
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=glma20

Download by: [Laurentian University] Date: 07 April 2016, At: 02:16

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20

Hereditary triangular matrix comonads

Laiachi El Kaoutit & José Gómez-Torrecillas

To cite this article: Laiachi El Kaoutit & José Gómez-Torrecillas (2016) Hereditary
triangular matrix comonads, Linear and Multilinear Algebra, 64:6, 1032-1055, DOI:
10.1080/03081087.2015.1071315

To link to this article:  http://dx.doi.org/10.1080/03081087.2015.1071315

Published online: 04 Aug 2015.

Submit your article to this journal 

Article views: 26

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=glma20
http://www.tandfonline.com/loi/glma20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03081087.2015.1071315
http://dx.doi.org/10.1080/03081087.2015.1071315
http://www.tandfonline.com/action/authorSubmission?journalCode=glma20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=glma20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03081087.2015.1071315
http://www.tandfonline.com/doi/mlt/10.1080/03081087.2015.1071315
http://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2015.1071315&domain=pdf&date_stamp=2015-08-04
http://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2015.1071315&domain=pdf&date_stamp=2015-08-04


Linear and Multilinear Algebra, 2016
Vol. 64, No. 6, 1032–1055, http://dx.doi.org/10.1080/03081087.2015.1071315

Hereditary triangular matrix comonads

Laiachi El Kaoutita and José Gómez-Torrecillasb∗

aFacultad de Educación, Economía y Tecnología, Departamento de Álgebra, Universidad de
Granada, Ceuta, Spain; bDepartamento de Álgebra, Facultad de Ciencias, Universidad de

Granada, Granada, Spain

Communicated by M. Chebotar

(Received 29 April 2015; accepted 6 July 2015)

We recognize Harada’s generalized categories of diagrams as a particular case of
modules over a monad defined on a finite direct product of additive categories.
We work in the dual (albeit formally equivalent) situation, that is, with comodules
over comonads. With this conceptual tool at hand, we obtain several of the
Harada results with simpler proofs, some of them under more general hypothesis,
besides with a characterization of the normal triangular matrix comonads that are
hereditary, that is, of homological dimension less than or equal to 1. Our methods
rest on a matrix representation of additive functors and natural transformations,
which allows us to adapt typical algebraic manipulations from Linear Algebra to
the additive categorical setting.

Keywords: matrix comonads; categories of comodules; abelian hereditary
categories; global homological dimension

AMS Subject Classifications: 15A30; 18G20; 18C20; 16T15

1. Introduction

Every complete set of pairwise orthogonal idempotent elements e1, . . . , en of a unital ring
R allows to express the ring as a generalized n×n–matrix ring with entries in the bimodules
ei Re j for 1 ≤ i, j ≤ n. The origin of this decomposition can be traced back to the seminal
work of Peirce [1]. Beyond the role of matrix rings in the classification of semi-simple
artinian rings (i.e. Wedderburn–Artin’s Theorem), these generalized matrix rings were used
to investigate rings of low homological dimension in the framework of a systematic program
of studying non commutative rings of finite homological dimension promoted by Eilenberg,
Ikeda, Jans, Kaplansky, Nagao, Nakayama, Rosenberg and Zelinsky among others, see
[2–6]. In particular, Chase [7] and Harada [8] used generalized triangular matrix rings to
investigate the structure of the semi-primary hereditary rings (i.e. semi-primary rings with
homological dimension 1).

Inspired by the study of homological properties of abelian categories of diagrams given
in [9, Section IX], Harada formulated in [10] versions of some of his results on hereditary
triangular matrix rings from [8] in the framework of the so-called abelian categories of
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Linear and Multilinear Algebra 1033

generalized commutative diagrams. In this paper, we recognize these categories as the
categories of modules (or algebras) over suitable monads. This allows, apart from giving
a more conceptual treatment of these categories, to obtain most of the main results from
[10] with sharper (and simpler, we think) proofs. Our methods, based on a sort of ‘Linear
Algebra’ for additive functors and natural transformations, also provide some new results,
including a characterization of hereditary categories of generalized commutative diagrams.

We work in the dual, although formally equivalent, situation than in [10]. Thus, we
consider a comonad defined on a finite direct product of additive categories, and we
investigate how to express in matrix form both its comultiplication and its counit. In this
way, its category of comodules (or coalgebras) is expressed in such a way that Harada’s
categories of generalized diagrams become a particular case (namely, the categories of
modules over a normal triangular monad). This is done in Section 2.

In Section 3, we generalize [10, Theorem 2.3] in several directions. On one hand, we do
not assume that the base categories are abelian and, on the other, our categories of comodules
are more general than the dual of the categories considered in [10] (see Theorem 3.4). We
derive our Theorem 3.4 from a simpler result, namely Theorem 3.1, in conjunction with the
kind of linear algebra for functors developed in Section 2.

In Section 4, we give full proofs of the dual form of some results from [10]. These results
deal with the structure of the injective comodules over a hereditary normal triangular matrix
comonad. In particular, they contain part of the dual of [10, Theorem 3.6]. We also prove a
characterization of hereditary normal triangular matrix comonads (see Theorem 4.6).

Section 5 illustrates our general results by giving a characterization of the bipartite
coalgebras (see [11,12]) that are right hereditary. Our methods allow us to work over a
general commutative ring.

2. Matrix comonads and their categories of comodules

In this section, we introduce the notion of a matrix comonad and we describe its category of
comodules. We develop a kind of linear algebra for matrix functors and their matrix natural
transformations.

2.1. Basic notions and notation

All the categories in this paper are assumed to be additive, and all functors between them are
additive. If A is an object of a category, then its identity morphism is also denoted by A. We
shall use the standard notation for composition of functors and/or natural transformations,
see [13].

If A, A′ are objects of an additive category A, then A ⊕ A′ denotes its direct sum, and
similarly for any finite collection of objects. Recall that the direct sum of finitely many
objects is both the product and the coproduct of the family in the category. The symbol ⊕
will be used also for the direct sum of morphisms.

If F,G : A → B are functors, then its direct sum functor F ⊕ G : A → B is given by
the composition

F ⊕ G : A � �� A × A F×G �� B × B ⊕ �� B ,

where � denotes the diagonal functor, and C × D denotes the product category of two
categories C,D. Thus, (F ⊕ G)( f ) = F( f )⊕ G( f ) for any morphism f of A. The direct
sum of finitely many functors is defined analogously.
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1034 L. El Kaoutit and J. Gómez-Torrecillas

Let η : F → G ⊕ H be a natural transformation, where F,G, H : A → B are functors.
By πG : G ⊕ H → G (resp. πH : G ⊕ H → H ) we denote the natural transformation
defined by the canonical projection. Therefore, η is uniquely determined by the natural
transformations μ = πGη : F → G and ν = πHη : F → H . We will then use the notation
η = μ� ν.

We will consider comonads (or cotriples) onA.We refer to [13] for details on (co)monads
and their categories of (co)modules (or (co)algebras).

2.2. Matrix notation

Let A1, . . . ,An,B1, . . . ,Bm be additive categories and consider the product categories

A = A1 × · · · × An, B = B1 × · · · × Bm . (1)

For every j = 1, . . . , n, let π j : A → A j (resp. ι j : A j → A) denote the canonical
projection (resp. injection) functor, and similarly for B. An additive functor F : A → B
is determined by m × n functors Fji = πi F ι j : A j → Bi , j = 1, . . . , n, i = 1, . . . ,m,
since, from the equalities

1A = ι1π1 ⊕ · · · ⊕ ιnπn, 1B = ι1π1 ⊕ · · · ⊕ ιmπm,

we obtain

F =
⊕
i, j

ιiπi F ι jπ j =
⊕
i, j

ιi Fjiπ j .

This means that, given a morphism f = ( f1, . . . , fn) in A, we have

F f = (⊕ j Fj1 f j , . . . ,⊕ j Fjm f j ).

This expression can be represented in matrix form as

F f =

⎛
⎜⎜⎜⎝

F11 F21 · · · Fn1
F12 F22 · · · Fn2
...

...
...

F1m F2m · · · Fnm

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

f1
f2
...

fn

⎞
⎟⎟⎟⎠

Now, if η : F → G is a natural transformation, where G : A → B is a second functor,
then we have the natural transformations

ηi j = π jηιi : Fi j → Gi j , i = 1, . . . , n, j = 1, . . . ,m, (2)

which completely determine η as follows. For each i = 1, . . . , n, and each A ∈ A, we
consider the canonical morphism ξ i

A : ιiπi A → A given by the decomposition A =
ι1π1 A ⊕· · ·⊕ ιnπn A. From the naturality of η, we get the following commutative diagrams
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Linear and Multilinear Algebra 1035

which show that ηA = ⊕iηιiπi A and, thus, for each j = 1, . . . , n, we have

π jηA = ⊕iπ jηιiπi A = ⊕iη
i j
πi A.

Since ηA is defined by the morphisms π jηA, j = 1, . . . ,m, we get that η is entirely deter-
mined by ηi j , i = 1, . . . , n, j = 1, . . . ,m. So we can represent our natural transformation
in a matrix form

η =

⎛
⎜⎜⎜⎝
η11 η21 · · · ηn1

η12 η22 · · · ηn2

...
...

...

η1m η2m · · · ηnm

⎞
⎟⎟⎟⎠ :

⎛
⎜⎜⎜⎝

F11 F21 · · · Fn1
F12 F22 · · · Fn2
...

...
...

F1m F2m · · · Fnm

⎞
⎟⎟⎟⎠ −→

⎛
⎜⎜⎜⎝

G11 G21 · · · Gn1
G12 G22 · · · Gn2
...

...
...

G1m G2m · · · Gnm

⎞
⎟⎟⎟⎠ .

2.3. Matrix operations

Let
A F �� B G �� C

be functors, where C = C1 × · · · × Cl , and A,B are finite products as in (1). Then, the
composite functor H = G F is represented in matrix form as the ‘usual matrix product’ of
matrices representing G and F . This means that

H =

⎛
⎜⎜⎜⎝

H11 H21 · · · Hn1
H12 H22 · · · Hn2
...

...
...

H1l H2l · · · Hnl

⎞
⎟⎟⎟⎠ ,

where

Hji =
m⊕

k=1

Gki Fjk, i = 1, . . . , l, j = 1, . . . , n.

With respect to the vertical composition of natural transformations, let η : F →
F ′, μ : F ′ → F ′′ be natural transformations, where F, F ′, F ′′ : A → B are functors. A
straightforward argument shows that the matrix representing μη is the ‘Hadamard product’
of the matrices that represent μ and η, namely

μη =

⎛
⎜⎜⎜⎝
μ11 μ21 · · · μn1

μ12 μ22 · · · μn2

...
...

...

μ1m μ2m · · · μnm

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
η11 η21 · · · ηn1

η12 η22 · · · ηn2

...
...

...

η1m η2m · · · ηnm

⎞
⎟⎟⎟⎠ (3)

=

⎛
⎜⎜⎜⎝
μ11η11 μ21η21 · · · μn1ηn1

μ12η12 μ22η22 · · · μn2ηn2

...
...

...

μ1mη1m μ2mη2m · · · μnmηnm

⎞
⎟⎟⎟⎠

Finally, let us consider the horizontal composition of natural transformations. So let
η : F → F ′ with F, F ′ : A → B, and G : B → C. The natural transformation Gη :
G F → G F ′ is easily shown to have a matrix representation
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1036 L. El Kaoutit and J. Gómez-Torrecillas

Gη =

⎛
⎜⎜⎜⎝
(Gη)11 (Gη)21 · · · (Gη)n1

(Gη)12 (Gη)22 · · · (Gη)n2

...
...

...

(Gη)1l (Gη)2l · · · (Gη)nl

⎞
⎟⎟⎟⎠ ,

where

(Gη) j i =
m⊕

k=1

Gkiη
jk, i = 1, . . . , l, j = 1, . . . , n.

That is, the composition Gη leads to the ‘usual matrix product’. This also holds for the
composition in the opposite order, that is, given a natural transformation γ : G → G ′,
for functors G,G ′ : B → C, and F : A → B, the matrix representation of the natural
transformation γ F : G F → G ′F is given by

γ F =

⎛
⎜⎜⎜⎝
(γ F)11 (γ F)21 · · · (γ F)n1

(γ F)12 (γ F)22 · · · (γ F)n2

...
...

...

(γ F)1l (γ F)2l · · · (γ F)nl

⎞
⎟⎟⎟⎠ ,

where

(γ F) j i =
m⊕

k=1

γ ki Fjk, i = 1, . . . , l, j = 1, . . . , n.

2.4. Matrix comonads

Fix a category A = A1 × · · · × An . Let F : A → A be an endofunctor, and δ : F → F2

a natural transformation. In matrix form,

δ = (δi j ) : (Fi j ) → (Fi j )(Fi j ),

where δi j : Fi j → ⊕k Fk j Fik is a natural transformation for every i, j = 1, . . . , n, which
is uniquely expressed as

δi j = δi1 j � δi2 j � · · · � δin j

for some natural transformations δik j : Fi j → Fkj Fik with k = 1, . . . , n. The coassocia-
tivity of F is given by the equation (δF)δ = (Fδ)δ or, equivalently,

(δF)i jδi j = (Fδ)i jδi j , 1 ≤ i, j ≤ n. (4)

We know that

(δF)i j =
⊕

k

δk j Fik and (Fδ)i j =
⊕

l

Fl jδ
il .

Observe that for each i, j, k = 1, . . . , n, the natural transformation δk j Fik : Fkj Fik →⊕
l Fl j Fkl Fik is given by

δk j Fik = δk1 j Fik � δk2 j Fik � · · · � δknj Fik
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Linear and Multilinear Algebra 1037

while, for each i, j, l = 1, . . . , n, the natural transformation Fl jδ
il : Fl j Fil → ⊕

k Fl j Fkl Fik

is defined by
Fl jδ

il = Fl jδ
i1l � Fl jδ

i2l � · · · � Fl jδ
inl .

We then obtain that

(δF)i jδi j =
(⊕

k

δk j Fik

)(
�
k
δik j

)
= �

k,l
(δkl j Fik)δ

ik j

and

(Fδ)i jδi j =
(⊕

l

Fl jδ
il

)(
�
l
δil j
)

= �
k,l
(Fl jδ

ikl)δil j .

Both vectors should be equal, which is equivalent to

(δkl j Fik)δ
ik j = (Fl jδ

ikl)δil j , (1 ≤ i, j, k, l ≤ n).

That is, all the diagrams

are commutative.
Next, we will discuss when a comultiplication δ : F → F2 is counital, for a given

counity ε : F → 1A. The general matrix form of ε is

ε =

⎛
⎜⎜⎜⎝
ε1 0 · · · 0
0 ε2 · · · 0
...

...
...

0 0 · · · εn

⎞
⎟⎟⎟⎠ :

⎛
⎜⎜⎜⎝

F11 F21 · · · Fn1
F12 F22 · · · Fn2
...

...
...

F1n F2n · · · Fnn

⎞
⎟⎟⎟⎠ −→

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...
...

...

0 0 · · · 1

⎞
⎟⎟⎟⎠ (5)

for some natural transformations εi : Fii → 1Ai for i = 1, . . . , n. The counitality
conditions (εF)δ = 1F = (Fε)δ lead to matrix equalities equivalent to

(ε j Fi j )δ
i j j = 1Fi j = (Fi jε

i )δi i j , (i, j = 1 . . . , n),

that is, all the diagrams

commute.
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1038 L. El Kaoutit and J. Gómez-Torrecillas

We have so far proved the following proposition.

Proposition 2.1 Let A = A1 × · · · × An be the product category of finitely many
categories A1, . . . ,An, and F : A → A any functor. There is a bijective correspondence
between

(1) Comonads (F, δ, ε).
(2) Sets of natural transformations {δik j : Fi j → Fkj Fik : i, j, k = 1, . . . , n}, and

{εi : Fii → 1Ai : i = 1, . . . , n} such that

(a) For all i, j, k, l = 1, . . . , n the diagram

(6)

conmutes, and
(b) for all i, j = 1, . . . , n, the diagram

(7)

commutes.

Remark 2.2 Take i = j = k in diagrams (6) and (7), then (Fii , δ
i i i , εi ) is a comonad over

Ai . Also diagrams (6) and (7) show that each functor Fi j is in fact an Fj j − Fii -bicomodule
functor, in the sense of [14, Definition 4.7], see also [15]. Furthermore, if l = k in diagram
(6), we get that each of the Fik’s is a balanced bicomodule in a dual sense of [14, Section
3.2]. In this way, if the ‘cotensor product’ functor Fkj�Fkk Fik does exist, then the natural
transformation δik j factors through Fkj�Fkk Fik .

Definition 2.3 A comonad (F, δ, ε) on A = A1 × · · · × An is called normal if Fii = 1Ai

and εi = 1 for all i = 1, . . . , n. Thus, for a normal comonad, we have necessarily that
δi j j = δi i j = 1Fi j for all i, j = 1, . . . , n.

Remark 2.4 In the case n = 2, we deduce from Proposition 2.1 that a normal comonad
(F, δ, ε) is given by natural transformations δ121 : 1A1 → F21 F12 and δ212 : 1A2 →
F12 F21 such that F12δ

121 = δ212 F12 and F21δ
212 = δ121 F21. Therefore, the normal

comonads over A1 × A2 are in bijection with the wide (right) Morita contexts between
A1 and A2 as defined in [16,17].

Remark 2.5 It is possible to formulate Proposition 2.1 in dual form, and thus give the
structure of the monads on A1 × · · · × An .
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Linear and Multilinear Algebra 1039

2.5. Comodules over matrix comonads

Consider a comonad (F, δ, ε) over A = A1 × · · · × An as in Proposition 2.1. Next, we
want to describe its Eilenberg–Moore category AF of comodules (or coalgebras). Recall
that an object of AF is a morphism dA : A → F A in A such that the following diagrams
are commutative:

(8)

We want to describe these objects in terms of the categories A1, . . . ,An . Each structure
morphism dA is determined by the projections

π j (dA) : A j →
⊕

k

Fk j Ak, j = 1, . . . , n,

and each of them is given by

π j (dA) = d1 j
A � d2 j

A � · · · � dnj
A with dk j

A : A j → Fkj Ak .

Let us see what restrictions impose the commutativity of the diagrams (8) on the
morphism dk j

A . We start with the equation δAdA = F(dA)dA, which leads to the following
system of equations:

π j (δA)π j (dA) = π j (F(dA))π j (dA), j = 1, . . . , n. (9)

On the other hand,

π jδA =
⊕

l

δ
l j
Al
, with δ

l j
Al

: Fl j Al →
⊕

k

Fk j Flk Al .

Therefore,

π j (δA)π j (dA) =
(⊕

l

δ
l j
Al

)(
�
l

dl j
A

)
= �

l
δ

l j
Al

dl j
A = �

l

(
�
k
δ

lk j
Al

)
dl j

A = �
k,l
δ

lk j
Al

dl j
A . (10)

On the other hand,

π j (FdA)π j (dA) =
(⊕

k

Fk jπk(dA)

)(
�
k

dk j
A

)
= �

k
Fk jπk(dA)d

k j
A (11)

= �
k

(
�
l

Fk j (d
lk
A )

)
dk j

A = �
k,l

Fk j (d
lk
A )d

k j
A .

We get from (9)–(11) that the commutativity of the first diagram in (8) is equivalent to
the commutativity of all the diagrams

(12)

for j, k, l = 1, . . . , n.
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1040 L. El Kaoutit and J. Gómez-Torrecillas

The second diagram in (8) leads to the equalitiesπ j (εAdA) = 1A j for each j = 1, . . . , n.
Therefore,

1A j = π j (εAdA) = π j (εA)π j (dA) = (0⊕· · ·⊕0⊕ε j
A j

⊕0⊕· · ·⊕0)

(
�
k

dk j
A

)
= ε

j
A j

d j j
A ,

for all j = 1, . . . , n.
The previous discussion gives the following description of the category AF of comod-

ules over F .

Proposition 2.6 Let A = A1 × · · · × An be the product category of finitely many
categories A1, . . . ,An. If (F, δ, ε) is a comonad over A, then the category of F–comodules
is described as follows:

(1) Objects: They are pairs (A,dA) where A = (A1, . . . , An) ∈ A = A1 × · · · × An

and dA is a set of morphisms dA = {dk j
A : A j → Fkj Ak : 1 ≤ j, k ≤ n} such that

the diagrams

(13)

are commutative for all j, k, l = 1, . . . , n.
(2) Morphisms: A morphism f : (A,dA) → (B,dB) is a set of morphisms f = { f j :

A j → B j : j = 1, . . . , n} such that the diagrams

(14)

commute, for all j, k = 1, . . . , n.

Remark 2.7 Obviously, it is possible to give the dual statements of the above results in
the case of monads. So, a monad T over A = A1 × · · · × An is given by a set of functors
{Ti j : Ai → A j , i, j = 1, . . . , n} with two sets of natural transformations {μik j : Tkj Tik →
Ti j : i, j, k = 1 . . . , n}, {ηi : 1Ai → Tii , i = 1, . . . , n} such that the diagrams
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Linear and Multilinear Algebra 1041

commute for all i, j, k ∈ {1, . . . , n}. The corresponding category of modules (or algebras)
is described by dualizing the statements of Proposition 2.6. When T is a normal matrix
monad (i.e. Tii = 1Ai and ηi = 1 for all i = 1, . . . , n), A is abelian, and Ti j = 0 for i > j ,
these are the kind of categories which were studied by Harada in [10], and referred to as
categories of generalized diagrams in abelian categories (see also [9]).

3. Triangular matrix comonads

We have seen in Remark 2.7 that the abelian categories investigated by Harada in [10] are
categories of modules over triangular normal matrix monads. In this section, we will take
advantage of the fact that the existence of a (co)monad representing these categories to give
a more systematic approach to their study. In fact, our main theorem in this section is more
general in several directions than [10, Theorem 2.3]. At the same time, we find the proof
presented here sharper in some aspects than Harada’s one.

We will say (see Definition 3.3) that a matrix comonad F = (Fi j ) is triangular if
Fi j = 0 for all 1 ≤ j < i ≤ n. The understanding of the case n = 2 is the key to the study
of the general case.

3.1. Triangular matrix comonads of order 2

Let

C R �� C V �� D S �� D (15)

be functors. By Proposition 2.1, every comonad structure over the endofunctor

F =
(

R 0
V S

)
(16)

of C × D is given by a set of natural transformations{
R δR

�� R2, S δS
�� S2, V

ρV
�� V R, V λV

�� SV, R
εR

�� 1C, S
εS

�� 1D

}
(17)

such that the following eight diagrams commute:

(18)
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1042 L. El Kaoutit and J. Gómez-Torrecillas

(19)

By Remark 2.2, the commutativity of the diagrams (18) just says that (R, δR, εR) and
(S, δS, εS) are comonads, while the commutative diagrams (19) say that (V, λV , ρV ) is an
S − R–bicomodule functor.

Theorem 3.1 Let (
R 0
V S

)
: C × D �� C × D

be a triangular matrix comonad of order 2, with the comonad structure given by a sextuple
of natural transformations as in (17) satisfying the conditions (18) and (19). If the equalizer

of every pair of arrows of the form V C
ρV

C ��
V dC

�� V RC , where (C, dC ) is any R–comodule,

do exist in D, and S preserves all these equalizers, then there exists a functor T : CR → DS

such that the diagram

commutes, where L : C → CR is the free functor and U : DS → D is the forgetful functor.
Moreover, there exists an equivalence of categories

(C × D)( R 0
V S

) ∼= (CR × DS)⎛⎜⎝ 1 0
T 1

⎞
⎟⎠

Proof The existence of T is proved in [14, Proposition 4.29] in a different context. We
give a direct construction for the convenience of the reader. Given an R–comodule (C, dC ),
define an object T C of D as the equalizer

T C
ιC �� V C

ρV
C ��

V dC

�� V RC. (20)

The S–coaction λT
C : T C → ST C , making T C an S–comodule, is given by the universal

property of the equalizer at the bottom of the following diagram.
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Linear and Multilinear Algebra 1043

Some straightforward computations show that this gives the object part of a functor
T : CR → DS . We only make explicit here its definition on morphisms. Given a morphism
of R–comodules f : (C, dC ) → (C ′, dC ′), the morphism T f : T C → T C ′ is uniquely
determined by the universal property of the equalizer in the bottom row of the serially
commutative diagram

In order to construct an equivalence E : (C × D)( R 0
V S

) → (CR × DS)( 1 0
T 1

), let

us describe the objects of these categories of comodules. By Proposition 2.6, a comodule

over

(
R 0
V S

)
consists of an object A = (C, D) ∈ C × D and a tern of morphisms

dA = { C
ρC �� RC , D

d �� V C , D
ρD �� SD }

such that the following diagrams commute:

(21)

(22)

On the other hand, a comodule over

(
1 0
T 1

)
is just a pair of comodules ((C, ρC ),

(D, ρD)) ∈ CR ×DS connected with a morphism of S–comodules d ′ : D → T C . This last
condition is just the commutativity of the diagram
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1044 L. El Kaoutit and J. Gómez-Torrecillas

(23)

The functor E will send a tern dA = (ρC , d, ρD) satisfying the conditions (21) and (22)
to the pair of comodules (C, ρC ), (D, ρD) ∈ CR × DS with the morphism d ′ : D → T C
given by the universal property of the equalizer in the following diagram

The existence and uniqueness of d ′ is guaranteed by the commutativity of the third
diagram of (21), while the fact that d ′ becomes a morphism of S–comodules (namely, the
commutativity of (23)) is given by the fourth diagram in (21). This gives the object part of
the functor E . In the other direction, there is a functor E ′ defined on objects by sending a
morphism of comodules d ′ : D → T C , for (C, ρC ) ∈ CR , (D, ρD) ∈ DS , to the morphism
d = ιC d ′. The computation

ρV
C d = ρV

C ιC d ′ = VρC ιC d ′ = VρC d

shows that d makes commute the third diagram in (21), while the computation

λV
C d = λV

C ιC d ′ = SιCλ
T
C d ′ = SιC Sd ′ρD = (Sd)ρD

is just the commutativity of the last diagram of (21).
It is not hard to see that E and E ′ are mutually inverse. �

Remark 3.2 A standard argument shows that, if C and D are abelian categories, and V , R
and S are left exact functors, then T is a left exact functor between abelian categories.

3.2. Triangular matrix comonads

Definition 3.3 A functor F : A1 × · · · × An → A1 × · · · × An which is endowed with a
comonad structure (F, δ, ε) as in Proposition 2.1 is called a triangular matrix comonad of
order n over A = A1 × · · · × An if Fji = 0 for all j > i , that is,

F =

⎛
⎜⎜⎜⎝

F11 0 0 · · · 0 0
F12 F22 0 · · · 0 0
...

...
...

...
...

F1n F2n F3n · · · Fn−1 n Fnn

⎞
⎟⎟⎟⎠ . (24)

Given 1 ≤ m < n, consider the categories

A≤m = A1 × · · · × Am, A>m = Am+1 × · · · × An .

All these categories can be considered, in an obvious way, as full subcategories of A.
For instance, an object A = (A1, . . . , Am)ofA≤m is identified with the object (A1, . . . , Am,
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Linear and Multilinear Algebra 1045

0, . . . , 0) of A. It is clear that there are canonical functors (the projection functors)

π≤m : A −→ A≤m, π>m : A −→ A>m .

By Proposition 2.1, the triangular matrix comonad (F, δ, ε) over A gives rise to the
triangular matrix comonads (F≤m, δ≤m, ε≤m) and (F>m, δ>m, ε>m) over A≤m and A>m

defined, respectively, by

F≤m =

⎛
⎜⎜⎜⎝

F11 0 0 · · · 0
F12 F22 0 · · · 0
...

...
...

...

F1m F2m F3m · · · Fmm

⎞
⎟⎟⎟⎠ ,

δ≤m =

⎛
⎜⎜⎜⎝
δ11 0 0 · · · 0
δ12 δ22 0 · · · 0
...

...
...

...

δ1m δ2m δ3m · · · δmm

⎞
⎟⎟⎟⎠ , ε≤m =

⎛
⎜⎜⎜⎝
ε1 0 · · · 0
0 ε2 · · · 0
...

...
...

0 0 · · · εm

⎞
⎟⎟⎟⎠ , (25)

and

F>m =

⎛
⎜⎜⎜⎝

Fm+1 m+1 0 0 · · · 0
Fm+1 m+2 Fm+2 m+2 0 · · · 0

...
...

...
...

Fm+1 n Fm+2 n Fm+3 n · · · Fnn

⎞
⎟⎟⎟⎠ ,

δ>m =

⎛
⎜⎜⎜⎝
δm+1 m+1 0 0 · · · 0
δm+1 m+2 δm+2 m+2 0 · · · 0

...
...

...
...

δm+1 n δm+2 n δm+3 n · · · δnn

⎞
⎟⎟⎟⎠ , ε>m =

⎛
⎜⎜⎜⎝
εm+1 0 · · · 0

0 εm+2 · · · 0
...

...
...

0 0 · · · εn

⎞
⎟⎟⎟⎠ .

(26)
The functor Fm : A≤m → A>m given by

Fm =

⎛
⎜⎜⎜⎝

F1 m+1 F2 m+1 · · · Fm m+1
F1 m+2 F2 m+2 · · · Fm m+2
...

...
...

F1 n F2 n · · · Fmn

⎞
⎟⎟⎟⎠ (27)

is an F>m − F≤m–bicomodule functor with the structure natural transformations λm :
Fm → Fm F≤m and ρm : Fm → F>m Fm defined by

λ
i j
m : Fi j →

m⊕
k=1

Fkj Fik, λ
i j
m = δi1 j � · · · � δim j

and

ρ
i j
m : Fi j →

n⊕
k=m+1

Fkj Fik, λ
i j
m = δim+1 j � · · · � δin j ,

for 1 ≤ i ≤ m,m + 1 ≤ j ≤ n. Therefore,
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1046 L. El Kaoutit and J. Gómez-Torrecillas

F =
(

F≤m 0
Fm F>m

)
,

as comonads.
The following consequence of Theorem 3.1 is the basic tool for the study of triangular

hereditary comonads in the next section. The particular case where Fii = 1Ai for all
i = 1, . . . , n was already stated in its dual form in [10, Theorem 2.3] under the additional
hypothesis that the categories Ai are abelian.

Theorem 3.4 Let F be a triangular matrix comonad on A = A1 × · · · × An as in
Definition 3.3. Given an integer m with 1 ≤ m < n, assume that all equalizers do exist in
Ai for i = 1, . . . ,m, and that the functors Fi j preserve equalizers for 1 ≤ i ≤ j ≤ m.
Then, there exists a functor

T m : A≤m
F≤m

�� A>m
F>m (28)

such that the category of F-comodules is isomorphic to the category of Gm-comodules,
where Gm is the normal triangular matrix comonad defined by T m. That is,

AF ∼= (A≤m
F≤m × A>m

F>m )Gm , where Gm =
(

1 0
T m 1

)
.

Proof Apply Theorem 3.1 with R = F≤m , S = F>m , and V = Fm . �

Remark 3.5 If the categories Ai are abelian for i = 1, . . . , n, and all the functors Fi j ,
for 1 ≤ i < j ≤ n are left exact, then the functor F is also left exact, as well as the
functors F>m , Fm , and F≤m , for every 2 ≤ m ≤ n − 1. On the other hand, the functor
T m : A≤m

F≤m → A>m
F>m , constructed as an equalizer (see the proof of Theorem 3.1) becomes

left exact, see Remark 3.2.

4. Hereditary categories of comodules

An abelian category with enough injectives is said to be hereditary if its global homological
dimension is 0 or 1, that is, for every epimorphism E0 → E1, if E0 is injective, then E1
is injective. Our aim is to characterize when the category of comodules AF of a normal
triangular matrix comonad F = (F, δ, ε) over A = A1 × · · · × An is hereditary. We are
denoting by δ : F → F2 the comultiplication of F , and by ε : F → A its counit. The
shape of the matrix of functors representing F is

F =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0 0
F12 1 0 · · · 0 0
...

...
...

...
...

F1n F2n F3n · · · Fn−1 n 1

⎞
⎟⎟⎟⎠ . (29)

We assume that the categories A1, . . . ,An are abelian with enough injectives, and so is
A = A1 × · · · × An . If F : A → A is a left exact functor, then AF is also abelian and the
forgetful functor AF → A is exact, see [18]. On the other hand, F is exact if and only if
Fi j is exact for all i, j = 1, . . . , n.

First, we analyse the case n = 2.
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Linear and Multilinear Algebra 1047

4.1. The case n = 2

Let A = A1 × A2, for A1,A2 abelian categories, and let

F =
(

1 0
F12 1

)
: A1 × A2 −→ A1 × A2

be a functor with F12 : A1 → A2 a left exact functor. Consider the unique structure of
normal triangular matrix comonad on the left exact functor F . According to Proposition 2.6,
any F–comodule can be identified with a pair

(
X, d12

X

)
, where X = (X1, X2) ∈ A1 × A2

and d12
X : X2 → F12 X1. By convenience, the free functor will be denoted by F : A → AF .

By Inj.dim(X), we denote the injective dimension of an object X in some abelian category
with enough injectives.

Proposition 4.1 Assume that A1 and A2 have enough injectives and that F12 is a left
exact functor that preserves injectives. Then,

(1) AF has enough injectives.
(2) Each injective comodule in AF is, up to isomorphisms, of the form F(E), for some

injective object E in A. In particular, the arrow d12
X is a split epimorphism of A2

for any injective F-comodule
(
X, d12

X

)
.

(3) Given an F-comodule
(
X, d12

X

)
, we have

Inj.dim
((

X, d12
X

))
≤ max{Inj.dim(X1), Inj.dim(X2)} + 1

Proof

(1) Observe that F : A → AF preserves injectives, since it is right adjoint to the
forgetful functor AF → A, which is exact [18, Proposition 5.3]. So, given an
injective object E = (E1, E2) in A, we have an injective F-comodule F(E) =
(E1, F12 E1 ⊕ E2, π), where π : F12 E1 ⊕ E2 → F12 E1 is the canonical projection
(this is given by the comonad structure of F). Now, for every F-comodule

(
X, d12

X

)
,

we can consider monomorphisms ιi : Xi → Ei in Ai , with Ei injective for i = 1, 2.
So we have a monomorphism of F-comodules(

ι1, F12ι1 ◦ d12
X � ι2

)
:
(

X1, X2, d12
X

)
→ (E1, F12 E1 ⊕ E2, π) (30)

which shows that AF has enough injectives.
(2) If we assume that the F-comodule

(
X, d12

X

)
is injective, then the monomorphism

(30) splits, so that there exists a morphism of comodules (α, β) : (E1, F12 E1 ⊕
E2) → (

X1, X2, d12
X

)
which splits

(
ι1, F12ι1 ◦ d12

X � ι2
)
. Thus, X1 is isomorphic

to a direct summand of the injective object E1, so it is injective. Therefore, without
loss of generality, we can suppose that X1 is injective and that E1 = X1. In this
way, we get that β ◦ (d12

X � ι2
) = 1X2 , which shows that X2 is isomorphic to a

direct summand of the injective object F12 E1 ⊕ E2 and so it is injective too. On the
other hand, since (α, β) is a comodule map, we obtain that π = d12

X ◦ β. Since π is
a split epimorphism, we deduce that d12

X is a split epimorphism. This implies that
there exists an isomorphism ω : X2 → F12 X1 ⊕ E ′

2 in A2 such that π ′ ◦ ω = d12
X ,
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1048 L. El Kaoutit and J. Gómez-Torrecillas

where π ′ is the obvious canonical projection. Thus,

(1X1 , ω) :
(

X1, X2, d12
X

)
→ F

(
X1, E ′

2

) = (
X1, F12 X1 ⊕ E ′

2, π
′)

is an isomorphism of F-comodules.
(3) Put m = max{Inj.dim(π1(X)), Inj.dim(π2(X))}, and take, for an F-comodule(

X, d12
X

)
, a resolution in AF

0 ��
(
X, d12

X

) f 0
��
(

E0, d12
E0

)
�� . . . ��

(
Em, d12

Em

) f m
��
(
C, d12

C

)
�� 0

with (Ei , d12
Ei ) injective for all 0 ≤ i ≤ m. We need to show that (C, d12

C ) is
injective too. If we apply the projection functor πi , for i = 1, 2, to this resolution,
by part (2), we get a resolution in Ai for πi (X) with πi (Ek) injective and d12

Ek

split epimorphism for k = 0, . . . ,m. Since Inj.dim(πi (X)) ≤ m, we deduce that
πi ( f m) is a split epimorphism and πi (C) is injective for i = 1, 2. We know that
d12

C ◦π2( f m) = F12(π1( f m))◦d12
Em . Hence, d12

C is a split epimorphism and (C, d12
C )

is injective. �

By gl.dim(A), we denote the global homological dimension of an abelian category with
enough injectives A.

Corollary 4.2 The assumptions are that of Proposition 4.1. Then, we have

gl.dim(AF ) ≤ max{gl.dim(Ai ) : i = 1, 2} + 1 ≤ gl.dim(AF )+ 1

Next, we give the desired characterization for hereditary categories of comodules over
a triangular normal (2 × 2)-matrix comonad.

Theorem 4.3 Let A = A1 × A2 for A1,A2 abelian categories with enough injectives,
and F12 : A1 → A2 a left exact functor. Consider the unique normal comonad structure
on the endofunctor

F =
(

1 0
F12 1

)
: A −→ A.

The category of comodules AF is hereditary if, and only if, the following conditions are
satisfied:

(a) F12 preserves injectives.
(b) A1 and A2 are hereditary.
(c) F12 p is a split epimorphism for each epimorphism p : E1 → E ′

1 between injective
objects in A1.

Proof Suppose that AF is hereditary. Given an injective object E1 in A1, we know that
F(E1, 0) = (E1, F12 E1, 1F12 E1) is an injective F-comodule. Now, since (0, 1F12 E1) :
(E1, F12 E1) → (0, F12 E1) is an epimorphism in the hereditary category AF , we have
that (0, F12 E1) is an injective object in AF . Henceforth, it is clear that F12 E1 is injective
in A1, from which (a) is derived. The statement (b) follows from Corollary 4.2. For the
proof of (c), given an epimorphism p : E1 → E ′

1 in A1, we get an epimorphism (p, 1) :
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Linear and Multilinear Algebra 1049

F(E1, 0) = (E1, F12 E1, 1) → (E ′
1, F12 E1, F12 p) in AF . Since F(E1, 0) is injective, then

so is (E ′
1, F12 E1, F12 p). Therefore, F12 p is a split epimorphism, by the characterization of

the injectives in Proposition 4.1.
Conversely, consider an F–comodule

(
X, d12

X

)
and a resolution in AF

0 ��
(
X, d12

X

)
�� F(E1, E2)

( f1, f2) �� (C, d12
C )

�� 0,

with (E1, E2) ∈ A injective. Since F12 preserves injectives, we have that E1 and F12 E1⊕E2
are injective. As f1 and f2 are epimorphism, and Ai is hereditary for i = 1, 2, we deduce
that C1 and C2 are injective. Using the fact that F12( f1) is a split epimorphism, we obtain
from the commutative diagram

that d12
C is a split epimorphism and so (C, d12

C ) is injective. This shows that the injec-
tive dimension of

(
X, d12

X

)
is less or equal than 1, which means that AF is a hereditary

category. �

4.2. The case n ≥ 3

Let A = A1 ×· · ·×An denote a product of categories and F : A → A a normal triangular
matrix comonad.

Propositions 4.4 and 4.5 below, which will be used to deduce our main result in this
section (Theorem 4.6), contain part of the dual form of [10, Theorem 3.6].

Proposition 4.4 Assume that Ai is an abelian category with enough injectives for every
i ∈ {1, . . . , n}, and that each of the functors Fi j : Ai → A j , for 1 ≤ i < j ≤ n, is left
exact. If the category of comodules AF is hereditary, then we have:

(1) Each injective object (X,dX ) of AF is, up to isomorphisms, of the form X =
F(E1, . . . , En) for some injective object (E1, . . . , En) ∈ A. In particular, each
arrow di j

X : X j → Fi j (Xi ) is a split epimorphism.
(2) If i < j < k in {1, . . . , n}, then, for every injective object Ei in Ai , we have that

δ
i jk
Ei

: Fik Ei → Fkj Fik Ei is a split epimorphism.
(3) For each m ∈ {1, . . . , n − 1}, T m p is a split epimorphism, for any epimorphism

p : (E,dE ) → (E ′,dE ′) between injective F≤m-comodules.

Proof

(1) Since F is left exact, then the forgetful functor AF → A is exact. Therefore, the
free functor F : A → AF preserves injectives, with implies that F(E1, . . . , En) is
an injective F–comodule for every injective (E1, . . . , En) ∈ A1 × · · · × An . Let
us prove that every injective F–comodule is of this form by induction on n. For
n = 1, there is nothing to prove, so let n > 1. By Theorem 3.4, we can identify
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1050 L. El Kaoutit and J. Gómez-Torrecillas

AF with the category of comodules (A1 × A>1
F>1)G1 . By Theorem 4.3, we have

that A>1
F>1 is hereditary and that T 1 preserves injectives. In this case, T 1 = F1,

see Equation (27). Therefore, using Proposition 4.1, we have that any injective
object of AF is of the form (X,dX ) = (E1, F1(E1)⊕ (V,dV )) for some injective
objects E1 ∈ A1 and (V,dV ) ∈ A>1

F>1 . By induction hypothesis, we get that
(V,dV ) = F>1(E2, . . . , En) for some injectives E j in A j , j = 2, . . . , n. Hence
(X,dX ) = F(E1, E2, . . . , En) for some injective objects Ei in Ai , i = 1, . . . , n.
By Theorem 4.3,(

d12
X , . . . , d1n

X

)
: F1 E1 = (F12 E1, . . . , F1n E1) → (E2, . . . , En)

is a split epimorphism, which implies that d1 j
X is a split epimorphism for j =

2, . . . , n. Since by induction we know that each of the di j
V , 2 ≤ i < j ≤ n is

a split epimorphism, we deduce that di j
X , for every i < j in {1, . . . , n}, is a split

epimorphism.
(2) It follows from (1), since any object of the form F(0, . . . , 0, Ei , 0 . . . , 0), for i =

1, . . . , n − 2 is injective in AF (recall that the structure morphisms are exactly

d jk
F(0,...,0,Ei ,0...,0)

= δ
i jk
Ei
, i < j < k).

(3) By Theorem 3.4, we know that (A≤m
F≤m × A>m

F>m )Gm is hereditary, where Gm is the
triangular (2 × 2)-matrix comonad constructed using the functor T m from (28).
Now, we conclude using Remark 3.5 and Theorem 4.3. �

Proposition 4.5 Let n ≥ 2 be a positive integer. Assume that Ai is an abelian category
with enough injectives for all i ∈ {1, . . . , n}, and that Fi j : Ai → A j is left exact for
every 1 ≤ i < j ≤ n. If the category of comodules AF is a hereditary category, then the
following statements hold:

(1) Each of the functors Fi j preserves injectives.
(2) Fi j p is a split epimorphism, for any epimorphism p : Ei → E ′

i between injective
objects in Ai , for every 1 ≤ i < j ≤ n.

Proof

(1) For n = 2, the claim follows from Theorem 4.3. Assume n ≥ 3, we will proceed
by induction on n. By Theorem 3.4, the hereditary category AF is isomorphic
(A1×A>1

F>1)F1 (here, T 1 = F1). From Theorem 4.3, we get that A>1
F>1 is hereditary.

By induction hypothesis, all the functors Fi j with 2 ≤ i < j preserve injectives.
Given an injective object E1 in A1, we know from the proof of Theorem 3.4 that
F1 E1 = ((F12 E1, . . . , F1n E1),dF1 E1

) is injective in A>1
F>1 . On the other hand, by

Proposition 4.4.(1), there exists an injective object (E2, . . . , En) ∈ A2 × · · · × An

such that F1 E1 = F>1(E2, . . . , En). Therefore, since each F2 j for j = 3, . . . n
preserves injectives, we obtain that F1k(E1) is injective for every k = 2, . . . , n.
This completes the induction.

(2) Use induction on n and Theorems 3.4 and 4.3. �
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The following is our main result in this section.

Theorem 4.6 Assume that Ai is an abelian category with enough injectives for all i ∈
{1, . . . , n}, and consider a normal triangular n × n-matrix comonad F = (Fi j ) : A → A
such that Fi j : Ai → A j is left exact for every 1 ≤ i < j ≤ n. Then the category of
comodules AF is hereditary if, and only if, the following conditions are fulfilled:

(a) T n−1 and every Fi j preserves injectives for 1 ≤ i < j ≤ n.
(b) For each m ∈ {1, . . . , n − 1}, T m p is a split epimorphism, for every epimorphism

p : (E,dE ) → (E ′,dE ′) between injective F≤m-comodules.
(c) For every injective object Ei in Ai , its image δi jk

Ei
for i < j < k is a split

epimorphism.
(d) Each of the categories Ai is hereditary.

Proof

(⇐) We use induction on n. For n = 2, this implication is given by Theorem 4.3,
since in this case we have T 1 = F1 = F12.
Let n ≥ 3, and suppose that the implication is true for any category of comodules
over a normal triangular matrix comonad constructed using a linearly ordered set
of length n − 1. Without loss of generality we can suppose by Theorem 3.4 that
AF = (A≤n−1

F≤n−1 × An)Gn−1 , where Gn−1 is the triangular 2 × 2-matrix comonad

associated to the functor T n−1 : A≤n−1
F≤n−1 → An given in (28). Since the axioms

(a)-(d) are satisfied for the triangular (n − 1)× (n − 1)-matrix comonad F≤n−1, by
induction hypothesis we know that its category of comodules A≤n−1

F≤n−1 is hereditary.
Henceforth, by Remark 3.5, Theorem 4.3 can be applied, as An is already assumed
to be hereditary. Therefore, AF is hereditary since T n−1 preserves injectives.
(⇒) Conditions (b) and (c) follow from Proposition 4.4. By Proposition 4.5.(1),
we know that Fi j preserves injectives for every 1 ≤ i < j ≤ n. Since, by Theorems
3.4 and 4.3, we get that T n−1 preserves injectives, we conclude (a). We use induction
to prove (d). For n = 2, this implication is clear from Theorem 4.3. Suppose that
(d) holds for any hereditary category of comodules over a triangular matrix comonad
which was constructed by using a linearly ordered set of length n − 1. By Remark
3.5, we know that T m is a left exact functor for any m ∈ {1, . . . , n − 1}. Thus,
by Theorems 4.3 and 3.4, we know that A≤n−1

F≤n−1 and An are hereditary. Hence Ai ,
i = 1, . . . , n are hereditary. This gives to us condition (d). �

5. Hereditary triangular matrix coalgebras

We illustrate our results by applying some of them to categories of comodules over coalge-
bras. We refer to [19] for basic information on coalgebras over commutative rings and their
categories of comodules.
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1052 L. El Kaoutit and J. Gómez-Torrecillas

5.1. Triangular matrix coalgebras

Let C and D be coalgebras over a commutative ring K , and M be a C − D–bicomodule.
Then, the functors −⊗K C,−⊗K D give comonads over the category ModK of K –modules,
and −⊗K M : ModK → ModK becomes a (−⊗K D)−(−⊗K C)–bicomodule functor (see
Subsection 3.1). These functors define a triangular matrix comonad on ModK × ModK =
ModK×K represented by the K × K –coalgebra

E =
(

C 0
M D

)
.

The comultiplication of this coalgebra over R = K × K is given by

�

(
c 0
m d

)
=
∑
(c)

(
c(1) 0
0 0

)
⊗R

(
c(2) 0
0 0

)
+
∑
(d)

(
0 0
0 d(1)

)
⊗R

(
0 0
0 d(2)

)

(31)

+
∑
(m)

(
m(−1) 0

0 0

)
⊗R

(
0 0

m(0) 0

)
+
∑
(m)

(
0 0

m(0) 0

)
⊗R

(
0 0
0 m(1)

)
,

and its counity is defined by

ε

(
c 0
m d

)
=
(
εC (c) 0

0 εD(d)

)
,

where we are using Heyneman–Sweedler’s notation.
Assume that C and M are flat as K –modules. The category of right C–comodules is

denoted by ComodC , and similarly for any other coalgebra over a commutative ring. By

Theorem 3.1, we have the normal triangular matrix comonad G =
(

1 0
−�C M 1

)
on

ComodC × ComodD , and the equivalence of categories

(ComodC × ComodD)G ∼= (ModK×K )−⊗R E = ComodE . (32)

5.2. Base change ring by a Frobenius algebra

Let R be a commutative Frobenius algebra over a commutative ring K (see [20]), that is, the
functor − ⊗K R : ModK → ModR is right adjoint to the forgetful functor from ModR to
ModK (see [21] and [22, Remark 2.3.1]). The counit of this adjunction evaluated at K gives
the Frobenius functional ψ : R → K . If η denotes the unit, then ηR(1) = ∑

i ei ⊗ fi ∈
R ⊗K R is the Casimir element. Given any R–coalgebra E , we get the adjoint pairs of
functors

ComodE
�� ModR−⊗R E

�� �� ModK ,−⊗K R
��

where the unlabelled arrows denote the forgetful functors that are left adjoints to − ⊗R E
and − ⊗K R. By composing these adjoint pairs we obtain the adjoint pair

ComodE
�� ModK−⊗K E

�� , (33)

where we are using the isomorphism E ∼= R ⊗R E . In this way, we obtain a comonad
− ⊗K E : ModK → ModK , which is determined by the structure of K –coalgebra on E
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Linear and Multilinear Algebra 1053

with comultiplication

E �̃ �� E ⊗K E, x � �� ∑
(x),i x(1)ei ⊗ fi x(2),

and counit ε̃ = ψ ◦ ε, where ε : E → R is the counit of the R–coalgebra E .
The adjoint pair (33) gives rise to the comparison functor V : ComodE → (ModK )−⊗E

(see [13, Section 3.2]). If E is flat as an R–module, then ComodE is an abelian category
and the faithful forgetful functor ComodE → ModR is exact [18]. This easily implies
that the forgetful functor ComodE → ModK satisfies the hypotheses of Beck’s theorem
(precisely, the dual of [13, Theorem 3.3.10]) and, hence, V is an equivalence of categories.
We get thus that the categories of right comodules over the R–coalgebra (E,�, ε) and of
right comodules over the K –coalgebra (E, �̃, ε̃) are equivalent.

5.3. Bipartite coalgebras

Let C, D be K –coalgebras, and M be a C − D–bicomodule. Assume that C, D,M are flat

K –modules. In the case of the coalgebra E =
(

C 0
M D

)
, the base ring R = K × K is

a Frobenius K –algebra with Frobenius functional ψ : R → K given by ψ(a, b) = a + b
for all (a, b) ∈ K × K , and Casimir element e = u ⊗ u + v ⊗ v ∈ R ⊗ R, where
u = (1, 0), v = (0, 1). By 5.2 , E is a K –coalgebra. Explicitly, the comultiplication and
counit are

�̃

(
c 0
m d

)
=
∑
(c)

(
c(1) 0
0 0

)
⊗
(

c(2) 0
0 0

)
+
∑
(d)

(
0 0
0 d(1)

)
⊗
(

0 0
0 d(2)

)
(34)

+
∑
(m)

(
m(−1) 0

0 0

)
⊗
(

0 0
m(0) 0

)
+
∑
(c)

(
0 0

m(0) 0

)
⊗
(

0 0
0 m(1)

)
,

and

ε̃

(
c m
0 d

)
= εC (c)+ εD(d)

We recover thus the construction of a bipartite K –coalgebra from [11, p.91] (called triangular
matrix coalgebra in [12]).

In the following theorem, we say that a K –coalgebra C is right hereditary if the category
ComodC is hereditary.

Theorem 5.1 Let C, D be K –coalgebras, and M be a C–D–bicomodule. Assume that

C, D and M are flat as K –modules. The bipartite K –coalgebra

(
C 0
M D

)
is right hered-

itary if and only if the following conditions hold.

(1) U�C M is an injective right D–comodule for every injective right C–comodule U;
(2) C and D are right hereditary;
(3) p�C M is a split epimorphism for each epimorphism p : E1 → E ′

1 of injective
right C–comodules E1, E ′

1.
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1054 L. El Kaoutit and J. Gómez-Torrecillas

Proof Since we assume M , C and D to be flat over K , it follows that the functor
−�C M : ComodC → ComodD is left exact. Now, the theorem follows from Theorem
4.3, the equivalence of categories (32), and the equivalence of categories given at the end
of paragraph 5.2. �

5.4. Generalized matrix coalgebras

Let Mi j , i, j = 1, . . . , n, be a set of modules over a commutative ring K , and consider
the endofunctors Fi j = Mi j ⊗K − : ModK → ModK . Then the matrix functor F :
Modn

K → Modn
K has the structure of a comonad if and only if there exists a set of

natural transformations δik j and εi as in Proposition 2.1. These natural transformations
are determined by linear maps φik j = δ

ik j
K : Mi j → Mkj ⊗ Mik and εi = εi

K : Mii → K .
We thus obtain a K n-coalgebra

F(K ) =

⎛
⎜⎜⎜⎝

M11 M21 · · · Mn1
M12 M22 · · · Mn2
...

...
...

M1n M2n · · · Mnn

⎞
⎟⎟⎟⎠ .

By Remark 2.2, each of the entries in the diagonal of this matrix is a K –coalgebra, and
Mi j is an M j j − Mii –bicomodule. Also, every φik j factors trough the cotensor product
Mkj�Mkk Mik . Using the base change of ring from 5.2 with the Frobenius K –algebra
R = K n we get the ‘comatrix’ K -coalgebra of [12, Section 2]. We prefer the name matrix
coalgebras to avoid confusion with the notion of a comatrix coring (and, in particular, coma-
trix coalgebra) from [23], which is a different construction. As in 5.2, the comultiplication
and counit of this matrix K –coalgebra can be computed explicitly.

5.5. Triangular matrix corings

More generally, we may consider corings C and D over different base rings A and B,
respectively (see [19]). Given a C−D–bicomodule M , we get the triangular matrix A× B-

coring

(
C 0
M D

)
. Under suitable flatness conditions, a result similar to Theorem 5.1 may

be formulated for corings.

Remark 5.2 Let C be an R-coring which is flat as left R-module. Assume that R is a
(possibly non commutative) Frobenius algebra over a commutative ring K . Since the functor
R ⊗K − : ModK → ModR is then a right adjoint to the forgetful functor from the category
of right R–modules ModR to ModK , the arguments from 5.2 run here to prove that the
category of right C–comodules is equivalent to the category of right comodules over a
certain K -coalgebra built from R and C. In particular, when C = R endowed with the
trivial coring structure, we get the main result from [24], namely, that the category of right
R-modules is equivalent to the category of right R-comodules.
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