
BOCSES over Small Linear Categories
and Corings

Laiachi El Kaoutit

Abstract This note does not claim anything new, since the material exposed here
is somehow folkloric. We provide the main steps in showing the equivalence of
categories between the category of BOCSES over a small linear category and the
category of corings over the associated ring with enough orthogonal idempotents.
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1 Introduction

The term BOCS, was used as a terminology for a certain object that have been intro-
duced by Roiter (see for instance [20]) with the aim of systematizing the study of
a wide class of matrix problems that often appears in representation theory. Incon-
spicuously, the notion of BOCS is not far from that of cotriple (dual notion of that
introduced in [7]). Namely, as it was corroborated by Bautista et al. [4], BOCSES
can be realized as a special kind of cotriples (or comonads) over certain functor cate-
gories. In this way, the category of BOCSES representations over a full subcategory
of all vector spaces turns out to be equivalent to some full subcategory of the Kleisli
category attached to the corresponding comonad (see [15] for the precise definition
of this category). We refer to [4] for more details on this equivalence of categories.
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A more general equivalence between comonads and corings was provided by the
author in [8]. Specifically, in [8] we established a bi-equivalence of bicategories
between the bicategory of corings over rings with local units and the bicategory
of comonads in (right) unital modules with continuous underlying functors (i.e.,
functors which are right exact and preserve direct sums). Roughly speaking, corings
are comonoids in a suitable category of bimodules (either over ring with unit or
without). Apparently they appeared for the first time in the literature, under this name,
in Sweedler’s work [21] about Jacobson–Bourbaki–Hochschild’s Theorem (a kind
of Galois correspondence first Theorem for division rings. Specifically, a bijection
between the set of all coideals of a Sweedler’s canonical coring of a division rings
extension and the set of all intermediate division rings). Apart from the interest that
corings generated in the late sixties and eighties [12–14, 17], in the last decades these
objects proved to be crucial in the study of relative modules (representation theories
over entwined structures, or distributive laws, see [5, 6]).

In this note we give the main steps to show that for a given small linear category
(linear over a commutative base ring), the category of BOCSES over this category is
equivalent to the category of corings over the associated ring with enough orthogonal
idempotents. As a final conclusion, we can claim that both notions of BOCS (over
small linear categories) and comonad (with continuous functor over unital modules),
are equivalent to the notion of coring (over ring with enough orthogonal idempotents).

Notations and Conventions: We work over a commutative base ring with 1 (or 1k)
denoted by k. The category of (central) k-modules is denoted by Modk. A morphism in
this category is referred to as a k-linear map. A hom-sets categoryC is said to be small
if its class of objects is actually a set. The notation c ∈ C stands for: c is an object of
C. The set of all morphisms from an object c ∈ C to another one c� ∈ C, is denoted by
HomC

�
c, c��. The category C is said to be k-linear if it is additive [16, pp. 192], each

of its hom-sets is a k-module and the composition law consists of k-bilinear maps.
For instance, the category of modules Modk is a k-linear category (not necessarily
small). A covariant functor F : C→ D between two k-linear categories is said to
be k-linear provided that the maps HomC

�
c, c�� → HomD

�
F(c), F(c�)

�
are k-linear

for every pair of objects (c, c�) ∈ C× C. Given two k-linear functors F, F � : C→ D,
where C and D are small k-linear categories, we denote by Nat(F, F �) the set of
all natural transformations from F to F �. An element α of this set is a family of
morphisms {αc}c ∈C, where αc ∈ HomD

�
F(c), F �(c)

�
are such that the following

diagrams commute

F(c)
αc

F( f )

F �(c)

F �( f )

F(c�)
αc�

F �(c�),

for every morphism f ∈ HomC
�
c, c��. For more basic notions on categories, functors

and adjunctions, we refer to the first chapters of Mac Lane’s book [16].
In this paper, we shall consider rings without identity element. Nevertheless, we

will consider a class of rings (or k-algebras) which have enough orthogonal idempo-
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tents, in the sense of [10, 11], and that are mainly constructed from small categories.
Specifically, given any small, hom-sets and k-linear categoryD, we can consider the
path algebra, or the Gabriel’s ring, of D: Its underlying k-module is the direct sum
R = �

x, x � ∈D HomD
�
x, x �� of k-modules. The multiplication of this ring is given by

the composition ofD. This means that, for any two homogeneous generic elements
r ∈ HomD

�
x, x ��, r � ∈ HomD

�
y, y��, the multiplication (1kr) . (1kr �) is defined by

the rule:
(1kr) . (1kr

�) = 1k(rr �),

the image of the composition of r and r �, when they are composable, otherwise we
set (1kr) . (1kr �) = 0, see [11, pp. 346]. For any x ∈ D, we denote by 1x the image
of the identity arrow of x in the k-module R.

In general, the ring R has no unity, unless the set of objects ofD is finite. Instead
of that, it has a set of local units (for the precise definition see for instance [1–3] or
[8]). Namely, the local units are given by the set of idempotents elements:

�
1x1

� · · · � 1xn ∈ R | xi ∈ D, i = 1, · · · , n, and n ∈ N \ {0}
�
.

For example, if we have a discrete category D with X as a set of objects, that is,
the only morphisms are the identities ones, then R = k(X) is the ring defined as the
direct sum of X -copies of the base ring k.

An unital right R-module is a right R-module M such M R = M ; left unital
modules are similarly defined (see [11, pp. 347]). For instance, the previous ring R
attached to a given small hom-set k-linear category D decomposes as a direct sum
of left, and also of right, unital R-modules:

R =
�

x ∈D
R 1x =

�

x ∈D
1x R.

Following [10], a ring which satisfies these two equalities is referred to as a ring
with enough orthogonal idempotents, whose complete set of idempotents is the set
{1x}x ∈D. An unital bimodule is a bimodule which is unital on both sides.

2 The Monoidal Structure of the Category of Functors
on Small Categories

Let A be a k-linear small category; we shall use the letters p, q, r, s, p1, q2, ...

to denote the objects of A. The identity morphism of p ∈ A will be denoted by
1p. The opposite category of A is denoted as usual by Aop, and its objects by
po, qo, ro, so, po

1, q
o
2, .... The object set of Aop is that of A, while morphisms of Aop

are the reversed ones in A, that is, a morphism f o : po → qo in Aop stands for a
morphism f : q → p inA.
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We will work with the categories of k-module valued functors. These are the cate-

gories of all k-linear covariant functors Funct
�
A, Modk

	
and Funct

�
Aop, Modk

	
.

Functors from the product categoryAop ×A to Modk are also invoked, for instance,
the functor: (po, q) → HomA

�
p, q

�
.

It is well known from Freyd Theorem’s [18, pp. 99 and 109] that the set

HomA

�
p, −��

p ∈A forms a generating set of small objects in the category

Funct
�
A, Modk

	
. Analogously, the set {HomAop

�−, qo
�}qo ∈Aop is a generating set

of small objects in the category Funct
�
Aop, Modk

	
.

For simplicity, we shall denote by H(−, p) := HomA
�−, p

�
and by H(q,−) :=

HomA
�
q, −�

, for every pair of objects p, q ∈ A. The forthcoming lemma, known
in the literature as Yoneda lemma, is a well known fact in functor categories,
whose proof is based up on the following observation: For every p, q ∈ A and

α ∈ Nat
�

H(−, p), H(−, q)
	

, we have that

αp�( f ) = αp(1p) ◦ f, for every f ∈ HomA
�
p�, p

�
. (1)

Lemma 1 Let p and q be two objects in the category A. Then, there is a bijective
map

Nat
�

H(−, p), H(−, q)
	

ζp,q

HomA
�
p, q

�

α− αp(1p),

which is a natural isomorphism on the categoryAop ×A.

Proof Straightforward. �

Let F : A→ Modk be an object in the category Funct
�
A, Modk

	
. Define the

following functor

M

Funct
�
Aop, Modk

	
F : Modk

Aop −→ Modk

po �→ HomModk

�
F(p), M

�
⎧
⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎭

Next we will check that F has a left adjoint functor, which we denote by:

F∗ : Funct
�
Aop, Modk

	
−→ Modk.

First we define as follows the action of F∗ over the full subcategory whose objects

set is given by
�

H(−, q)
�

q ∈A
, that is, over the set of small generators. This is given

by the following assignments:
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• F∗
�

H(−, q)
	

= F(q), for every object q ∈ A;

• F∗(α−) = F(αp(1p)), for every morphism α− : H(−, p) → H(−, q) (i.e., nat-
ural transformation).

Using Eq. (1), one can easily show that F∗ is a well defined functor over the afore-
mentioned subcategory. Applying now Mitchell’s Theorem [18, Theorem 4.5.2],
one shows that F∗ extends uniquely (up to natural isomorphisms) to the whole
category. We denote this extension functor by F∗ too, thus, we have a functor

F∗ : Funct
�
Aop, Modk

	
−→ Modk.

Let M be any k-module and q any object ofA, we consider the mutually inverse
maps

σq(1q)

f

Homk
�
F(q), M

�

σ− : HomA
�−, q

� −→ Homk
�
F(−), M

�⎧⎩ ⎫⎭

�fp : HomA
�
p, q

� −→ Homk
�
F(p), M

�

γ �−→ f ◦ F(γ )

⎧
⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎭

HomFunct(Aop , Modk)

�
HomA

�−, q
�
, Homk

�
F(−), M

�	�H(−,q), M

�

�

By Lemma 1, �−,− is natural over the class of objects of the form (H(−, q), M) ∈
Funct

�
Aop, Modk

	
× Modk. Again by Mitchell’s Theorem [18, Theorem 4.5.2], the

natural transformation �−,− extends to a natural isomorphism on the whole category

Funct
�
Aop, Modk

	
× Modk:

Homk
�
F∗(−), −� �−,−

HomFunct(Aop, Modk)

�
−, F(−)

	
, (2)

which proves the claimed adjunction.
Now, we define the following two variable correspondence (see also [9, Chap. 5,

Exercise I] and [19, pp. 26]):

− ⊗
A

− : Funct
�
Aop, Modk

	
× Funct

�
A, Modk

	
Modk

(T, F) T ⊗
A

F = F∗(T )

�
[α : H(−, q1) → H(−, q2)] , [β : F1 → F2]

	
α ⊗
A

β = F2(αq1 (1q1 )) ◦ βq1 .

This in fact establishes a functor. Let us check, for instance, its compatibility with
the componentwise composition. So take four natural transformation

T1
α1

T2
α2

T3, F1
β1

F2
β2

F3,
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and assume that Ti = H(−, qi ), i = 1, 2, 3. By definition we obtain the following
diagram

F1(q1)
α1⊗Aβ1

β1 q1

(β2◦β1)q1

F2(q2)
α2⊗Aβ2

β2 q2

F3(q3)

F2(q1)

F2(α1 q1 (1q1 ))

β2 q1

F3(q2)

F3(α2 q2 (1q2 ))

F3(q1)

F3(α1 q1 (1q1 )) F3((α2◦α1)q1(1q1 ))

which commutes by the naturality of β2 (the middle square) and the equality

(α2 ◦ α1)q1(1q1) = α2 q2(1q2) ◦ α1 q1(1q1),

that can be deduced from Eq. (1). The remaining verifications are left to the reader.
The bi-functor − ⊗

A
− is referred to as the tensor product functor and enjoys the

following properties:

(a) For every object F ∈ Funct
�
A, Modk

	
, the functor− ⊗

A
F : Funct

�
Aop, Modk

	

→ Modk is a right exact and direct sums preserving functor.

(b) For every object T ∈ Funct
�
Aop, Modk

	
, the functor T ⊗

A
− : Funct

�
A, Modk

	

→ Modk is a right exact and direct sums preserving functor.

(c) For every object q ∈ A, F ∈ Funct
�
A, Modk

	
and T ∈ Funct

�
Aop, Modk

	
,

we have

T ⊗
A

HomA
�
q, −� = T (qo), HomA

�−, q
� ⊗
A

F = F(q).

(d) The following property is the one expressed in [4, Theorem 2.2]. Let T ∈
Funct

�
Aop, Modk

	
, F ∈ Funct

�
A, Modk

	
and M ∈ Modk. Then an

A-balanced transformation ν− : T (−) ⊗k F(−) → M is a family of k-linear
maps �

νq : T (qo) ⊗k F(q) −→ M
�

q ∈A

such that, for every morphism f : p → q inA, the following diagram
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T (qo) ⊗k F(p)
T (qo)⊗k F( f )

T ( f o)⊗k F(p)

T (qo) ⊗k F(q)

νq

T (po) ⊗k F(p)
νp

M

commutes. There is a universalA-balanced transformationϕ : T (−) ⊗k F(−) →
T ⊗A F in the sense that for any otherA-balanced transformation ν− : T (−) ⊗k
F(−) → M , there exists a k-linear map ν : T ⊗A F → M such that ν ◦ ϕq =
νq, for every object q ∈ A. Furthermore, if ξ : T1 → T2 and χ : F1 → F2 are
two natural transformations, then (ξ ⊗A χ) ◦ ϕ1

q = ϕ2
q ◦ (ξq ⊗k χq), for every

object q ∈ A, where ϕi
− is the universal A-balanced transformation associated

with the pair (Ti , Fi ).

Remark 1 Properties (a)–(d) listed above are indeed consequences of the universal
property of coend (see [16, pp. 222] for the pertinent definition of this object).

Namely, the tensor product T ⊗
A

F of two functors T ∈ Funct
�
Aop, Modk

	
and

F ∈ Funct
�
Aop, Modk

	
, can be realized as the following coend:

T ⊗
A

F ∼=

�
(po, p) ∈ Aop ×A

T (qo) ⊗k F(p)

JT, F

,

where JT, F is the sub k-module of the numerator generated by the set

�
T ( f o)(u) ⊗k v − u ⊗k F( f )(v)| u ∈ T (qo), v ∈ F(p), f ∈ HomA

�
p, q

��
(po, p) ∈ Aop×A

.

The interested reader can consult [19, pp. 26, 27], for more details.

From now on, we denote by A the ring with enough orthogonal idempotents
attached to the small k-linear categoryA. As we have mentioned above, its underlying
k-module is the direct sum

A =
�

(p, q) ∈A×A
HomA

�
p, q

�

with an associative multiplication induced by the composition law. The categories of
right and left unital A-modules are, respectively, denoted by ModA and AMod. The
tensor product over this ring will be denoted by − ⊗A −. Notice that any (left) unital
A-module M decomposes as a direct sum of k-modules of the form:

M = ⊕p ∈A1p M, where 1p M :=
�

y ∈ M | y = 1pz, for some z ∈ M
�
, p ∈ A. (3)
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Given an homogeneous element a ∈ A, which belongs to HomA
�
p, q

�
, the left

multiplication by this a leads to a k-linear map �a : 1p M → 1q M , 1p y �→ 1q(ay).
It is well know from Gabriel’s classical result [11, Proposition 2, pp. 347] that the

following functors establish an equivalence of categories

Funct
�
A, Modk

	
L

AMod,

F ⊕
p∈A

F(p)

θ ⊕
p ∈A

θp,

Funct
�
Aop, Modk

	
R ModA

T ⊕
p∈A

T (po)

ϑ ⊕
p ∈A

ϑpo

(4)
These equivalences of categories can also be checked directly by hand. For instance,
using the previous notations, one can easily check that the following functor

AMod P Funct
�
A, Modk

	

M
�
p −→ 1p M, a −→ �a

�
,

whose action on morphism is the obvious one, is an inverse of L . Using the functors
displayed in Eq. (4), we establish the subsequent useful lemma:

Lemma 2 LetA be a small k-linear category and A it associated ring with enough
orthogonal idempotents. Then the following diagram is commutative up to natural
isomorphism

Funct
�
Aop, Modk

	
× Funct

�
A, Modk

	

−⊗A−

R ×L Modk

ModA × AMod

−⊗A−

Proof Let T ∈ Funct
�
Aop, Modk

	
and F ∈ Funct

�
A, Modk

	
. By Mitchell’s The-

orem [18, Theorem 4.5.2], there is no loss of generality in assuming that T is
of the form HomA

�−, q
�
, for some object q ∈ A. In this case, we know that

T ⊗A F = F∗(T ) = F(q) and R(T ) = ⊕p∈AHomA
�
p, q

� = 1q A. Therefore,



BOCSES over Small Linear Categories and Corings 281

1q A ⊗A L (F) = 1q A ⊗A

�
⊕p∈A F(p)

	

∼= 1q

�
⊕p∈A F(p)

	

∼= F(q) = T ⊗A F,

and this finishes the proof. �

Let T and F be two objects of the category of functors Funct
�
Aop ×A, Modk

	
.

For every object q ∈ A, we then get two functors

T(−, q) : Aop −→ Modk

F(qo,−) : A −→ Modk

In this way, using the the bifunctor − ⊗
A

− defined above, we can define a new object

in that category, which is given as follows:

T ⊗A F : Aop ×A Modk

(po, q) T(−, q) ⊗
A

F(po,−)

( f o, g) T(−, g) ⊗
A

F( f o,−).

The previous discussion serves to announce the following result:

Proposition 1 Let A be a small k-linear category. Then the category M :=
Funct

�
Aop ×A, Modk

	
is a strict monoidal category with tensor product given

by the bifunctor − ⊗A − and with identity object IM := HomA
�−, −�

the func-
tor which acts on objects by sending (po, q) → HomA

�
p, q

�
and on morphisms by

sending ( f o, g) → HomA
�

f o, g
�
.

Proof We only sketch the main steps of the proof. The left unit constraint is given
as follows:

�
IM ⊗A F

�
(po, q) = IM(−, q) ⊗

A
F(po,−) = H(−, q) ⊗

A
F(po,−) = F(po, q),

for every pair of objects (po, q) ∈ Aop ×A. As for the right unit constraint, given an
object T ∈ M, we know that

�
T ⊗A IM

�
(po, q) = T(−, q) ⊗

A
IM(po,−),
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for every pair of objects (po, q). Now, without loss of generality we can assume that
T(−, q) = H(−, p�) for some p� ∈ A, then we get that

T(−, q) ⊗
A

IM(po,−) = IM(po, p�)

= HomA
�
p, p��

= T(po, q).

This gives the desired unit constraints.
Now let us sketch the associativity constraint. Given G another object of M and

fixing a pair of objects (po, q) ∈ Aop ×A, we have the following equalities:

��
T ⊗A F

	
⊗A G

	
(po, q) =

�
T ⊗A F

	
(−, q) ⊗

A
G(po,−)

�
T ⊗A

�
F ⊗A G

		
(po, q) = T(−, q) ⊗

A

�
(F ⊗A G)(po,−)

	
.

Without loss of generality, we may assume that T(−, q) = HomA
�−, p��, for some

p� ∈ A. This implies, on the one hand, that

T(−, q) ⊗
A

�
(F ⊗A G)(po,−)

	
= (F ⊗A G)(po, p�) = F(−, p�) ⊗

A
G(po,−).

(5)
On the other hand, we also have

(T ⊗A F)(ro, q) = T(−, q) ⊗
A

F(ro,−) = F(ro, p�),

for every object r ∈ A, which implies that

�
T ⊗A F

	
(−, q) ⊗

A
G(po,−) = F(−, p�) ⊗

A
G(po,−). (6)

Comparing Eqs. (5) and (6), we arrive to the equality

��
T ⊗A F

	
⊗A G

	
(po, q) =

�
T ⊗A

�
F ⊗A G

		
(po, q),

for every pair of objects (po, q) ∈ Aop ×A. Therefore, we have that
��

T ⊗A F
	

⊗A
G

	
=

�
T ⊗A

�
F ⊗A G

		
, and this shows the associativity constraint. �

The objects of the monoidal category M are referred to, in the literature, as A-
bimodules. Here we also adopt this terminology.
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3 BOCSES are Equivalent to Corings

The notation is that of the previous section. Thus A still denotes a small k-linear
category, A is its associated ring with enough orthogonal idempotents, and M denotes

the category of bi-functors M := Funct
�
Aop ×A, Modk

	
. We denote by AModA

the category of all unital A-bimodules (i.e., bimodule which are left and right unital).

Definition 1 (A. V. Roiter) A BOCS over the category A is a comonoid in the

monoidal category of A-bimodules M = Funct
�
Aop ×A, Modk

	
of Proposition

1.

Thus a BOCS is three-tuple (C, δ, ξ) consisting of anA-bimodule C (i.e., C ∈ M)
and two natural transformations

δ : C −→ C ⊗A C
comultiplication

, ξ : C −→ IM
counit

,

satisfying the usual counitary and coassociativity properties.
A morphism of BOCSES is a natural transformation φ : C → C� such that

δ� ◦ φ = (φ ⊗A φ) ◦ δ, ξ � ◦ φ = ξ .

BOCSES over A and their morphisms form a category which we denote by
A-Bocses.

Our next goal is to show that the categoryA-Bocses is equivalent to the category
of corings over the ring with enough orthogonal idempotents A, which we denote by
A-corings (i.e., the category of comonoids in the monoidal category of bimodules
AModA), see [8] for additional facts on corings over rings with local units. We start
with the following lemma, which can be seen as a variation of the equivalences of
categories given explicitly in Eq. (4).

Lemma 3 LetA be a small k-linear category and A its associated ring with enough
orthogonal idempotents. Then, the following functor establishes an equivalence of
categories

M := Funct
�
Aop ×A, Modk

	
F

AModA

F
�

(po, q) ∈Aop×A
F(po, q)

θ
�

(po,q) ∈Aop×A
θ(po,q)

Proof Using the functors R and L of Eq. (4), one get the A-bimodule structure
on F (F), for a given F ∈ M. A direct verification shows that F is a well defined
functor. The inverse functor is defined as follows: To every unital A-bimodule X ,
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one corresponds the bi-functor G (X) : Aop ×A→ Modk which acts over objects
by (po, q) → 1q X1p (the k-submodule of X generated by the set of elements
{1qx1p| x ∈ X}), and acts over morphisms as follows:

�
( f o, g) : (po

1, q1) → (po
2, q2)

�
−→

�
G ( f o, g) : 1q1 X1p1 → 1q2 X1p2 ,

�
1q1 x1p1 �→ 1q2 gx f 1p2

	�
,

where the notation gx f stands for the bi-action of A on X , after identifying the
elements g, f with their images in A. The rest of the proof is left to the reader. �

Proposition 2 Let A be a small k-linear category and A its associated ring with
enough orthogonal idempotents. The functor F defined in Lemma 3 establishes a

monoidal equivalence between the monoidal categories Funct
�
Aop ×A, Modk

	

and AModA.

Proof Fix T and F two objects of the category M. For every pair of objects (po, q) ∈
Aop ×A, we have by Lemma 2 an isomorphism of k-modules

T(−, q) ⊗A F(po,−) ∼= R
�
T(−, q)

	
⊗A L

�
F(po,−)

	

∼=
��

r ∈A
T(ro, q)

	
⊗A

��

t ∈A
F(po, t)

	
.

Applying the functor
�

(po,q) ∈Aop×A(−) (i.e., the direct sum functor) to the latter
isomorphism, we obtain an isomorphism of an A–bimodules as follows:

�

(po,q) ∈Aop×A

�
T(−, q) ⊗A F(po,−)

	 ∼=
�

(po, q) ∈Aop×A

���

r∈A
T(r, q)

	
⊗A

��

t∈A
F(po, t)

		

∼=
� �

(ro, q)∈Aop×A
T(ro, q)

	
⊗A

� �

(po, t) ∈Aop×A
F(po, t)

	
.

Therefore, we have an isomorphism F (T ⊗A F) ∼= F (T) ⊗A F (F) of an A-
bimodules, for every pair of objects T, F ∈ M. It is not difficult to check that this
isomorphism is in fact a natural isomorphism. Lastly, the image of the identity object
IM, is

F (IM) =
�

(po, q) ∈Aop×A
IM(po, q) =

�

(po, q) ∈Aop×A
HomA

�
p, q

� = A

is the identity object of the monoidal category AModA. The rest of constraints that
F should satisfy are immediate and this finishes the proof. �

Now, we state the promised equivalence of categories:
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Corollary 1 Let A be a small k-linear category and A its associated ring with
enough orthogonal idempotents. The functor F of Lemma 3 induces an equivalence
of categories between A-corings andA-Bocses such that the following diagram

A-Bocses F

∼= A-corings

Funct
�
Aop ×A, Modk

	
F

∼= AModA

commutes, where the vertical arrows are the canonical forgetful functors.

Proof It is a consequence of Lemma 3 and Proposition 2. �
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