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Abstract. In this paper, we establish the invariance of cyclic (co)homology of left Hopf
algebroids under the change of Morita equivalent base algebras. The classical result on
Morita invariance for cyclic homology of associative algebras appears as a special exam-
ple of this theory. In our main application we consider the Morita equivalence between
the algebra of complex-valued smooth functions on the classical 2-torus and the coordi-
nate algebra of the noncommutative 2-torus with rational parameter. We then construct a
Morita base change left Hopf algebroid over this noncommutative 2-torus and show that
its cyclic (co)homology can be computed by means of the homology of the Lie algebroid
of vector fields on the classical 2-torus.
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1. Introduction

The concept of left Hopf algebroids provides a natural framework for unifying
and extending classical constructions in homological algebra. Group, groupoid, Lie
algebra, Lie algebroid and Poisson (co)homology, Hochschild and cyclic homology
for associative algebras, as well as Hopf-cyclic homology for Hopf algebras, are all
special cases of the cyclic homology of left Hopf algebroids since the rings over
which these theories can be expressed as derived functors are all left Hopf algeb-
roids (see, e.g., [4,8,9,22–24] for more details).

As for every (co)homology theory it is an interesting issue to examine its behav-
iour under (any suitable notion of) Morita equivalence. Nevertheless, a satisfac-
tory notion of Morita equivalence between two possibly noncommutative left Hopf
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algebroids is up to our knowledge far from being obvious. The difficulty comes out
when, for instance, one tries to understand how the notion of Morita equivalence
between two Lie algebroids, in the sense of [10,15] and others, can be reflected
to their respective associated (universal) left Hopf algebroids in such a way that
invariant properties, especially homological ones, between equivalent Lie algebroids
remain invariant at the level of left Hopf algebroids. In the commutative case, that
is, for commutative Hopf algebroids, several notions already exist in the literature,
see, e.g., [17,18].

In this paper, we restrict ourselves to the case of Morita base change left Hopf
algebroids. That is, we study from a cyclic (co)homology point of view two
Morita equivalent left Hopf algebroids of the form (R,U )∼ (S, Ũ ), where R ∼
S are Morita equivalent base rings and Ũ is constructed from U . It is worth
noticing that for the case of commutative Hopf algebroids or Hopf algebras, this
notion reduces to simply changing the base ring by an isomorphism. Neverthe-
less, this restriction is not far from geometric applications since, for example, the
algebra of smooth functions on a smooth manifold M is Morita equivalent to
the endomorphism algebra of global smooth sections of a vector bundle on M.
More precisely, one can start with a smooth vector bundle P→M and a Lie al-
gebroid (M,E), then associate to them a Morita base change (C∞(M),V�(E))∼
(End(�(P)), ˜V�(E)), where (C∞(M),V�(E)) is the associated (universal) left Hopf
algebroid attached to (M,E), see Section 5. In the aim of illustrating our methods,
we give an explicit application concerning the noncommutative 2-torus with ratio-
nal parameter.

A left Hopf algebroid (×R-Hopf algebra) U is, roughly speaking, a Hopf alge-
bra whose ground ring is not a commutative ring k but a possibly noncommutative
k-algebra R, see [3,32,36]. In categorical terms, U is a ring extension of the envel-
oping ring Re= R⊗k Ro of the base algebra R, where the category of left U -mod-
ules is a right closed monoidal category, and the forgetful functor to the category
of left Re-modules is strict monoidal and preserves right inner hom-functors. As
k-bialgebras are underlying Hopf algebras, (left) R-bialgebroids are the underlying
structure of (left) Hopf algebroids, but for bialgebroids the forgetful functor is in
general not right inner-hom preserving.

Morita base change for bialgebroids (following [34]) provides a possibility to
produce new bialgebroids by replacing the base algebra R by a Morita equiva-
lent base algebra S in such a way that the resulting R-bialgebroid has a monoi-
dal category of representations equivalent to that of the original R-bialgebroid.
More generally, the base algebra R can be replaced by a

√
Morita equivalent alge-

bra S, see [37]: two algebras are
√

Morita equivalent if one has an equivalence of
k-linear monoidal categories of bimodules Re Mod� Se Mod. Such an equivalence
relation between two bialgebroids is weaker than to consider two bialgebroids to
be equivalent if their monoidal categories of (co)representations are so. In partic-
ular, Morita base change establishes a relation between two bialgebroids in a way
that is meaningless for ordinary k-bialgebras, as already said before.
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Apart from what we mentioned above, the importance of the notion of Morita
base change moreover consists in unifying seemingly different concepts: for
example, every weak C-bialgebra (which can be considered as bialgebroids
[3, Section 3.2.2]) can be shown to be a face algebra (which are examples of bial-
gebroids as well [33]) up to Morita base change [34, Section 5.2]. Here we present
no application in this direction, this will be left for a future project.

Useful for our purposes is the fact that Morita base change equivalence carries
over to the Hopf structure: an R-bialgebroid is left Hopf if and only if its Morita
base change equivalent S-bialgebroid is left Hopf as well [34, Prop. 4.6].

In this paper, we will consider the cyclic (co)homology for left Hopf algebroids
from [23] and confront it with the Morita base change theory from [34]. Our aim
is to give, in the spirit of [28], the explicit chain morphisms and chain homot-
opies that establish equivalences of (co)cyclic modules between the original left
Hopf algebroid and the Morita base change left Hopf algebroid Ũ ; see, however,
Remark 1 for a comment on a categorical approach. As a consequence, we obtain
our central theorem which we copy here, see the main text for the details and in
particular the notation used:

THEOREM A (Morita base change invariance of (Hopf-)cyclic (co)homology).
Let (R,U ) be a left Hopf algebroid, M a left U -comodule right U -module which
is stable anti-Yetter–Drinfel’d, and (R, S, P,Q, φ,ψ) a Morita context. Consider its
induced

√
Morita context (Re, Se, Pe,Qe, φe,ψe) and the Morita base change left

Hopf algebroid (S, Ũ := Pe⊗Re U ⊗Re Qe). Then

H•(U,M)�H•(Ũ , P⊗R M⊗R Q), H •(U,M)�H •(Ũ , P⊗R M⊗R Q),

HC•(U,M)�HC•(Ũ , P⊗R M⊗R Q), HC•(U,M)�HC•(Ũ , P⊗R M⊗R Q)

are isomorphisms of k-modules.

As an application, we first indicate how the classical result of Morita invariance
for cyclic homology of associative algebras (see, e.g., [7,12,28]) fits into our general
theory.

Second, we consider a Morita context between the complex-valued smooth func-
tions on the commutative real 2-torus T

2 and the coordinate ring of the noncom-
mutative 2-torus with rational parameter. After reviewing the construction for this
case, we apply the Morita invariance to the universal left Hopf algebroid associ-
ated to the Lie algebroid of vector fields on T

2 and its Morita base change left
Hopf algebroid ˜VK over this noncommutative 2-torus, which establishes a passage
from commutative to noncommutative geometry: in the spirit of considering left
Hopf algebroids as the noncommutative analogue of Lie algebroids and their prim-
itive elements as the noncommutative analogue of (generalised) vector fields, the
primitive elements of ˜VK can be seen to consist of vector fields on the noncom-
mutative torus.
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COROLLARY B. Let q∈S

1 be a root of unity, and consider the Lie algebroid (R=
C∞(T2), K =DerC(C∞(T2))) of vector fields on the complex torus T

2 and its associ-
ated left Hopf algebroid (R,VK ). Let M be a right VK -module and (R, S, P,Q, φ,ψ)
the Morita context of Equation (5.10). We then have the following natural C-module
isomorphisms

H•(VK ,M)�H•(˜VK , M̃), HC•(VK ,M)�HC•(˜VK , M̃),

H •(VK ,M)�H •(˜VK , M̃), HC•(VK ,M)�HC•(˜VK , M̃),

where ˜VK is the Morita base change left Hopf algebroid over the noncommutative
torus C∞(T2

q) whose structure maps are given as in Section 3.2.
Furthermore, assume that M be R-flat. Then we have that

H•(˜VK , M̃)�H•(K ,M), HC•(˜VK , M̃)�⊕

i≥0 H•−2i (K ,M),

H •(˜VK , M̃)�M⊗R

∧•
R K , H P•(˜VK , M̃)�⊕

i≡•mod2 Hi (K ,M)

are natural C-module isomorphisms, where H•(K ,M) := TorVK
• (M, R), and where

H P• denotes periodic cyclic cohomology.

2. Preliminaries

2.1. SOME CONVENTIONS

Throughout this note, “ring” means associative algebra over a fixed commutative
ground ring k. All other algebras, modules, etc., will have an underlying structure
of a central k-module. Given a ring R, we denote by RMod the category of left
R-modules, by Ro the opposite ring and by Re := R⊗k Ro the enveloping algebra
of R. An R-ring is a monoid in the monoidal category (Re Mod,⊗R, R) of Re-mod-
ules (i.e., (R, R)-bimodules with symmetric action of k), fulfilling associativity and
unitality. Likewise, an R-coring is a comonoid in (Re Mod,⊗R, R), fulfilling coasso-
ciativity and counitality.

Our main object is an Re-ring U . Explicitly, such an Re-ring is given by a
k-algebra homomorphism η=ηU : Re→U whose restrictions

s :=η(−⊗k 1) : R→U and t :=η(1⊗k−) : Ro→U (2.1)

will be called the source and target map, respectively. Left and right multiplication
in U give rise to an (Re, Re)-bimodule structure on U , that is, four actions of R
that we denote by

r � u � r ′ := s(r)t (r ′)u, r � u � r ′ :=us(r ′)t (r), r, r ′ ∈ R, u ∈U,

which are commuting, in the sense that, for every a,a′, r, r ′ ∈ R and u, v ∈U , we
have

a′ � (r � u � r ′)� a= r � (a′ � u � a)� r ′;
(u � r)(v � a)= (a � u)(r �v).

(2.2)
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If not stated otherwise, we view U as an (R, R)-bimodule using the actions
� , � , denoted � U � . In particular, we define the tensor product U ⊗R U with
respect to this bimodule structure. On the other hand, using the actions � , � per-
mits to define the Sweedler–Takeuchi product, see [35,36]:

U ×R U :=
{

∑

i

ui ⊗R vi ∈U ⊗R U |
∑

i

r � ui ⊗R vi =
∑

i

ui ⊗R vi � r, ∀r ∈ R

}

.

One easily verifies that U ×R U is an Re-ring via factorwise multiplication, with
unit element 1U ⊗R 1U and ηU×RU (r⊗k r ′)= s(r)⊗R t (r ′), for r, r ′ ∈ R.

2.2. BIALGEBROIDS [36]

Bialgebroids are a generalisation of bialgebras. An important subtlety is that the
algebra and coalgebra structures are defined in different monoidal categories.

DEFINITION 2.1. Let R be a k-algebra. A left bialgebroid over R is an Re-ring
U together with two homomorphisms of Re-rings

� :U→U ×R U, ε̂ :U→Endk(R)

which turn U into an R-coring with coproduct � (viewed as a map U →
U � ⊗R �U) and counit ε :U→ R, u → (ε̂(u))(1).

So one has for example for u ∈U , r, r ′ ∈ R

�(r � u � r ′)= r � u(1)⊗R u(2) � r ′, �(r � u � r ′)=u(1) � r ′ ⊗R r � u(2), (2.3)

using Sweedler’s shorthand notation u(1)⊗R u(2) for �(u), as well as in U ×R U the
identity

r � u(1)⊗R u(2)=u(1)⊗R u(2) � r. (2.4)

The counit, on the other hand, fulfills for any u, v∈U and r, r ′ ∈ R

ε(r � u � r ′)=rε(u)r ′, ε(u � r)=ε(r � u), ε(uv)= ε(u � ε(v))=ε(ε(v)� u). (2.5)

2.3. LEFT HOPF ALGEBROIDS [32]

Left Hopf algebroids have been introduced by Schauenburg under the name
×R-Hopf algebras and generalise Hopf algebras towards left bialgebroids. For a left
bialgebroid U over R, one defines the (Hopf-)Galois map

β : � U ⊗Ro U �→U � ⊗R � U, u⊗Ro v →u(1)⊗R u(2)v,

where

� U ⊗Ro U � =U ⊗k U/span{r � u⊗k v−u⊗k v � r |u, v∈U, r ∈ R}. (2.6)
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DEFINITION 2.2. [32] A left R-bialgebroid U is called a left Hopf algebroid
(or ×R-Hopf algebra) if β is a bijection.

By means of a Sweedler-type notation

u+⊗Ro u− :=β−1(u⊗R 1)

for the translation map β−1(−⊗R 1) :U→ � U⊗Ro U � , one obtains for all u, v∈U ,
r, r ′ ∈ R the following useful identities [32, Prop. 3.7]:

u+(1)⊗R u+(2)u−=u⊗R 1∈U � ⊗R � U, (2.7)

u(1)+⊗Ro u(1)−u(2)=u⊗Ro 1∈ � U ⊗Ro U � , (2.8)

u+⊗Ro u− ∈U ×Ro U, (2.9)

u+(1)⊗R u+(2)⊗Ro u−=u(1)⊗R u(2)+⊗Ro u(2)−, (2.10)

u+⊗Ro u−(1)⊗R u−(2)=u++⊗Ro u−⊗R u+−, (2.11)

(uv)+⊗Ro (uv)−=u+v+⊗Ro v−u−, (2.12)

u+u−= s(ε(u)), (2.13)

u+t (ε(u−))=u, (2.14)

(s(r)t (r ′))+⊗Ro (s(r)t (r ′))−= s(r)⊗Ro s(r ′), (2.15)

where in (2.9) we mean the Sweedler–Takeuchi product

U ×Ro U :=
{

∑

i

ui ⊗Ro vi ∈ � U ⊗Ro U � |
∑

i

ui � r⊗Ro vi

=
∑

i

ui ⊗Ro r � vi , ∀r ∈ R

}

,

which is an algebra by factorwise multiplication, but with opposite multiplication
on the second factor. Note that in (2.11) the tensor product over Ro links the first
and third tensor component. By (2.7) and (2.9), one can write

β−1(u⊗R v)=u+⊗Ro u−v.

2.4. U -MODULES

Let (R,U ) be a left bialgebroid. Left and right U -modules are defined as modules
over the ring U , with respective actions denoted by juxtaposition. We denote the
respective categories by U Mod and U o Mod; while U Mod is a monoidal category,

U o Mod in general is not [31]. One has a forgetful functor U Mod→ Re Mod using
which we consider every left U -module N also as an (R, R)-bimodule with actions

anb :=a � n � b := s(a)t (b)n, a,b∈ R,n∈ N . (2.16)
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Similarly, every right U -module M is also an (R, R)-bimodule via

amb :=a � m � b :=ms(b)t (a), a,b∈ R,m ∈M, (2.17)

and in both cases we usually prefer to express these actions just by juxtaposition
if no ambiguity is to be expected.

2.5. U -COMODULES

Similarly as for coalgebras, one may define comodules over bialgebroids, but the
underlying R-module structures need some extra attention. For the following defi-
nition confer, e.g., [2,6,31].

DEFINITION 2.3. A left U -comodule for a left bialgebroid (R,U ) is a left com-
odule of the underlying R-coring (U,�, ε), i.e., a left R-module M with action L R :
(r,m) → rm and a left R-module map

�M :M→U � ⊗R M, m →m(−1)⊗R m(0)

satisfying the usual coassociativity and counitality axioms. We denote the category
of left U -comodules by U Comod.

On any left U -comodule one can additionally define a right R-action

mr := ε(m(−1) � r)m(0). (2.18)

This action originates in fact from the algebra morphism

R→U∗, r → [u → ε(u � r)], (2.19)

where U∗ :=HomR(U � , RR) is the right convolution ring of the underlying R-cor-
ing U , and the canonical functor U Comod→ModU∗ that endows any left U -com-
odule X with a right U∗-action given by

xσ =
∑

(x)

σ (x(−1))x(0)

for every x ∈ X and σ ∈U∗. The above action is then the restriction to scalars asso-
ciated to the algebra morphism (2.19), and the action (2.18) is the unique one that
turns M into a left Re-module in such a way that the coaction is an Re-module
morphism

�M :M→U ×R M,

where U ×R M is the Sweedler–Takeuchi product

U ×R M :=
{

∑

i

ui ⊗R mi ∈U ⊗R M |
∑

i

ui t (a)⊗R mi =
∑

i

ui ⊗R mi a, ∀a∈ R

}

.
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In other words, M becomes a left ×R-U -comodule. Conversely, any left ×R-U -
comodule gives rise to a left U -comodule. This correspondence establishes in fact
an isomorphism of categories.

As a result of the previous discussion, �M satisfies the identities

�M(rmr ′)= (r � m(−1) � r ′)⊗R m(0), (2.20)

m(−1)⊗R m(0)r = (r � m(−1))⊗R m(0). (2.21)

2.6. CYCLIC HOMOLOGY FOR LEFT HOPF ALGEBROIDS

2.6.1. Stable Anti Yetter–Drinfel’d Modules

The following definition is the left bialgebroid right module and left comodule ver-
sion of the corresponding notion in [4,16].

DEFINITION 2.4. Let (R,U ) be a left Hopf algebroid, and let M simultaneously
be a left U -comodule and a right U -module with action denoted by (m,u) →mu
for u ∈U , m ∈M . We call M an anti Yetter–Drinfel’d (aYD) module if:

(i) The two Re-module structures on M originating from its nature as U -comod-
ule resp. right U -module coincide: for all r, r ′ ∈ R, m ∈M

rm= r � m, (2.22)

mr ′ =m � r ′, (2.23)

where the right R-module structure on the left hand side is given by (2.18).
(ii) For u ∈U and m ∈M one has the following compatibility between action and

coaction:

�M(mu)=u−m(−1)u+(1)⊗R m(0)u+(2). (2.24)

The aYD module M is said to be stable (SaYD) if, for all m ∈M , one has

m(0)m(−1)=m. (2.25)

2.6.2. Cyclic (Co)Homology

We will not recall the formalism of cyclic (co)homology in full detail; see, e.g.,
[14,25] for more information. However, recall that para-(co)cyclic k-modules gen-
eralise (co)cyclic k-modules by dropping the condition that the (co)cyclic operator
implements an action of Z/(n+ 1)Z on the degree n part. Thus a para-cyclic k-
module is a simplicial k-module (C•,d•, s•) and a para-cocyclic k-module is a co-
simplicial k-module (C•, δ•, σ•), together with k-linear maps tn :Cn→Cn resp. τn :
Cn→Cn satisfying, respectively
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di ◦ tn=
{

tn−1 ◦di−1 if 1≤ i ≤n,

dn if i =0,
τn ◦ δi =

{

δi−1 ◦ τn−1 if 1≤ i ≤n,

δn if i =0,

si ◦ tn=
{

tn+1 ◦ si−1 if 1≤ i ≤n,

t2
n+1 ◦ sn if i =0,

τn ◦σi =
{

σi−1 ◦ τn+1 if 1≤ i ≤n,

σn ◦ τ 2
n+1 if i =0.

(2.26)

Such a para-(co)cyclic module is called (co)cyclic if tn+1
n = id (resp. τ n+1

n = id). Any
cyclic module C• gives rise to a cyclic bicomplex C••, see, e.g., [14] for details. The
only thing we recall here is that the differential on the b-columns is given by

b=
n

∑

i=0

(−1)i di , (2.27)

and likewise β :=∑n+1
i=0 (−1)iδi for a cocyclic module.

2.6.3. The Para-(Co)Cyclic Module Associated to a Left Hopf Algebroid
([23], cf. also [24])

Let M be simultaneously a left U -comodule and a right U -module with compatible
left R-action as in (2.22). Set

C•(U,M) :=M⊗Ro (�U� )
⊗Ro •,

and in each degree n define the following structure maps on it:

di (m⊗Ro x)=

⎧

⎪

⎨

⎪

⎩

m⊗Ro u1⊗Ro · · ·⊗Ro (ε(un)� un−1) if i=0,

m⊗Ro · · ·⊗Ro (un−i un−i+1)⊗Ro · · ·⊗Ro un if 1≤i≤n−1,

(mu1)⊗Ro u2⊗Ro · · ·⊗Ro un if i =n,

si (m⊗Ro x)=

⎧

⎪

⎨

⎪

⎩

m⊗Ro u1⊗Ro · · ·⊗Ro un⊗Ro 1 if i =0,

m⊗Ro · · ·⊗Ro un−i ⊗Ro 1⊗Ro un−i+1⊗Ro · · ·⊗Ro un if 1≤i≤n−1,

m⊗Ro 1⊗Ro u1⊗Ro · · ·⊗Ro un if i=n,

tn(m⊗Ro x)= (m(0)u
1+)⊗Ro u2+⊗Ro · · ·⊗Ro un+⊗Ro (un− · · ·u1−m(−1)), (2.28)

where we abbreviate x :=u1⊗Ro · · ·⊗Ro un . As explained in detail in [23], this cyclic
module is the generalised “cyclic dual” to the following cocyclic module: set

C•(U,M) := (�U� )
⊗R• ⊗R M,
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with structure maps in degree n given by

δi (z⊗R m)=
⎧

⎨

⎩

1⊗R u1⊗R · · ·⊗R un⊗R m if i =0,
u1⊗R · · ·⊗R �(ui )⊗R · · ·⊗R un⊗R m if 1≤ i ≤n,
u1⊗R · · ·⊗R un⊗R m(−1)⊗R m(0) if i =n+1,

δ j (m)=
{

1⊗R m if j =0,
m(−1)⊗R m(0) if j =1,

σi (z⊗R m)=u1⊗R · · ·⊗R ε(u
i+1)⊗R · · ·⊗R un⊗R m 0≤ i ≤n−1,

τn(z⊗R m)=u1
−(1)u

2⊗R · · ·⊗R u1
−(n−1)u

n⊗R u1
−(n)m(−1)⊗R m(0)u

1+,

(2.29)

where we abbreviate z :=u1⊗R · · ·⊗R un .
In [23] it was shown that, under the minimal assumption (2.22), the maps (2.28)

(resp. (2.29)) give rise to a para-cyclic (resp. para-cocylic) module, which is cyclic
(resp. cocyclic) if M is SaYD, i.e., additionally fulfills (2.23)–(2.25).

Let us denote by H•(U,M) and HC•(U,M) the resulting simplicial and cyclic
homology groups of C•(U,M), and likewise by H •(U,M) and HC•(U,M) the
resulting simplicial and cyclic cohomology groups of C•(U,M).

3.
√

Morita Theory and Morita Base Change Hopf Algebroids

In this section, we first recall some general facts about Morita contexts and their
induced

√
Morita theory in the sense of Takeuchi [37]. Secondly, we explain how

this theory was used by Schauenburg to introduce Morita base change (left) Hopf
algebroids in [34]. In order to establish our main result, we explicitly give here the
structure maps of Schauenburg’s Morita base change (left) Hopf algebroids. From
now on, the unadorned symbol ⊗ stands for the tensor product over k, the com-
mutative ground ring.

3.1. MORITA CONTEXTS

Let R and S be two rings and let S PR and R QS be two bimodules, together with
the following bimodule isomorphisms:

φ : P⊗R Q
�−→S, φ−1(1S)=

∑

p′j ⊗R q ′j ,

ψ :Q⊗S P
�−→R, ψ−1(1R)=

∑

qi ⊗S pi .
(3.1)

It is known from Morita theory (see, e.g., [1, p. 60]) that, up to natural isomor-
phisms, φ and ψ can be chosen in such a way that

(φ⊗S P)= (P⊗R ψ) and (ψ⊗R Q)= (Q⊗S φ). (3.2)

Thus (R, S, P,Q, φ,ψ) can be considered as a Morita context. In what follows, we
will usually make use of the notation

p′q ′ :=φ(p′ ⊗R q ′) and qp :=ψ(q⊗S p), ∀p, p′ ∈ P,q,q ′ ∈Q.
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We then have

∑

j

p′j q ′j =1S,
∑

i

qi pi =1R,

as well as

a(bp)= (ab)p in S PR, b(aq)= (ba)q in R QS,

for all pairs of elements a, p∈ P and b,q ∈Q.
The above context is canonically extended to a Morita context between the

enveloping rings Re and Se. That is, (Re, Se, Pe,Qe, φe,ψe) is a Morita context as
well, where the underlying bimodules are defined by

Pe := P⊗Qo ∈ SeModRe,

Qe :=Q⊗ Po ∈ ReModSe.

Here Ro Po
So and So Qo

Ro are the opposite bimodules, and φe,ψe are the obvious
maps. As was argued in [37], this is an induced

√
Morita equivalence between R

and S, in the sense that the last context induces a monoidal equivalence between
the monoidal categories of bimodules RModR and SModS . Explicitly, such a mo-
noidal equivalence is set up by the following functors

RModR � Re Mod
Pe⊗Re− ��

Se Mod� SModS .
Qe⊗Se−

��

One of the monoidal structure maps of the functor Qe⊗Se − is explicitly given by
the following natural isomorphism

(Qe⊗Se X)⊗R (Q
e⊗Se Y )

�−→ Qe⊗Se (X ⊗S Y ),

((q⊗ po)⊗Se x)⊗R ((b⊗ ao)⊗Se y) −→ (q⊗ ao)⊗Se (x(pb)⊗S y), (3.3)
∑

j

((q⊗ p′j o)⊗S x)⊗R ((q
′
j ⊗ po)⊗S y)←−� (q⊗ po)⊗Se (x⊗S y).

An alternative way of defining these functors is via the following natural isomor-
phisms:

Qe⊗Se −�Q⊗S−⊗S P, Pe⊗Re −� P⊗R−⊗R Q.

Repeating the same process, we end up with two mutually inverse functors (up to
natural isomorphisms)

ReModRe

Pe⊗Re (−)⊗Re Qe
��
SeModSe .

Qe⊗Se (−)⊗Se Pe
��
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Using the Morita context, this equivalence is canonically lifted to the category of
monoids. Thus, if we denote by Re-Rings the category of Re-rings, i.e., algebra
extensions of Re, we have a commutative diagram

Re-Rings
Pe⊗Re (−)⊗Re Qe

��

OR

��

Se-Rings

OS

��

Qe⊗Se (−)⊗Se Pe
��

ReModRe

Pe⊗Re (−)⊗Re Qe
��
SeModSe ,

Qe⊗Se (−)⊗Se Pe
��

whose vertical arrows are the forgetful functors. For any Re-ring T we then have
functors connecting the categories of left modules:

T Mod
Pe⊗Re (−) ��

F

��

Pe⊗Re T⊗Re Qe Mod

F ′

��

Qe⊗Se (−)
��

Re Mod
Pe⊗Re (−) ��

Se Mod.
Qe⊗Se (−)

��

(3.4)

3.2. MORITA BASE CHANGE FOR LEFT BIALGEBROIDS

In [34], Schauenburg used one of these functors to construct a functor from the
category of left Hopf algebroids over R to the category of left Hopf algebroids
over S, known as Morita base change left Hopf algebroids. In what follows, we will
need an explicit description of this Morita base change left Hopf algebroid struc-
ture. So, it will be convenient to review this construction in more detail.

Let (R, S, P,Q, φ,ψ) be a Morita context. As one can realise from diagram
(3.4), the following two assertions are equivalent:

(i) the category of T -modules is a monoidal category and the forgetful functor
F is strict monoidal;

(ii) the category of (Pe⊗Re T ⊗Re Qe)-modules is a monoidal category and the for-
getful functor F ′ is strict monoidal.

Therefore, by Schauenburg’s result [31, Theorem 5.1], starting with a left Hopf
algebroid (R,U ) we can construct a new one (S, Ũ ) as follows. Denote by

Ũ := Pe⊗Re U ⊗Re Qe

the image of U . Using the natural isomorphism (3.3) and the diagram (3.4) for the
underlying Re-ring U , we can compute the structure maps of the left Hopf alge-
broid (S, Ũ ):
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(i) Source and target. Source and target are given by

η̃ : Se−→ Pe⊗Re U ⊗Re Qe,

s⊗ s̃o −→
∑

i, j

(sp′j ⊗q ′i
o
)⊗Re 1U ⊗Re (q ′j ⊗ (s̃ p′i )

o
). (3.5)

(ii) Ring structure. The multiplication in Ũ is given by

μ̃ : Ũ ⊗Se Ũ −→ Ũ ,

ũ⊗Se ṽ −→ (a1⊗bo
1)⊗Re ((u � (c1a2))((b2d1)�v))⊗Re (c2⊗do

2 ), (3.6)

where ũ := ((a1⊗bo
1)⊗Re u⊗Re (c1⊗do

1 )) and ṽ := ((a2⊗bo
2)⊗Re v⊗Re (c2⊗do

2 )).
The identity element is given by the image η̃(1Se):

1Se −→
∑

(p′j ⊗q ′i
o
)⊗Re 1U ⊗Re (q ′j ⊗ p′i

o
).

(iii) Coring structure. The comultiplication is given by

�̃ : Ũ −→ Ũ ⊗S Ũ ,

ũ −→
∑

i, j

((a⊗qo
i )⊗Re u(1)⊗Re (c⊗p′j

o
))⊗S ((pi⊗bo)⊗Re u(2)⊗Re (q ′j ⊗do)),

(3.7)

where ũ := ((a⊗bo)⊗Re u⊗Re (c⊗do)), and the counit is given by

ε̃ : Ũ −→ S, ũ −→aε(u � (cd))b. (3.8)

(iv) The left Hopf structure. The explicit expression for the translation map reads

β̃−1 : Ũ −→ Ũ ⊗So Ũ ,

ũ −→
∑

i, j

((a⊗q ′j
o
)⊗Re u+⊗Re (c⊗ po

i ))⊗So ((d⊗qo
i )⊗Re u−⊗Re (b⊗ p′j

o
)),

(3.9)

where again ũ := ((a⊗bo)⊗Re u⊗Re (c⊗do)).

3.3. Ũ -MODULES AND Ũ -COMODULES

Consider the diagram analogous to (3.4) for right U -modules. The functor of the
first column in that diagram is explicitly given on objects as follows. For M ∈
ModU , the right Ũ -module M̃ := P ⊗R M ⊗R Q is equipped with the following
action: denote

m̃ := p⊗R m⊗R q ∈ M̃ and ũ := (a⊗ bo)⊗Re u⊗Re (c⊗ do)∈ Ũ ,

and define

m̃ũ :=d⊗R ((bp)� m � (qa))u⊗R c. (3.10)



678 LAIACHI EL KAOUTIT AND NIELS KOWALZIG

As shown in [34], there is also a monoidal equivalence connecting the categories of
left comodules. More precisely, if M ∈U Comod, then M̃ is a left Ũ -comodule with
coaction

�M̃(m̃) :=
∑

i, j

((p⊗qo
i )⊗Re m(−1)⊗Re (q⊗ p′j

o
))⊗S (pi ⊗R m(0)⊗R q ′j ), (3.11)

which exactly coincides with the formula given in [34] in the special case where the
left module �U is finitely generated projective.

LEMMA 3.1. Let M be a right U -module and left U -comodule. Then M is aYD
(resp. SaYD) if and only if M̃ is.

Proof. It is sufficient to prove, say, the direct implication as the opposite direc-
tion then follows at once since both directions in the Morita base change induced
equivalence between U -modules and Ũ -modules as well as in the induced equiva-
lence between U -comodules and Ũ -comodules work the same way.

So assume that M is aYD. Then, for any s, t ∈ S, we have

m̃η̃(t⊗ so) =
∑

i, j

(p⊗R m⊗R q)(((tp′j )⊗ q ′j o)⊗Re 1U ⊗Re (q ′j ⊗ (sp′i )o))

(3.10)=
∑

i, j

sp′i ⊗R ((q
′
i p)� m � (qtp′j ))⊗R q ′j

(2.22),(2.23)=
∑

i, j

sp′i ⊗R ((q
′
i p)m(qtp′j ))⊗R q ′j

=
∑

i, j

(sp′i q ′i p)⊗R m⊗R (qtp′j q ′j )

= (sp)⊗R m⊗R (qt)= sm̃t,

which gives (2.22) and (2.23) for M̃ . Now, let us show (2.24) for M̃ , and start with
m̃ũ=d⊗R ((bp)� m � (qa))u⊗R c as defined in (3.10). Once computed the coaction
of the middle term in the latter tensor product and taking into account (2.24) for
M , apply (3.11) to obtain

�M̃(m̃ũ)=
∑

i, j

[(d⊗ qo
i )⊗Re ((u− � (bp))(m(−1) � (qa))u+(1))⊗Re (c⊗ p′j o)]

⊗S(pi ⊗R m(0)u+(2)⊗R q ′j ).

On the other hand, using (3.7) and (3.9), we get

ũ−m̃(−1)ũ+(1)⊗S m̃(0)ũ+(2)
=

∑

i0,i1,i2; j0, j1, j2

[(d⊗ qo
i1
)⊗Re (((qi0 p′j1)� u− � (bp))((qi2 p′j0)� m(−1)

� (qa))u+(1))⊗Re (c⊗ p′j2
o)]
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⊗S[pi1⊗R ((m(0) � (q ′j0 pi2))((q
′
j1

pi0)� u+(2)))⊗R q ′j2 ]
(2.21),(2.23)=

∑

i0,i1; j1, j2

[(d⊗ qo
i1
)⊗Re (((qi0 p′j1)� u− � (bp))(m(−1)

� (qa))u+(1))⊗Re (c⊗ p′j2
o)]

⊗S[pi1⊗R ((m(0))((q
′
j1

pi0)� u+(2)))⊗R q ′j2 ]
(2.3),(2.9)=

∑

i1; j2

[(d⊗ qo
i1
)⊗Re ((u− � (bp))(m(−1) � (qa))u+(1))⊗Re (c⊗ p′j2

o)]

⊗S[pi1⊗R (m(0)u+(2))⊗R q ′j2 ]
=�M̃(m̃ũ),

where in the last equality we used (2.20) along with (2.22)–(2.24). Analogously one
checks the stability condition for M̃ .

4. Morita Base Change Invariance in Hopf-Cyclic (Co)Homology

This section contains our main results, Theorems 4.5 and 4.7. More precisely,
we construct two morphisms between the cyclic modules C•(U,M) and C•(Ũ , M̃),
where (S, Ũ ) is a Morita base change of (R,U ), and show that they form quasi-
isomorphisms by giving an explicit homotopy. This establishes the Morita base
change invariance for cyclic homology. For the Morita base change invariance of
cyclic cohomology, we follow the same path although we shall not give the proofs
since they are similar to the homology case.

Fix a Morita context (R, S, P,Q, φ,ψ) and assume we are given a left Hopf
algebroid (R,U ), with Morita base change left Hopf algebroid (S, Ũ ) as con-
structed in Section 3.2. Recall the notation of Section 3.3, and from now on, the
symbol i0,...,n stands for the set of indices {i0, · · · , in}.

4.1. THE HOMOLOGY CASE

Consider the cyclic module (C•(U,M),d•, s•, t•) as in (2.28).

LEMMA 4.1. Let M be a right U -module left U -comodule, subject to both (2.22)
and (2.23). Then the cyclic operator t̃ : Cn(Ũ , M̃)→ Cn(Ũ , M̃) for the left Hopf
algebroid Ũ with coefficients in M̃ is explicitly given by

t̃ : m̃⊗So x̃

−→
∑

i1,...,n

(pi1 ⊗R m(0)u
1+⊗R c1)⊗So ((a2⊗ qo

i1
)⊗Re u2+⊗Re (c2⊗ po

i2
))

⊗So · · ·⊗So ((an⊗ qo
in−1

)⊗Re un+⊗Re (cn⊗ po
in
))

⊗So [(dn⊗ qo
in
)⊗Re [(un− � (bndn−1))(u

n−1− � (bn−1dn−2)) · · · (u1− � (b1 p))m(−1)]
⊗Re(q⊗ ao

1)],
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using the notation m̃ := p⊗R m⊗R q ∈ M̃ as well as x̃ := ũ1⊗So · · ·⊗So ũn , where ũk :=
(ak⊗ bo

k )⊗Re uk⊗Re (ck⊗ do
k ) for 1≤ k≤n.

Proof. Equation (2.22) is not directly needed in the computation, but rather to
make the operator t̃ well-defined. By definition we know that

t̃(m̃⊗So ũ1⊗So · · ·⊗So ũn):=m̃(0)ũ
1+⊗So ũ2+⊗So · · ·⊗So ũn+⊗So (ũn−ũn−1− · · · ũ1−m̃(−1)).

Using the formula for the translation map β̃ in (3.9), we have, along with Equa-
tions (3.10), (3.11), (2.17), and repeatedly using the multiplication formula (3.6)

t̃(m̃⊗So ũ1⊗So · · ·⊗So ũn)

=
∑

j0,...,n
i0,...,n

(pi1 ⊗R ((q
′
j1

pi0)� m(0) � (q ′j0 a1))u
1+⊗R c1)⊗So ((a2⊗ q ′j2

o)⊗Re u2+⊗Re (c2⊗ po
i2
))

⊗So · · ·⊗So ((an⊗ q ′jn
o)⊗Re un+⊗Re (cn⊗ po

in
))⊗So [(dn⊗ qo

in
)

⊗Re [((qin−1 p′jn )� un− � (bndn−1))((qin−2 p′jn−1
)� un−1− � (bn−1dn−2))

· · · ((qi0 p′j1)� u1− � (b1 p))m(−1)]⊗Re (q⊗ p′j0
o)]

=
∑

j0,...,n
i0,...,n

(pi1 ⊗R ((m(0) � (q ′j0 a1))(u
1+ � (q ′j1 pi0)))⊗R c1)⊗So ((a2⊗ q ′j2

o)⊗Re u2+

⊗Re(c2⊗ po
i2
))⊗So · · ·⊗So ((an⊗ q ′jn

o)⊗Re un+⊗Re (cn⊗ po
in
))⊗So [(dn⊗ qo

in
)

⊗Re [((qin−1 p′jn )� un− � (bndn−1))((qin−2 p′jn−1
)� un−1− � (bn−1dn−2))

· · · ((qi0 p′j1)� u1− � (b1 p))m(−1)]⊗Re (q⊗ p′j0
o)].

By Equations (2.23) and (2.21), we can eliminate the sum with the index j0. Thus
we have

t̃(m̃⊗So ũ1⊗So · · ·⊗So ũn)

=
∑

j1,...,n
i0,...,n

(pi1⊗R (m(0)(u
1+ � (q ′j1 pi0)))⊗R c1)⊗So ((a2⊗ q ′j2

o)⊗Re u2+⊗Re (c2⊗ po
i2
))

⊗So · · ·⊗So ((an⊗ q ′jn
o)⊗Re un+⊗Re (cn⊗ po

in
))⊗So [(dn⊗ qo

in
)

⊗Re [((qin−1 p′jn )� un− � (bndn−1))((qin−2 p′jn−1
)� un−1− � (bn−1dn−2))

· · · ((qi0 p′j1)� u1− � (b1 p))m(−1)]⊗Re (q⊗ ao
1)].

Repeating the same process, but now using repeatedly (2.9), we can eliminate the
sums indexed by i0, j1, . . . , jn , and obtain the stated formula.

In order to show invariance of Hopf-cyclic homology, we will first of all con-
struct a quasi-isomorphism between the b-columns, denoted again by C•(U,M)
resp. C•(Ũ , M̃), of the cyclic bicomplexes CC••(U,M) and CC••(Ũ , M̃) associated
to the respective cyclic modules (cf. Section 2.6.2).
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Define the map θn :Cn(U,M)→Cn(Ũ , M̃) as follows: for n=0, set

θ0 :M−→ M̃, m −→
∑

i

pi ⊗R m⊗R qi ,

and for n≥1, abbreviating x :=u1⊗Ro · · ·⊗Ro un , set

θn :m⊗Ro x −→
∑

i0,...,n−1
j0,...,n

(pi0⊗R m⊗R q j0)⊗So ((p j0⊗qo
i0
)⊗Re u1⊗Re (q j1⊗ po

i1
))

⊗So · · ·⊗So ((p jn−1⊗qo
in−1

)⊗Re un⊗Re (q jn ⊗ po
jn )). (4.1)

In the opposite direction, introduce the map γn :Cn(Ũ , M̃)→Cn(U,M), which is,
for n=0,

γ0 : M̃−→M, (m̃ := p⊗R m⊗R q) −→
∑

j

(q ′j p)m(qp′j ),

and for n≥1 it is given as

γn : m̃⊗So x̃ −→
∑

j0,...,n

m(qp′j0)⊗Ro ((q ′j0a1)� u1
� (b1 p)� (c1 p′j1))

⊗Ro((q ′j1a2)� u2
� (b2d1)� (c2 p′j2))⊗Ro

· · ·⊗Ro ((q ′jn dn)� (q ′jn−1
an)� un

� (bndn−1)� (cn p′jn )), (4.2)

where ũi := (ai ⊗bo
i )⊗Re ui ⊗Re (ci ⊗do

i )∈ Ũ for 1≤ i ≤n, and x̃ := ũ1⊗So · · ·⊗So ũn .

LEMMA 4.2. The maps θ• and γ• are morphisms of chain complexes.

Proof. We only check the compatibility of the differential with γn since the com-
putation for θn is similar but less complicated. Decompose

bγn=
=:(i)
︷︸︸︷

d0γn+
=:(i i)

︷ ︸︸ ︷

∑

1≤k≤n−1

(−1)kdkγn+
=:(i i i)

︷ ︸︸ ︷

(−1)ndnγn,

where b is the differential (2.27) of the underlying simplicial structure of C•(U,M)
as in (2.28). When applying this map to an element of the form m̃⊗So ũ1⊗So · · ·⊗So

ũn (using the notation above), each term is explicitly given by
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(i) =
∑

j0,...,n

m(qp′j0 )⊗Re (((q ′j0 a1)� u1
� (b1 p))� (c1 p′j1 ))⊗Re · · ·

⊗Re [ε((q ′jn dn)� ((q ′jn−1
an)� un

� (bndn−1))� (cn p′jn ))
� (((q ′jn−2

an−1)� un−1
� (bn−1dn−2))�(cn−1 p′jn−1

))]
(2.5)=

∑

j0,...,n−1

m(qp′j0 )⊗Re (((q ′j0 a1)� u1
� (b1 p))� (c1 p′j1 ))⊗Re · · ·

⊗Re [((q ′jn−1
an)ε(u

n � (cndn))(bndn−1))� (((q ′jn−2
an−1)� un−1

� (bn−1dn−2))� (cn−1 p′jn−1
))];

(i i) =
n−1
∑

k=1

∑

j0,...,n−k−1,n−k+1,...,n

m(qp′j0 )⊗Re (((q ′j0 a1)� u1
� (b1 p))� (c1 p′j1 ))⊗Re · · ·

⊗Re [((bn−k−1dn−k)� ((q ′jn−k−1
an−k)� un−k

� (bn−kdn−k−1))� (cn−kan−k+1))

(un−k+1 � (cn−k+1 p′jn−k+1
))]⊗Re · · ·⊗Re ((q ′jn dn)� ((q ′jn−1

an)� un
� (bndn−1))� (cn p′jn ));

(i i i) =
∑

j1,...,n

(−1)n(m(((qa1)� u1
� (b1 p))� (c1 p′j1 )))

⊗Re · · ·⊗Re ((q ′jn dn)� ((q ′jn−1
an)� un

� (bndn−1))� (cn p′jn )).

On the other hand, we can also write

γn−1b̃=
=:˜(i)

︷ ︸︸ ︷

γn−1d̃0+
=:˜(i i)

︷ ︸︸ ︷

∑

1≤k≤n−1

(−1)kγn−1d̃k +
=:˜(i i i)

︷ ︸︸ ︷

(−1)nγn−1d̃n,

where b̃ is analogously the differential of the underlying simplicial structure of
C•(Ũ , M̃). Applying γn−1b̃ to the same element m̃⊗So ũ1⊗So · · ·⊗So ũn , we find that
the first term is

˜(i)=
∑

j0,...,n−1

m(qp′j0)⊗Re (((q ′j0a1)� u1
� (b1 p))� (c1 p′j1))⊗Re

· · ·⊗Re ((q ′jn−1
d̂n−1)� ((q ′jn−2

ân−1)� ûn−1
� (b̂n−1dn−2))� (ĉn−1 p′jn−1

)),

where we denoted the elements ε̃(ũn)� ũn−1=: (ân−1⊗ b̂n−1
o)⊗Re ûn−1⊗Re (ĉn−1⊗

d̂n−1
o). Computing explicitly this term, we obtain

ε̃(ũn)� ũn−1= ũn−1η̃(1⊗ ε̃(ũn)o)

(3.5)=
∑

in , jn

(an−1⊗ bn−1
o)⊗Re ((q ′in

dn−1)� un−1 � (cn−1 p′jn ))⊗Re (q ′jn ⊗ (ε̃(ũn)p′in
)o)

(3.8)=
∑

in , jn

(an−1⊗ bn−1
o)⊗Re ((q ′in

dn−1)� un−1 � (cn−1 p′jn ))⊗Re (q ′jn ⊗ (anε(u
n � (cndn))bn p′in

)o)

=
∑

jn

(an−1⊗ bn−1
o)⊗Re (un−1 � (cn−1 p′jn ))⊗Re (q ′jn ⊗ (anε(u

n � (cndn))bndn−1)
o)

= (an−1⊗ bn−1
o)⊗Re un−1⊗Re

⎛

⎝

⎛

⎝cn−1

⎛

⎝

∑

jn

p′jn q ′jn

⎞

⎠

⎞

⎠⊗ (anε(u
n � (cndn))bndn−1)

o)

⎞

⎠

= (an−1⊗ bn−1
o)⊗Re un−1⊗Re (cn−1⊗ (anε(u

n � (cndn))bndn−1)
o)),
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thence,

ân−1=an−1, b̂n−1=bn−1, ûn−1=un−1, and d̂n−1=anε(u
n � (cndn))bndn−1.

Inserting this into the expression of ˜(i) above, one obtains ˜(i)= (i). The second
term can be written as follows:

˜(i i)=
n−1
∑

k=1

∑

j0,...,n−k−1,n−k+1,...,n

m(qp′j0)⊗Re (((q ′j0a1)� u1
� (b1 p))� (c1 p′j1))

⊗Re · · ·⊗Re (((q ′jn−k−1
an−k)� un−k

� (bn−kdn−k−1))� (cn−k p′jn−k+1
))

⊗Re(((q ′jn−k+1
an−k+2)� un−k+2

� (bn−k+2dn−k))� (cn−k+2 p′jn−k+1
))

⊗Re · · ·⊗Re ((q ′jn dn)� ((q ′jn−1
an)� un

� (bndn−1))� (cn p′jn )),

where we denoted the elements

ũn−k ũn−k+1 := (an−k⊗ bn−k
o)⊗Re un−k⊗Re (cn−k⊗ dn−k

o)

(3.6)= (an−k⊗ bo
n−k)⊗Re ((bn−k+1dn−k)� un−k � (cn−kan−k+1))u

n−k+1

⊗Re(cn−k+1⊗ do
n−k+1). (4.3)

Therefore, ˜(i i)= (i i) after substituting (4.3) in ˜(i i). As for the third term, we have

˜(i i i)=
∑

j1,...,n

(−1)n(m(((qa1)� u1
� (b1 p))� (c1 p′j1)))

⊗Re · · ·⊗Re ((q ′jn dn)� ((q ′jn−1
an)� un

� (bndn−1))� (cn p′jn )),

which is obviously (i i i). We conclude that γ• is a morphism of chain complexes.

PROPOSITION 4.3. The composite γnθn is homotopic to the identity, the homotopy
hn :Cn(U,M)→Cn+1(U,M) being explicitly given by the following map: for n= 0,
define

h0 :m →
∑

i, j

m(qi p′j )⊗Ro ((q ′j pi )� 1U ),

and for n≥1, set

hn :m⊗Ro x →
n

∑

k=0

∑

j0,...,k
i0,...,k

(−1)k+nm(qi0 p′j0)⊗Ro ((q ′j0 pi0)� u1 � (qi1 p′j1))

⊗Ro · · ·⊗Ro ((q ′jk−1
pik−1)� uk � (qik p′jk ))⊗Ro ((q ′jk pik )� 1U )

⊗Ro uk+1⊗Ro · · ·⊗Ro un (4.4)

abbreviating x :=u1⊗Ro · · ·⊗Ro un as before. Similarly, θnγn is homotopic to the iden-
tity as well.
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Proof. We need to check bh0=γ0θ0− id for n=0 and bhn+hn−1b=γnθn− id for
n>0. As for the first one, it is immediate that

bh0(m)=
∑

i, j

ε((q ′j pi )� 1U )� m(qi p′j )−m

=
∑

i, j

(q ′j pi )(m)(qi p′j )−m=γ0θ0(m)−m.

In case n > 0, since multiplying two consecutive tensor factors of hn kills the
respective q, p as well as the q ′, p′ between them, it is straightforward to see that

n
∑

k=1

(−1)kdkhn(m⊗Ro x)+
n−1
∑

k=1

(−1)khn−1dk(m⊗Ro x)=0. (4.5)

As for the remaining terms, we have

(−1)n+1dn+1hn(m⊗Ro x)

=−m⊗Ro x+ (−1)n+1
n

∑

k=1

∑

j1,...,k
i1,...,k

(−1)k+nmu1(qi1 p′j1)⊗Ro

· · ·⊗Ro ((q ′jk−1
pik−1)� uk � (qik p′jk ))⊗Ro ((q ′jk pik )� 1U )⊗Ro uk+1⊗Ro · · ·⊗Ro un

=−m⊗Ro x+ (−1)n+1
n−1
∑

k=0

∑

j0,...,k
i0,...,k

(−1)k+(n−1)(mu1)(qi0 p′j0)

⊗Ro((q ′j0 pi0)� u2 � (qi1 p′j1))⊗Ro · · ·
⊗Ro((q ′jk−1

pik−1)� uk+1 � (qik p′jk ))⊗Ro ((q ′jk pik )� 1U )⊗Ro uk+2⊗Ro · · ·⊗Ro un

= (−id− (−1)nhn−1dn)(m⊗Ro x).

Moreover,

d0hn(m⊗Ro x)

=
n−1
∑

k=0

∑

j0,...,k
i0,...,k

(−1)k+n(m � (qi0 p′j0))⊗Ro ((q ′j0 pi0)� u1 � (qi1 p′j1))

⊗Ro · · ·⊗Ro ((q ′jk−1
pik−1)� uk � (qik p′jk ))⊗Ro ((q ′jk pik )� 1U )⊗Ro uk+1

⊗Ro · · ·⊗Ro un−2⊗Ro (ε(un)� un−1)

+
∑

j0,...,n
i0,...,n

(m � (qi0 p′j0))⊗Ro ((q ′j0 pi0)� u1 � (qi1 p′j1))⊗Ro

· · ·⊗Ro ((q ′jn−1
pin−1)� (q ′jn pin )� un � (qin p′jn )),

where we have used Equations (2.2) and (2.5). The first sumand is easily seen to be
equal to −hn−1d0 and we are left with computing the last sumand: by definition
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of θn and γn (see Equations (4.1)–(4.2))

γnθn(m⊗Ro x)=γn[
∑

k0,...,n−1
j0,...,n

(pk0⊗R m⊗R q j0)⊗So ((p j0⊗qo
k0
)⊗Re u1⊗Re (q j1⊗ po

k1
))

⊗So · · ·⊗So ((p jn−1⊗qo
kn−1

)⊗Re un⊗Re (q jn ⊗ po
jn ))]

=
∑

k0,...,n−1
j0,...,n ;i0,...,n

m(q j0 p′i0
)⊗Ro ((q ′i0

p j0)� u1
� (qk0 pk0)� (q j1 p′i1

))

⊗Ro · · ·⊗Ro ((q ′in
p jn )� (q ′in−1

p jn−1)� un
� (qkn−1 pkn−1)� (q jn p′in

))

=
∑

j0,...,n
i0,...,n

(m � (qi0 p′j0))⊗Ro ((q ′j0 pi0)� u1 � (qi1 p′j1))

⊗Ro · · ·⊗Ro ((q ′jn−1
pin−1)� (q ′jn pin )� un � (qin p′jn )),

where (2.23) was used in the last line and which, as is seen by interchanging the
indices, is exactly the last term in the expression of d0hn(m⊗Ro x) above. Hence we
have shown that

d0hn(m⊗Ro x)= (−hn−1d0+γnθn)(m⊗Ro x).

Combining this with (4.5), we obtain bhn+hn−1b=γnθn− id, and this finishes the
proof.

To pass to the cyclic case, we prove first:

LEMMA 4.4. The morphisms of chain complexes θ• and γ• are morphisms of cyclic
objects. That is, they satisfy:

γ• t̃• = t•γ•, θ•t• = t̃•θ•.

Proof. We only check the first equation. Take an element m̃⊗So ũ1⊗So · · ·⊗So ũn ∈
Cn(Ũ , M̃), for n≥ 0. Then, applying Equations (2.13), (2.15), and (2.20), we can
write

tnγn(m̃⊗So ũ1⊗So · · ·⊗So ũn)

=
∑

j0,...,n

((m(0) � (q ′j0a1))(u
1+ � (c1 p′j1)))⊗Ro ((q ′j1a2)� u2+ � (c2 p′j2))

⊗Ro · · ·⊗Ro ((q ′jn−1
an)� un+ � (cn p′jn ))

⊗Ro [((q ′jn dn)� un−)((bndn−1)� un−1− )((bn−1dn−2)� un−2− )

· · · ((b2d1)� u1−)((b1 p)� m(−1) � (qp′j0))].
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On the other hand, we have

γn t̃n(m̃⊗So ũ1⊗So · · ·⊗So ũn)

=
∑

j0,...,n

((m(0)u
1+)� (c1 p′j0))⊗Ro ((q ′j0a2)� u2+ � (c2 p′j1))

⊗Ro · · ·⊗Ro ((q ′jn−2
an)� un+ � (cn p′jn−1

))

⊗Ro [((q ′jn−1
dn)� un−)((bndn−1)� un−1− )((bn−1dn−2)� un−2− )

· · · ((b2d1)� u1−)((b1 p)� ((q ′jn a1)� m(−1) � (qp′jn )))]
(2.21)=

∑

j0,...,n

(((m(0) � (q ′jn a1))u
1+)� (c1 p′j0))⊗Ro ((q ′j0a2)� u2+ � (c2 p′j1))

⊗Ro · · ·⊗Ro ((q ′jn−2
an)� un+ � (cn p′jn−1

))

⊗Ro [((q ′jn−1
dn)� un−)((bndn−1)� un−1− )((bn−1dn−2)� un−2− )

· · · ((b2d1)� u1−)((b1 p)� (m(−1) � (qp′jn )))].

Now, renumbering the indices we find the equality, and this finishes the proof.

Combining Lemma 4.2, Proposition 4.3, and Lemma 4.4, we conclude that θ•
and γ• are in particular equivalences of cyclic modules. Consequently, we can now
formulate the main theorem of this paper:

THEOREM 4.5. (Morita base change invariance of (Hopf-)cyclic homology). Let
(R,U ) be a left Hopf algebroid, M a left U -comodule right U -module which is
SaYD (i.e., satisfies (2.22)–(2.25)), and (R, S, P,Q, φ,ψ) a Morita context. We
then have the following natural k-module isomorphisms:

H•(U,M)�H•(Ũ , P⊗R M⊗R Q),

HC•(U,M)�HC•(Ũ , P⊗R M⊗R Q).

Proof. This follows at once by using the SB I sequence for cyclic modules, cf.
[25, Section 2.5.12] for details.

4.2. THE COHOMOLOGY CASE

In this section, we will consider the case of Hopf-cyclic cohomology under Morita
base change. Since all steps are basically analogous to the preceding section, we
refrain from spelling out the details and just indicate the main ingredients.

Consider the cocyclic module (C•(U,M), δ•, σ•, τ•) as in (2.29). In the spirit of
(4.1) and (4.2), define first the map ζn :Cn(U,M)→Cn(Ũ , M̃) as follows: for n=0,
define

ζ0 :M−→ M̃, m −→
∑

j

p′j ⊗R m⊗R q ′j ,
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and for n≥1, abbreviating y :=u1⊗R · · ·⊗R un , define

ζn : y⊗R m −→
∑

i0,...,n−1
j0,...,n

((p′j0 ⊗qo
i0
)⊗Re u1⊗Re (q ′j0 ⊗ p′j1

o
))⊗S ((pi0 ⊗qo

i1
)⊗Re u2⊗Re (q ′j1 ⊗ p′j2

o
))

⊗S · · ·⊗S ((pin−2 ⊗qo
in−1

)⊗Re un⊗Re (q ′jn−1
⊗ p′jn

o
))⊗S (pin−1 ⊗R m⊗R q ′jn ).

Second, define the map ξn :Cn(Ũ , M̃)→Cn(U,M), which is

ξ0 : M̃−→M, (m̃ := p⊗R m⊗R q) −→
∑

i

(qi p)m(qpi ),

in degree n=0, and for n≥1 is given by

ξn : ỹ⊗S m̃ −→
∑

i0,...,n

((qi0 a1)� (qi1 d1)� u1
� (b1a2)� (c1 pi0))⊗R ((qi2 d2)� u2

� (b2a3)� (c2 pi1))

⊗R · · ·⊗R ((qin−1 dn−1)� un−1
� (bn−1an)� (cn−1 pin−2 ))

⊗R((qin dn)� un
� (bn p)� (cn pin−1))⊗R m(qpin ),

where ũi := (ai ⊗bo
i )⊗Re ui ⊗Re (ci ⊗do

i )∈ Ũ for 1≤ i ≤n, and ỹ := ũ1⊗S · · ·⊗S ũn .
Third, introduce the homotopy hn :Cn+1(U,M)→Cn(U,M) as follows: in degree

n=0, set

h0 :u⊗R m −→
∑

i, j

ε((qi p′j )� u)m(q ′j pi ),

and for n≥1 define

hn : y′ ⊗R m −→
n

∑

k=0

∑

j0,...,k
i0,...,k

(−1)k+nu0⊗R · · ·⊗R un−k−1⊗R ε((qi0 p′j0)�un−k)

⊗R((qi1 p′j1)�un−k+1�(q ′j0 pi0))⊗R· · ·⊗R ((qik p′jk )�un�(q ′jk−1
pik−1))⊗R m(q ′jk pik ),

(4.6)

abbreviating here y′ :=u0⊗R · · ·⊗R un .
Now, with the construction of Ũ and M̃ as in Section 3.2 and analogously to

Lemma 4.1, one can construct a cocyclic module C•(Ũ , M̃); we leave the tedious
details to the reader. Similarly as in Lemma 4.2, Proposition 4.3, and Lemma 4.4,
one then proves:

LEMMA 4.6. The maps ζ• and ξ• are morphisms of cochain complexes, and ξ•ζ• is
homotopic to the identity by means of the homotopy (4.6); likewise, ζ•ξ• is homotopic
to the identity as well. In particular, ζ• and ξ• are equivalences of cocyclic modules.

This enables us to conclude:

THEOREM 4.7 (Morita base change invariance of (Hopf-)cyclic cohomology). Let
(R,U ) be a left Hopf algebroid, M a left U -comodule right U -module which is
SaYD (i.e., satisfies (2.22)–(2.25)), and (R, S, P,Q, φ,ψ) a Morita context. Then
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H •(U,M)�H •(Ũ , P⊗R M⊗R Q),

HC•(U,M)�HC•(Ũ , P⊗R M⊗R Q)

are isomorphisms of k-modules.

Remark 1. The proofs of both Theorems 4.7 and 4.5 are based on an explicit con-
struction of (co)chain homotopies. One could wonder if a more categorical way
implicitly leads to the same result but with less computational effort. Closest to
our setting is perhaps [4], where a categorical approach to the cyclic (co)homol-
ogy of bialgebroids was developed based on the notion of admissible septuples.
Our situation fits in the particular examples of admissible septuples of [4, Propo-
sitions 1.15 & 1.25]; nevertheless, none of the (co)cyclic objects that, after some
additional steps, can be deduced from loc. cit. coincides with our (co)cyclic mod-
ules from (2.28) and (2.29), respectively. Since also the involved tensor products
differ, the two approaches are not even related by considering cyclic duals. That
is, our cyclic (co)homology seems to be different from the one considered in [4].

Let us explain how far one can go in applying the approach of [4] to Mori-
ta base change invariance. Following the notation of [4], one can show that given
a category C, two equivalent categories M, N , and an admissible septuple S =
(M,C,T l ,T r ,�, t, i) over M, there is an admissible septuple S̃=(N ,C, T̃ l , T̃ r , �̃,

t̃, ĩ) over N , whose corresponding categories of transposition morphisms WS and
WS̃ are also equivalent. Under some natural assumption on C, we know from
[4, Corollary 1.11] that there is a functor Ẑ∗(S,−) :WS→�CC to the category of
cocyclic objects of C. In this way, the Morita invariance theory in this context can
be interpreted as follows. Consider a transposition morphism (X,ω)∈WS and its
image (X̃ , ω̃)∈WS̃ . One can then assign to them two cocyclic objects Ẑ∗(S, (X,ω))
and Ẑ∗(S̃, (X̃ , ω̃)) in C. Morita invariance now claims that the associated (co)chain
complexes were quasi-isomorphic. At this level of generality, there is seemingly no
way which directly furnishes such a quasi-isomorphism if not, analogously to our
approach, by manually constructing such a map in special cases (e.g., the afore-
mentioned particular admissible septuples of [4, Propositions 1.15 & 1.25]).

5. Applications and Examples

We give two applications. The first one deals with the well-known Morita invari-
ance of the usual Hochschild and cyclic homology for associative algebras. We
show that this invariance theory is a consequence of our main Theorem 4.5 by
applying it to the left Hopf algebroids Re and Se. In the second application we
specialise our general results to the Morita context between the complex-valued
smooth functions on the commutative real 2-torus T

2 := S

1 × S

1 and the coor-
dinate ring of the noncommutative 2-torus with rational parameter, establishing
thereby a passage from commutative to noncommutative geometry. We will first
review the construction of this context, and next apply the Morita base change
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invariance of the cyclic homology between the left Hopf algebroid attached to
the Lie algebroid of vector fields on T

2, and the associated Morita base change
left Hopf algebroid over this noncommutative 2-torus whose structure maps are
deduced from Section 3.2.

5.1. MORITA INVARIANCE OF CYCLIC HOMOLOGY FOR ASSOCIATIVE ALGEBRAS

Recall from [32] the left Hopf algebroid structure of the enveloping algebra Re.
Its structure maps are given as follows: s(r) := r ⊗ 1, t (ro) := 1⊗ ro, �(r ⊗ r̃ o) :=
(r⊗1)⊗R (1⊗ r̃ o), ε(r⊗ r̃ o) :=rr̃ , and the inverse of the Hopf-Galois map is given
as (r⊗ r̃ o)+⊗Ro (r⊗ r̃ o)− := (r ⊗1)⊗Ro (r̃⊗1).

Let now M be a right Re-module which is also an Re-comodule with compati-
ble left R-actions as in (2.22), and denote the coaction by m → (m′

(−1)⊗m′′(−1))⊗R

m(0), omitting the summation symbol in all what follows. Under the isomorphism
C•(Re,M)=M⊗Ro Re⊗Ro • �M⊗ R⊗• given by

m⊗Ro (r1⊗ r̃ o
1 )⊗Ro · · ·⊗Ro (rn⊗ r̃ o

n ) −→ r̃n · · · r̃1m⊗ r1⊗· · ·⊗ rn, (5.1)

the para-cyclic operators (2.28) assume the form

di (m⊗ y)=
⎧

⎨

⎩

rnm⊗ r1⊗· · ·⊗ rn−1 if i =0,
m⊗· · ·⊗ rn−i rn−i+1⊗· · ·⊗ rn if 1≤ i ≤n−1,
mr1⊗ r2⊗· · ·⊗ rn if i =n,

si (m⊗ y)=
⎧

⎨

⎩

m⊗ r1⊗· · ·⊗ rn⊗1 if i =0,
m⊗· · ·⊗ rn−i ⊗1⊗ rn−i+1⊗· · ·⊗ rn if 1≤ i ≤n−1,
m⊗1⊗ r1⊗· · ·⊗ rn if i =n,

tn(m⊗ y)=m′′(−1)m(0)r1⊗ r2⊗· · ·⊗ rn⊗m′(−1),

(5.2)

where we abbreviate y := r1 ⊗ · · · ⊗ rn , and as before C•(Re,M) is cyclic if M is
SaYD.

Using the isomorphism

Pe⊗Re Re⊗Re Qe �−→ Se,

(a⊗bo)⊗Re (r⊗ r̃ o)⊗Re (c⊗do) −→φ(a⊗R rc)⊗φ(dr̃⊗R b)o,
(5.3)

where φ is as in (3.1), together with (3.2) and the isomorphism C•(Se, M̃)� M̃ ⊗
S⊗n analogously to (5.1), a straightforward computation reveals that the morphism
of chain complexes (4.1) reads

θn :m⊗ y −→
∑

i0,...,n

(pi0⊗R m⊗R qi1)⊗φ(pi1⊗R r1qi2)⊗· · ·⊗φ(pin ⊗R rnqi0).

In the other direction, we make use of the isomorphism

Qe⊗Se Se⊗Se Pe �−→ Re,

(c⊗do)⊗Se (s⊗ s̃o)⊗Se (a⊗bo) −→ψ(cs̃⊗S a)⊗ψ(b⊗S sd)o,
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together with the inverse of (5.3) given by, cf. (3.5),

Se−→ Pe⊗Re Qe, s⊗ s̃o −→
∑

i, j

(sp′j ⊗q ′i
o
)⊗Re (q ′j ⊗ (s̃ p′i )

o
),

to conclude that the morphism of chain complexes (4.2) becomes here

γn : (p⊗R m⊗R q)⊗ z

−→
∑

j0,...,n

ψ(q ′j0⊗S p)mψ(q⊗S p′j1)⊗ψ(q ′j1⊗S s1 p′j2)⊗· · ·⊗ψ(q ′jn ⊗S sn p′j0),

abbreviating z := s1⊗· · ·⊗ sn .
In a similar manner, one derives the homotopy (4.4) in this case: for n= 0, we

obtain

h0 :m −→
∑

i, j

mψ(qi ⊗ p′j )⊗ψ(q ′j ⊗ pi ),

and for n≥1:

hn :m⊗ y −→
n

∑

k=0

∑

j0,...,k
i0,...,k

(−1)n+k(mψ(qi0 ⊗ p′j0 ))⊗ (ψ(q ′j0 ⊗ pi0)r1ψ(qi1 ⊗ p′j1))

⊗· · ·⊗ (ψ(q ′jn−k−1
⊗ pin−k−1)rkψ(qin−k ⊗ p′jn−k

))⊗ψ(q ′jn−k
⊗ pin−k )⊗ rk+1⊗· · ·⊗ rn,

where we abbreviate y := r1⊗· · ·⊗ rn .
One recovers the explicit maps given in [28] for this situation, and hence from

Theorem 4.5 the classical result [12,28] of Morita invariance in Hochschild theory
follows. In case M= R, with [24, Prop. 3.1], one furthermore reproduces the clas-
sical result of Morita invariance of cyclic homology of associative algebras from
[7,26,28]:

COROLLARY 5.1. Let R be an associative k-algebra, M an (R, R)-bimodule, and
(R, S, P,Q, φ,ψ) a Morita context. We then have the following natural k-module
isomorphism

Halg
• (R,M)�Halg

• (S, P⊗R M⊗R Q),

and in case M := R, we obtain

HCalg
• (R)�HCalg

• (S). (5.4)

Observe that for this corollary no SaYD condition is needed: there is no coac-
tion required to compute the homology of the underlying simplicial object in (5.2)
(resp. (2.28)), and for the cyclic homology in (5.4) we only considered the case
M := R, with action given by multiplication and coaction R→ Re⊗R R� Re, r →
r⊗k 1, which is easily seen to define an SaYD module.
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5.2. MORITA BASE CHANGE INVARIANCE IN LIE ALGEBROID THEORY AND THE

NONCOMMUTATIVE TORUS

5.2.1. Lie Algebroids and Associated Left Hopf Algebroids

Assume that R is a commutative k-algebra (here k is a ground field of character-
istic zero) and denote by Derk(R) the Lie algebra of all k-linear derivations of R.
Consider a k-Lie algebra L which is also an R-module, and let ω : L→Derk(R) be
a morphism of k-Lie algebras. Following [30], the pair (R, L) is called Lie-Rinehart
algebra with anchor map ω, provided

(aX)(b)=a(X (b)),

[X,aY ]=a[X,Y ]+ X (a)Y,

for all X,Y ∈ L and a,b∈ R, where X (a) stands for ω(X)(a). A morphism (R, L)→
(R, L ′) of Lie-Rinehart algebras over R is a map ϕ : L→ L ′ of k-Lie algebras such
that

L

ω
�����������
ϕ �� L ′

ω′�����������

Derk(R)

is a commutative diagram. These objects form a category which we denote by
LieRine(k,R).

EXAMPLE 5.1. Here are the basic examples which we will be dealing with, and
which motivate the above general definition:

(i) The pair (R,Derk(R)) trivially admits the structure of a Lie-Rinehart algebra.
(ii) A Lie algebroid is a vector bundle E→M over a smooth manifold, together

with a map ω :E→ T M of vector bundles and a Lie structure [−,−] on the
vector space �(E) of global smooth sections of E , such that the induced map
�(ω) :�(E)→�(T M) is a Lie algebra homomorphism, and for all X,Y ∈�(E)
and any f ∈C∞(M) one has [X, f Y ]= f [X,Y ]+�(ω)(X)( f )Y . Then the pair
(C∞(M),�(E)) is obviously a Lie-Rinehart algebra.

Associated to any Lie-Rinehart algebra (R, L) there is a universal object denoted
by (R,VL) (see [19,30]). Using the notion of smash product (or, more general, of
distributive law between two algebras), we give here an alternative construction (of
which the Massey–Peterson algebra in [19,27] is a special case) of this object: let
U L be the universal enveloping algebra of L with its canonical Hopf algebra struc-
ture, and consider the k-linear map L

ω−→Derk(R). Extending this map to U L, we
obtain the structure of a U L-module algebra on R. Following [35, pp. 117–118],
the smash product R#U L admits the structure of a left R-bialgebroid, where the
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source and the target map coincide. Now take the following factor R-algebra of
R#U L:

π : R#U L−→VL := R#U L

JL
,

where

JL := 〈a#X −1#aX〉a∈R, X∈L

is the two sided ideal generated by the set {a#X − 1#aX}a∈R, X∈L . The R-bialge-
broid structure of R#U L projects to VL (see [38]), and by [22, §4.2.1] one also has
that VL carries a left Hopf algebroid structure, the translation map on generators
a∈ R, X ∈ L of VL being given by

a+⊗Ro a− :=a⊗Ro 1, X+⊗Ro X− := X ⊗Ro 1−1⊗Ro X,

where VL⊗Ro VL := �VL ⊗Ro VL� is as in (2.6) (which is why we stick to the sym-
bol Ro although R is commutative), and where we identify the elements of R and
L with their respective images by the universal maps ιR : R→VL, a → a#1+JL

and ιL : L→VL, X →1#X +JL .

5.2.2. Vector Bundles Versus
√

Morita Theories

Let R be a commutative k-algebra as in Section 5.2.1. Assume we are given a
finitely generated and projective module PR which is faithful over R. Then it is
well known (see, e.g., [11, Corollary 1.10]) that R is Morita equivalent to the endo-
morphism ring End(PR) since R is commutative. The context maps are given by

φ : P⊗R P∗ �−→End(PR), (p⊗ σ −→[p′ → pσ(p′)]),
ψ : P∗ ⊗End(PR )

P
�−→ R, (σ ⊗ p −→σ(p)),

where P∗ =Hom(PR, RR).
Following [20, Example 2.3.3], we apply this Morita context to the situation

where R is the algebra of smooth functions over a manifold M. By the Serre–
Swan theorem, it is well known that for a (complex) smooth vector bundle π :P→
M of constant rank ≥1 the global smooth sections P :=�(P) form a finitely gen-
erated projective module over the commutative ring R :=C∞(M) of complex-valued
smooth functions on M, see, for instance, [29, Remark, p. 183]. One can further-
more show [5, Remarque 2, p. 145] that P is of constant rank ≥1 (the rank of π ),
and as such, P becomes a faithful R-module (as follows from [5, p. 142, Corol-
laire, & p. 143, Théorème 3 (ii)]). Therefore, C∞(M) is Morita equivalent to the
endomorphism algebra End(PC∞(M))� �(End(P)). In this way, there is a func-
tor from the category LieRine(C,C∞(M)) to the category of left Hopf algebroids
over End(PC∞(M)). This functor is defined on objects by sending any complex
Lie-Rinehart algebra (L , R) to the left End(PR)-Hopf algebroid Pe⊗Re VL⊗Re Qe,
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where Pe, Qe are defined as in Section 3.1 and correspond to the Morita context
(R,End(PR), P, P∗, φ,ψ), i.e., with Q= P∗.

Remark 2. An analogue to the previous functor can, in fact, descend to the cate-
gory of Lie algebroids over a smooth manifold M if we take a real vector bundle
and the algebra C∞(M,R) of real-valued smooth functions instead of C∞(M)=
C∞(M,C). We know from Example 5.1(ii) that there is a canonical faithful func-
tor from the category of Lie algebroids over M to the category of real Lie-
Rinehart algebras over C∞(M,R). Now we can compose this functor with the one
constructed by the same process as in Section 5.2.2. In general, there is no obvi-
ous functor connecting the categories LieRine(R,C∞(M,R)) and LieRine(C,C∞(M,C)),
except perhaps when M is an almost complex manifold (i.e., a smooth manifold
with a smooth endomorphism field J :T M→T M satisfying J 2

x =−idT Mx for all
x ∈M).

Let us mention that due to our interest in the noncommutative torus, we have
been forced to extend the base field by using the complex-valued functions instead
of real-valued ones.

The material of the following subsection will appear well known to the reader
who is familiar with noncommutative differential geometry techniques. For the
convenience of the rest of the audience, we include a detailed exposition following
ideas from [13, Section 3.1; 20, Section 1.1].

5.2.3. Noncommutative Torus Revisited

Consider the Lie group S

1={z ∈C \ {0} | |z| = 1} as a real 1-dimensional torus by
identifying it with the additive quotient R/2πZ. Likewise, the real d-dimensional
torus T

d := S

1 × · · · × S

1 is identified with R

d/2πZ

d . The complex algebra of all
smooth complex-valued functions on T

2 will be denoted by C∞(T2).
Fix a root of unity q ∈ S

1 and take N ∈N to be the smallest natural number
such that qN =1. Let us consider the semidirect product group G :=Z

2
N �S

1 where
ZN =Z/NZ, and operation

(m,n, θ)(m′,n′, θ ′) := (m+m′,n+n′, θθ ′qmn′),

for every pair of elements (m,n, θ), (m′,n′, θ ′)∈ G. There is a right action of the
group G on the torus T

3 given as follows:

(x,y, z)(m,n, θ) := (qmx,qny, θzym), (x,y, z)∈T

3, (m,n, θ)∈G.

Now, we can show that the map

p :T3−→T

2, (x,y, z) −→ (xN ,yN )
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satisfies:

(i) p is a surjective submersion;
(ii) G acts freely on T

3 and the orbits of this action coincide with the fibres of p.

As a consequence and by applying [21, Lemma 10.3], we see that (T3,p,T2,G) is a
principal fibre bundle. We then want to associate a non-trivial vector bundle to the
trivial bundle T

3×C

N→T

3. So, we need to extend the G-action on T

3 to T

3×C

N ,
which is possible by considering the following left G-action on C

N

G−→EndC(C
N ), (m,n, θ) −→{ω −→ θU n

0 V−m
0 ω},

where U0,V0 are the (N × N )-matrices

U0=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 · · ·
0 0 1 0 · · ·
...

. . .
. . .

...

0 · · · 0 1
1 0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, V0=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · 0
0 q 0 · · · 0
0 0 q2 · · · 0
...

. . .
. . .

...

0 0 · · · 0 qN−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

which satisfy the relations

U0V0=qV0U0, U N
0 =V N

0 = IN . (5.5)

Therefore, we have a right G-action on T

3×C

N defined by

((x,y, z);ω)(m,n, θ) := ((x,y, z)(m,n, θ); (m,n, θ)−1ω)

= ((qmx,qny, θzym); θ−1U−n
0 V m

0 ω).

The orbit space (T3×C

N )/G=T

3×G C

N with elements u×G ω will be denoted by
Eq. Notice that by definition one has the following formula:

(ug)×G ω=u×G (gω), for every u ∈T

3,ω∈C

N , and g∈G.

By applying [21, Theorem 10.7, Section 10.11] we can associate a non-trivial vector
bundle to the trivial bundle T

3×C

N→T

3, that is, there is a morphism of vector
bundles

T

3×C

N ��

pr1

��

Eq

p
���
�
�

T

3
p

��
T

2.

(5.6)

By the results of Section 5.2.2, we have that C∞(T2) is Morita equivalent to End
(�(Eq))��(End(Eq)). Now, using [21, Theorem 10.12], �(Eq) is identified with the
G-equivariant subspace C∞(T3,CN )G of C∞(T3,CN ), that is, those f ∈C∞(T3,CN )
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for which f (ug)=g−1 f (u), for every u∈T

3, g∈G. Hence, we have an isomorphism
�(Eq)�C∞(T3,CN )G of C∞(T2)-modules.

Next, we want to describe the noncommutative complex algebra End(�(Eq))�
�(End(Eq)). Observe that there is a left Z

2
N -action on the (N × N )-matrix algebra

MN (C) with complex entries, defined by

(m,n)A :=U n
0 V−m

0 AV m
0 U−n

0 , for every A∈MN (C), (m,n)∈Z

2
N . (5.7)

There is also a free right Z

2
N -action on T

2 given by

(x,y)(m,n) := (qmx,qny), for every (x,y)∈T

2, (m,n)∈Z

2
N .

As before, one can construct the orbit space T

2×
Z

2
N

MN (C) after extending these

actions to the trivial algebra bundle T

2 ×MN (C). It turns out that the endo-
morphism algebra bundle End(Eq) is isomorphic to this orbit space, and clearly
�(End(Eq)) consists of Z

2
N -equivariant sections, that is,

T∈�(End(Eq)) if and only if T(qmx,qny)= (m,n)T(x,y), (5.8)

for every (x,y)∈T

2 and (m,n)∈Z

2
N , where on the right hand side we mean the

action (5.7).
On the other hand, it is well known that C∞(T2) can be identified with the alge-

bra of all smooth functions on R

2 that are 2π -periodic w.r.t. each of their argu-
ments. By Fourier expansion C∞(T2) consists of all functions

f =
∑

(k,l)∈Z2

fk,lu
kvl ,

where { fk,l}(k,l)∈Z2 is any rapidly decreasing sequence of complex numbers, that is,
for every r ∈N, the seminorm

‖ f ‖r = sup
k,l∈Z

(| fk,l |(1+|k|+ |l|)r )<∞, (5.9)

and where u= ei2π t , v= ei2πs are the coordinate functions on the torus T

2.
It is also well known that the complex matrix algebra MN (C) is generated as

C-algebra by the elements U0,V0. Thus, Equations (5.5) and (5.8) force any T ∈
�(End(Eq)) to be of the form

T=
∑

k,l,∈Z
Tk,l(uU0)

k(vV0)
l ,

with coefficients {Tk,l}Z2 satisfying Equation (5.9). Therefore, there is now a
C-algebra isomorphism

�(End(Eq))→C∞(T2
q), ((uU0) →U, (vV0) →V ),
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where C∞(T2
q) refers to the complex noncommutative 2-torus whose elements are

formal power Laurent series in U,V with a rapidly decreasing sequence of coef-
ficients (cf. (5.9)), subject to U V =qV U . In conclusion, we have the Morita con-
text (C∞(T2),C∞(T2

q),�(Eq),�(Eq)
∗), where in addition C∞(T2) and C∞(T2

q) are
related by the algebra map

C∞(T2)−→C∞(T2
q), (u →U N , v →V N ).

In the next section, we will use the Morita context stated above together with
Theorems 4.5 and 4.7 to prove the Morita invariance of both cyclic homology and
cohomology from the left Hopf algebroid attached to the Lie algebroid of vector
fields over the classical 2-torus to the associated Morita base change left Hopf al-
gebroid over the noncommutative 2-torus (the primitive elements of which can be
seen to consist of noncommutative vector fields, cf. the comment in the Introduc-
tion), using the construction performed in Section 3.2.

5.2.4. The Cyclic Homology for the Left Hopf Algebroid over the Noncommutative
Torus

Now we will direct our attention to the Morita invariance of the cyclic homology
between the trivial Lie algebroid (C∞(T2), K :=DerC(C∞(T2))) and its induced left
Hopf algebroid (S,˜VK := Pe⊗Re VK ⊗Re Qe), where

R :=C∞(T2), S :=C∞(T2
q), P :=�(Eq), Q :=�(Eq)

∗, (5.10)

and where the notation is that of Section 5.2.3. Here we can explicitly compute the
structure maps of the left Hopf algebroid ˜VK by using the general description of
Section 3.2, as well as the dual basis of P which can be extracted from the dual
basis of the trivial bundle T

3×C

N , see Equation (5.6). Applying Theorems 4.5 and
4.7 as well as [23, Theorem 5.2] (and its dual version, cf. [24, Theorem 3.14]), we
obtain

COROLLARY 5.3. Let q ∈ S

1 be a root of unity, and consider the Lie algebroid
(R, K ) of vector fields of the complex torus T

2 and its induced left Hopf algebroid
(R,VK ). Let M be a right VK -module and (R, S, P,Q, φ,ψ) the Morita context of
Equation (5.10). We then have the following natural C-module isomorphisms

H•(VK ,M)�H•(˜VK , M̃), HC•(VK ,M)�HC•(˜VK , M̃),

H •(VK ,M)�H •(˜VK , M̃), HC•(VK ,M)�HC•(˜VK , M̃),

where ˜VK is the Morita base change left Hopf algebroid over the noncommutative
torus C∞(T2

q).
Furthermore, assume that M be R-flat. Then we have that

H•(˜VK , M̃)�H•(K ,M), HC•(˜VK , M̃)�⊕

i≥0 H•−2i (K ,M),

H •(˜VK , M̃)�M⊗R

∧•
R K , H P•(˜VK , M̃)�⊕

i≡•mod2 Hi (K ,M)
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are natural C-module isomorphisms, where H•(K ,M) := TorVK
• (M, R), and where

H P• denotes periodic cyclic cohomology (see, e.g., [25, §5.1.3] for the definition of
H P).

Remark 3. In [39, Theorem 5.2], the Hochschild cohomology of the algebra R=
C∞(T2) was computed in terms of the exterior algebra of a two-dimensional com-
plex vector space. So we can apply Corollary 5.1 to deduce the Hochschild coho-
mology of the noncommutative torus C∞(T2

q), where q is not a root of unity. On
the other hand, the same result [39, Theorem 5.2] shows that K =DerC(C∞(T2)) is
a free R-module of rank 2. One can therefore also consider another application of
Theorems 4.5 and 4.7 by taking the canonical Morita context (R,M4(R), K , K ∗,
db, ev) and the left Hopf algebroid (R,VK ). Here M4(R) denotes the (4 × 4)-
matrices over R, whereas ev : K ∗ ⊗M4(R)

K → R, ϕ ⊗M4(R)
x → ϕ(x) stands for the

evaluation map and db : K ⊗R K ∗ → End(KR)∼=M4(R) for the dual basis map
which sends any element x⊗R ϕ to the (4×4)-matrix attached to the R-linear map
[y → xϕ(y)]. The details of this application are left to the reader.
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