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Abstract. We describe how some aspects of abstract localization on module
categories have applications to the study of injective comodules over some
special types of corings. We specialize the general results to the case of Doi-
Koppinen modules, generalizing previous results in this setting.

Introduction

The Wisbauer category σ[M ] subgenerated by a module M [20] is a flexible and
useful tool when applied to some at a first look unrelated situations. This has
been the case of the categories of comodules over corings, which, under suitable
conditions, become Wisbauer’s categories [2, 5, 12]. On the other hand, as it was ex-
plained in [6], the categories of entwined modules and, henceforth, of Doi-Koppinen
modules, are instances of categories of comodules over certain corings, which ul-
timately enlarges the field of influence of the methods from Module Theory de-
veloped in [20]. The present paper has been deliberately written from this point
of view, although with a necessarily different style. To illustrate how abstract re-
sults on modules may successfully be applied to more concrete situations, we have
chosen a topic from the theory of Doi-Koppinen modules with roots in the theory
of graded rings and modules, namely, the transfer of the injectivity from relative
modules (Doi-Koppinen, graded) to the underlying modules over the ground ring
(comodule algebra, graded algebra). This was studied at the level of Doi-Koppinen
modules in [10], giving versions in this framework of results on graded modules
from [9]. The methods developed in [10] rest on the exactness of the rational functor
for semiperfect coalgebras over fields [17], which allows the construction of a suit-
able adjoint pair between the category of Doi-Koppinen modules and the category
of modules over the smash product [10, Theorem 3.5]. The pertinent observation
here, from the point of view of corings, is that one of the functors in that adjoint
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pair is already a rational functor for the coring associated to the comodule algebra
[2, Proposition 3.21]. Thus, a relevant ingredient in [10] is, under this interpreta-
tion, the exactness of the trace functor defined by a Wisbauer category of modules
or, equivalently, the exactness of the preradical associated to a closed subcategory
of a category of modules. Here, we make explicit the fact that the exactness of
such a preradical is equivalent to the property of being, up to an equivalence of
categories, the canonical functor of a localization (Theorem 1.1), and, henceforth,
it has a right adjoint, which is explicitly described. This right adjoint will preserve
injective envelopes, since it is a section functor (Proposition 1.3). We then deduce
the general form of the transfer of injective objects stated in [10].

In the rest of this paper, we specialize the former general scheme to corings
with exact rational functors and, even more, to Doi-Koppinen modules where the
coacting coalgebra has an exact rational functor.

The results of this paper should not be considered as completely new. In fact,
most of them could be gathered, with suitable adaptations (not always obvious),
from other sources. Thus, our text resembles a mini-survey. However, we believe
that the reader will not find elsewhere the statements made here, nor the applica-
tions to the transfer of injectivity, since they do not intend to be reproductions of
previously published results. We hope we have presented a study of some aspects
of the theory of corings and their comodules in a new light.

Notations and basic notions. Throughout this paper the word ring will refer to
an associative unital algebra over a commutative ring K. The category of all left
modules over a ring R will be denoted by RMod, being ModR the notation for the
category of all right R-modules. The notation X ∈ A for a category A means that
X is an object of A, and the identity morphism attached to any object X will be
denoted by the same character X .

Recall from [19] that an A-coring is a three-tuple (C,∆C, εC) consisting of an
A-bimodule C and two homomorphisms of A-bimodules (the comultiplication and
the counity)

C
∆C �� C ⊗A C , C

εC �� A

such that (∆C⊗AC)◦∆C = (C⊗A∆C)◦∆C and (εC⊗AC)◦∆C = (C⊗AεC)◦∆C = C.
A right C-comodule is a pair (M,ρM ) consisting of a right A-module M

and a right A-linear map ρM : M → M ⊗A C, called right C-coaction, such that
(M⊗A∆C)◦ρM = (ρM ⊗AC)◦ρM and (M⊗A εC)◦ρM = M . A morphism of right
C-comodules (or a right C-colinear map) is a right A-linear map f : M →M ′ satis-
fying ρM ′ ◦f = (f ⊗AC)◦ρM . The K-module of all right C-colinear maps between
two right comodules MC and M ′

C is denoted by HomC(M,M ′). Right C-comodules
and their morphisms form a K-linear category ComodC. Although not abelian in
general, ComodC is a Grothendieck category provided AC is a flat module, see [12,
Section 1]. The category CComod of left C-comodules is symmetrically defined.

For more information on corings and comodules, the reader is referred to [5]
and its bibliography.
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1. Exactness of a preradical, localization, and injective objects

In this section we will derive from [14] some facts on quotient categories that
will be useful in the sequel. Recall that a full subcategory C of a Grothendieck
category G is said to be closed if any subobject and any quotient object of an
object belonging to C is in C, and any direct sum of objects of C is in C. A closed
subcategory C of G defines a preradical r : G → G, which sends an object X of
G to its largest subobject r(X) belonging to C. This preradical is left exact, since
it is right adjoint to the inclusion functor C ⊆ G. By Ker(r) we denote the full
subcategory of G with objects defined by the condition r(X) = 0.

A full subcategory L of G is dense if for any short exact sequence in G

0 �� X �� Y �� Z �� 0 ,

Y is in L if, and only if, both X and Z are in L. From [13, 15.11] we know that a
dense subcategory L is localizing in the sense of [14] if and only if it is stable under
coproducts. Following [14, Chapter III], every localizing subcategory L of G defines
a new Grothendieck category G/L (the quotient category), and an exact functor
T : G → G/L (the canonical functor) that admits a right adjoint S : G/L → G.
The counit φ− : T ◦ S → 1G/L of this andjunction is a natural isomorphism. The
unit ψ− : 1G → S ◦ T satisfies the property that both the kernel and the cokernel
of ψX : X → (S ◦ T)(X) belong to L for every object X of G.

The exactness of a preradical r can be expressed in terms of quotient cate-
gories, as the following proposition shows. The underlying ideas of its proof can
be traced back to [17, Theorem 2.3].

Proposition 1.1. Let C be a closed subcategory of a Grothendieck category G with
associated preradical r : G → C, and inclusion functor l : C → G. The following
statements are equivalent:

(i) r is an exact functor;
(ii) K = Ker(r) is a localizing subcategory of C with canonical functor T, and

there exists an equivalence of categories H : G/K → C such that H ◦T = r.

Proof. (i) ⇒ (ii) Since r is exact and preserves coproducts, we easily get that
K = Ker(r) is a localizing subcategory. Consider the canonical adjunctions

C
l �� G
r

�� , G
T �� G/K
S

��

where S is right adjoint to T, and r is right adjoint to the inclusion functor l.
Composing we get a new adjoint pair T ◦ l : C � G/K : r ◦ S, which we claim to
provide an equivalence of categories. The unit of this new adjunction is given by

idC = rl
rψl �� rST l
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where ψ− is the unit of the adjunction T � S. For any object M of C, there is an
exact sequence

0 �� X �� l(M)
ψl(M) �� STl(M) �� Y �� 0

with X and Y in K. Apply the exact functor r to obtain an isomorphism r(ψl(M)) :
M = rl(M) ∼= rSTl(M). Therefore, rψl(−) is a natural isomorphism. The counit
of the adjunction T ◦ l � r ◦ S is given by the following composition

T l rS
T λS �� TS ∼=

φ− �� idG/K

where λ− is the counit of the adjunction l � r, and φ− is the counit of the adjunc-
tion T � S. For any object N of G/K, λS(N) is a monomorphism with cokernel
in K since r is exact. Thus, [14, Lemme 2, p. 366] implies that T(λS(N)) is an
isomorphism. Therefore, φN T(λS(N)) is an isomorphism. Therefore, T ◦ l is an
equivalence of categories. On the other hand, by [14, Corollaire 3, p. 368], there
exists a functor H : G/K → C such that H ◦T = r. By composing on the right with
l we get H ◦T◦ l = r◦ l = idC . From this, and using that T◦ l is an equivalence, we
get that H is an equivalence.(ii) ⇒ (i) This is obvious, since T is always exact. �

In the rest of this section we consider G = ModB, the category of right
modules over a ring B. We fix the following notation: C is a closed subcategory of
ModB , with preradical r : ModB → C, and inclusion functor l : C → ModB. We
will consider the twosided ideal a = r(BB), and K = Ker(r).

The following proposition collects a number of well-known consequences of
assuming that r is exact. A short proof is included.

Proposition 1.2. If r is exact then a is an idempotent ideal of B such that B(B/a)
is flat, and r(M) = Ma for every right B-module M . In this way, K = Ker(r)
becomes a localizing subcategory of ModB stable under direct products and injective
envelopes.

Proof. Since r preserves epimorphisms it follows easily that r(M) = Ma, for any
right B-module M . In particular, we get that K = {M ∈ ModB | Ma = 0}.
This easily implies that K is a localizing subcategory stable under direct products
and essential extensions. Finally, the flatness of B(B/a) can be proved as follows.
We know that K is isomorphic to ModB/a. Let π : B → B/a be the canonical
projection; the functor − ⊗B (B/a) : ModB → ModB/a is left adjoint to the
restriction of scalars functor π∗ : ModB/a → ModB. Up to the isomorphism K ∼=
ModB/a, π∗ is nothing but the inclusion functor j : K → ModB . Since K is stable
under injective envelopes, the functor −⊗B (B/a) has to be exact, that is, B(B/a)
is a flat module. �

If a is any idempotent ideal of B such that B(B/a) is flat, then there is a
canonical isomorphism of B-bimodules a ∼= a ⊗B a. This isomorphism makes a
a B-coring with counit given by the inclusion a ⊆ B. We say that a is a left
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idempotent B-coring to refer to this situation. The forgetful functor U : Comoda →
ModB induces then an isomorphism of categories between Comoda and the full
subcategory of ModB whose objects are the modules MB such that Ma = M .

Corollary 1.1. Assume that r is an exact functor. Then
(i) The ideal a = r(BB) is a left idempotent B-coring whose category of all

right comodules Comoda is isomorphic to the quotient category ModB/K. In
particular a is a generator of ModB/K.

(ii) The functor F = HomB (a , −) ◦ l : C → ModB is right adjoint to r, where
l : C → ModB is the inclusion functor. In particular if E is an injective object
of C, then F (E)B is an injective right module.

Proof. (i) By Proposition 1.2, a is an idempotent B-coring. Its category of right
comodules clearly coincides with the torsion class C, and the stated isomorphism
of categories follows by Proposition 1.1.
(ii) Given any object (M,M ′) in ModB × C, we get natural isomorphisms

HomC (r(M) , M ′) ∼= HomB (M ⊗B a , l(M ′)) ∼= HomB (M , HomB (a , l(M ′))) ,

since r(M) = Ma ∼= M⊗B a. This means that F is right adjoint to r. In particular,
F preserves injectives since r is exact. �

Given a module M in ModB, the Wisbauer category σ[M ] associated to M is
the full subcategory of ModB whose objects are all M -subgenerated modules (see
[20]). By definition, it is a closed subcategory and, in fact, it is easy to prove that
every closed subcategory of ModB is of the form σ[M ]. Therefore, the following
theorem, that summarizes some of the previous results, complements [5, 42.16].

Theorem 1.1. Let C be a closed subcategory of a category of modules ModB with
associated preradical r : ModB → C. Let l : C → ModB be the inclusion functor,
and a = r(B). The following statements are equivalent.

(i) r : ModB → C is an exact functor;
(ii) K = Ker(r) is a localizing subcategory of ModB with canonical functor T, and

there exists an equivalence H : ModB/K → C such that r = H ◦ T;
(iii) F = HomB (aB , −) ◦ l : C → ModB is right adjoint to r;
(iv) a is an idempotent B-coring and the forgetful functor U : Comoda → ModB

induces an isomorphism of categories Comoda
∼= C;

(v) a2 = a and Ma = M for every M in C.

Proof. The equivalences (i) ⇔ (ii) and (i) ⇔ (iii) are immediate from Proposition
1.1 and Corollary 1.1.
(i) ⇒ (iv) is a consequence of Proposition 1.1 and Corollary 1.1(i).
(iv) ⇒ (v) Obvious.
(v) ⇒ (i) We have easily that r(M) = Ma, for every right B-module M . From this
we get immediately that r is a right exact functor. �

Given a right B-module M ∈ C, by EC(M) we denote its injective hull in
the Grothendieck category C. According to Theorem 1.1, if r is exact, then it
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becomes essentially the canonical functor associated to a localization with a section
functor (the terminology is taken from [14]). As a section functor, HomB (a , −) will
preserve injective envelopes, as stated in Proposition 1.3. We give a detailed proof
of this fact, suitable for the forthcoming applications to more concrete situations.

Proposition 1.3. Assume that r : ModB → C is exact, and let M ∈ C. The map

ζM : M → HomB (a , EC(M)) (m 
→ ζM (m)(a) = ma, m ∈M,a ∈ a)

gives an injective envelope of M in ModB. As a consequence, M is injective in
ModB if and only if M is injective in C and ζM is an isomorphism.

Proof. By Theorem 1.1, the functor F = HomB (a , −) ◦ l : C → ModB is right
adjoint to the exact functor r. Therefore, F (EC(M)) = HomB (a , EC(M)) is in-
jective in ModB. On the other hand, ζM is obviously a right B-linear map. Let us
show that it is injective. Let m ∈ M such that ζM (m) = 0, that is, ma = 0. By
Theorem 1.1, we have mB = ma, which implies m = 0. Let us prove that ζM is
essential. Pick a non zero element f ∈ HomB (a , EC(M)), so there exists 0 �= u ∈ a
such that 0 �= f(u) ∈ EC(M). Since M is essential in EC(M), there exists a non
zero element b ∈ B such that 0 �= f(u)b ∈M . Since B/a is flat as a left B-module
(Proposition 1.2), there exists w ∈ a with ub = ubw (see, e.g., [5, 42.5]). If we
consider the map g = fub, then g(x) = (fub)(x) = f(ubx), for all x ∈ a, that is
g = fub = ζM (f(ub)) is a non zero element of ζM (M), as g(w) = f(ub) �= 0. �

Definition 1.1. Assume that a has a set of local units in the sense of [1], that is, a
contains a set E of commuting idempotents such that for every x ∈ a there exits
e ∈ E such that xe = ex = x. A right B-module M is said to be of finite support if
there exits a finite subset F ⊆E such that e∈E and m

∑

e∈F
e=m for every m ∈M .

A straightforward argument proves that if MB is of finite support, then every
f ∈ HomB (a , M) is of the form f(x) = mx for somem ∈M . Therefore, we deduce
from Proposition 1.3:

Corollary 1.2. Assume that a has a set of local units, and let M ∈ C of finite
support. Then M is injective in ModB if and only if M is injective in C. As a
consequence, given a homomorphism of rings A→ B with AB flat, we deduce that
if M is injective in C, then M is injective in ModA.

Remark 1.1. In Definition 1.1 and Corollary 1.2, it suffices to assume that a con-
tains a set of commuting idempotents E such that a =

∑
e∈E eB.

In what follows we specialize our results to the case where the subcategory C
is isomorphic to the category of right comodules over a givenA-coring C. This is the
case when C is member of a rational pairing T = (C, B, 〈−,−〉). Rational pairings
for coalgebras over commutative rings were introduced in [15] and used in [3] to
study the category of right comodules over the finite dual coalgebra associated
to certain algebras over Noetherian commutative rings. This development was
adapted for corings in [12], see also [2].
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Recall from [12, Section 2] that a three-tuple T = (C, B, 〈−,−〉) consisting of
an A-coring C, an A-ring B (i.e., B is an algebra extension of A) and a balanced
A-bilinear form 〈−,−〉 : C × B → A, is said to be a right rational pairing over A
provided
(1) βA : B → ∗C is a ring anti-homomorphism, where ∗C is the left dual convo-

lution ring of C defined in [19, Proposition 3.2], and
(2) αM is an injective map, for each right A-module M ,

where α− and β− are the following natural transformations

βN : B ⊗A N �� Hom (AC , AN) ,

b⊗A n �� [c 
→ 〈c, b〉n]

αM : M ⊗A C �� Hom (BA , MA)

m⊗A c �� [b 
→ m〈c, b〉] .

Given a right rational pairing T = (C, B, 〈−,−〉) over A, we can define a
functor called the right rational functor as follows. An element m of a right
B-module M is called rational if there exists a set of right rational parameters
{(ci,mi)} ⊆ C ×M such that mb =

∑
imi〈ci, b〉, for all b ∈ B. The set of all

rational elements in M is denoted by RatT(M). As it was explained in [12, Sec-
tion 2], the proofs detailed in [15, Section 2] can be adapted in a straightforward
way in order to get that RatT(M) is a B-submodule of M and the assignment
M 
→ RatT(M) is a well-defined functor RatT : ModB → ModB, which is in fact a
left exact preradical. Therefore, the full subcategory RatT(ModB) of ModB whose
objects are those B-modules M such that RatT(M) = M is a closed subcategory.
Furthermore, RatT(ModB) is a Grothendieck category which is shown to be iso-
morphic to the category of right comodules ComodC as [12, Theorem 2.6’] asserts
(see also [2, Proposition 2.8]).

Example 1.1. Let C be an A-coring such that AC is a locally projective left
module (see [21, Theorem 2.1] and [2, Lemma 1.29]). Consider the endomor-
phism ring End(CC) as a subring of the endomorphism ring End(AC), that is,
with multiplication opposite to the composition of maps. Since ∆C is a left C-
colinear and a right A-linear map, the canonical ring extension A → End(AC)
factors throughout the extension End(CC) ↪→ End(AC). Therefore, the three-tuple
T = (C,End(CC), 〈−,−〉), where the balanced A-bilinear 〈−,−〉 map is defined by
〈c, f〉 = εC(f(c)), for (c, f) ∈ C × End(CC) is a rational pairing since End(CC) is
already a ring anti-isomorphic to ∗C via the beta map associated to 〈−,−〉. We
refer to T as the right canonical pairing associated to C.

The following theorem complements [5, 20.8].

Theorem 1.2. Let T = (C, B, 〈−,−〉) be a right rational pairing with rational func-
tor RatT : ModB → ModB, and put a = RatT(BB), K = Ker(RatT). The following
statements are equivalent:

(i) RatT : ModB → ModB is an exact functor;
(ii) K is a localizing subcategory of ModB with canonical functor T, and there

exists an equivalence H : ModB/K → RatT(ModB) such that RatT = H ◦T;
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(iii) F = HomB (aB , −) ◦ l : RatT(ModB) → ModB is right adjoint to RatT;
(iv) a is an idempotent B-coring and the forgetful functor U : Comoda → ModB

induces an isomorphism of categories Comoda
∼= RatT(ModB) ∼= ComodC;

(v) Ba is a pure submodule of BB, a2 = a, and Ca = C.

Proof. By Theorem 1.1 we only need to show that (v) ⇒ (iv) since (iv) ⇒ (v)
is clear. We have that a is an idempotent B-coring and C ∼= C ⊗B a as right
B-modules. Given any rational right B-module X with its canonical structure of
right C-comodule, we obtain a B-linear isomorphism X ∼= X�C (C ⊗B a) (recall
that the comultiplication is a right B-linear map), where the symbol −�C− refers
to the cotensor bifunctor over C. Using the left version of [16, Lemma 2.2], we get

X ∼= X�CC ∼= X�C (C ⊗B a) ∼= (X�CC) ⊗B a ∼= X ⊗B a.

That is, X is in fact a right a-comodule. �

Remark 1.2. Right rational pairings are instances of right coring measuring in the
sense of [4]. In this way, given an exact rational functor RatT the isomorphism
of categories ComodC

∼= Comoda stated in Theorem 1.2 can be interpreted as an
isomorphism of corings in an adequate category. Following to [4, Definition 2.1],
a B-coring D is called a right extension of an A-coring C provided C is a (C,D)-
bicomodule with the left regular coaction ∆C. Corings understood as pairs (C : A)
(i.e., C is an A-coring) and morphisms understood as right coring extensions (i.e.,
a pairs consisting of an action and coaction) with their bullet composition form a
category denoted by CrgExtrK (see [4] for more details). If we apply this to the
setting of Theorem 1.2, then it can be easily checked that (C : A) and (a : B)
become isomorphic objects in the category CrgExtrK .

From Proposition 1.3 and Corollary 1.2, we obtain:

Proposition 1.4. Let T = (C, B, 〈−,−〉) be a right rational pairing with rational
functor RatT : ModB → ModB, and put a = RatT(BB). Assume that RatT is
an exact functor. Let M be a right C-comodule, and E(MC) its injective hull in
ComodC.

(a) The map

ζM : M → HomB (a , E(MC)) (m 
→ ζM (m)(a) = ma, m ∈M,a ∈ a)

gives an injective envelope of M in ModB .
(b) M is injective in ModB if and only if M is injective in ComodC and ζM is

an isomorphism.
(c) If AB is flat, ζM is an isomorphism, and M is injective in ComodC, then M

in injective in ModA.
(d) If a has a set of local units and M is of finite support, then M is injective in

ComodC if and only if M in injective in ModB.
(e) Assume that a has a set of local units, M is of finite support and AB is flat.

If M is injective in ComodC, then M is injective in ModA.
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2. Rational functors for entwined and Doi-Koppinen modules

In this section, we shall study the exactness of the rational functors for the corings
coming from entwining structures. When specialized to the entwining structures
given by a comodule algebra, we will obtain a result from [2]. Most of results in
[10] are deduced.

2.1. Entwining structures with rational functor

Recall from [7] that an entwining structure over K is a three-tuple (A,C)ψ con-
sisting of a K-algebra A with multiplication µ and unity 1, a K-coalgebra C with
comultiplication ∆ and counity ε, and a K-module map ψ : C ⊗K A → A ⊗K C
satisfying

ψ ◦ (C ⊗K µ) = (µ⊗K C)◦(A⊗K ψ) ◦ (ψ ⊗K A),

(A⊗K ∆) ◦ ψ = (ψ ⊗K C)◦(C ⊗K ψ) ◦ (∆ ⊗K A),

ψ ◦ (C ⊗K 1) = 1 ⊗K C, (A⊗K ε) ◦ ψ = ε⊗K A.

(2.1)

By [6, Proposition 2.2] the corresponding A-coring is C = A ⊗K C with the A-
bimodule structure given by a′′(a′ ⊗K c)a = a′′a′ψ(c ⊗K a), a, a′, a′′ ∈ A, c ∈ C,
the comultiplication ∆C = A ⊗K ∆, and the counit εC = A ⊗K ε. Furthermore,
the category of right C-comodules is isomorphic to the category of right entwined
modules.

The map (φ, ν) : (C,K) → (C, A) defined by ν(1) = 1 and φ(c) = 1 ⊗K
c, is a homomorphism of corings in the sense of [16]. As in [16] the associated
induction and ad-induction functors to this morphism are, respectively, given by
O : ComodC → ComodC and − ⊗K A : ComodC → ComodC, where O is the
cotensor functor −�C(A ⊗K C). When ComodC is interpreted as the category of
entwined modules, O is naturally isomorphic to the forgetful functor. Moreover,
there is a natural isomorphism

HomC (M ⊗K A , N)
∼= �� HomC (M , O(N))

f � �� [m 
→ f(m⊗K 1)]

[m⊗K a 
→ g(m)a] g,���

for every pair of comodules (MC , NC). Thus the functor O is a right adjoint functor
of − ⊗K A. If CK is a flat module, then O is exact, since UA : ComodC → ModA
is already an exact functor (see, [12, Proposition 1.2]).

We know from [6] that the left dual convolution ring ∗C is isomorphic as a K-
module to HomK (C , A). Up to this isomorphism the convolution multiplication
reads

f · g = µ ◦ (A⊗K f) ◦ ψ ◦ (C ⊗K g) ◦ ∆C , f, g ∈ HomK (C , A) . (2.2)

The connection between this convolution ring and the usual coalgebra convolution
ring C∗ is given by the following homomorphism of rings

Φ : C∗ �� ∗C, (x � �� A⊗K x). (2.3)
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Proposition 2.1. Let (A,C)ψ be an entwining structure over K such that CK is
a locally projective module and consider its corresponding A-coring C = A ⊗K C.
Suppose that there is a right rational pairing T = (C, B, 〈−,−〉) and an anti-
morphism of K-algebras ϕ : C∗ → B which satisfy the following two conditions:
(1) β ◦ ϕ = Φ, where β : B → ∗C is the anti-homomorphism of K-algebras
associated to T and Φ is the homomorphism of rings given in equation (2.3); (2)
for every pair of elements (a, x) ∈ A × C∗, there exists a finite subset of pairs
{(xi, ai)}i ⊆ C∗ × A such that aϕ(x) =

∑
i ϕ(xi)ai. Then, by restricting scalars

we have
RatT (MB) = RatrC (C∗M)

for every right B-module M , where RatrC(−) is the canonical right rational functor
associated to the K-coalgebra C.

Proof. Start with an arbitrary element m ∈ RatT (MB) with right rational system
of parameters {(

∑
k akj ⊗K ckj , mj)}j ⊂ C ×M . Then for every x ∈ C∗, we have

xm = mϕ(x) =
∑

k,j

mj〈akj ⊗K ckj , ϕ(x)〉

=
∑

k,j

mjβ(ϕ(x))(akj ⊗K ckj)

=
∑

k,j

mjΦ(x)(akj ⊗K ckj), Φ = β ◦ ϕ,

=
∑

k,j

mjakjx(ckj),

thus {ckj ,mjakj} ⊂ C×M is a right rational system of parameters for m ∈ C∗M ;
that is m ∈ RatrC(C∗M). Therefore, RatT (MB) ⊆ RatrC(C∗M). Conversely, start
with a pair of elements (a, x) ∈ A×C∗, and let {(xi, ai)}i ⊂ C∗ ×A be the finite
system given by hypothesis, that is aϕ(x) =

∑
i ϕ(xi)ai. So, for every element

m ∈ RatrC(C∗M) with right C-coaction ρRatr
C(C∗M)(m) =

∑
(m)m(0) ⊗K m(1), we

have

x(ma) = (ma)ϕ(x) = m(aϕ(x))

=
∑

m(ϕ(xi)ai), aϕ(x) =
∑

ϕ(xi)ai

=
∑

(xim)ai

=
∑

(m(0)xi(m(1)))ai

=
∑

m(0)

(
Φ(xi)(1 ⊗K m(1))ai

)

=
∑

m(0)

(
β(ϕ(xi))(1 ⊗K m(1))ai

)

=
∑

m(0)

(
β(ϕ(xi)ai)(1 ⊗K m(1))

)
, β is right A-linear
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=
∑

m(0) 〈1 ⊗K m(1), ϕ(xi)ai〉

=
∑

m(0) 〈1 ⊗K m(1), aϕ(x)〉

=
∑

m(0) 〈aψ ⊗K mψ
(1), ϕ(x)〉, ψ(m(1) ⊗K a) =

∑
aψ ⊗K mψ

(1)

=
∑

m(0)aψx(m
ψ
(1)).

We conclude that ma ∈ RatrC(C∗M) with right C-coaction ρRatr
C(C∗M)(ma) =

∑
m(0)aψ ⊗K mψ

(1). From which we conclude that RatrC(C∗M) is an entwined
module, and thus a right C-comodule or, equivalently, a right rationalB-submodule
of MB. Therefore, RatrC(C∗M) ⊆ RatT (MB). �

2.2. The category of Doi-Koppinen modules

We apply the results of Subsection 2.1 to the category of Doi-Koppinen modules.
This category is identified with the category of right rational modules over a well-
known ring. Some results of this section were proved by different methods for
particular Hopf algebras in [8, Theorem 2.3], for algebras and coalgebras over a
field in [10, Proposition 2.7], and more recently for bialgebras in [2, Theorem 3.18,
Proposition 3.21].

Let H be a Hopf K-algebra, (A, ρA) a right H-comodule K-algebra, and
(C, �C) a left H-module K-coalgebra. That is ρA : A → A ⊗K H and �C :
H⊗K C → C are, respectively, a K-algebra and a K-coalgebra map. We will use
Sweedler’s notation, that is ∆C(c) =

∑
(c) c(1)⊗K c(2), ∆H(h) =

∑
(h) h(1)⊗K h(2),

and ρA(a) =
∑

(a) a(1) ⊗K a(2), for every c ∈ C, h ∈ H and a ∈ A.
Following [11, 18], a Doi-Koppinen module is a left A-module M with a

structure of right C-comodule ρM such that, for every a ∈ A, m ∈M ,

ρM (am) =
∑

a(0)m(0) ⊗K a(1)m(1).

A morphism between two Doi-Koppinen modules is a left A-linear and right
C-colinear map. Doi-Koppinen modules and their morphisms form the category
AM(H)C .

Consider the following K-map (Ao means the opposite ring of A)

ψ : C ⊗K Ao �� Ao ⊗K C, (c⊗K ao
� ��

∑
(a) a

o
(0) ⊗K a(1)c). (2.4)

It is easily seen that the map ψ satisfies all identities of equation (2.1). That is
(Ao, C)ψ is an entwining structure over K. So, consider the associated Ao-coring
C = Ao ⊗K C, the Ao-biactions are then given by

bo(ao⊗K c) = (ab)o⊗K c, and (bo⊗K c)ao = boψ(c⊗K ao) =
∑

(a(0)b)o⊗K a(1)c,
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for every ao, bo ∈ Ao and c ∈ C. The convolution multiplication of HomK (C , Ao)
comes out from the general equation (2.2), as

f.g(c) =
∑

(c)

(
f(g(c(2))(1)c(1)) g(c(2))(0)

)o ∈ Ao,

f, g ∈ HomK (C , Ao) and c ∈ C.
(2.5)

This multiplication coincides with the generalized smash product of A by C, de-
noted by �(C,A) in [18, (2.1)].

Define the smash product A�C∗ whose underling K-module is the tensor
product A⊗K C∗ and internal multiplication is given by

(a�x).(b�y) =
∑

ab(0)�(xb(1))y,

for a⊗K x, b⊗K y ∈ A ⊗K C∗, and where the left H-action on C∗ is induced by
the right H-action on C. The unit of this multiplication is 1�εC . Moreover, it is
clear that the maps

−�εC : A �� A�C∗,

a � �� a�εC

1�− : C∗ �� A�C∗

x � �� 1�x

are K-algebra maps, and an easy computation shows that

αA : A�C∗ �� HomK (C , Ao) , (a�x � �� [c 
→ aox(c)])

is also a K-algebra morphism where HomK (C , Ao) is endowed with the multipli-
cation of equation (2.5).

Proposition 2.2. [2, Proposition 3.21] Let H be a Hopf K-algebra, A a right H-
comodule K-algebra and C a left H-module K-coalgebra. Consider C = Ao ⊗K C
the Ao-coring associated to the entwining structure (Ao, C)ψ where ψ is defined by
(2.4), and let B = (A�C∗)o. Suppose that CK is a locally projective module. Then
T = (C, B, 〈−,−〉) is right rational pairing over Ao with the bilinear form 〈−,−〉
defined by

C ×B �� Ao

(ao ⊗K c, (b�x)o) � �� 〈ao ⊗K c, (b�x)o〉 = aobox(c)

a, b ∈ A, c ∈ C, x ∈ C∗. Moreover, (Ao, C)ψ, T and ϕ = (1�−)o : C∗ → B
satisfy the conditions (1) and (2) stated in Proposition 2.1, and using restriction
of scalars, we obtain

RatT (MB) = RatrC(C∗M),

for every right B-module M .
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Proof. First we show that 〈−,−〉 is bilinear and balanced. For a, b, e ∈ A, x ∈ C∗

and c ∈ C, we compute

〈ao ⊗K c, (b�x)oeo〉 = 〈ao ⊗K c, ((e�εC)(b�x))o〉

=
∑

〈ao ⊗K c, (eb(0)�(εCb(1))x)o〉

=
∑

ao bo(0) e
o ((εC b(1))x)(c)

=
∑

ao bo(0) e
o εH(b(1))x(c)

= ao bo eo x(c)

= 〈ao ⊗K c, (b�x)o〉 eo,

which shows that 〈−,−〉 is right Ao-linear, and

〈(ao ⊗K c)eo, (b�x)o〉 = 〈aoψ(c⊗K eo), (b�x)o〉

=
∑

〈aoeo(0) ⊗K e(1)c, (b�x)o〉

=
∑

aoeo(0)b
ox(e(1)c)

=
∑

aoeo(0)b
o (xe(1))(c)

= 〈ao ⊗K c,
∑

(be(0))�xe(1)〉
= 〈ao ⊗K c, (b�x)(e�εC)〉
= 〈ao ⊗K c, eo (b�x)o〉,

which proves that 〈−,−〉 is Ao-balanced. The pairing 〈−,−〉 is clearly left Ao-
linear. Consider now the right natural transformation associated to 〈−,−〉:

αN : N ⊗Ao C �� HomAo (BAo , N)

n⊗Ao ao ⊗K c
� �� [(b�x)o 
→ n〈ao ⊗K c, (b�x)o〉 = n(aobox(c))] .

We need to show that α− is injective. So let
∑

i ni ⊗Ao 1⊗K ci ∈ N ⊗Ao C whose
image by αN is zero. Since CK is locally projective, associated to the finite set
{ci}i there exists a finite set {(cl, xl)} ⊂ C × C∗ such that ci =

∑
l clxl(ci). The

condition

αN (
∑

i

ni ⊗Ao 1 ⊗K ci)((1�xl)o) =
∑

i

nixl(ci) = 0, for all the l′s,

implies that
∑

i

ni⊗Ao 1⊗K ci =
∑

i, l

ni⊗Ao 1⊗K xl(ci)cl =
∑

l

(
∑

i

nixl(ci)

)

⊗Ao 1⊗K cl = 0,

That is αN is an injective map for every right Ao-module N . Therefore, T is a
right rational system. Lastly, the map β : B → ∗C sending (b�x)o 
→ [ao ⊗K c 
→
〈ao ⊗K c, (b�x)o〉] is an anti-homomorphism of K-algebras, and B is a K-algebra
extension of Ao, thus T is actually a right rational pairing.
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Let ao ∈ Ao, c ∈ C and x ∈ C∗, then

β(ϕ(x))(ao ⊗K c) = 〈ao ⊗K c, (1�x)o〉 = aox(c) = Φ(x)(ao ⊗K c)

which implies the condition (1) of Proposition 2.1. For the condition (2), it is
easily seen that the set {ao(0), xa(1)}, where ρA(a) =

∑
a(0) ⊗K a(1), satisfies this

condition for the pair (ao, x) ∈ Ao×C∗. The last stated assertion is a consequence
of Proposition 2.1, and this finishes the proof. �

Theorem 2.1. Let H be a Hopf K-algebra, A a right H-comodule K-algebra and C a
left H-module K-coalgebra. Consider C = Ao⊗K C the Ao-coring associated to the
entwining structure (Ao, C)ψ where ψ is defined by (2.4), and set B = (A�C∗)o.
Suppose that CK is a locally projective module and consider the right rational
pairing T = (C, B, 〈−,−〉) over Ao of Proposition 2.2, and put a = RatT (BB). If
AK is a flat module and RatrC(−) is an exact functor, then
(a) RatrC(C∗C∗) is a right H-submodule of C∗ and a = A⊗K RatrC(C∗C∗).
(b) For each right B-module M , the map

HomB (aB , M) �� HomC∗ (RatrC(C∗C∗) , M) (2.6)

sending f onto the morphism f̂ defined by f̂(c∗) = f(1 ⊗ c∗) for c∗ ∈ C∗ is
an isomorphism of K-modules.

(c) If, for every left A�C∗-module M , we endow HomC∗ (RatrC(C∗C∗) , M) with
the structure of a left A�C∗-module transferred from that of

HomA�C∗ (A�C∗a , M)

via the isomorphism (2.6), then we obtain a functor

HomC∗ (RatrC(C∗C∗) , −) : AM(H)C ��
A�C∗Mod,

which is right adjoint to the functor (see Proposition 2.2)

RatrC : A�C∗Mod ��
AM(H)C .

Proof. (a) Let y ∈ RatrC(C∗C∗) with rational system of parameters {(yi, ci)}i ⊂
C∗ × C. For any h ∈ H and x ∈ C∗, we obtain as in [10, Lemma 3.1]:

(x(yh))(c) =
∑

(c)

x(c(1))y(hc(2)) =
∑

(c),(h)

x(εH(h(1))c(1))y(h(2)c(2))

=
∑

(c),(h)

x(S(h(1))h(2)c(1))y(h(3)c(2)) =
∑

(h)

(xS(h(1))y)(h(2)c)

=
∑

(h),i

yi(h(2)c)(xS(h(1)))(ci) =
∑

(h),i

yi(h(2)c)x(S(h(1))ci),

for every c ∈ C, where S is the antipode of H. That is,

x(yh) =
∑

(h), i

(yih(2))x(S(h(1))ci).
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Hence, {(yih(2), S(h(1))ci)} ⊂ C∗ × C is a rational system of parameters for yh.
Thus yh ∈ RatrC(C∗C∗), and RatrC(C∗C∗) is a right H-submodule of C∗. Since
AK is a flat module, an easy computation shows now that A ⊗K RatrC(C∗C∗)
is a two-sided ideal of A�C∗. Let x ∈ C∗, a ⊗K y ∈ A ⊗K RatrC(C∗C∗), and
{(yi, ci)}i ⊂ C∗ × C a rational system of parameters for y. Applying the smash
product, we get

x(a⊗K y) =
∑

(a)

a(0) ⊗K ((xa(1))y) =
∑

(a), i

(a(0) ⊗K yi)x(a(1)ci);

this means that {(a(0) ⊗K yi, a(1)ci)}(a), i ⊂ (A ⊗K RatrC(C∗C∗)) × C is a ra-

tional system of parameters for a ⊗K y ∈ C∗
(
A⊗K RatrC(C∗C∗)

)
. Proposition

2.2, implies now that A ⊗K RatrC(C∗C∗) ⊆ a. Conversely, we know that a is
a right C-comodule, so the underlying K-module is a right C-comodule, and,
since RatrC is exact, a = RatrC(C∗C∗)a. From this equality, it is easy to see that
a ⊆ A⊗K RatrC(C∗C∗), and the desired equality is derived.

(b) We know that B = (A�C∗)o and, by (a), we have a = A ⊗K Ratr(C∗C∗).
Consider the homomorphism of algebras C∗ → A�C∗, which gives, as usual, the
induction functor (A�C∗) ⊗C∗ − : C∗Mod → A�C∗Mod which is left adjoint to the
restriction of scalars functor A�C∗Mod → C∗Mod. The mapping f 
→ f̂ is then
defined as the composition

HomA�C∗ (A⊗K RatrC(C∗C∗) , M)
∼= HomA�C∗ ((A�C∗) ⊗C∗ RatrC(C∗C∗) , M) ∼= HomC∗ (RatrC(C∗C∗) , M) ,

where the second is the adjointness isomorphism, and the first one comes from the
obvious isomorphism (A�C∗) ⊗C∗ RatrC(C∗C∗) ∼= A⊗K RatrC(C∗C∗).

(c) This is a consequence of (b) and Theorem 1.2. �

Keep, in the following corollary, the hypotheses of Theorem 2.1.

Corollary 2.1. If M is an object of AM(H)C , and E(AMC) denotes its injective
hull in the category AM(H)C , then

(a) The map

ζM : M → HomC∗
(
RatrC(C∗C∗) , E(AMC)

)

(m 
→ ζM (m)(c∗) = c∗m, m ∈M))

gives an injective envelope of M in A�C∗Mod.
(b) M is injective in A�C∗Mod if and only if M is injective in AM(H)C and ζM

is an isomorphism.
(c) Assume that the antipode of H is bijective, and that C∗ is flat as a K-

module. Let M be injective in AM(H)C . If M has finite support as a right
C-comodule, then M is injective as a left A-module.
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Proof. The two first statements follow from Proposition 1.4 and Theorem 2.1. For
the last statement, observe that BAop is a flat module. Now, the proof of [10,
Lemma 2.6] runs here to prove that AoB is flat. �

Remark 2.1. We have proved that, under suitable conditions,

RatT (MB) = RatrC(C∗M) = Ma = RatrC(C∗C∗)M, (2.7)

for every rightB-moduleM . Therefore, equation (2.7) establishes a radical functor:
t : A�C∗Mod → AM(H)C which acts on objects by M → RatrC(C∗C∗)M . This
radical was used in [10, Lemma 2.9] for left and right semiperfect coalgebras over
a commutative field. In this way, if we apply our results and [17, Proposition 2.2]
to this setting, then most part of the results stated in [10] become consequences of
the results stated in this paper. In particular, let us mention that, for a semiperfect
coalgebra over a field, any comodule of finite support in the sense of [10] becomes
of finite support in the sense of Definition 1.1. Finally, let us note that the results
from [10] are only applicable to group-graded algebras over a field. This restriction
has been dropped by our approach, and we fully cover the case of graded rings
(take K = Z), since the Z-coalgebra ZG, where the elements of the group G are
all group-like, is easily shown to have an exact rational functor. Of course, the
category of comodules over this coalgebra is not semiperfect.
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[9] S. Dăscălescu, C. Năstăsescu, A. del Rio, and F. van Oystaeyen, Gradings of finite
support. Applications to injective objects, J. Pure Appl. Algebra 107 (1996), 193–206.
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[16] J. Gómez-Torrecillas, Separable functors in corings, Int. J. Math. Math. Sci. 30
(2002), no. 4, 203–225.
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