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We recognize Harada’s generalized categories of diagrams as a particular case of
modules over a monad defined on a finite direct product of additive categories.
We work in the dual (albeit formally equivalent) situation, that is, with comodules
over comonads. With this conceptual tool at hand, we obtain several of the
Harada results with simpler proofs, some of them under more general hypothesis,
besides with a characterization of the normal triangular matrix comonads that are
hereditary, that is, of homological dimension less than or equal to 1. Our methods
rest on a matrix representation of additive functors and natural transformations,
which allows us to adapt typical algebraic manipulations from Linear Algebra to
the additive categorical setting.

Keywords: matrix comonads; categories of comodules; abelian hereditary
categories; global homological dimension

AMS Subject Classifications: 15A30; 18G20; 18C20; 16T15

1. Introduction

Every complete set of pairwise orthogonal idempotent elements e, . .., ¢, of a unital ring
R allows to express the ring as a generalized n x n—matrix ring with entries in the bimodules
ejRej for 1 <i, j <n.The origin of this decomposition can be traced back to the seminal
work of Peirce [1]. Beyond the role of matrix rings in the classification of semi-simple
artinian rings (i.e. Wedderburn—Artin’s Theorem), these generalized matrix rings were used
to investigate rings of low homological dimension in the framework of a systematic program
of studying non commutative rings of finite homological dimension promoted by Eilenberg,
Ikeda, Jans, Kaplansky, Nagao, Nakayama, Rosenberg and Zelinsky among others, see
[2-6]. In particular, Chase [7] and Harada [8] used generalized triangular matrix rings to
investigate the structure of the semi-primary hereditary rings (i.e. semi-primary rings with
homological dimension 1).

Inspired by the study of homological properties of abelian categories of diagrams given
in [9, Section IX], Harada formulated in [10] versions of some of his results on hereditary
triangular matrix rings from [8] in the framework of the so-called abelian categories of
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generalized commutative diagrams. In this paper, we recognize these categories as the
categories of modules (or algebras) over suitable monads. This allows, apart from giving
a more conceptual treatment of these categories, to obtain most of the main results from
[10] with sharper (and simpler, we think) proofs. Our methods, based on a sort of ‘Linear
Algebra’ for additive functors and natural transformations, also provide some new results,
including a characterization of hereditary categories of generalized commutative diagrams.

We work in the dual, although formally equivalent, situation than in [10]. Thus, we
consider a comonad defined on a finite direct product of additive categories, and we
investigate how to express in matrix form both its comultiplication and its counit. In this
way, its category of comodules (or coalgebras) is expressed in such a way that Harada’s
categories of generalized diagrams become a particular case (namely, the categories of
modules over a normal triangular monad). This is done in Section 2.

In Section 3, we generalize [10, Theorem 2.3] in several directions. On one hand, we do
not assume that the base categories are abelian and, on the other, our categories of comodules
are more general than the dual of the categories considered in [10] (see Theorem 3.4). We
derive our Theorem 3.4 from a simpler result, namely Theorem 3.1, in conjunction with the
kind of linear algebra for functors developed in Section 2.

In Section 4, we give full proofs of the dual form of some results from [10]. These results
deal with the structure of the injective comodules over a hereditary normal triangular matrix
comonad. In particular, they contain part of the dual of [10, Theorem 3.6]. We also prove a
characterization of hereditary normal triangular matrix comonads (see Theorem 4.6).

Section 5 illustrates our general results by giving a characterization of the bipartite
coalgebras (see [11,12]) that are right hereditary. Our methods allow us to work over a
general commutative ring.

2. Matrix comonads and their categories of comodules

In this section, we introduce the notion of a matrix comonad and we describe its category of
comodules. We develop a kind of linear algebra for matrix functors and their matrix natural
transformations.

2.1. Basic notions and notation

All the categories in this paper are assumed to be additive, and all functors between them are
additive. If A is an object of a category, then its identity morphism is also denoted by A. We
shall use the standard notation for composition of functors and/or natural transformations,
see [13].

If A, A’ are objects of an additive category A, then A @ A’ denotes its direct sum, and
similarly for any finite collection of objects. Recall that the direct sum of finitely many
objects is both the product and the coproduct of the family in the category. The symbol &
will be used also for the direct sum of morphisms.

If F, G : A — B are functors, then its direct sum functor F & G : A — B is given by
the composition

52

FEBG:A—A>AXAFXGBXB B,

where A denotes the diagonal functor, and C x D denotes the product category of two
categories C, D. Thus, (F & G)(f) = F(f) ® G(f) for any morphism f of A. The direct
sum of finitely many functors is defined analogously.
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Letn : F — G & H be anatural transformation, where F, G, H : A — B are functors.
Byng: G® H — G (resp. ty : G & H — H) we denote the natural transformation
defined by the canonical projection. Therefore, 1 is uniquely determined by the natural
transformations u = wgn : F — G andv = wyn : F — H.We will then use the notation
n=nup+v.

We will consider comonads (or cotriples) on .A. We refer to [ 13] for details on (co)monads
and their categories of (co)modules (or (co)algebras).

2.2. Matrix notation

Let Ay, ..., Ay, By, ..., B, be additive categories and consider the product categories
A=A x - x Ay, B=B1x-xBy. ()

Forevery j = 1,...,n,letw; : A — A; (resp. ¢; : A; — A) denote the canonical
projection (resp. injection) functor, and similarly for B. An additive functor F : A — B
is determined by m x n functors Fj; = m; Fuj : Aj - Bi,j=1,...,n,i=1,...,m,
since, from the equalities

la=um @ - ®,ymy, Ip=um1 @ B typmtm,
we obtain
F = @L,‘f[,’FLjT[j = @tiFj,‘T[j.
i,j i,j
This means that, given a morphism f = (fi,..., f,) in A, we have
Ff=@Fpfj - ®jFjmf))-

This expression can be represented in matrix form as

Fin F - Fu fi
Fio F» - Fp f2
Ff = . . . .
Flm FZm an fn

Now, if  : F — G is a natural transformation, where G : A — B is a second functor,
then we have the natural transformations

nijznjm,-:F,-j—>Gij, i=1,...,n, j=1,...,m, 2)

which completely determine 1 as follows. Foreachi = 1,...,n,and each A € A, we
consider the canonical morphism &) : y;m;A — A given by the decomposition A =
1T A® - - - ®,m, A. From the naturality of n, we get the following commutative diagrams

FA=FumA® - @ Fia,A—2~GA=GumA®- - ®Gim,A

F¢y T G¢Yy T

FumA GumiA

7]% A
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which show that n4 = @®;1,,z, 4 and, thus, foreach j =1, ..., n, we have

- N
Tina = QinjNmA = G%n,,,.A-

Since 74 is defined by the morphisms 704, j = 1, ..., m, we get that 7 is entirely deter-
mined by n"/,i =1,...,n, j =1,..., m. So we can represent our natural transformation
in a matrix form
gt g2t ol Fii Fy1 - Fyp Gt Gy - Gpi
n'2 p? . g2 Fio Fpp -+ Fp G2 Gpn - Gp
n= : — . . .
nlm n2m . nnm Flm F2m coo Fum Glm G2m -+ Gnm

2.3. Matrix operations

Let

A*F>B*G>C

be functors, where C = C; x --- x C;, and A, B are finite products as in (1). Then, the
composite functor H = G F is represented in matrix form as the ‘usual matrix product’ of
matrices representing G and F'. This means that

Hyy Hy --- Hy

Hyp Hy -+ Hp
H= . . . 9

Hy Hy --- Hy

where

m
HjiZ@Gkiijs i=1,...,01, j=1,...,n.
k=1

With respect to the vertical composition of natural transformations, let n : F —
F',u : F' — F” be natural transformations, where F, F/, F” : A — B are functors. A
straightforward argument shows that the matrix representing w7 is the ‘Hadamard product’
of the matrices that represent x and 7, namely

H-ll l‘LZl M”l 7’“ 7721 nnl
,LL12 ,LL22 . an an 7722 . nnZ
min = : : : ' : : : @)
Mlm Mém . I/an 77l.m 772.m o n’lm
M”ﬂ” /‘L217721 Mnlnnl
Ml2n12 M22n22 MnZnnZ
Mlm' 1m /VLZm'an . Mnm.nﬂm

Finally, let us consider the horizontal composition of natural transformations. So let
n:F — F with F,F/: A — B,and G : B — C. The natural transformation G7 :
GF — GF’ is easily shown to have a matrix representation
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Gt Gp* - (G
G2 (Gp* - (G
Gn= ) . )

Gt Gp* - (G
where

m
G =P Gun™.,  i=1....0 j=1..n
k=1

That is, the composition G7 leads to the ‘usual matrix product’. This also holds for the
composition in the opposite order, that is, given a natural transformation y : G — G’,
for functors G,G’ : B — C, and F : A — B, the matrix representation of the natural
transformation y F : GF — G'F is given by

P yF)? . ()

. P2 (yF)? .. (yF)"?

yr = . . . s
yBOU R . ()

where

m
GFji=@r"Fp. i=1...0Lj=1...n
k=1

2.4. Matrix comonads

Fix a category A = A; x --- x A,.Let F : A — A be an endofunctor, and § : F — F?
a natural transformation. In matrix form,

8= (8Y) : (Fij) — (Fij)(Fij),

where 8%/ : Fij — @i FjFi is a natural transformation for every i, j = 1, ..., n, which
is uniquely expressed as

s = sV L §i2) ... i

for some natural transformations 8%/ : F; j — FijFix withk = 1, ..., n. The coassocia-
tivity of F is given by the equation (§ F)§ = (F§)4 or, equivalently,

(SF)I§ = (F8)Isii, 1<i,j<n. @
We know that
((SF)ij:@(gkjFik and (F(S)ij:@F]j(Sil_
k !
Observe that for each i, j,k = 1,...,n, the natural transformation 8%/ Fy; : Fy;Fix —
€D, Fij Fu Fix is given by

5kjFik — (SkljF[k + 8k2jFik + .. _|_ (SknjFik
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while, foreachi, j,I =1, ..., n,the natural transformation F1j8” D FjFy — @k Fij Fr Fig
is defined by . ' ' '
Flj(sll — Fljgl” + F1j3l21 + o + FljS”'l.

‘We then obtain that

SF)isi = (@Skjﬂk) (Jk-raikj> _ ;:Fl(akszik)Sikj
and
(F8) i = <EIB Flj5il) (_g_y‘lj) — Ij_l(Fljaikl)(Silj‘
Both vectors should be equal, which is equivalent to
K Fi)s™ = (F;6* 8, (1 <, j, k1 <n).

That is, all the diagrams
6zlj

F; FjFy
§iki i iFliéM
ijsz Flnglekz

are commutative.
Next, we will discuss when a comultiplication 6 : F — F 2 is counital, for a given
counity € : F — 1 4. The general matrix form of ¢ is

el 0 ... 0 Fii Fo1 -+ Fn 10 -0
0 & ... 0 Fio Fy -+ Fyp 01 0
e=1 . . A . . ) — | . . ) )]
0O 0 --. g" Fi, Fo -+ Fuy 00 ---1
for some natural transformations &' : F;; — 1 A; fori = 1,...,n. The counitality

conditions (¢ F)é = 1p = (Fe)d lead to matrix equalities equivalent to
(e Fipsh =15, = (Fehs™, . j=1....n),

that is, all the diagrams

§dd
Z7 FIIF

5iid \ Fij

FF*>F

commute.
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We have so far proved the following proposition.

ProprositioNn 2.1 Let A = A x --- x Ay, be the product category of finitely many
categories Ay, ..., Ay, and F : A — A any functor. There is a bijective correspondence
between

(1) Comonads (F, 3, €). o
2) Se;s of natural transformations {B’kJ D Fij — FijFy i, j,k=1,...,n}, and
{e" : Fjj = 14, :i=1,...,n} such that

(a) Foralli, j, k,I =v11v, ..., n the diagram
Fyj — " F; Fy

6ikj i iplj(gikl

FyjFiy —— Fij Fiy

5*U Fy, (6)
conmutes, and
(b) foralli,j=1,...,n,thediagram
§idd
By —— Fjily
Fltu o )

commutes.

Remark 2.2 Takei = j = k in diagrams (6) and (7), then (Fj;, 8t ¢ty is a comonad over
A;. Also diagrams (6) and (7) show that each functor F;; is in fact an F;; — F;;-bicomodule
functor, in the sense of [14, Definition 4.7], see also [15]. Furthermore, if [ = k in diagram
(6), we get that each of the Fj;’s is a balanced bicomodule in a dual sense of [14, Section
3.2]. In this way, if the ‘cotensor product’ functor Fy; Uf,, Fir does exist, then the natural
transformation 8%/ factors through Fy; U, Fik.

Definition 2.3 A comonad (F, 8, &) on A=A x---x Ay is called normal if F;; = 1 4,
al_lq g = '1 foralli = 1,..., n. Thus, for a normal comonad, we have necessarily that
SV = §i = lpij foralli, j=1,...,n.

Remark 2.4 1In the case n = 2, we deduce from Proposition 2.1 that a normal comonad
(F,$é, ¢) is given by natural transformations st2t . 14, = F21Fi2 and 8212 . la, —
Fi2F> such that F8'21 = §212F), and F5,86%'2 = §!21 F,|. Therefore, the normal
comonads over A; x Aj are in bijection with the wide (right) Morita contexts between
Aj and A, as defined in [16,17].

Remark 2.5 1t is possible to formulate Proposition 2.1 in dual form, and thus give the
structure of the monads on A; x --- X A,.
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2.5. Comodules over matrix comonads

Consider a comonad (F, §, ¢) over A = A| x --- x A, as in Proposition 2.1. Next, we
want to describe its Eilenberg—Moore category Ap of comodules (or coalgebras). Recall
that an object of Ap is a morphismd4 : A — F A in A such that the following diagrams
are commutative:

d d
A—">FA A—-FA
da l i dA k\ i €A
2
A a <A A )
We want to describe these objects in terms of the categories Ay, . .., A,. Each structure

morphism d4 is determined by the projections

ﬂj(dA):Aj%@ijAk, j=1,...,n,
k
and each of them is given by
wida) =dy +d7 +-- FdV  with d¥:A; > FijAr
Let us see what restrictions impose the commutativity of the diagrams (8) on the

morphism dij . We start with the equation §4d 4 = F(d4)d 4, which leads to the following
system of equations:

Ti(da)mwj(da) = m;(F(da))mj(da), Jj=1...,n 9
On the other hand,

lj . lj
Tidp = @(SAI[, with 81;(1 D FjA — @ijFlkAl.
1 k

Therefore,
7 Ba)mj(da) = (@5%) (Jl‘rdﬁ{) = J;F(S’Afldﬁ{ =+ <jku a’/flf) d = ;‘baﬂfjdﬁ{. (10)
! ,
On the other hand,

T (Fda)mj(dy) = (EB Fk,-nk(dA)> (i d’j{) = ka,-nkmA)d’;" an
k

=+ (Jlr Fk,-(di(‘)> dy = + Fijd'dy.

We get from (9)—(11) that the commutativity of the first diagram in (8) is equivalent to
the commutativity of all the diagrams

dr
A, Fi; Ay,

a4 l l Fyjdi%

Flel *l,; ijFZk;Al
o, (12)

for j,k,l=1,...,n.
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The second diagram in (8) leads to the equalities 77 j (e ad 4) = 1 Aj foreachj =1,...,n.
Therefore,

Lo, =mj(eada) = mj(ea)mj(dy) = (0 - .@0@3£}_@0@~ ~®0) (‘}c— dﬁj) = gi\jdﬁj’

forall j=1,...,n.
The previous discussion gives the following description of the category Af of comod-
ules over F.

ProprosiTION 2.6 Let A = A x ---
categories Ay, ..

is described as follows:

ey

@

Objects: They are pairs (A, dy) where A = (Ay,...,Ap) e A=A x -

x A, be the product category of finitely many
S An If(F, 8, €) is a comonad over A, then the category of F—comodules

X A,

and d 4 is a set of morphisms dy = {df"i 1A — FyjAg i1 < j, k < n} such that

the diagrams

ki &7}

A; Fiej A Aj — Fj;4;
dgl lejdff \ lg;jqj
Fi; A i i Fie Ay A,

A
are commutative for all j, k,l =1,...,n.
Morphisms: A morphism f : (A,dy) — (B, dp) is a set of morphisms f =
Aj— Bj:j=1,...,n} such that the diagrams
ki
Aj —— ijAk
fjl lejfk
B; *)dkj F.; By,
B
commute, forall j,k=1,...,n.

(13)

{fi:

(14)

Remark 2.7 Obviously, it is possible to give the dual statements of the above results in
the case of monads. So, a monad T over A = A; x --- x A, is given by a set of functors
{T;; : Ay — Aj,i, j =1,...,n}withtwo sets of natural transformations {;t'*/ : Ty Tix —
T;j:i,j,k=1...,n},{n" : 14 — T;;,i =1,...,n} such that the diagrams

1

WFITy, T
1T Ti TyiTir Ty — 15155

leui}cl l luikj Tijnii \ \Luijj
ilj

12
le Ty Tz’j Tz‘jTiz’ ? T
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commute for all i, j, k € {1, ..., n}. The corresponding category of modules (or algebras)
is described by dualizing the statements of Proposition 2.6. When T is a normal matrix
monad (i.e. T;; = 1 4, and ni = lforalli =1,...,n), Ais abelian, and T;; = O fori > j,
these are the kind of categories which were studied by Harada in [10], and referred to as
categories of generalized diagrams in abelian categories (see also [9]).

3. Triangular matrix comonads

We have seen in Remark 2.7 that the abelian categories investigated by Harada in [10] are
categories of modules over triangular normal matrix monads. In this section, we will take
advantage of the fact that the existence of a (co)monad representing these categories to give
a more systematic approach to their study. In fact, our main theorem in this section is more
general in several directions than [10, Theorem 2.3]. At the same time, we find the proof
presented here sharper in some aspects than Harada’s one.

We will say (see Definition 3.3) that a matrix comonad F = (Fj;) is triangular if
Fij=0forall 1 < j <i < n.The understanding of the case n = 2 is the key to the study
of the general case.

3.1. Triangular matrix comonads of order 2
Let

R Vv S

C C D D (15)

be functors. By Proposition 2.1, every comonad structure over the endofunctor

R O
F:(VS> (16)

of C x D is given by a set of natural transformations

R s v v R s
REoR, s o2 v 2o VvR V2usV, RS0, S—>1p
a7
such that the following eight diagrams commute: B
R
R R? 5252
(SRl lR&R 55l \LS(SS
R? —— R3 S? —— §3
SER 558
R S
R R 5§ 52
aﬁl\ lERR 6Sl\lgss
2_ o R 2_ o S
Rel Ses (18)
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\%
V" VR v 2 sy
pvl lvaR )\Vi lasv
VR—— VR’ SV —— S’V
pYR SAV
v sy v sy
AN AL e

By Remark 2.2, the commutativity of the diagrams (18) just says that (R, 8%, ¢®) and
(S, 835, &5) are comonads, while the commutative diagrams (19) say that (V, AV, ,oV) is an
S — R-bicomodule functor.

TueoreMm 3.1 Let

CxD

R O
<V S).CXD

be a triangular matrix comonad of order 2, with the comonad structure given by a sextuple
of natural transformations as in (17) satisfying the conditions (18) and (19). If the equalizer
Vv
Pc
of every pair of arrows of the form VC —_—Z VRC , where (C, dc) is any R—comodule,
Vdc
do existin D, and S preserves all these equalizers, then there exists a functor T : Cg — Dy
such that the diagram

c—Y-D

Ll TU
Cr —— Dj

commutes, where L : C — Cg is the free functor and U : Ds — D is the forgetful functor.
Moreover, there exists an equivalence of categories

(CXD) R O E(CRXDS) 10
(V S) (Tl)

Proof The existence of T is proved in [14, Proposition 4.29] in a different context. We
give a direct construction for the convenience of the reader. Given an R—comodule (C, d¢),
define an object T'C of D as the equalizer

|4
Pc

TC >~ vC—=VRC. (20)
Vdc

The S—coaction )Lg : TC — STC, making TC an S—comodule, is given by the universal
property of the equalizer at the bottom of the following diagram.
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TC ——=V(C —=VRC
Vde
Agl Agl l%
SLC Spg
STC — SVC —= SVRC.
SVde

Some straightforward computations show that this gives the object part of a functor
T : Ck — Ds. We only make explicit here its definition on morphisms. Given a morphism
of R—comodules f : (C,d¢c) — (C’,d¢r), the morphism Tf : TC — TC’ is uniquely
determined by the universal property of the equalizer in the bottom row of the serially
commutative diagram

w0 Pe
TC ——VC —=xVRC
Vde
Tfi Vfl lVRf
Lot Pg/
TC" —= V("' —= VRC".
Viden

vV S T 1
us describe the objects of these categories of comodules. By Proposition 2.6, a comodule

In order to construct an equivalence E : (C x D) R O\ (Cgr x Dys) 10 ), let

over ‘IE g ) consists of an object A = (C, D) € C x D and a tern of morphisms

dy={C-"~rCc, D—%~vCc, D2 5sD)

such that the following diagrams commute:

¢ L2~ RC D2~ 8D
pc J/ l Rpc PD l J/Spp
RC ——= R%*C SD ——= S2C
oR 53
pD—t-vC D2~ 8D
dl lVPC di lSd
VC—>VRC  VC—>SVC
PC A (21)
c X~ rc D--SD
\ lER \ lgs
C D
C D. (22)
On the other hand, a comodule over 71, (1) is just a pair of comodules ((C, pc),

(D, pp)) € Cg x Dg connected with a morphism of S—comodules d’ : D — T C. This last
condition is just the commutativity of the diagram
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d’

D TC
PD i l)\g
SD i STC. (23)

The functor E will sendaternds = (poc, d, pp) satisfying the conditions (21) and (22)
to the pair of comodules (C, p¢), (D, pp) € Cg x Ds with the morphismd’ : D — TC
given by the universal property of the equalizer in the following diagram

Lc Pg
TC —VC —=VRC.
Vdc
d T /

D
The existence and uniqueness of d’ is guaranteed by the commutativity of the third
diagram of (21), while the fact that d’ becomes a morphism of S—comodules (namely, the
commutativity of (23)) is given by the fourth diagram in (21). This gives the object part of
the functor E. In the other direction, there is a functor E’ defined on objects by sending a
morphism of comodulesd’ : D — TC, for (C, p¢c) € Cg, (D, pp) € Ds, to the morphism
d = 1cd’. The computation

ped = plicd = Vpcicd = Vpcd
shows that d makes commute the third diagram in (21), while the computation
red = Aficd = Sicrld = SwcSd pp = (Sd)pp

is just the commutativity of the last diagram of (21).
It is not hard to see that E and E’ are mutually inverse. Il

Remark 3.2 A standard argument shows that, if C and D are abelian categories, and V, R
and S are left exact functors, then T is a left exact functor between abelian categories.

3.2. Triangular matrix comonads

Definition 3.3 Afunctor F : Ay x --- x A, - A x --- x A, which is endowed with a
comonad structure (F, §, €) as in Proposition 2.1 is called a triangular matrix comonad of
ordernover A=Ay x --- x A, if Fj; =0forall j > i, that is,

Fn, 0 0 .- 0 0
Fio Fpp, 0 .- 0 0

F= L ) . (24)
Fln FZn F3n Fn—ln an

Given 1 < m < n, consider the categories
A = A x - x Ay, AT = Apgpg X - X Ay,

All these categories can be considered, in an obvious way, as full subcategories of A.
Forinstance, an object A = (Ay, ..., A,) of A=™ isidentified with the object (A1, ..., Ay,
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0,...,0) of A. It is clear that there are canonical functors (the projection functors)
Tam i A —> A", Tapm A — A",

By Proposition 2.1, the triangular matrix comonad (F, 8, ) over A gives rise to the
triangular matrix comonads (F=", <, <) and (F~™, 8=, €>m) over A= and A>™
defined, respectively, by

Fii. O 0 0
Fio F»n 0 0
FSm - . . 9
Fim Fon Fap Frum
sto0 o0 -0 el 0 .- 0
s12.82 0 -~ 0 0 & -~ 0
afm = . . . . ) E<m = . . . ) (25)
5im 5ém 5ém . Shnz 6 6 L. Sﬁ
and
Fit1 m+1 0 0 <o 0
Femo_ Fﬁ+]m+2 Fﬁ+2m+2 0 - 0
Foutin Fnton Fut3n -+ Fun
8m+]m+1 0 0 e 0 8M+1 0 e 0
8m+1m+2 8m+2m+2 0 ) 0 8m+2 e 0
Som = . . . . yEsm =
(SmJ.r] n (SmJ-rZ n 5m43 no .. ar.zn 0 () . g."
(26)
The functor F™ : A=™ — A>™ given by
F1m+1 F2m+l me+1
Fim+2 Fom+2 -+ Fnm+2
F™ = . ) ) (27)
F]n Fén t Fﬁn

is an F>™ — F="_bicomodule functor with the structure natural transformations A, :
F™ — FM"F=" and p,, : F™ — F>™F™ defined by

m
iy Fij > @ FijFiee an =08 40 80
k=1
and
.. n .. . P . P
pi  Fij = @ FijFun am=08" o 48,
k=m+1

for1 <i <m,m+1 < j < n. Therefore,
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F=" 0
F= ( Fm p>m )7
as comonads.

The following consequence of Theorem 3.1 is the basic tool for the study of triangular
hereditary comonads in the next section. The particular case where F;; = 14, for all
i =1,...,n was already stated in its dual form in [10, Theorem 2.3] under the additional
hypothesis that the categories .A; are abelian.

TueoreM 3.4 Let F be a triangular matrix comonad on A = Ay x --- x A, as in
Definition 3.3. Given an integer m with 1 < m < n, assume that all equalizers do exist in
A; fori = 1,..., m, and that the functors Fij preserve equalizers for 1 <i < j < m.

Then, there exists a functor

T A, Az, (28)

such that the category of F-comodules is isomorphic to the category of G™-comodules,
where G™ is the normal triangular matrix comonad defined by T™. That is,

Ap = (AFZS, < Af%n)gn, where G" = ( LY )

T" 1
Proof Apply Theorem 3.1 with R = F="_ § = F>" and V = F™. O
Remark 3.5 If the categories A; are abelian for i = 1,..., n, and all the functors F;;,

for 1 < i < j < n are left exact, then the functor F is also left exact, as well as the
functors F>™, F™_ and F=™, for every 2 < m < n — 1. On the other hand, the functor
T" : }5,’;1," — A7Y,, constructed as an equalizer (see the proof of Theorem 3.1) becomes
left exact, see Remark 3.2.

4. Hereditary categories of comodules

An abelian category with enough injectives is said to be hereditary if its global homological
dimension is O or 1, that is, for every epimorphism Ey — Ej, if Ey is injective, then E;
is injective. Our aim is to characterize when the category of comodules .Af of a normal
triangular matrix comonad F = (F, 8, ¢) over A = A; x --- x A, is hereditary. We are
denoting by § : F — F? the comultiplication of F, and by ¢ : F — A its counit. The
shape of the matrix of functors representing F is

1 0 o - 0 0
Fip, 1 o - 0 0
F = ) ) ) ) - (29)
Fln F2n F3n Fn—ln 1
We assume that the categories Ay, ..., A, are abelian with enough injectives, and so is

A=A x---x A, If F: A — Ais aleft exact functor, then AF is also abelian and the
forgetful functor Ar — A is exact, see [18]. On the other hand, F is exact if and only if
Fijisexactforalli, j =1,...,n.

First, we analyse the case n = 2.
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4.1. The casen =2
Let A = A; x Ay, for Ay, A, abelian categories, and let

F:( ! 0>:A1XA2—>A1XA2
Fip 1

be a functor with Fip : A} — Aj a left exact functor. Consider the unique structure of
normal triangular matrix comonad on the left exact functor F. According to Proposition 2.6,
any F—comodule can be identified with a pair (X, d}?), where X = (X1, X2) € A; x A,
and d)](2 : X2 — F12X1. By convenience, the free functor will be denoted by F : A — Ap.
By Inj.dim(X), we denote the injective dimension of an object X in some abelian category
with enough injectives.

ProrosiTioN 4.1 Assume that A| and Ay have enough injectives and that Fy, is a left
exact functor that preserves injectives. Then,

(1) Afr has enough injectives.

(2) Each injective comodule in A is, up to isomorphisms, of the form F (E), for some
injective object E in A. In particular, the arrow d ;(2 is a split epimorphism of A;
for any injective F-comodule (X ,d )1(2)

(3) Given an F-comodule (X, d)l(z), we have

Inj.dim ((X d}f)) < max{Inj.dim(X1), Inj.dim(X2)} + 1
Proof

(1) Observe that F : A — Ap preserves injectives, since it is right adjoint to the
forgetful functor Ar — A, which is exact [18, Proposition 5.3]. So, given an
injective object E = (E1, E2) in A, we have an injective F-comodule F(E) =
(E1, FloE1 ® Ey, m), where r : F12E1 @ E; — F12E) is the canonical projection
(this is given by the comonad structure of F'). Now, for every F'-comodule (X ,d )1(2),
we can consider monomorphisms ¢; : X; — E;in A;, with E; injective fori = 1, 2.
So we have a monomorphism of F-comodules

(s Frau od + o) : (X1, X2, dy?) > (B1, FuEr & B2 ) (30)

which shows that Ap has enough injectives.

(2) If we assume that the F-comodule (X ,d )1(2) is injective, then the monomorphism
(30) splits, so that there exists a morphism of comodules («, 8) : (E1, FloE1 @
E>) — (X1, X2, d}?) which splits (11, Fiot1 o d}? 4 12). Thus, X is isomorphic
to a direct summand of the injective object E1, so it is injective. Therefore, without
loss of generality, we can suppose that X is injective and that E; = X;. In this
way, we get that 8 o (al)l(2 + Lz) = lx,, which shows that X; is isomorphic to a
direct summand of the injective object F12 E1 @ E3 and so it is injective too. On the
other hand, since («, 8) is a comodule map, we obtain that w = d)l(2 o B. Since 7 is
a split epimorphism, we deduce that d )1(2 is a split epimorphism. This implies that
there exists an isomorphism w : X — F12X| @ E) in Aj such that 7’ o = d)l(z,
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where 7’ is the obvious canonical projection. Thus,
(x.0) 1 (X1, X2, dy?) > F (X1, B5) = (X1, FioX1 @ E}, )

is an isomorphism of F-comodules.
(3) Put m = max{Inj.dim(w (X)), Inj.dim(72(X))}, and take, for an F-comodule
(X, d}?), aresolution in A
12 f() fm
0—— (X,dx ) — (Eo,d}g%) _— . — (E’",d}g%n) — (C,déz) ——0
with (E', d}?) injective for all 0 < i < m. We need to show that (C,df?) is
injective too. If we apply the projection functor r;, for i = 1, 2, to this resolution,
by part (2), we get a resolution in A; for 7;(X) with ;(EX) injective and d;
split epimorphism for k = 0, ..., m. Since Inj.dim(7; (X)) < m, we deduce that
;i (f™) is a split epimorphism and 5; (C) is injective for i = 1, 2. We know that
diomy(f™) = Fia(mi(f™))od )3 . Hence, d? is a split epimorphism and (C, d?)
is injective. O

By gl.dim(A), we denote the global homological dimension of an abelian category with
enough injectives .A.

CoroLLARY 4.2 The assumptions are that of Proposition 4.1. Then, we have

gl.dim(Ar) < max{gl.dim(A;) :i = 1,2} + 1 < gl.dim(Ap) + 1

Next, we give the desired characterization for hereditary categories of comodules over
a triangular normal (2 x 2)-matrix comonad.

TueorEMm 4.3 Let A = Ay x Aj for Ay, Ay abelian categories with enough injectives,
and Fip : A — Ay a left exact functor. Consider the unique normal comonad structure

on the endofunctor
1 0
F_<F12 1>.A—>A.

The category of comodules A is hereditary if, and only if, the following conditions are
satisfied:

(a) Fi preserves injectives.

(b) Ay and A, are hereditary.

(c) Fiap is a split epimorphism for each epimorphism p : Ey — E' between injective
objects in Aj.

Proof Suppose that A is hereditary. Given an injective object E; in .A;, we know that
F(E1,0) = (Ey, F12E1, 1F,E,) is an injective F-comodule. Now, since (0, 1p,g,) :
(E1, F12E1) — (0, F12Eq) is an epimorphism in the hereditary category Ap, we have
that (0, F12E)) is an injective object in Ag. Henceforth, it is clear that Fi; E is injective
in Aj, from which (a) is derived. The statement (b) follows from Corollary 4.2. For the
proof of (c), given an epimorphism p : E; — Ej in Aj, we get an epimorphism (p, 1) :
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F(E{,0) = (Ey, F1oE|, 1) — (E}, F12E|, Fi12p) in Ap. Since F (E{, 0) is injective, then
sois (E i, F12E1, F1ap). Therefore, F1; p is a split epimorphism, by the characterization of
the injectives in Proposition 4.1.

Conversely, consider an F'—comodule (X ,d }1(2) and a resolution in Ap

0— (X, d?) —> F(Ey, E) "L (c,al?) —0,

with (E1, E») € Ainjective. Since F preserves injectives, we have that £ and Fjo E1® E,
are injective. As fi and f> are epimorphism, and A; is hereditary fori = 1, 2, we deduce
that C; and C; are injective. Using the fact that Fi2( f1) is a split epimorphism, we obtain
from the commutative diagram

Fi2 B @ By I Cy
I
FioEy Fiafs Fi,Cy

that déz is a split epimorphism and so (C, déz) is injective. This shows that the injec-
tive dimension of (X .d )1(2) is less or equal than 1, which means that A is a hereditary
category. O

4.2. The casen >3

Let A = A x --- x A, denote a product of categories and F : A — A a normal triangular
matrix comonad.

Propositions 4.4 and 4.5 below, which will be used to deduce our main result in this
section (Theorem 4.6), contain part of the dual form of [10, Theorem 3.6].

ProprosiTioN 4.4 Assume that A; is an abelian category with enough injectives for every
i € {l,...,n}, and that each of the functors F;j : A; — Aj, for 1 <i < j < n, is left

exact. If the category of comodules Af is hereditary, then we have:

(1) Each injective object (X,dx) of Afr is, up to isomorphisms, of the form X =

F(Ey, ..., Ep) for some injective object (E1, ..., E,) € A. In particular, each
arrow d;{ 1 Xj — Fij(X;) is a split epimorphism.

(2) Ifi < j<kin{l,..., n}, then, for every injective object E; in A;, we have that
8% : FigE; — FyjFicE; is a split epimorphism.

(3) Foreachm € {1,...,n — 1}, T"p is a split epimorphism, for any epimorphism

p:(E,dg) — (E', dg) between injective F="-comodules.
Proof

(1) Since F is left exact, then the forgetful functor Ar — A is exact. Therefore, the
free functor F : A — Ap preserves injectives, with implies that F (Eq, ..., E,) is
an injective F—comodule for every injective (E1, ..., E,) € A; x -+ x A,. Let
us prove that every injective F—comodule is of this form by induction on n. For
n = 1, there is nothing to prove, so let n > 1. By Theorem 3.4, we can identify
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Ap with the category of comodules (A x A;ll)Gl. By Theorem 4.3, we have

that A;ll is hereditary and that 7! preserves injectives. In this case, 7' = F!,
see Equation (27). Therefore, using Proposition 4.1, we have that any injective
object of A is of the form (X, dyx) = (Ej, FY (E) ® (V,dy)) for some injective
objects E1 € Ay and (V,dy) € A;ll. By induction hypothesis, we get that
(V,dy) = F>1(E2, ..., Ey) for some injectives E; in A;, j =2, ..., n. Hence
(X,dyx) = F(Ey, Ea, ..., E,) for some injective objects E; in A;,i = 1,...,n.

By Theorem 4.3,

(dlz,...,d}(”) . F'E\ = (FE\. ..., FluE1) — (Ea. ..., Ep)
is a split epimorphism, which implies that d)l(j is a split epimorphism for j =
2,...,n. Since by induction we know that each of the dij, 2 <i<j<nis
a split epimorphism, we deduce that d;g, foreveryi < jin {1,...,n}, is a split
epimorphism.
It follows from (1), since any object of the form F (0, ...,0, E;,0...,0), fori =
1,...,n —2isinjective in AF (recall that the structure morphisms are exactly

Jk _ Gijk .
dro. 0.E.0..0 =0 1 <J<Kk).

By Theorem 3.4, we know that (A;Z’m x A%, )Gm is hereditary, where G™ is the

triangular (2 x 2)-matrix comonad constructed using the functor 7" from (28).
Now, we conclude using Remark 3.5 and Theorem 4.3. Il

ProrosiTiON 4.5 Letn > 2 be a positive integer. Assume that A; is an abelian category
with enough injectives for all i € {1, ...,n}, and that F;; : A; — Aj; is left exact for
every 1 <i < j < n. If the category of comodules Af is a hereditary category, then the
following statements hold:

(1)
(2)

Proof

ey

(@)

Each of the functors F;; preserves injectives.
F;jp is a split epimorphism, for any epimorphism p : E; — E l’ between injective
objects in A;, foreveryl <i < j <n.

For n = 2, the claim follows from Theorem 4.3. Assume n > 3, we will proceed
by induction on n. By Theorem 3.4, the hereditary category Af is isomorphic
(A x A;ll )pi (here, T! = F'). From Theorem 4.3, we get that A;ll is hereditary.
By induction hypothesis, all the functors F;; with 2 < i < j preserve injectives.
Given an injective object E; in .41, we know from the proof of Theorem 3.4 that

FlE, = ((F1oE1, ..., F1,E1), dFlEl) is injective in A;i, . On the other hand, by

Proposition 4.4.(1), there exists an injective object (E3, ..., E,) € Ay x --- X A,
such that F1E|, = F>I(E,, ..., E,). Therefore, since each F; for j = 3,...n
preserves injectives, we obtain that Fx(E1) is injective for every k = 2, ..., n.
This completes the induction.

Use induction on n and Theorems 3.4 and 4.3. |
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The following is our main result in this section.

TuEOREM 4.6 Assume that A; is an abelian category with enough injectives for all i €

...,

n}, and consider a normal triangular n x n-matrix comonad F = (F;j) : A — A

such that Fi; : A; — A;j is left exact for every 1 < i < j < n. Then the category of
comodules Af is hereditary if, and only if, the following conditions are fulfilled:

(a)
(b)

(©)
(d)

Proof

7! and every F,-j preserves injectives for 1 <i < j <n.

Foreachm € {1,...,n— 1}, T™ p is a split epimorphism, for every epimorphism
p:(E,dg) —> (E dE/) between injective F= ’”-comodules

For every injective object E; in A;, its image 8 j for i < j < kisa split
epimorphism.

Each of the categories A; is hereditary.

(<) We use induction on n. For n = 2, this implication is given by Theorem 4.3,
since in this case we have T! = F! = F,.

Let n > 3, and suppose that the implication is true for any category of comodules
over a normal triangular matrix comonad constructed using a linearly ordered set
of length n — 1. Without loss of generality we can suppose by Theorem 3.4 that

Arp = (Af_';,_,ll x Ap)gn-1, where G"~! is the triangular 2 x 2-matrix comonad
associated to the functor 7"~! : A?;_,ll — A, given in (28). Since the axioms

(a)-(d) are satisfied for the triangular (n — 1) x (n — 1)-matrix comonad F=n—1 , by
induction hypothesis we know that its category of comodules A="" Fen- , is hereditary.
Henceforth, by Remark 3.5, Theorem 4.3 can be applied, as A, 1 1s already assumed
to be hereditary. Therefore, AF is hereditary since 7"~ preserves injectives.

(=) Conditions (b) and (c) follow from Proposition 4.4. By Proposition 4.5.(1),
we know that F;; preserves injectives for every 1 <i < j < n. Since, by Theorems
3.4 and 4.3, we get that 7" ! preserves injectives, we conclude (a). We use induction
to prove (d). For n = 2, this implication is clear from Theorem 4.3. Suppose that
(d) holds for any hereditary category of comodules over a triangular matrix comonad
which was constructed by using a linearly ordered set of length n — 1. By Remark

3.5, we know that 7™ is a left exact functor for any m € {1,...,n — 1}. Thus,
by Theorems 4.3 and 3.4, we know that .A— 1 and A, are heredltary Hence A;,
i =1,...,n are hereditary. This gives to us condltlon (d). [l

5. Hereditary triangular matrix coalgebras

We illustrate our results by applying some of them to categories of comodules over coalge-
bras. We refer to [19] for basic information on coalgebras over commutative rings and their
categories of comodules.
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5.1. Triangular matrix coalgebras

Let C and D be coalgebras over a commutative ring K, and M be a C — D-bicomodule.
Then, the functors —® ¢ C, —®k D give comonads over the category Modg of K—modules,
and —®x M : Modx — Modg becomesa (—®k D) — (—® g C)-bicomodule functor (see
Subsection 3.1). These functors define a triangular matrix comonad on Modg x Modg =
Modk x x represented by the K x K—coalgebra

(50

The comultiplication of this coalgebra over R = K x K is given by

A<; 2>=Z<68) 8>®R<C(2) 0)+Z<0 d(l)) (8 d<02>)

(©
(31)

m(—u) 0 0 0 0 0 0 0
+Z< 0 0>®R<m(0)0 2 mq) 0 Ok 0 mquy )’

(m) (m)
and its counity is defined by

¢c 0\ (e O
A\md)]=\ 0 ep@ )

where we are using Heyneman—Sweedler’s notation.
Assume that C and M are flat as K—modules. The category of right C—comodules is

denoted by Comodc, and similarly for any other coalgebra over a commutative rin3 By

Theorem 3.1, we have the normal triangular matrix comonad G = Dl M ?
—Uc

Comod¢ x Comodp, and the equivalence of categories

(Comod¢ x Comodp)g = (Modk «k)—gre = Comodg. (32)

5.2. Base change ring by a Frobenius algebra

Let R be a commutative Frobenius algebra over a commutative ring K (see [20]), that is, the
functor — ®x R : Modg — Modp, is right adjoint to the forgetful functor from Modg, to
Modk (see [21] and [22, Remark 2.3.1]). The counit of this adjunction evaluated at K gives
the Frobenius functional ¥ : R — K. If n denotes the unit, then nr(1) = Zi e ® fi €
R ®k R is the Casimir element. Given any R—coalgebra E, we get the adjoint pairs of
functors

Comody ——— Modg Modg,

—QRrE —Q®k R

where the unlabelled arrows denote the forgetful functors that are left adjoints to — ® E
and — ®x R. By composing these adjoint pairs we obtain the adjoint pair

Comodg 7 Modg , (33)
—WK

where we are using the isomorphism £ = R ®g E. In this way, we obtain a comonad
— ®k E : Modx — Modg, which is determined by the structure of K—coalgebra on E
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with comultiplication

A
EFE——FEQgE, X Z(x),ix(l)ei ® fixo),

and counit & = ¥ o &, where ¢ : E — R is the counit of the R—coalgebra E.

The adjoint pair (33) gives rise to the comparison functor V : Comodg — (Modg)_gE
(see [13, Section 3.2]). If E is flat as an R—module, then Comodg is an abelian category
and the faithful forgetful functor Comodg — Mody is exact [18]. This easily implies
that the forgetful functor Comodr — Modg satisfies the hypotheses of Beck’s theorem
(precisely, the dual of [13, Theorem 3.3.10]) and, hence, V is an equivalence of categories.
We get thus that the categories of right comodules over the R—coalgebra (E, A, ¢) and of

right comodules over the K—coalgebra (E, A, &) are equivalent.

5.3. Bipartite coalgebras

Let C, D be K—coalgebras, and M be a C — D-bicomodule. Assume that C, D, M are flat
Cc 0
M D
a Frobenius K—algebra with Frobenius functional ¢ : R — K given by ¥ (a,b) =a + b
for all (a,b) € K x K, and Casimir element ¢ = u @ u + v ® v € R ® R, where
u=(,0),v=(0,1).By5.2, E is a K—coalgebra. Explicitly, the comultiplication and
counit are

~ c 0 c 0 c 0 0 0 0 0
A(’” d)=Z< 8) 0>®< g) 0>+Z<0 d<1>>®<0 d(2>> G4

(©) (@)

m1y 0 0 0 0 0 0 0
+Z< 0 0>®(m(0) 0 +Z m) 0 ® 0 m() ’

(m) (@)

K-modules. In the case of the coalgebra E = ,the base ring R = K x K is

and

g(f)’ Zl>=sc(c)+80(d)

We recover thus the construction of a bipartite K —coalgebrafrom[11, p.91] (called triangular
matrix coalgebra in [12]).

In the following theorem, we say that a K —coalgebra C is right hereditary if the category
Comodc is hereditary.

THeEOREM 5.1 Let C, D be K—coalgebras, and M be a C—D-bicomodule. Assume that

C, D and M are flat as K—modules. The bipartite K—coalgebra ( Ili l()) ) is right hered-

itary if and only if the following conditions hold.

(1) UUc¢M is an injective right D—comodule for every injective right C—comodule U ;

(2) C and D are right hereditary;

(3) pUcM is a split epimorphism for each epimorphism p : Ey — E| of injective
right C—comodules E\, E.
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Proof Since we assume M, C and D to be flat over K, it follows that the functor
—0OcM : Comodes — Comodp is left exact. Now, the theorem follows from Theorem
4.3, the equivalence of categories (32), and the equivalence of categories given at the end
of paragraph 5.2. O

5.4. Generalized matrix coalgebras

Let M;j, i, j = 1,...,n, be a set of modules over a commutative ring K, and consider
the endofunctors F;; = M;; ®x — : Modg — Modg. Then the matrix functor F :
Modi — Mod% has the structure of a comonad if and only if there exists a set of
natural transformations 8%/ and ¢’ as in Proposition 2.1. These natural transformations
are determined by linear maps ¢;x; = 8’151 i Mij — My ® M and €; = 8",( tM;; —> K.
We thus obtain a K"-coalgebra

My My - My
My My --- My
F(K) = . . )
Mln M2n Mnn

By Remark 2.2, each of the entries in the diagonal of this matrix is a K—coalgebra, and
M;; is an M;; — M;;—bicomodule. Also, every ¢;;; factors trough the cotensor product
My ;U Mix. Using the base change of ring from 5.2 with the Frobenius K-algebra
R = K" we get the ‘comatrix’ K -coalgebra of [12, Section 2]. We prefer the name matrix
coalgebras to avoid confusion with the notion of a comatrix coring (and, in particular, coma-
trix coalgebra) from [23], which is a different construction. As in 5.2, the comultiplication
and counit of this matrix K—coalgebra can be computed explicitly.

5.5. Triangular matrix corings

More generally, we may consider corings € and ® over different base rings A and B,
respectively (see [19]). Given a € — ®—bicomodule M, we get the triangular matrix A X B-

coring AQ/:I zO) . Under suitable flatness conditions, a result similar to Theorem 5.1 may

be formulated for corings.

Remark 5.2 Let € be an R-coring which is flat as left R-module. Assume that R is a
(possibly non commutative) Frobenius algebra over acommutative ring K . Since the functor
R®k — : Modg — Modp, is then a right adjoint to the forgetful functor from the category
of right R—modules Modg to Modg, the arguments from 5.2 run here to prove that the
category of right €—comodules is equivalent to the category of right comodules over a
certain K-coalgebra built from R and €. In particular, when € = R endowed with the
trivial coring structure, we get the main result from [24], namely, that the category of right
R-modules is equivalent to the category of right R-comodules.
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