starting with a left Hopf algebroid (R,U) we
can endow the Se-ring

Ũ := Pe ⊗Re U ⊗Re Qe

with a structure of left S-Hopf algebroid. The pair (S, Ũ) is called the
Morita base change (left) Hopf algebroid of (R,U).
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Morita invariance for Hopf-(co)cyclic (co)homology.

We can construct a quasi-isomorphisms between the chain
complexes C•(U,M) and C•(Ũ, M̃) (resp., between the cochain
complexes C•(U,M) and C•(Ũ, M̃)). The following is our main result.

Theorem
Let (R,U) be a left Hopf algebroid, M a left U-comodule right
U-module which is SaYD, and (R,S,P,Q, φ, ψ) a Morita context.
Consider the Morita base change left S-Hopf algebroid and the image
of M

Ũ := Pe ⊗Re U ⊗Re Qe, M̃ := P ⊗R M ⊗R Q.

We then have the following natural k-module isomorphisms:

HH•(U,M) ∼= HH•(Ũ, M̃), HH•(U,M) ∼= HH•(Ũ, M̃)

HC•(U,M) ∼= HC•(Ũ, M̃), HC•(U,M) ∼= HC•(Ũ, M̃)

between the Hochschild (co)homologies and (co)cyclic
(co)homologies of the (co)cyclic objects C•(U,M) and C•(Ũ, M̃)
(resp.,C•(U,M) and C•(Ũ, M̃)) .
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(resp.,C•(U,M) and C•(Ũ, M̃)) .
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The Universal Enveloping of Lie Rinehart algebra.

Assume that R is a commutative k-algebra (Q ⊂ k is a ground field)
and denote by Derk(R) the Lie algebra of all k-linear derivation of R.
Consider L a k-Lie algebra with a structure of R-module, and
ω : L → Derk(R) a morphism of k-Lie algebras.
Following Rinehart, the pair (R,L) is called Lie-Rinehart algebra with
anchor map ω, provided that for all X ,Y ∈ L and a, b ∈ R, we have

(aX )(b) = a(X (b)), [X ,aY ] = a[X ,Y ] + X (a)Y

where X (a) stand for ω(X )(a).

Example
Here are the basic examples which will be handled, and which in fact
stimulate the above general definition.

(i) The pair (R,Derk(R)) admits trivially a structure of Lie-Rinehart algebra.

(ii) Let (E ,M) be a Lie algebroid. Then the pair (C∞(M), Γ(E)) is obviously
a Lie-Rinehart algebra.

(iii) A smooth manifold M is a Poisson manifold if, and only if its cotangte
bundle (T ∗M,M) is a Lie algebroid. Hence (C∞(M), Γ(T ∗M)) is a
Lie-Rinehart algebra for a Poisson manifold M.



. . . . . .

The Universal Enveloping of Lie Rinehart algebra.
Assume that R is a commutative k-algebra (Q ⊂ k is a ground field)
and denote by Derk(R) the Lie algebra of all k-linear derivation of R.

Consider L a k-Lie algebra with a structure of R-module, and
ω : L → Derk(R) a morphism of k-Lie algebras.
Following Rinehart, the pair (R,L) is called Lie-Rinehart algebra with
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The Universal Enveloping of Lie Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L), there is a universal
object denoted by (R,VL): Let U(L) be the enveloping Lie algebra of
L. Since L acts on R by derivations, we can consider the smash
product R#U(L), and so take its factor R-algebra

Π : R#U(L) −→ VL :=
R#U(L)

JL
, JL := 〈a#X − 1#aX 〉a∈R, X∈L.

The usual k-bialgebra structure of U(L) can be lifted to a structure of
R-bialgebroid on VL, which gives in fact a structure of left Hopf
R-algebroid. The comultiplication and counit are obvious, the
translation map is given on generator by

a+#a− := a#1, X+#X− := X#1 − 1#X , modulo JL.

Obviously there are two morphisms ιR : R −→ VL, ιL : L −→ VL of
k-algebras and k-Lie algebras, respectively, which satisfy

ιR(a)ιL(X ) = ιL(aX ), ιL(X )ιR(a)− ιR(a)ιL(X ) = ιR(X (a)), ∀ a ∈ R, X ∈ L.

By construction, the algebra VL and the maps ιR , ιL form an
universal object subject to these equations.
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Application to noncommutative 2-torus.

Vector bundles versus
√
Morita theories.

Assume we are given a finitely generated and projective module PR
which is faithful, in the sense that any equation of the form Pa = 0,
for some a ∈ R, implies a = 0. Then it is well known that R is Morita
equivalent to the endomorphisms ring End(PR). This is because R is
a commutative ring.
Now assume that we are given a (complex) smooth vector bundle
π : P → M of constant rank ≥ 1, then it is well know that the global
smooth sections Γ(P) form a finitely generated and projective
C∞(M)-module of constant rank over the complex valued smooth
functions algebra on M. This module is in fact always faithful (this
can also follows directly from an argument on maximal ideals
associated to points).
In this way C∞(M) is Morita equivalent to the endomorphisms
algebra End(PC∞(M)) ∼= Γ(End(P)), where End(P) is the complex
endomorphism algebra bundle.
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Application to noncommutative 2-torus.
Noncommutative torus revisited.

Consider the Lie group S1 = {z ∈ C \ {0}| |z| = 1} as a real
1-dimensional torus by identifying it with the additive quotient R/2πZ.
The real d-dimensional torus Td := S1 × · · · × S1 is by the same way
identified with Rd/2πZd .

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element
q ∈ S1 whose argument is rational modulo 2π, and take N ∈ N to be
the smallest natural number such that qN = 1.

Consider the semidirect product group G := Z2
N n S1 where

ZN = Z/NZ, and operation

(m, n, θ) (m′, n′, θ′) = (m + m′, n + n′, θθ′qmn′
),

for every pair of elements (m, n, θ), (m′, n′, θ′) ∈ G.

Then there is a right action of the group G on the torus T3 given as
follows:

(x, y, z)(m, n, θ) = (qmx, qny, θzym), (x, y, z) ∈ T3, and (m, n, θ) ∈ G.



. . . . . .

Application to noncommutative 2-torus.
Noncommutative torus revisited.

Consider the Lie group S1 = {z ∈ C \ {0}| |z| = 1} as a real
1-dimensional torus by identifying it with the additive quotient R/2πZ.
The real d-dimensional torus Td := S1 × · · · × S1 is by the same way
identified with Rd/2πZd .

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element
q ∈ S1 whose argument is rational modulo 2π, and take N ∈ N to be
the smallest natural number such that qN = 1.

Consider the semidirect product group G := Z2
N n S1 where

ZN = Z/NZ, and operation

(m, n, θ) (m′, n′, θ′) = (m + m′, n + n′, θθ′qmn′
),

for every pair of elements (m, n, θ), (m′, n′, θ′) ∈ G.

Then there is a right action of the group G on the torus T3 given as
follows:

(x, y, z)(m, n, θ) = (qmx, qny, θzym), (x, y, z) ∈ T3, and (m, n, θ) ∈ G.



. . . . . .

Application to noncommutative 2-torus.
Noncommutative torus revisited.

Consider the Lie group S1 = {z ∈ C \ {0}| |z| = 1} as a real
1-dimensional torus by identifying it with the additive quotient R/2πZ.
The real d-dimensional torus Td := S1 × · · · × S1 is by the same way
identified with Rd/2πZd .

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element
q ∈ S1 whose argument is rational modulo 2π, and take N ∈ N to be
the smallest natural number such that qN = 1.

Consider the semidirect product group G := Z2
N n S1 where

ZN = Z/NZ, and operation

(m, n, θ) (m′, n′, θ′) = (m + m′, n + n′, θθ′qmn′
),

for every pair of elements (m, n, θ), (m′, n′, θ′) ∈ G.

Then there is a right action of the group G on the torus T3 given as
follows:

(x, y, z)(m, n, θ) = (qmx, qny, θzym), (x, y, z) ∈ T3, and (m, n, θ) ∈ G.



. . . . . .

Application to noncommutative 2-torus.
Noncommutative torus revisited.

Consider the Lie group S1 = {z ∈ C \ {0}| |z| = 1} as a real
1-dimensional torus by identifying it with the additive quotient R/2πZ.
The real d-dimensional torus Td := S1 × · · · × S1 is by the same way
identified with Rd/2πZd .

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element
q ∈ S1 whose argument is rational modulo 2π, and take N ∈ N to be
the smallest natural number such that qN = 1.

Consider the semidirect product group G := Z2
N n S1 where

ZN = Z/NZ, and operation

(m, n, θ) (m′, n′, θ′) = (m + m′, n + n′, θθ′qmn′
),

for every pair of elements (m, n, θ), (m′, n′, θ′) ∈ G.

Then there is a right action of the group G on the torus T3 given as
follows:

(x, y, z)(m, n, θ) = (qmx, qny, θzym), (x, y, z) ∈ T3, and (m, n, θ) ∈ G.



. . . . . .

Application to noncommutative 2-torus.
Noncommutative torus revisited.

Consider the Lie group S1 = {z ∈ C \ {0}| |z| = 1} as a real
1-dimensional torus by identifying it with the additive quotient R/2πZ.
The real d-dimensional torus Td := S1 × · · · × S1 is by the same way
identified with Rd/2πZd .

Following [Dubois-Violette et al 2001; Khalkhali 2009], fix an element
q ∈ S1 whose argument is rational modulo 2π, and take N ∈ N to be
the smallest natural number such that qN = 1.

Consider the semidirect product group G := Z2
N n S1 where

ZN = Z/NZ, and operation

(m, n, θ) (m′, n′, θ′) = (m + m′, n + n′, θθ′qmn′
),

for every pair of elements (m, n, θ), (m′, n′, θ′) ∈ G.

Then there is a right action of the group G on the torus T3 given as
follows:

(x, y, z)(m, n, θ) = (qmx, qny, θzym), (x, y, z) ∈ T3, and (m, n, θ) ∈ G.



. . . . . .

Application to noncommutative 2-torus.

Noncommutative torus revisited.

Now, we can show that the following map

T3
p // T2

(x, y, z) � // (xN , yN)

satisfies the following properties:

(i) p is a surjective submersion.

(ii) G acts freely on T3 and the orbits of this action coincide with the
fibers of p.

As consequence, one can claim by a classical results from differential
geometry, that (T3,p,T2,G) is a principal fiber bundle.

Now, by extending the G-action on T3 to the trivial bundle
T3 × CN → T3, we can construct as follows the associated vector
bundle.
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Application to noncommutative 2-torus.
Noncommutative torus revisited.

First, this is possible by considering the following left G-action on CN

G // EndC(CN)

(m, n, θ) � //
[
ω 7→ θUn

0 V−m
0 ω

]
,

where U0,V0 are the following (N × N)-matrices

U0 =


0 1 0 0 · · ·
0 0 1 0 · · ·
...

. . .
. . .

...
0 · · · 0 1
1 0 · · · 0 0

 , V0 =


1 0 · · · · · · 0
0 q 0 · · · 0
0 0 q2 · · · 0
...

. . .
. . .

...
0 0 · · · 0 qN−1

 ,

which satisfy the relations

U0V0 = qV0U0, UN
0 = V N

0 = IN .
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Application to noncommutative 2-torus.
Noncommutative torus revisited.

Therefore, we have a left G-action on T3 × CN defined by

(
(x, y, z);ω

)
(m, n, θ) =

(
(x, y, z)(m, n, θ); (m, n, θ)−1ω

)
=

(
(qmx, qny, θzym); θ−1U−n

0 V m
0 ω

)
.

We are now able to associate a non trivial vector bundle to the trivial
bundle T3 × CN → T3. That is, we can claim that there is a morphism
of vector bundles

T3 × CN //

pr1

��

T3 ×G CN := Eq

p

���
�
�

(Eq is the orbits space of T3 × CN)

T3
p

// T2

As a conclusion, the algebra C∞(T2) of all smooth complex valued
functions on T2 is Morita equivalent to the endomorphisms algebra of
global smooth sections End(Γ(Eq)) ∼= Γ

(
End(Eq)

)
.
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Application to noncommutative 2-torus.

Noncommutative torus revisited.

Let u = ei2πt and v = ei2πs be the coordinate functions on the torus
T2. There is a C-algebra isomorphism

Γ(End(Eq)) ∼= C∞(T2
q) sending (uU0) 7→ U, (vV0) 7→ V .

where the algebra C∞(T2
q) is the complex noncommutative 2-torus

whose elements are formal power Laurent series in U,V with rapidly
decreasing sequence of coefficients, subject to the relation

UV = qVU.

In conclusion we have the following Morita context

(C∞(T2), C∞(T2
q), Γ(Eq), Γ(Eq)

∗)
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Application to noncommutative 2-torus.

Corollary
Let q ∈ S1 be a root of unity (with rational argument mod 2π), and consider
the Morita context

(C∞(T2), C∞(T2
q), Γ(Eq), Γ(Eq)

∗, φ, ψ).

Consider the Lie-Rinehart algebra
(
R = C∞(T2),K = DerC(C∞(T2))

)
of the

Lie algebroid of vector fields on the complex torus T2 and its associated left
Hopf algebroid (R,VK ). Let M be a right VK -module and left VK -comodule.
We then have the following natural C-module isomorphisms

H•(VK ,M) ' H•(ṼK , M̃), HC•(VK ,M) ' HC•(ṼK , M̃),

H•(VK ,M) ' H•(ṼK , M̃), HC•(VK ,M) ' HC•(ṼK , M̃),

where ṼK is the Morita base change left Hopf algebroid over the
noncommutative torus C∞(T2

q).
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Application to noncommutative 2-torus.

Furthermore, assume that M be R-flat. Then we have that

H•(ṼK , M̃) ' H•(K ,M), HC•(ṼK , M̃) '
⊕

i≥0 H•−2i(K ,M),

H•(ṼK , M̃) ' M ⊗R

∧•
R K , HP•(ṼK , M̃) '

⊕
i≡•mod2 Hi(K ,M)

are natural C-module isomorphisms, where H•(K ,M) := TorVK
• (M,R), and

where HP• denotes periodic cyclic cohomology.
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