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Abstract. We study the corings whose category of right comodules has a finitely
generated projective generator. In order to extricate the structure of these corings,
we introduce the notion of comatrix coring. Comatrix corings allow as well to give
a complete description of all cosemisimple corings.

Introduction

Corings and their comodules provide an appropriate formalism to unify notions and
results coming from different subfields of the theory of associative algebras. One
of the most striking examples is the following. Letψ : T → A be a ring extension.
M. Cipolla [8] extended Grothendieck’s theory of the faithfully flat descent from
the commutative case to the non commutative one. His main result says, in the
restatement given in [16, Theorem 3.8], that if T A is faithfully flat, then the tensor
product functor − ⊗T A : MT → Descψ establishes an equivalence between
the category MT of all right T –modules and the category Descψ of descent data.
Assume now that A is a right comodule algebra over a Hopf algebra H and that
T is the subring of coinvariant elements of A (see [18]). H. J. Schneider proved
that the functor − ⊗T A : MT → MH

A , where MH
A is the category of right Hopf

A–modules, is an equivalence if and only if T A is faithfully flat and the canonical
map can : A ⊗T A → A ⊗ H is bijective [18, Theorem 1]. Both theorems have
a similar flavor, and in fact they are particular cases of a recent result on corings
having a grouplike element due to T. Brzeziński [4, Theorem 5.6]. The enlightening
fact here is that the categories Descψ and MH

A are categories of comodules over
suitable corings which become isomorphic to Sweedler’s canonical corings of the
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form A⊗T A (see [19]). From a categorical point of view, the A–corings charac-
terized in [4, Theorem 5.6] are precisely those for which A has a structure of right
comodule such that A becomes a progenerator for the category of right comodules
(see [1, Theorem 2.4], [21, 3.8] and [7, Theorem 3.5], for the finitely generated and
projective case). We think that the theory of corings should be developed by its own
right, so, in the light of the aforementioned results, a basic question arising here is
to characterize the corings whose category of comodules has a finitely generated
projective generator. In order to extricate the structure of these corings, we intro-
duce the notion of comatrix coring, which allows also to give a full generalization of
Brzeziński’s result which works for corings without grouplike elements. Comatrix
corings allow as well to give a complete description of all cosemisimple corings.

We have organized our exposition as follows.After a brief introduction (Section
1) to the basic notions of corings and comodules, we expound in Section 2 how to
construct a comatrixA–coring�∗ ⊗B � from a given bimodule B�A such that�A
is finitely generated and projective. In the case that � is a right comodule over an
A–coring C, we define a homomorphism of A–corings can : �∗ ⊗B � → C. This
canonical morphism generalizes the homonymous map introduced in [18].

Section 3 contains several characterizations of those corings C having a finitely
generated and projective generator.We prove in particular that they are comatrix cor-
ings�∗⊗T � such that T � is faithfully flat. We include some consequences, among
them, we deduce [4, Theorem 5.6] and a Descent Theorem for ring extensions of
the form T → End(�A) which generalizes [8, Teorema] and [16, Theorem 3.8].

In Section 4 we offer a structure theorem for cosemisimple corings. They are
described in a unique way as direct sums of comatrix corings of the form�∗ ⊗D�,
where D is a division subring of End(�A).

Section 5 is devoted to show that comatrix corings can be alternatively intro-
duced as coendomorphism corings.

1. The basic notions

We use the following conventions. For an object C in a category the identity mor-
phism C → C is denoted by C. We work over fixed commutative ring K , and
all our additive categories are assumed to be K–linear. For instance, all rings in
this paper are unitary K–algebras, and all bimodules are assumed to centralize the
elements of K . Attached to every object C of an additive category A we have its
endomorphism ring EndA(C), whose multiplication is given by the composition of
the category. As usual, some special conventions will be understood for the case of
endomorphism rings of modules. Thus, ifMR is a right module over a ring R, then
its endomorphism ring in the category MR of all right R–modules will be denoted
by End(MR), while if RN is a leftR–module, then its endomorphism ring, denoted
by End(RN), is, by definition, the opposite of the endomorphism ring of N in the
category RM of all left modules over R.

Throughout this paper, A,A′, . . . , B, . . . denote associative and unitary alge-
bras over a commutative ring K . The tensor product over A is denoted by ⊗A. We
shall sometimes replace ⊗K by ⊗.
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We recall from [19] the notion of a coring. An A–coring is a triple (C,�, ε)
consisting of an A-bimodule C and two A–bimodule maps

� : C −→ C ⊗A C, ε : C −→ A

such that (C ⊗A �) ◦� = (�⊗A C) ◦� and (ε ⊗A C) ◦� = (C ⊗A ε) ◦� = C.
A right C–comodule is a pair (M, ρM) consisting of right A–module M and an
A–linear map ρM : M → M⊗A C satisfying (M⊗A �) ◦ρM = (ρM ⊗A C) ◦ρM ,
(M ⊗A ε) ◦ ρM = M; such M will be denoted by MC. A morphism of right C–
comodules (M, ρM) and (N, ρN) is a right A–linear map f : M → N such that
(f ⊗A C)◦ρM = ρN ◦f ; theK–module of all such morphisms will be denoted by
HomC(M,N). The right C–comodules together with their morphisms form the ad-
ditive category MC. Coproducts and cokernels in MC do exist and can be already
computed in MA. Therefore, MC has arbitrary inductive limits. If AC is flat, then
MC is an abelian category. The converse is not true, as [10, Example 1.1] shows.

Let ρM : M → M⊗A C be a comodule structure over anA′ −A–bimoduleM ,
and assume that ρM is A′–linear. For any right A′–module X, the right A–linear
mapX⊗A′ ρM : X⊗A′M → X⊗A′M⊗AC makesX⊗A′M a right C–comodule.
This leads to an additive functor −⊗A′M : MA′ → MC. The classical adjointness
isomorphism HomA(Y⊗A′M,X) ∼= HomA′(Y,HomA(M,X)) induces, by restric-
tion, a natural isomorphism HomC(Y ⊗A′ M,X) ∼= HomA′(Y,HomC(M,X)), for
Y ∈ MA′ , X ∈ MC. Therefore, HomC(M,−) : MC → MA′ is right adjoint to
−⊗A′ M : MA′ → MC. On the other hand, the functor −⊗A C is right adjoint to
the forgetful functor U : MA → MC (see [13, Proposition 3.1], [4, Lemma 3.1]).

Now assume that theA′−A–bimoduleM is also a left C′–comodule with struc-
ture map λM : M → C′ ⊗A M . It is clear that ρM : M → M ⊗A C is a morphism
of left C′–comodules if and only if λM : M → C′ ⊗A′ M is a morphism of right
C–comodules. In this case, we say that M is a C′ − C–bicomodule.

For any rightA–moduleX, we will denote its right dual byX∗ = HomA(X,A),
which is a left A–module in a canonical way. We will use the analogous notation
∗Y for left A–modules Y . There is a canonical isomorphism End(CC) ∼= C∗ that
maps an endomorphism f onto ε ◦f . The structure of ring of End(CC) is automat-
ically transferred to the opposite of the convolution product C∗ as defined in [19,
Proposition 3.2]. Analogously, there is an isomorphimsm of rings End(CC) ∼= ∗C.
The coring C becomes a ∗C − C∗–bimodule.

2. Comatrix corings and the canonical map

Let A,B be rings. A comatrix A–coring will be built on every B − A–bimodule
which is finitely generated and projective as a right A–module. Sweedler’s canoni-
cal corings and dual corings are examples of comatrix corings. When the bimodule
enjoys a structure of right module over a given coring C, a canonical homomorphism
of A–corings is shown to relate the comatrix A–coring and the coring C.

Let B�A be a B − A–bimodule. Then �∗ = HomA(�,A) is canonically
endowed with a structure of A − B–bimodule, and �∗ ⊗B � is an A–bimod-
ule in a natural way. Assume �A to be finitely generated and projective, and let
{e∗i , ei} ⊆ �∗ ×� be a finite dual basis, that is, the equality
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u =
∑

i

eie
∗
i (u) ∀u ∈ � (1)

holds. We can build on �∗ ⊗B � a canonical structure of A–coring.

Proposition 2.1. The A–bimodule �∗ ⊗B � is an A–coring with comultiplication

� : �∗ ⊗B � → �∗ ⊗B � ⊗A �
∗ ⊗B �

defined by �(ϕ ⊗B u) = ∑
i ϕ ⊗B ei ⊗A e

∗
i ⊗B u and counit

ε : �∗ ⊗B � → A

given by ε(ϕ ⊗B u) = ϕ(u). Moreover, there is a ring anti-isomorphism ∗(�∗ ⊗B

�) ∼= End(B�), where the first of these rings is the left dual of�∗ ⊗B �, endowed
with the convolution product.

Proof. First, we should check that � is well-defined. This requires to prove that
for every b ∈ B and every pair (ϕ, u) ∈ �∗ ×� one has

∑

i

ϕb ⊗B ei ⊗A e
∗
i ⊗B u =

∑

i

ϕ ⊗B ei ⊗A e
∗
i ⊗B bu

Clearly, it suffices to show that
∑
i bei ⊗A e

∗
i = ∑

i ei ⊗A e
∗
i b. Using (1), we

compute
∑

i

bei ⊗A e
∗
i =

∑

i,k

eke
∗
k (bei)⊗A e

∗
i =

∑

i,k

ek ⊗A e
∗
k (bei)e

∗
i

=
∑

k

ek ⊗A

(
∑

i

(e∗kb)(ei)e
∗
i

)
=
∑

k

ek ⊗A e
∗
kb, (2)

as desired. It is now routine to check that � and ε are homomorphisms of A–bi-
modules. An easy computation gives the coassociative and counitary properties.
The reader should realize that (1) is used again in the proof of the counitary prop-
erty. Finally, let us prove the stated ring isomorphism. The isomorphism is given,
at the level of K–modules, by the composition

∗(�∗ ⊗B �) = HomA(�
∗ ⊗B �, AA) ∼= HomB(�,

∗(�∗)) ∼= HomB(�,�),

where we have used one adjointness isomorphism and the canonical isomorphism
� ∼= ∗(�∗). By computing explicitly this composition is given by the assignment
f 
→ f̂ , where f̂ : � → � is given by

f̂ (u) =
∑

i

eif (e
∗
i ⊗B u), for every f ∈ ∗(�∗ ⊗B �). (3)

We are now ready to check that (̂−) is a ring anti-homomorphism. First, we
have ε̂(u) = ∑

i eiε(e
∗
i ⊗B u) = ∑

i eie
∗
i (u) = u, for every u ∈ �. Given,

f, g ∈ ∗(�∗ ⊗B �), the convolution product reads

(f ∗ g)(ϕ ⊗B u) = f (I ⊗A g)�(ϕ ⊗B u) =
∑

i

f (ϕ ⊗B eig(e
∗
i ⊗B u)).
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Therefore,

f̂ ∗ g(u) =
∑

j

ej (f ∗ g)(e∗j ⊗B u) =
∑

i,j

ej f (e
∗
j ⊗B eig(e

∗
i ⊗B u))

= f̂ (
∑

i

eig(e
∗
i ⊗B u)) = f̂ (ĝ(u)),

and we get that f̂ ∗ g = f̂ ◦ ĝ. Since the product in End(B�) is the opposite of
the composition, we have already proved that our map is an anti-isomorphism of
rings. ��
Remark 2.2. Let {e∗i , ei}1≤i≤n and {f ∗

j , fj }1≤j≤m be two dual bases for �A. The
well-known isomorphism of End(�A)–bimodules

� ⊗A �
∗ ξ �� End(�A)

u⊗A ϕ
� �� [v 
→ uϕ(v)]

(4)

easily shows that
∑

1≤i≤n ei ⊗A e
∗
i = ∑

1≤j≤m fj ⊗A f
∗
j and, hence, the comulti-

plication of the comatrix A–coring �∗ ⊗B � does not depend on the choice of the
dual basis of �A.

Our comatrix corings generalize two fundamental classes of corings.

Example 2.3 (Sweedler’s canonical coring). Let B → A a ring homomorphism.
The bimodule BAA is projective and finitely generated as a right A–module. The
corresponding comatrix A–coring is then isomorphic to the canonical Sweedler’s
coring A⊗B A [19, Example 1.2]. The comultiplication sends a ⊗B a

′ onto a ⊗B

1 ⊗A 1 ⊗B a
′, and the counit is given by the multiplication of A.

Example 2.4 (Dual coring). LetA → B a ring homomorphism. Assume that BA is
finitely generated and projective. Then, taking the dual with respect to A, we have
B∗ ⊗B B ∼= B∗, and this isomorphism of A–bimodules becomes an isomorphism
of A–corings whenever we consider the A–coring structure on B∗ obtained from
the A–ring structure of B [19, 3.7].

A relevant feature of the A–coring �∗ ⊗B � is that the right A–module �
becomes a right �∗ ⊗B �–comodule in a canonical way. Its coaction is defined as

�
ρ� �� � ⊗A �

∗ ⊗B �, (u
� ��

∑
i ei ⊗A e

∗
i ⊗B u) ,

which is clearly a left B–linear map, in other words, � is B − (�∗ ⊗B �)–bico-
module. This comodule plays a relevant role.

Proposition 2.5. The coring �∗ ⊗B � is, as a right comodule, generated by �.
Therefore, every right �∗ ⊗B �–comodule is isomorphic to a subcomodule of a
quotient of �(I), for a suitable index set I . Moreover,

End(��∗⊗B�) = {f ∈ End(�A)| f ⊗B x = 1 ⊗B f (x), for every x ∈ �}
and, in particular, the canonical ring homomorphism B → End(�A) factors
through End(��∗⊗B�).
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Proof. For the first statement, it is enough to prove that every generator ϕ ⊗B u ∈
�∗ ⊗B � belongs to the image of a morphism of right �∗ ⊗B �–comodules
f : � → �∗ ⊗B �. This is fulfilled by the map defined by f (u) = ϕ⊗B u, which
is easily proved to be a homomorphism of comodules. For the second statement,
let ρM : M → M ⊗A �

∗ ⊗B � be a right comodule. The own structure map ρM
is a morphism of comodules which splits as a right A–module map. Therefore, M
is isomorphic to a subcomodule ofM ⊗A �

∗ ⊗B �, which is now easily shown to
be a quotient of a coproduct of copies of �. The second statement follows from a
straightforward computation. ��
Remark 2.6. Of course �∗ is a left �∗ ⊗B �–comodule with a right B–linear
coaction

�∗ λ�∗ �� �∗ ⊗B � ⊗A �
∗, (ϕ 
→ ∑

i ϕ ⊗B ei ⊗A e
∗
i ) .

Moreover, �∗⊗B��
∗ satisfies the left version of Proposition 2.5, and the right

convolution ring (�∗ ⊗B �)
∗ is a ring anti-isomorphic to End(�∗

B).

Now, let C be any A–coring, and assume � to be a right C–comodule with
coaction ρ� : � → � ⊗A C. From now on, we will denote S = End(�A) and
T = End(�C). Then � becomes an S −A–bimodule and ρ� is a homomorphism
of S − A–bimodules. We keep in mind that T is a subring of S.

Proposition 2.7. If �C is a comodule such that �A is finitely generated and
projective, then the map can : �∗ ⊗T � → C defined as the composition

�∗ ⊗T �
�∗⊗Bρ� �� �∗ ⊗T � ⊗A C

ε⊗AC �� A⊗A C ∼= C

is a homomorphism of A–corings.

Proof. By construction can is A–bilinear. We need to check the identities

�C ◦ can = (can⊗A can) ◦� and εC ◦ can = ε. (5)

If {e∗i , ei} ⊆ �∗ ×� is a dual basis, then ρ�(ej ) = ∑
i ei ⊗A ρij for each j . Then

the first identity in (5) is equivalent to
∑

k

e∗i (ek)�C(ρkj ) =
∑

k,l,m

e∗i (el)ρlk ⊗A e
∗
k (em)ρmj ∀i, j (6)

The fact that � is a right C–comodule gives
∑

k

ek ⊗A �C(ρkj ) =
∑

k,l

ek ⊗A ρkl ⊗A ρlj ∀j

Therefore,
∑

k

e∗i (ek)�C(ρkj ) =
∑

k,l

e∗i (ek)ρkl ⊗A ρlj ∀i, j (7)
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On the other hand,

ρ�(em)=ρ�
(
∑

k

eke
∗
k (em)

)
=
∑

k

ρ�(ek)e
∗
k (em)=

∑

l,k

el ⊗A ρlke
∗
k (em) ∀m;

thus
∑

l

el ⊗A ρlm =
∑

l,k

el ⊗A ρlke
∗
k (em) and

∑

l

e∗i (el)ρlm =
∑

l,k

e∗i (el)ρlke
∗
k (em) ∀i, m

Finally, we get
∑

k,l,m

e∗i (el)ρlk ⊗A e
∗
k (em)ρmj =

∑

k,l,m

e∗i (el)ρlke
∗
k (em)⊗A ρmj

=
∑

l,m

e∗i (el)ρlm ⊗A ρmj ∀i, j

This implies, in view of (7), the identity (6).
The second identity in (5) holds since, for every i, j , we have

εC(can(e
∗
i ⊗ ej )) = εC

(
∑

k

e∗i (ek)ρkj

)
=
∑

k

e∗i (ek)εC(ρkj )

= e∗i

(
∑

k

ekεC(ρkj )

)
= e∗i (ej ) = ε(e∗i ⊗ ej )

��
The following examples suggest that the can map defined in Proposition 2.7

is an interesting object for research. Moreover, it generalizes canonical maps
previously considered in the theories of Hopf modules and noncommutative
Galois extensions.

Example 2.8. Let us assume that our A–coring C has a grouplike element g, which
is equivalent, by [4, Lemma 5.1], to endow A with a structure of right comodule
over C. In this case T = End(AC) is nothing but the subring of coinvariants [5,
Proposition 2.2] of A. In this case, the map can : A ⊗T A → C is determined
by the condition can(1 ⊗T 1) = g. Therefore, the coring C is Galois in the sense
of [4, Definition 5.3] if and only if can is an isomorphism. It is convenient to
point out here that our homomorphism can generalizes the original canonical map
considered by [18] and, in fact, the map can defined in [3, Definition 2.1].

Example 2.9. LetG be a finite group of ring automorphims ofA, and letR = G∗A
be the associated crossed product. The ring A embeds canonically in R and, by
construction, RA is free with basisG and we can consider the corresponding com-
atrix coring R∗ ⊗R R ∼= R∗ (see Example 2.4). Let us show that the “trace map”



894 L. El Kaoutit, J. Gómez-Torrecillas

g : R → A defined by g(
∑
σ∈G σaσ ) = ∑

σ∈G aσ is a grouplike element for
R∗. Accordingly with [15, Theorem 3], we need just to check that g acts as the
identity on A, which is obviously the case, and that Kerg is a right ideal of R.
This last condition can be checked in a straightforward way taking that the trace
map is invariant under translations into account. Thus, A is a right R∗–comodule
and we have the homomorphism of A–corings can : A ⊗T A → R∗ determined
by can(1 ⊗T 1) = g, where T is the subring of g–coinvariants of A. An easy
computation shows that T is already the subring of G–invariants of A. Now, the
composite homomorphism of rings

R ∼= ∗(R∗)
∗can �� ∗(A⊗T A) ∼= End(T A)

is precisely the map δ defined in [14] (or j in [9]). There, the extension T ⊆ A is
said to beG–Galois whenever δ is an isomorphism and T A is finitely generated and
projective. Of course, δ is an isomorphism if and only if can is an isomorphism.

The homomomorphism ofA–corings can : �∗ ⊗T � → C leads to the functor

CAN : M�∗⊗T � → MC

which sends a comodule ρM : M → M ⊗A �
∗ ⊗T � onto the C–comodule

M
ρM �� M ⊗A �

∗ ⊗T �

M⊗
A
can

�� M ⊗A C

This is an example of induction functor (see [11, 5.2] for details).

Proposition 2.10. If �C is a comodule such that �A is finitely generated and pro-
jective, then T = End(��∗⊗T �) and we have a commuting diagram of functors

M�∗⊗T �
CAN �� MC

MT

−⊗
T
�

����������� −⊗
T
�

����������

Proof. By Proposition 2.5,T ⊆ End(��∗⊗T �). Conversely, letf ∈ End(��∗⊗T �);
the following diagram is clearly commutative

�
ρ� ��

f

��

� ⊗A �
∗ ⊗T �

f⊗
A
�∗⊗T �

��

�⊗
A
can

�� � ⊗A C

f⊗
A

C

��
�

ρ� �� � ⊗A �
∗ ⊗T �

�⊗
A
can

�� � ⊗A C.

Now, an easy computation shows that (� ⊗A can)ρ� is just the structure map
for �C. Thus f is right C–colinear, that is, f ∈ T . Observe that we have already
shown that CAN(��∗⊗T �) = �C. This implies that CAN((X ⊗T �)�∗⊗T �) =
(X ⊗T �)C for every X ∈ MT , as desired. ��
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3. Corings with a finitely generated and projective generator

We give a complete description in terms of comatrix corings of corings having
a finitely generated projective generator. Furthermore, our result generalizes [4,
Theorem 5.6] to corings which possibly have no grouplike elements and, therefore,
it is ultimately a generalization of [18, Theorem 1] and [8, Teorema].

Let� be a right comodule over anA–coring C, and let T = End(�C) its endo-
morphism ring. The structure map of � is T –linear and, thus, we have the functor
− ⊗T � : MT → MC. Recall that HomC(�,−) : MC → MT is right adjoint
to − ⊗T �. Let χ : HomC(�,−)⊗T � → 1 the counit of this adjunction.

The proof of our main theorem will be better understood if we isolate a techni-
cal fact which, in view of [7, Proposition 1.1] and [1, Theorem 2.2] seems to be of
independent interest.

Lemma 3.1. Let � be a right C–comodule such that �A is finitely generated
and projective. The counit χC at C is an isomorphism if and only if can is an
isomorphism.

Proof. Making use of the isomorphism HomC(�,C) ∼= �∗, we have that can :
�∗ ⊗T � → C can be written as the composite

�∗ ⊗T � ∼= HomC(�,C)⊗T �
χC �� C.

��
An objectX of a Grothendieck category A is said to be finitely generated if for

each chain of proper subobjects {Xi} ofX also its union
⋃
Xi is a proper subobject

of X (see [17, Section 4.10]). By [17, Section 4.11, Lemma 1], a projective object
P ∈ A is finitely generated if and only if HomA(P,−) preserves coproducts.

Theorem 3.2. Let C be an A–coring, and �C a right C–comodule. Consider the
ring extension T ⊆ S, where T = End(�C) and S = End(�A). The following
statements are equivalent

(i) AC is flat and �C is a finitely generated and projective generator for MC;
(ii) AC is flat, �A is a finitely generated and projective A–module, can : �∗ ⊗T

� → C is an isomorphism of A–corings, and − ⊗T � : MT → M�∗⊗T � is
an equivalence of categories;

(iii) �A is a finitely generated and projective A–module, can : �∗ ⊗T � → C is
an isomorphism of A–corings, and T � is a faithfully flat module.

(iv) AC is flat, �A is a finitely generated and projective A–module, can : �∗ ⊗T

� → C is an isomorphism of A–corings, and T S is faithfully flat.

Proof. (i) ⇒ (ii) Since AC is flat, it follows from [10, Proposition 1.2] that MC

is a Grothendieck category and the forgetful functor U : MC → MA is exact.
Moreover, it has an exact right adjoint − ⊗A C. This implies that �A is finitely
generated and projective. Recall that HomC(�,−) : MC → MT is right ad-
joint to − ⊗T � and, since �C is a finitely generated and projective generator, it
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is already an equivalence of categories. In particular, the counity of the adjunc-
tion χ : HomC(�,−) ⊗T � → 1 is a natural isomorphism. By Lemma 3.1,
CAN : M�∗⊗T � → MC is an equivalence of categories. By Proposition 2.10,
we have that − ⊗T � : MT → M�∗⊗T � is an equivalence of categories.
(ii) ⇒ (iii)The functor −⊗T � : MT → M�∗⊗T � is obviously faithful and ex-
act. Since�∗⊗T � ∼= C is flat as a leftA–module, we have, by [10, Proposition 1.2],
that the forgetful functor U : M�∗⊗T � → MA is faithful and exact. Therefore,
the functor − ⊗T � : MT → MA is faithful and exact, that is, T � is a faithfully
flat module.
(iii) ⇒ (i) Let� = �∗ ⊗T �, which is flat as a leftA–module because T � is flat.
The isomorphism of A–corings can : � ∼= C gives then that AC is flat. Consider
on�∗ the left�–comodule structure given in Remark 2.6. A straightforward com-
putation shows that�∗ is an�− T –bicomodule, where T acts canonically on�∗.
The functor −⊗A�

∗ : MA → MT is right adjoint to −⊗T � : MT → MA. By
[11, Proposition 4.2], the cotensor product functor −���

∗ : M� → MT is right
adjoint to − ⊗T � : MT → M�. Since T � is flat we have, by [11, Lemma 2.2],
the isomorphism (M���

∗) ⊗T � ∼= M��(�
∗ ⊗T �) = M��� ∼= M , which

turns out to be inverse to the counity of the adjunction at M ∈ M�. Moreover, if
ηX : X → (X ⊗T �)���

∗ is the unity of the adjunction at X ∈ MT , then an
inverse to ηX ⊗T � is obtained by the isomorphism ((X ⊗T �)���

∗))⊗T � ∼=
(X ⊗T �)��(�

∗ ⊗T �) ∼= X ⊗T �. Since T � is faithful, we get that ηX is an
isomorphism and, hence, − ⊗T � : MT → M� is an equivalence of categories
with inverse −���

∗. It follows from Proposition 2.10 that −⊗T � : MT → MC

is an equivalence, as can : � → C is an isomorphism. Therefore, �C is a finitely
generated and projective generator for MC.
(iii) ⇒ (iv) First, observe that the isomorphism � ⊗A �

∗ ∼= S implies that S�
is faithful. Given a monomorphism f : X → Y in MT , we have the commutative
diagram

(X ⊗T S)⊗S �

(f⊗
T
S)⊗

S
�

��

�
��

(Y ⊗T S)⊗S �

�
��

X ⊗T �
f⊗T � �� Y ⊗T �

Since T � is flat, we deduce that (f ⊗T S) ⊗S � is a monomorphism and, thus,
f ⊗T S is a monomorphism. Therefore, T S is flat. Finally, if X ∈ MT is such that
X ⊗T S = 0, then 0 = (X ⊗T S) ⊗S � ∼= X ⊗T �, which implies that X = 0.
Hence, T S is faithfully flat.
(iv) ⇒ (iii) It suffices to show that T � is faithfully flat. Consider a short exact

sequence in MT , 0 �� Y
f �� Y ′ g �� Y ′′ �� 0, and let Z denote the

kernel of the morphism f ⊗T � in the category M�∗⊗T � . Since the forgetful
functor M�∗⊗T � → MA is exact, this kernel coincides with the kernel computed
in MA. We thus get a commutative diagram with exact rows
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0 �� Z ⊗A �
∗ �� Y ⊗T � ⊗A �

∗ ��

�
��

Y ′ ⊗T � ⊗A �
∗

�
��

0 �� Y ⊗T S �� Y ′ ⊗T S.

Therefore, Z⊗A�
∗ = 0, which implies that Z⊗A�

∗ ⊗T � = 0, and thus Z = 0,
sinceZ ∈ M�∗⊗T � . Therefore, T � is flat. Now, given any right T –module Y such
that Y ⊗T � = 0, we have Y ⊗T � ⊗A �

∗ ∼= Y ⊗T S = 0, and so Y = 0. Thus,
T � is a faithfully flat module, and this finishes the proof. ��
Remark 3.3. The flatness of AC cannot be dropped in the statements (ii) and (iv).
Counterexamples can be obtained as follows. Let e ∈ A an idempotent and write
f = 1 − e. Assume that fAe = 0 and let I = eA. Then I becomes an A–coring
whose comultiplication is given by the canonical isomorphism I ∼= I ⊗A I and the
counit is just the inclusion I ⊆ A. In this case, End(II ) = End(IA) ∼= eAe, and,
hence, T = S. Moreover, this easily implies that can : I ∗⊗eAe I ∼= Ae⊗eAe I ∼= I .
The right I–comodules are those rightA–modules satisfying that the canonical map
M ⊗A I → M is an isomorphism. This allows to prove that − ⊗eAe I : MeAe →
MI is an equivalence of categories. However, AI is not flat unless eAeI is.

Next, we shall locate Theorem 3.2 within the recent developments of Galois cor-
ings with grouplike elements. In the context of Theorem 3.2, it follows from Lemma
3.1 that if − ⊗T � is an equivalence of MT to MC, then can : �∗ ⊗T � → C is
an isomorphism. This motivates the following definition.

Definition 3.4. Let C be an A–coring with a right C–comodule � such that �A
is finitely generated and projective. The coring will be said to be Galois if can :
�∗ ⊗T � → C is an isomorphism, where T = End(�C). When � = A, this
definition coincides with the one given by T. Brzeziński for corings with a grouplike
element [4, Definition 5.3]. In view of Theorem 3.2, a ring extension of the form
T → End(�A) could be called a C–Galois ring extension whenever � is a right
C–comodule such that �A is finitely generated and projective, T = End(�C) and
C is Galois. Coring Galois extensions in [4] or [7] are then obtained with � = A.

We easily get now.

Corollary 3.5. [4, Theorem 5.6] Let C be an A–coring with a grouplike element,
and T be the subring of coinvariant elements ofA. If C is Galois and T A is faithfully
flat, then − ⊗T A : MT → MC is an equivalence of categories. Conversely, if
− ⊗T A is an equivalence of categories, then C is Galois. In this case if AC is flat,
then T A is faithfully flat.

Proof. Put � = A. The corollary follows from Example 2.8, Proposition 2.10,
Lemma 3.1 and, mainly, Theorem 3.2. ��

Galois corings with grouplike element have also been recently considered from
the point of view of category equivalences by J. Y. Abuhlail [1] and R. Wisbauer
[21]. Some of their results can be easily derived from our set up.
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Remark 3.6. In view of Lemma 3.1, can is an isomorphism if and only if χC is an
isomorphism. Taking � = A in Theorem 3.2 we obtain that if C has a grouplike
element and AC is flat then A is a projective generator for MC if and only if T A
is faithfully flat and χC is bijective. This has been recently proved by R. Wisbauer
and J.Y. Abuhlail, this last under the additional condition “AC is locally projective”
(see [21, 3.8.(1)] and [1, Theorem 2.4]).

Remark 3.7. It follows from Lemma 3.1 and from the proof of (iii) ⇒ (i) in The-
orem 3.2 that the counit χM is an isomorphism for every M ∈ MC if and only if
T � is flat and C is Galois. Taking� = A, we get that the coring C with a grouplike
satisfies the “Weak Structure Theorem” if and only if T A is flat and C is Galois. This
has been proved in [21, 3.8.(2)] and [1, Theorem 2.2], this last under the additional
condition “AC is locally projective”.

The interest in corings has been partly recovered because the theory of en-
twined modules (and, henceforth, of Hopf modules) can be subsumed in the theory
of comodules over certain corings [4, Proposition 2.2].

Example 3.8. Let (A,C)ψ be an entwining structure overK and assume there is an
entwined module � such that �A is finitely generated and projective. We have our
canonical map can : �∗ ⊗T � → A⊗ C, where T is the ring of endomorphisms
of � as an entwined module. If can is bijective then we have a special type of
Galois A–corings without grouplike elements. This process can be reversed: start
with a coalgebra C and a finitely generated and projective right module � over
an algebra A. Let ρ : � → � ⊗ C be a structure of right C–comodule over �
and define T = {t ∈ End(�A)|ρ(tu) = tρ(u) for every u ∈ �} (that is, T is
the ring of all endomorphisms of � which are A–linear and C–colinear). Then
define can(ϕ ⊗T u) = ∑

ϕ(u(0)) ⊗ u(1). If this can is bijective (which could be
the new more general definition of C–Galois extension T ⊆ End(�A)) then there
is a unique entwining structure (A,C)ψ making � a right entwined module (to
check this, first use propositions 2.1 and 2.5 to transfer the structure of A–coring
of �∗ ⊗T � and of right �∗ ⊗T �–comodule of �, respectively; and then [4,
Proposition 2.2] to interpret everything in terms of the entwining structure). Taking
� = A, we obtain [6, Theorem 2.7].

The relationship between Noncommutative Descent Theory and Galois corings
with grouplike is known (see [4] and [7]). We will derive from our analysis of
Galois corings without grouplike elements a Descent Theory for ring extensions of
the form B → End(�A), where�A is finitely generated and projective. Of course,
our sufficient conditions to have the Descent Theorem are given on the bimodule
�. Once again, the case � = A collapses with the classical theory.

Lemma 3.9. Let B�A be a B−A–bimodule such that�A is finitely generated and
projective, and let T = End(��∗⊗B�). Then the canonical map can : �∗⊗T � →
�∗ ⊗B � is an isomorphism of A–corings.

Proof. Let B → T the homomorphism of rings given in Proposition 2.5. De-
note by ω : �∗ ⊗B � → �∗ ⊗T � the obvious map which sends ϕ ⊗B x 
→
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ϕ ⊗T x. Let us check that ω is the inverse of can. Given ϕ ∈ �∗ and x ∈ �, we
have can(ω(ϕ ⊗B x)) = ∑

i ϕ(ei)e
∗
i ⊗B x = ϕ ⊗B x, and ω(can(ϕ ⊗T x)) =

ω(
∑
i ϕ(ei)e

∗
i ⊗B x) = ω(ϕ ⊗B x) = ϕ ⊗T x. Hence, can is an isomorphism of

A–corings. ��
Theorem 3.10 (Generalized Descent for Modules). Let B�A be a B − A–
bimodule such that �A is finitely generated and projective. Consider the rings
S = End(�A) and T = End(��∗⊗B�), and the canonical ring homomorphism
λ : B → T . The following statements are equivalent.

(i) A(�∗ ⊗B �) is flat, ��∗⊗B� is a finitely generated projective generator for
M�∗⊗B� , and λ : B → T is an isomorphism;

(ii) A(�∗ ⊗B �) is flat and − ⊗B � : MB → M�∗⊗B� is an equivalence of
categories;

(iii) B� is faithfully flat;
(iv) A(�∗ ⊗B �) is flat and BS is faithfully flat.

Proof. First, keep in mind that Lemma 3.9 says that the comatrix coring�∗ ⊗B �

is Galois.
(i) ⇒ (ii) Follows from Theorem 3.2.
(ii) ⇒ (iii) and (i) If we assume such an equivalence, then� is a finitely generat-
ed projective generator for M�∗⊗B� . We deduce from Theorem 3.2 that −⊗T � :
MT → M�∗⊗B� is an equivalence of categories and T � is faithfully flat. There-
fore, in the commutative diagram of functors

MB

−⊗
B
�

�� M�∗⊗B�

MT

−⊗
T
�

��

F

��

M�∗⊗T �

CAN

�� ,

where F : MT → MB is the restriction of scalars functor associated to λ : B →
T , the other three functors are equivalences of categories. This shows that λ is an
isomorphism, which proves (i) and (iii).
(iii) ⇒ (ii) By Proposition 2.5, we have that

T = End(��∗⊗B�) = {f ∈ End(�A)| f ⊗B x = 1 ⊗B f (x), for every x ∈ �},
which shows that the canonical mapB⊗B� → T ⊗B� is an isomorphism. There-
fore, when B� is assumed to be flat, one deduces thatKerλ⊗B � = coKerλ⊗B

� = 0. Thus, if B� is faithfully flat, then λ is an isomorphism of rings, and we can
apply Lemma 3.9 and Theorem 3.2 to obtain that − ⊗B � : MB → M�∗⊗B� is
an equivalence of categories.
(iii) ⇔ (iv) The proof of the equivalence between (iii) and (iv) in Theorem 3.2
works here. ��

M. Cipolla [8] give a Descent Theorem for a homomorphism of noncommuta-
tive rings B → A. As T. Brzeziński pointed out [4], the category of descent data
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[16] is precisely the category MA⊗BA of right comodules over A⊗B A. As a con-
sequence of Theorem 3.10 we obtain Cipolla’s main result [8, Teorema] (see also
[16, Theorem 3.8]).

Corollary 3.11 (Descent of Modules). Let B → A be a ring homomomorphism.
If BA is faithfully flat, then the functor − ⊗B A : MB → MA⊗BA establishes an
equivalence of categories. The converse holds if A(A⊗B A) is flat.

Proof. Put � = A in Theorem 3.10. ��

4. The structure of cosemisimple corings

Basic properties of cosemisimple corings have been studied in [10] and [12]. Per-
haps, from the coring point of view, the most fundamental examples of cosemisim-
ple corings are Sweedler’s canonical corings D ⊗E D for E ⊆ D an extension of
division rings. This section contains a full description, in terms of finitely generated
and projective rightA–modules and division subrings of their endomorphism rings,
of all cosemisimple A–corings for each fixed ring A.

A coring is said to be cosemisimple if it satisfies the equivalent conditions in
the following theorem.

Theorem 4.1. [10, Theorem 3.1] Let C be an A–coring. The following statements
are equivalent:

(i) every left C–comodule is semisimple and CM is abelian;
(ii) every right C–comodule is semisimple and MC is abelian;

(iii) C is semisimple as a left C–comodule and CA is flat;
(iv) C is semisimple as a right C–comodule and AC is flat;
(v) C is semisimple as a right C∗–module and CA is projective;

(vi) C is semisimple as a left ∗C–module and AC is projective.

This notion obviously generalizes cosemisimple coalgebras. On the other hand,
a ring A is semisimple if and only if, considered as A–coring, A is cosemisimple.
In fact, cosemisimple corings were originally called semisimple corings in [10],
but it seems better, from the point of view of the theory of Hopf algebras, to follow
the coalgebraic terminology.

Every cosemisimple A–coring C admits a unique decomposition as a direct
sum of simple cosemisimple A–subcorings, where a coring is said to be simple if
it has no non trivial subbicomodules [10, Theorem 3.9]. Several characterizations
of simple cosemisimple corings were given in [10, Theorem 3.7]. The structure
of these simple cosemisimple summands can be now deduced from our previous
results.

Proposition 4.2. Let C be a simple cosemisimple A–coring and �C a finitely gen-
erated nonzero right C–comodule. Let T = End(�C) be the simple artinian ring
of endomorphisms of �. Then �A is finitely generated and projective and can :
�∗ ⊗T � → C is an isomorphism of A–corings. Conversely, every comatrix A–
coring �∗ ⊗B �, where �A is finitely generated and projective and B is simple
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artinian, becomes a simple cosemisimple A–coring, and the number of simples in
a complete decomposition of ��∗⊗B� coincides with the number of simples in a
complete decomposition of BB .

Proof. The first statement is a consequence of Theorem 3.2 because�C is a finitely
generated projective generator of MC. The second statement is a consequence of
Theorem 3.10. ��

The following is our structure theorem for simple cosemisimple corings.

Theorem 4.3. An A–coring C is a simple cosemisimple coring if and only if there
is a finitely generated and projective right A–module � and a division subring
D ⊆ End(�A) such that C ∼= �∗ ⊗D � as A–corings. Moreover, if � is another
finitely generated and projective right A–module and E ⊆ End(�A) is a division
subring, then C ∼= �∗ ⊗E � as A–corings if and only if there is an isomorphism of
right A–modules g : � → � such that gDg−1 = E.

Proof. That the simple cosemisimpleA–corings are, up to isomorphism, the coma-
trix corings�∗ ⊗D� for�A finitely generated and projective andD ⊆ End(�A) a
division subring, is a consequence of Proposition 4.2. Now, assume an isomorphism
of A–corings f : �∗ ⊗D � → �∗ ⊗E � as stated, and let (−)f : M�∗⊗D� →
M�∗⊗E� the associated induction functor [11, 5.2], which is an isomorphism of
categories. By Proposition 4.2,� is a simple right�∗ ⊗D �–comodule, which im-
plies that�f is a simple right�∗ ⊗E �–comodule. Since� is, up to isomorphism,
the only simple comodule over �∗ ⊗E �, there is an isomorphism of comodules
g : �f → �, which, at the level of right A–modules, gives an isomorphism
g : �A → �A. Clearly, End((�f )�∗⊗E�

) = End(��∗⊗D�). By Theorem 3.10,

D = End(��∗⊗D�) and E = End(��∗⊗E�). Thus, if d ∈ D, then gdg−1 is an
endomorphism of the comodule �, that is, gdg−1 ∈ E. We have obtained that
gDg−1 ⊆ E. The other inclusion is also easily obtained. Conversely, assume that
g : � → � is an isomorphism of right A–modules such that gDg−1 = E, and
consider the following A–bilinear map

ψ : �∗ ×� → �∗ ⊗E �, ((ϕ, u) 
→ ϕg−1 ⊗E g(u)).

Let d ∈ D and e = gdg−1 ∈ E, so ψ(ϕd, u) = (ϕdg−1)⊗E g(u) = ϕg−1e ⊗E

g(u) = ϕg−1 ⊗E eg(u) = ϕg−1 ⊗E g(du) = ψ(ϕ, du). Hence ψ extended to an
A–bilinear map ψ : �∗ ⊗D � → �∗ ⊗E �. Given any right dual basis {e∗i , ei} for
�A, it is easy to see that {e∗i ◦ g−1, g(ei)} is a right dual basis for �A. Moreover,
ψ(e∗i ⊗D ej ) = (e∗i ◦ g−1) ⊗E g(ej ), for all i, j , thus ψ is an isomorphism of
A–bimodules.A direct computation, using these bases, proves thatψ is a morphism
of A–corings. ��

Recall from [10, Theorem 3.7] that an A–coring C is cosemisimple if and only
if it decomposes uniquely as C = ⊕λ∈�Cλ, where Cλ are simple cosemisimple
A–corings.

Theorem 4.4 (Structure of cosemisimple corings). Let C be an A–coring. The
following statements are equivalent
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(i) C is a cosemisimple A–coring;
(ii) there exists a family � of finitely generated projective right A–modules,

and a division subring D� ⊆ End(�A), for every � ∈ �, such that C ∼=
⊕�∈�

(
�∗ ⊗D� �

)
as A–corings.

Furthermore, if C satisfies one of these conditions, then the family� is a set of rep-
resentatives of all simple right C–comodules, and the decomposition is unique in the
following sense: given any other family�′ satisfying (ii); then there exists a bijec-
tive map φ : � → �′ and an isomorphism of rightA–modules g� : �A → φ(�A)

for every � ∈ � such that Dφ(�) = g�D�g
−1
� .

Proof. The equivalence (i) ⇔ (ii) follows from [10, Theorem 3.7] and Theorem
4.3. Let us check the uniqueness of the decomposition. Let �, �′ to be as in (ii)
with the associated isomorphisms of A–corings

χ : C → ⊕�∈�
(
�∗ ⊗D� �

)
, ζ : C → ⊕�′∈�′

(
�′∗ ⊗D�′ �

′) .

Therefore, C = ⊕�∈�C� = ⊕�′∈�′C�′ , where C� = χ−1(�∗ ⊗D� �), C�′ =
ζ−1(�′∗ ⊗D�′ �

′) are simple cosemisimple A–corings for every � ∈ � and
�′ ∈ �′. The uniqueness of the decomposition given in [10, Theorem 3.7] gives
now that there exists a bijection φ : � → �′ such that C� = Cφ(�) for every
� ∈ �. That is, �∗ ⊗D� �

∼= φ(�)∗ ⊗Dφ(�) φ(�), as A–corings, for every
� ∈ �. This implies in view of Theorem 4.3 that there exists an A–linear isomor-
phism g� : � → φ(�) such that Dφ(�) = g�D�g

−1
� . ��

Remark 4.5. The structure of cosemisimple coalgebras over a field k is very well-
known: form direct sums of dual coalgebras of finite dimensional simple algebras
over k, which are matrices over division k–algebras. Comatrix corings allow to
build these simple blocks directly, as they are coalgebras of the form �∗ ⊗D� �,
where the D�’s are division subalgebras of endomorphism algebras of finite di-
mensional k–vector spaces �. Observe that this description applies for coalgebras
over arbitrary commutative rings k, if we take finitely generated and projective
k–modules instead of finite dimensional vector spaces.

5. Coendomorphism corings

We will see that comatrix corings are special instances of coendomorphism cor-
ings. This gives an alternative approach, although less elementary, for introducing
comatrix corings and the canonical map.

Let C and D be an A–coring and B–coring, respectively. Let N be an A −
B–bimodule with a right D–coaction map ρN : N → N ⊗B D which is left
A–linear and right B–linear. Assume that ND is quasi-finite, that is, the functor
− ⊗A N : MA → MD has a left adjoint F : MD → MA (see [11, Section
3]). This functor is called the cohom functor by analogy with the case of coalge-
bras over fields (see [20]); notation F = hD(N,−). Let η−,− : HomD(−,− ⊗A

N) → HomA(F (−),−) denote the natural isomorphism of the adjunction, and
θ : 1MD → F(−)⊗A N the unity of the adjunction. The canonical map AA →
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HomD(N,N) → HomA(F (N), F (N)) gives a structure of left A–module on
F(N) such that F(N) becomes an A–bimodule. Define a comultiplication � :
F(N) → F(N)⊗A F(N) by � = ηN,F(N)⊗AF(N) ((F (N)⊗A θN) ◦ θN), that is,
� is determined by the condition (F (N)⊗A θN) ◦ θN = (�⊗A N) ◦ θN ; clearly
� is A–bilinear. An analogous proof to that of [2, Proposition III.3.1] shows that
� is coassociative. Moreover, F(N) becomes an A–coring with the counit given
by ε = ηN,A(ι), where ι : N → A ⊗A N is the canonical isomorphism. This A–
coring will be denoted by eD(N); we refer to it as the coendomorphism A–coring
associated to ND.

Example 5.1. Let C be anA–coring, and (�, ρ�) a right C–comodule such that�A
is finitely generated and projective with finite right dual basis {e∗i , ei}; denote by
T = End(�C) the endomorphism ring of �C. It is easy to check that the A–linear
map

λ�∗ : �∗ → C ⊗A �
∗,

(
ϕ 
→

∑

i

((ϕ ⊗A C)ρ�)(ei)⊗A e
∗
i

)
,

endows�∗ with a structure of left C–comodule. Moreover, (−)∗ : T → End(C�∗)
sending f 
→ f ∗ establishes a ring isomorphism. Hence �∗ is a C − T –bicomod-
ule. There is a canonical adjunction − ⊗T � � − ⊗A �

∗; the associated natural
isomorphism is

ηYT ,XA : HomT (Y,X ⊗A �
∗) �� HomA(Y ⊗T �,X)

f (y) = ∑
i xi ⊗A e

∗
i

� �� (y ⊗T u 
→ ∑
i xie

∗
i (u))

(y 
→ ∑
i g(y ⊗T ei)⊗A e

∗
i ) g���

the unit and counit are given by

θYT : Y �� Y ⊗T � ⊗A �
∗

y � ��
∑
i y ⊗T ei ⊗A e

∗
i ,

χXA : X ⊗A �
∗ ⊗T � �� X

x ⊗A e
∗
i ⊗T ej

� �� xe∗i (ej ).

Therefore, �∗
T is quasi-finite (see [11, Example 3.4]). In this way, the coendomor-

phism A–coring associated to �∗
T is then eT (�∗) = �∗ ⊗T � with the following

comultiplication and counit

� : eT (�
∗) → eT (�

∗)⊗A eT (�
∗),

ϕ ⊗T u 
→
∑

i,j

ϕ ⊗T ei ⊗A e
∗
i ⊗T ej e

∗
j (u) =

∑

i

ϕ ⊗T ei ⊗A e
∗
i ⊗T u



 ,

ε : �∗ ⊗T � → A sending ϕ ⊗T u 
→ ∑
i ϕ(ei)e

∗
i (u) = ϕ(u). We have shown

that eT (�∗) is just the comatrix A–coring of T �A.

Now, assume that N is a C − D–bicomodule and that BD is a flat module.
By [11, Proposition 3.3], F = hD(N,−) factors through the category MC,
and hD(N,−) : MD → MC becomes a left adjoint to the cotensor product
functor −�CN : MC → MD with unity θ : 1MD → F(−)�CN and
counity χ : F(−�CN) → 1MC .
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Proposition 5.2. Let N be a C − D–bicomodule that is quasi-finite as a right D–
comodule, and assume that BD is flat. The map f : eD(N) → C defined by
f = χC ◦ hD(N, λN), where λN : N → C ⊗A N is the left comodule structure
map, is a homomorphism of A–corings.

Proof. The following diagram

C�CN

����������������

����������������

θC�CN �� F(C�CN)�CN
� � ��

χC�CN

��

F(C�CN)⊗A N

χC⊗
A
N

��
C�CN

� � �� C ⊗A N

, (8)

where the hooked arrows are canonical monomorphisms, is commutative, because
the left triangle commutes by the properties of the unity and counity of the adjunc-
tion. We have then that the diagram

F(N)⊗A N

F(λN )⊗
A
N

�� F(C�CN)⊗A N

χC⊗
A
N

�� C ⊗A N

N

θN

��

λN �� C�CN

θC�CN

��

� �

������������������

(9)

is commutative. This means that (f ⊗A N) ◦ θN = λN . To prove that f is a
homomorphism ofA–corings, we need to show that the following diagram is com-
mutative:

F(N)
�F(N) ��

f

��

F(N)⊗A F(N)

f⊗
A
f

��
C

�C �� C ⊗A C

, (10)

which is equivalent, by the adjunction isomorphism, to prove that the diagram

N

θN

���������������

F(N)⊗A N

f⊗
A
N

��

F(N)⊗
A
θN

�� F(N)⊗A F(N)⊗A N

f⊗
A
f⊗
A
N

��
C ⊗A N

�C⊗
A
N

�� C ⊗A C ⊗A N

(11)

is commutative. So

(�C ⊗A N) ◦ (f ⊗A N) ◦ θN = (�C ⊗A N) ◦ λN = (C ⊗A λN) ◦ λN ;
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(f ⊗A f ⊗A N) ◦ (F (N)⊗A θN) ◦ θN = (f ⊗A ((f ⊗A N) ◦ θN)) ◦ θN
= (f ⊗A λN) ◦ θN = (C ⊗A λN) ◦ (f ⊗A N) ◦ θN = (C ⊗A λN) ◦ λN

Therefore, (11) is commutative, and so is (10). Finally, we have to show that εC ◦
f = εF(N), which is equivalent to show that (εC ⊗A N) ◦ (f ⊗A N) ◦ θN =
(εF(N) ⊗A N) ◦ θN . This is clear from the commutative diagram

N

θN

		���������������

λN



���������������������������������

ι

��	
		

		
		

		
		

		
		

		
		

		

F(N)⊗A N
f⊗
A
N

��

εF(N)⊗
A
N

��

C ⊗A N

εC⊗
A
N

��
A⊗A N A⊗A N

��
Example 5.3. Let C,� and T as in Example 5.1. Then, by Proposition 5.2, there ex-
ists anA–coring morphismf = χC◦(λ�∗⊗T �) : eT (�∗) → C. Using the notation
of Example 5.1, we have f (ϕ⊗T u) = ∑

i χC(((ϕ⊗AC)◦ρ�(ei))⊗A e
∗
i ⊗T u) =∑

i (ϕ⊗A C)ρ�(ei)e
∗
i (u) = (ϕ⊗A C)◦ρ�(u). Therefore, f = can, the morphism

of A–corings defined in Proposition 2.7.

Acknowledgements. We thank to the referee for some helpful comments.
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