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This paper contributes to the characterization of a certain class of commutative 
Hopf algebroids. It is shown that a commutative flat Hopf algebroid with a non 
zero base ring and a nonempty character groupoid is geometrically transitive if 
and only if any base change morphism is a weak equivalence (in particular, if any 
extension of the base ring is Landweber exact), if and only if any trivial bundle is a 
principal bi-bundle, and if and only if any two objects are fpqc locally isomorphic. As 
a consequence, any two isotropy Hopf algebras of a geometrically transitive Hopf 
algebroid (as above) are weakly equivalent. Furthermore, the character groupoid 
is transitive and any two isotropy Hopf algebras are conjugated. Several other 
characterizations of these Hopf algebroids in relation to transitive groupoids are 
also given.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and overview

A commutative Hopf algebroid can be thought as an affine groupoid scheme, that is, a groupoid scheme 
[10, Définition, page 299] in which the schemes defining objects and morphisms are affine schemes. In other 
words, this is a representable presheaf of groupoids in the category of affine schemes, or a prestack of 
groupoids whose “stackification” leads to a stack in the fpqc (fidèlement plate et quasi-compacte) topology. 
For instance, an action of an affine group scheme on an affine scheme leads to an affine groupoid scheme 
which gives rise (by passage to the coordinate rings) to a commutative Hopf algebroid, known as split 
Hopf algebroid ([26, Appendix A.1], see also [19]). More examples of commutative Hopf algebroids can be 
performed using Set-theoretically constructions in groupoids.

✩ Research supported by the Spanish Ministerio de Economía y Competitividad and FEDER, grants MTM2016-77033-P and 
MTM2013-41992-P.

E-mail address: kaoutit@ugr.es.
URL: http://www.ugr.es/~kaoutit/.
https://doi.org/10.1016/j.jpaa.2017.12.019
0022-4049/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2017.12.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
mailto:kaoutit@ugr.es
http://www.ugr.es/~kaoutit/
https://doi.org/10.1016/j.jpaa.2017.12.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2017.12.019&domain=pdf


3484 L. El Kaoutit / Journal of Pure and Applied Algebra 222 (2018) 3483–3520
Hopf algebroids in relation with groupoids are fundamental objects in both algebraic topology and alge-
braic geometry. They appear in the study of stable homotopy theory [26,17,24,25] (see also the references 
therein), and prove to be very useful in studying quotients of preschemes, prestacks of groupoids over affine 
schemes as well as (commutative) Tannakian categories [14,9,4,1,20].

As in the case of affine group schemes [10], several constructions and results on groupoids have a certain 
geometric meaning in presheaves of groupoids and then a possible algebraic interpretation at the level of 
Hopf algebroids. In this way, Hopf algebroids are better understood when looking to classical results in 
groupoids, or by mimicking well-known results on classical geometric groupoids, e.g. topological or Lie 
groupoids. The main motivation of this paper fits into these lines of research. Specifically, we study a class 
of commutative Hopf algebroids called geometrically transitive (see below), by means of transitive groupoids 
and their properties, obtaining in this way several new characterizations of these Hopf algebroids. Besides, 
much of the properties of transitive groupoids hereby developed and used in the study of Hopf algebroids 
can be also seen as a contribution to the theory of groupoids.

The notion of transitivity varies depending on the context. In groupoid theory, a (small) groupoid is 
said to be transitive when the cartesian product of the source and the target is a surjective map. A Lie 
groupoid is called locally trivial (or a transitive Lie groupoid), when this map is a surjective submersion 
[21,8]. For groupoid schemes, the meaning of the abstract notion of transitivity was introduced by Deligne 
in [9, page 114]. More precisely, a groupoid scheme is transitive in the fpqc topology sense if the morphism 
constituted by the fibred product of the source and the target is a cover in this topology. In [4, Définition 
page 5850], Bruguières introduced a class of Hopf algebroids referred to as geometrically transitive, where 
he showed ([4, Théorème 8.2 page 5858]) that in the commutative case (the case which we are interested 
in) these are Hopf algebroids whose associated affine groupoid schemes are transitive in the fpqc sense. It 
is also implicitly shown in [4] that a commutative Hopf algebroid is geometrically transitive if and only if 
the unit map (i.e., the tensor product of the source and the target) is a faithfully flat extension. This, in 
fact, can be thought of as a proper definition of geometrically transitive (GT for short) commutative Hopf 
algebroids. Nevertheless, we will use here the original definition of [4] (see Definition 4.2 below) and show 
using elementary methods that the faithful flatness of the unit characterizes in fact GT Hopf algebroids 
with nonempty character groupoids (see Theorem A below).

Transitive groupoids are also characterized by the fact that any two objects are isomorphic, or equiva-
lently: a groupoid with only one connected component, or connected groupoid in the terminology of [16]. 
From the geometric point of view, that is, for presheaves of groupoids, this means that any two objects 
are locally isomorphic in the fpqc topology, see [9, Proposition 3.3]. At the level of Hopf algebroids, this 
property can be directly expressed in terms of faithfully flat extensions (see Definition 3.6 below), which 
in turn characterizes GT Hopf algebroids with nonempty character groupoids, as we will see in the sequel 
by using elementary (algebraic) arguments. Our methods, in fact, lead us also to recover other results on 
equivalences of categories stated in [9, §3.5] (see the paragraph after Theorem A).

From their very definition one can then see that GT Hopf algebroids can be understood as a natural 
algebro-geometric substitute of transitive groupoids. Under this point of view, it is reasonable to expect that 
most of the properties or characterizations of transitive groupoids could have an analogous counterpart at the 
level of GT Hopf algebroids. However, apart from the basic definition, there are still several characterizations 
of transitive groupoids which, up to our knowledge, are not known for GT Hopf algebroids. In the following, 
we describe the two most interesting of these characterizations.

A perhaps well-known result (see Proposition 2.15 for details) says that a groupoid G : G1
s
t G0ι

is transitive if and only if for any map ς : X → G0 the induced morphism of groupoids G ς → G is a weak 
equivalence (i.e., an essentially surjective and fully faithful functor), where G ς is the induced groupoid whose 
set of objects is X and its set of arrows is the fibred product X ς× t G1 s× ς X, that is, G ς is the pull-back 
groupoid of G along ς (see [21, §2.3] and [16] for a dual construction). Another more interesting and perhaps 
not yet known characterization of the transitivity is by means of principal groupoid-bisets; for the precise 
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definition see Definitions 2.6, 2.7, and 2.8. This notion is in fact an abstract formulation of the notion of 
principal bi-bundles in the context of topological and Lie groupoids [22,18], or that of bi-torsors in sheaf 
theory [10,15], which is of course based on the natural generalization of the notion of group-bisets [7] to 
the context of groupoids. The aforementioned characterization can be expressed as follows: a groupoid G
is transitive if and only if for any map ς : X → G0 the pull-back groupoid-biset G1 s× ς X is a principal 
(G , G ς)-biset, see again Proposition 2.15.

The main aim of this paper is to investigate GT Hopf algebroids by means of transitive groupoids. Our 
aim is in part to see how the previous characterizations of transitive groupoids can be transferred, by means 
of weak equivalences and principal groupoids-bisets, to the commutative Hopf algebroid framework.

1.2. Description of the main results

Let k be the ground field. The term algebra in the following stands for a commutative k-algebra, as usual 
the unadorned tensor product ⊗ denotes the tensor product over k.

Our main result is summarized in the following theorem, which includes Theorem 4.8 below:

Theorem A. Let (A, H) be a commutative flat Hopf algebroid over k with A �= 0 and denote by H its 
associated presheaf of groupoids. Assume that H0(k) �= ∅. Then the following are equivalent:

(i) η = s ⊗ t : A ⊗ A → H is a faithfully flat extension;
(ii) Any two objects of H are fpqc locally isomorphic (see Definition 3.6);
(iii) For any extension φ : A → B, the extension α : A → Ht ⊗A φB, a �→ s(a) ⊗A 1B is faithfully flat;
(iv) (A, H) is geometrically transitive (see Definition 4.2);
(v) For any extension φ : A → B, the canonical morphism φ : (A, H) → (B, Hφ) of Hopf algebroids is a 

weak equivalence, that is, the induced functor φ∗ : ComodH → ComodHφ
is an equivalence of symmetric 

monoidal k-linear categories of comodules, where Hφ = B ⊗A H⊗A B;
(vi) For any extension φ : A → B, the trivial principal left (H, Hφ)-bundle H⊗A B is a principal bi-bundle 

(see subsection 3.4).

The flatness is to ensure that the categories of comodules of the involved Hopf algebroids are Grothendieck 
ones with exact forgetful functor to the category of modules over the base algebra. As for the hypothesis 
A �= 0, one of the conditions in Definition 4.2 below says that the endomorphisms ring of A viewed as a 
comodule should coincides with k, so it is reasonable to ask A to be a non zero object.

The examples of Hopf algebroids we have in mind and satisfy the assumptions of Theorem A, are the 
ones which can be obtained from Tannaka’s reconstruction process, by using k-linear representations of a 
(small) groupoid G and taking A = Map(G0, k), the set of all maps from G0 to k, as the base algebra.

The proof of Theorem A is done by showing the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), and using 
the equivalences (iii) ⇔ (v) ⇔ (vi) from [11, Proposition 5.1]. The assumption H0(k) �= ∅ which ensures 
that the character groupoid H (k) is nonempty, is needed to prove the implication (iii) ⇒ (iv). Although, 
the implication (ii) ⇒ (iii) can be shown under the weaker assumption H0(L) �= ∅ for some field extension 
L of k. Moreover, the equivalent conditions of Theorem A are stable under change of scalars for the class of 
Hopf algebroids with nonempty character groupoids (i.e., with H0(k) �= ∅). Indeed, if L is a field extension 
of k and (A, H) is a Hopf algebroid which verifies the assumptions of Theorem A and satisfies one of these 
conditions say (i), then the Hopf algebroid (AL, HL) = (A ⊗k L, H ⊗k L) satisfies this condition as well. 
However, if H0(k) = ∅ and there is a field extension L such that H0(L) �= ∅, then it is not clear to us how 
to show the implication (iii) ⇒ (iv), see Remarks 3.7 and 4.10 for more comments on the change of scalars.

As we have mention before, saying that (A, H) is GT Hopf algebroid is equivalent to say that the 
k-groupoid H1 acts transitively on H0 in the fpqc sense. Thus, by Theorem A, this can be now easily 
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deduced by comparing condition (i) with the Definition of [9, §1.6]. On the other hand, there is also a 
notion of transitivity for Hopf algebroids [4, Définition page 5850] and as was shown in [4, Proposition 7.3 
page 5851], a Hopf algebroid (A, H) is geometrically transitive if and only if (AL, HL) is transitive for any 
field extension L of k. Perhaps this justifies the terminology, although it is not clear, at least to us, how 
to express this transitivity at the level of the associated presheaves of groupoids with respect to a certain 
topology, see Remark 4.5 for more details.

Condition (v) in Theorem A implies in particular that any algebra extension B is Landweber exact over 
A in the sense of [17, Definition 2.1] and shows that certain GT Hopf algebroids do not have a non trivial 
hereditary torsion theory in the sense of [17, Theorem A]. On the other hand, following the notation of [9, 
§3.5], we know that the category of comodules ComodH is canonically equivalent, as a symmetric monoidal 
k-linear category, to the category of linear representations Rep(H0 : H1) of the associated affine presheaf of 
groupoids. So, up to these canonical equivalences, condition (v) gives the “affine version” of the equivalence 
of categories stated in [9, (3.5.1) page 130]. Furthermore, Theorem A shows that for affine k-schemes with 
the induced fpqc topology, the equivalence of categories stated in [9], is not only a necessary condition to 
have a transitive action (for the class of affine k-groupoids H with H0(k) �= ∅), but also a sufficient one. 
Thus we obtain a new characterization of these transitive affine k-groupoids.

The fact that transitive groupoids are characterized by the conjugacy of their isotropy groups, and the 
analogue of this characterization in the Hopf algebroid context also attracted our attention. More precisely, 
given a Hopf algebroid (A, H) and denote by H (C) the fibre of H at a commutative algebra C, that is, 
the groupoid with set of objects H0(C) = Alg

k
(A, C) and set of arrows H1(C) = Alg

k
(H, C) (see equation 

(13) below). Assume as above that the character groupoid H (k) in nonempty (i.e., H0(k) �= ∅), then for 
any object x : A → k, there is a presheaf of sets which assigns to each algebra C, the isotropy group of the 
object x∗(1C) ∈ H0(C), where 1C : k → C denotes the unit of C. It turns out that this is an affine group 
scheme represented by the Hopf algebra (kx, Hx) which is the base change of (A, H) by the algebra map x
(here kx denotes k viewed as an A-algebra via x, and Hx = kx ⊗A H⊗A kx). The pair (kx, Hx) is refereed to 
as the isotropy Hopf algebra of (A, H) at (the point) x. Now, recall from [17] that two flat Hopf algebroids 
(A, H) and (B, K) are weakly equivalent if there is a diagram of weak equivalences

(C,J )

(A,H) (B,K),

see Subsection 3.4 for more details. The fact that two isotropy groups of a transitive groupoid are isomorphic 
is translated to the fact that two isotropy Hopf algebras of a GT Hopf algebroid are weakly equivalent; of 
course, Hopf algebras are considered here as Hopf algebroids where source and target coincide.

This result is part of the subsequent corollary of Theorem A which contains both Proposition 5.3 and 
Corollary 5.17; the last statement in part (2) below follows from Propositions 4.1(GT13) and 4.6.

Corollary A. Let (A, H) be a flat Hopf algebroid as in Theorem A with H0(k) �= ∅. Assume that (A, H) is 
geometrically transitive. Then

(1) Any two isotropy Hopf algebras are weakly equivalent.
(2) Any dualizable (right) H-comodule is locally free of constant rank. Moreover, any right H-comodule is 

an inductive limit of dualizable right H-comodules.

The notion of the conjugation relation between two isotropy Hopf algebras is not automatic. This relation 
can be formulated by using 2-isomorphisms in the 2-category of flat Hopf algebroids. More specifically, using 
the notations and the assumptions of Theorem A, for a given Hopf algebroid (A, H), two isotropy Hopf 
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algebras (kx, Hx) and (ky, Hy), at the points x, y ∈ H0(k) are said to be conjugated provided there is an 
isomorphism g : (kx, Hx) → (ky, Hy) of Hopf algebras such that the following diagram

(kx,Hx)
g

(ky,Hy)

(A,H)
x y

commutes up to a 2-isomorphism, where x and y are the canonical morphisms attached, respectively, to 
x and y. The transitivity of the conjugation relation characterizes in fact the transitivity of the character 
groupoid. This result is also a corollary of Theorem A and stated as Proposition 5.9 below:

Corollary B. Let (A, H) be a flat Hopf algebroid as in Theorem A with H0(k) �= ∅. Assume that (A, H) is 
geometrically transitive. Then the following are equivalent

(i) the character groupoid H (k) is transitive;
(ii) for any two objects x, y in H0(k), the left H-comodule algebras H⊗A kx and H⊗A ky are isomorphic;
(iii) any two isotropy Hopf algebras are conjugated.

Furthermore, under the stated assumptions, we have that condition (i) is always fulfilled.

Let (A, H) be a flat Hopf algebroid over k with A �= 0 and H0(k) = ∅. If (A, H) satisfies condition (i) of 
Theorem A and there exists a field extension L of k such that H0(L) �= ∅, then Corollary B can be applied 
to (AL, HL) and implies that H (L) is a transitive groupoid, see Proposition 5.14.

Transitive groupoids are related to principal group-bisets, in the sense that there is a (non canonical) 
correspondence between these two notions, see Subsection 2.6. This in fact is an abstract formulation 
of Ehresmann’s well-known result dealing with the correspondence between transitive Lie groupoids and 
principal fibre bundles, as was expounded in [8]. The analogous correspondence at the level of Hopf algebroids 
is not always possible and some technical assumptions are required. The formulation of this result is given 
as follows.

For any object x ∈ H0(k), consider the presheaf of sets which associates to each algebra C the set 
Px(C) := t−1({x∗(1C)}

)
, where t is the target of the groupoid H (C). In the terminology of [16], this is 

the left star set of the object x∗(1C). Denote by αx : A → Px := H ⊗A kx the algebra map which sends 
a �→ s(a) ⊗1. It turns out that the presheaf of sets Px is affine, and is up to a natural isomorphism represented 
by the (H, Hx)-bicomodule algebra Px. The subsequent is a corollary of Theorem A, and formulates the 
desired result. It is a combination of Lemma 5.10 and Proposition 5.11 below.

Corollary C. Let (A, H) be a flat Hopf algebroid as in Theorem A with H0(k) �= ∅. If (A, H) is a GT Hopf 
algebroid, then for any object x ∈ H0(k), the comodule algebra (Px, αx) is a right principal Hx-bundle (i.e., 
a Hopf–Galois extension).

Conversely, let (P, α) be a right principal B-bundle over a Hopf k-algebra B with extension α : A → P . 
Denote by υ : H := (P ⊗ P )coinvB → P ⊗ P the canonical injection, where P ⊗ P is a right B-comodule 
algebra via the diagonal coaction (here RcoinvB denotes the subalgebra of coinvariant elements of a right 
B-comodule algebra R). Assume that υ is a faithfully flat extension and that

H⊗A H =
(
(P ⊗ P ) ⊗A (P ⊗ P )

)coinvB

,

where (P ⊗ P ) ⊗A (P ⊗ P ) is endowed with a canonical right B-comodule algebra structure. Then the pair 
of algebras (A, H) admits a unique structure of a GT Hopf algebroid such that (α, υ) : (A, H) → (P, P ⊗ P )
is a morphism of GT Hopf algebroids.
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2. Abstract groupoids: general notions and basic properties

This section contains the results about groupoids, which we want to transfer to the context of Hopf 
algebroids in the forthcoming sections. For sake of completeness we include some of their proofs.

2.1. Notations, basic notions and examples

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism. That is, 
a pair of two sets G := (G1, G0) with diagram G1

s
t G0ι , where s and t are resp. the source and the 

target of a given arrow, and ι assigns to each object its identity arrow; together with an associative and 
unital multiplication G2 := G1 s× t G1 → G1 as well as a map G1 → G1 which associates to each arrow its 
inverse.

Given a groupoid G , consider an object x ∈ G0, the isotropy group of G at x, is the group of loops:

G x :=
{
g ∈ G1| s(g) = t(g) = x

}
. (1)

Notice that the disjoint union 
⊎

x ∈ G0
G x of all isotropy groups form the set of arrows of a subgroupoid 

of G whose source equal to its target, namely, the projection 
⊎

x ∈ G0
G x → G0.

A morphism of groupoids φ : H → G is a functor between the underlying categories. That is, φ = (φ0, φ1)), 
where φ0 : H0 → G0 and φ1 : H1 → G1 satisfying the pertinent compatibility conditions:

φ1 ◦ ι = ι ◦ φ0, φ0 ◦ s = s ◦ φ1, φ0 ◦ t = t ◦ φ1, φ1(fg) = φ1(f)φ1(g),

whenever the multiplication fg in H1 is permitted.
Obviously any such a morphism induces morphisms between the isotropy groups: φu : H u → G φ0(u), for 

every u ∈ H0. Naturally, groupoids, morphism of groupoids, and natural transformations form a 2-category 
Grpds. Next we describe some typical examples of groupoids and their morphisms.

Example 2.1. Let G be a group and fix a set M . Denote by BGM the category whose objects are (left) 
G-torsors of the form (P, G, M) and morphisms are G-morphisms. In the terminology of Definition 2.8
below, an object (P, G, M) in BGM is a principal left G-set P . Precisely, this is a left G-set P with projection 
π : P → M to the set of orbits M and where the canonical map G × P → P π× π P , (g, p) �→ (gp, p) is 
bijective. It is clear that any morphism in this category is an isomorphism, thus, BGM is a groupoid (probably 
not small). The groupoid BGpt plays a crucial role in the representation theory of the group G. Furthermore, 
when M varies in the category Sets of sets, we obtain the presheaf of groupoids BG : Setsop −→ Grpds, 
which is known as the classifying stack of the group G.

Example 2.2. Assume that R ⊆ X ×X is an equivalence relation on a set X. One can construct a groupoid 
R pr2

pr1 X,ι with structure maps as follows. The source and the target are s = pr2 and t = pr1, the 
second and the first projections, and the map of identity arrows ι is the diagonal one. The multiplication 
and the inverse maps use, respectively, the transitivity and reflexivity of R and are given by

(x, x′) (x′, x′′) = (x, x′′), and (x, x′)−1 = (x′, x).

This is an important class of groupoids known as the groupoid of equivalence relation, see [10, Exemple 
1.4, page 301]. A particular situation is when R = X ×X, that is, the obtained groupoid is the so called 
the groupoid of pairs (called fine groupoid in [3] and simplicial groupoid in [16]); or when R is defined by a 
certain fibred product X ν× ν X for a map ν : X → Y .
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Example 2.3. Any group G can be considered as a groupoid by taking G1 = G and G0 = {∗} (a set with 
one element). Now if X is a right G-set with action ρ : X × G → X, then one can define the so called 
the action groupoid: G1 = X × G and G0 = X, the source and the target are s = ρ and t = pr1, the 
identity map sends x �→ (e, x) = ιx, where e is the identity element of G. The multiplication is given by 
(x, g)(x′, g′) = (x, gg′), whenever xg = x′, and the inverse is defined by (x, g)−1 = (xg, g−1). Clearly the 
pair of maps (pr2, ∗) : (G1, G0) → (G, {∗}) defines a morphism of groupoids.

Example 2.4. Let G = (G1, G0) be a groupoid and ς : X → G0 a map. Consider the following pair of sets:

Gς
1 := X ς× t G1 s× ς X =

{
(x, g, x′) ∈ X ×G1 ×X| ς(x) = t(g), ς(x′) = s(g)

}
, Gς

0 := X.

Then G ς = (Gς
1, Gς

0) is a groupoid, with structure maps: s = pr3, t = pr1, ιx = (ς(x), ις(x), ς(x)), x ∈ X. 
The multiplication is defined by (x, g, y)(x′, g′, y′) = (x, gg′, y′), whenever y = x′, and the inverse is given 
by (x, g, y)−1 = (y, g−1, x). The groupoid G ς is known as the induced groupoid of G by the map ς, (or the 
pull-back groupoid of G along ς, see [16] for dual notion). Clearly, there is a canonical morphism φς :=
(pr2, ς) : G ς → G of groupoids.

Any morphism φ : H → G of groupoids factors through the canonical morphism G φ0 → G , that is we 
have the following (strict) commutative diagram

H
φ

φ′

G

G φ0

of groupoids, where φ′
0 = idH0 and

φ′
1 : H1 −→ Gφ0

1,
(
h �−→

(
t(h), φ1(h), s(h)

))
.

A particular and important example of an induced groupoid is the case when G is a groupoid with 
one object, that is, a group. In this case, to any group G and a set X, one can associated the groupoid 
(X ×G ×X, X) as the induced groupoid of (G, {∗}) by the map ∗ : X → {∗}.

Recall that a groupoid G = (G1, G0) is said to be transitive if the map (s, t) : G1 → G0 ×G0 is surjective.

Example 2.5. The groupoid of pairs is clearly transitive, as well as any induced groupoid of the form 
(X × G × X, X). On other hand, if a group G acts transitively on a set X, then the associated action 
groupoid is by construction transitive.

Let G be a transitive groupoid. Then if x, y ∈ G0, there is a non-canonical isomorphism of groups G x ∼= G y

given by conjugation: Let g ∈ G1 with x = s(g) and t(g) = y, then

G x −→ G y,
(
h �−→ ghg−1

)

is an isomorphism of groups. This fact is essential in showing that any transitive groupoid is isomorphic, 
in a non-canonical way, to an induced groupoid of the form (X × G × X, X). Indeed, given a transitive 
groupoid G , fix an object x ∈ G0 with isotropy group G x and chose a family of arrows {fy}y ∈ G0 such that 
fy ∈ t−1({x}) and s(fy) = y, for y �= x while fx = ι(x), for y = x. In this way the morphism

φx : G
∼=−→ (G0 × G x ×G0, G0),

[
(g, z) �−→

((
s(g), ft(g) g f

−1
s(g), t(g)

)
, z
)]

establishes an isomorphism of groupoids.
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2.2. Groupoids actions, equivariant maps and the orbits sets

The following definition is a natural generalization to the context of groupoids, of the usual notion of 
group-set. It is an abstract formulation of that given in [21, Definition 1.6.1] for Lie groupoids, and essentially 
the same definition based on the Sets-bundles notion given in [27, Definition 1.11].

Definition 2.6. Given a groupoid G , a right G -set is a triple (X, ς, ρ) where X is a set and ς : X → G0 and 
ρ : X ς× t G1 → X (shortly written as ρ(x, g) := xg) are the structure and action maps respectively. These 
maps obey the following conditions

(1) s(g) = ς(xg), for any x ∈ X and g ∈ G1 with ς(x) = t(g).
(2) xις(x) = x, for every x ∈ X.
(3) (xg)h = x(gh), for every x ∈ X, g, h ∈ G1 with ς(x) = t(g) and t(h) = s(g).

In order to simplify the notation we denote a right G -set by a pair (X, ς), omitting the action ρ. A left 
groupoid action is analogously defined by interchanging the source with the target and similar notations 
might be adopted. Obviously, any groupoid G acts over itself on both sides by using the regular action, i.e., 
the multiplication G1 s× t G1 → G1. Thus, we have that (G1, s) is a right G -set and (G1, t) is a left G -set.

Let (X, ς) be a right G -set, and consider the pair of sets X � G :=
(
X ς× t G1, X

)
as a groupoid with 

structure maps s = ρ, t = pr1, ιx = (x, ις(x)). The multiplication and the inverse maps are defined by 
(x, g)(x′, g′) = (x, gg′) and (x, g)−1 = (xg, g−1). The groupoid X � G is known as the right translation 
groupoid of X by G .

For sake of completeness let us recall the notion of equivariant maps. A morphism of right G -sets (or 
G -equivariant map) F : (X, ς) → (X ′, ς ′) is a map F : X → X ′ such that the diagrams

X
ς

FG0

X ′ς′

X ς× t G1

F × id

X

F

X ′
ς′× t G1 X ′

(2)

commute. Clearly any such a G -equivariant map induces a morphism of groupoids F : X � G → X ′
� G .

Next we recall the notion of the orbit set attached to a right groupoid-set. This notion is a generalization 
of the orbit set in the context of group-sets. Here we use the (right) translation groupoid to introduce this 
set. First we recall the notion of the orbit set of a given groupoid. The orbit set of a groupoid G is the 
quotient set of G0 by the following equivalence relation:

x ∼ y ⇐⇒ ∃ g ∈ G1 such that s(g) = x and t(g) = y.

In others words, this is the set of all connected components of G .
Given a right G -set (X, ς), the orbit set X/G of (X, ς) is the orbit set of the translation groupoid X �G . 

If G = (X × G, X) is an action groupoid as in Example 2.3, then obviously the orbit set of this groupoid 
coincides with the classical set X/G of orbits.

2.3. Principal groupoid-bisets and the two sided translation groupoid

We give in this subsection an exhaustive survey on principal groupoids bisets and the formal constructions 
of their bicategories.
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Let G and H be two groupoids and (X, ς, ϑ) a triple consisting of a set X and two maps ς : X → G0, 
ϑ : X → H0. The following definitions are abstract formulations of those given in [18,22] for topological and 
Lie groupoids.

Definition 2.7. An (H , G )-biset is a triple (X, ς, ϑ) where (X, ς) is endowed with a right G -action ρ :
X ς× t G1 → X and (X, ϑ) with a left H -action λ : H1 s× ϑ X → X such that

(1) For any x ∈ X, h ∈ H1, g ∈ G1 with ϑ(x) = s(h) and ς(x) = t(g), we have

ϑ(xg) = ϑ(x) and ς(hx) = ς(x).

(2) For any x ∈ X, h ∈ H1 and g ∈ G1 with ς(x) = t(g), ϑ(x) = s(h), we have h(xg) = (hx)g.

The two sided translation groupoid associated to a given (H , G )-biset (X, ς, ϑ) is defined to be the 
groupoid H �X � G whose set of objects is X and set of arrows is

H1 s× ϑ X ς× s G1 =
{

(h, x, g) ∈ H1 ×X ×G1| s(h) = ϑ(x), s(g) = ς(x)
}
.

The structure maps are:

s(h, x, g) = x, t(h, x, g) = hxg−1 and ιx = (ιϑ(x), x, ις(x)).

The multiplication and the inverse are given by:

(h, x, g)(h′, x′, g′) = (hh′, x′, gg′), (h, x, g)−1 = (h−1, hxg−1, g−1).

Associated to a given (H , G )-biset (X, ς, ϑ), there are two canonical morphisms of groupoids:

Σ : H �X � G −→ G ,
(
(h, x, g), y

)
�−→

(
g, ς(y)

)
, (3)

Θ : H �X � G −→ H ,
(
(h, x, g), y

)
�−→

(
h, ϑ(y)

)
. (4)

Definition 2.8. Let (X, ς, ϑ) be an (H , G )-biset. We say that (X, ς, ϑ) is a left principal (H , G )-biset if it 
satisfies the following conditions:

(P-1) ς : X → G0 is surjective;
(P-2) the canonical map

∇ : H1 s× ϑ X −→ X ς× ς X,
(
(h, x) �−→ (hx, x)

)
(5)

is bijective.

By condition (P-2) we consider the map δ := pr1 ◦ ∇−1 : X ς× ς X → H1. This map clearly satisfies:

s
(
δ(x, y)

)
= ϑ(y) (6)

δ(x, y)y = x, for anyx, y ∈ X with ς(x) = ς(y); (7)

δ(hx, x) = h, for h ∈ H1, x ∈ X with s(h) = ϑ(x). (8)

Equation (8), shows that the action is in fact free, that is, hx = x only when h = ιϑ(x). The subsequent 
lemma is also immediate from this definition.



3492 L. El Kaoutit / Journal of Pure and Applied Algebra 222 (2018) 3483–3520
Lemma 2.9. Let (X, ς, ϑ) be a left principal (H , G )-biset. Then the map ς induces a bijection between the 
orbit set X/H and the set of objects G0.

Analogously one defines right principal (H , G )-biset. A principal (H , G )-biset is both left and right 
principal biset. For instance, (G1, t, s) is a left and right principal (G , G )-biset, known as the unit principal 
biset, which we denote by U (G ). More examples of left principal bisets can be performed, as in the geometric 
case, by pulling back other left principal bisets. Precisely, assume we are given (X, ς, ϑ) a left principal 
(H , G )-biset, and let ψ : K → G be a morphism of groupoids. Consider the set Y := X ϑ× ψ0 K0 together 
with maps pr2 : Y → K0 and ς̃ := ς ◦ pr1 : Y → H0. Then the triple (Y, ̃ς, pr2) is an (H , K )-biset with 
actions

λ : H1 s× ς Y −→ Y,
(
h, (x, u)

)
�−→

(
hx, u

)
(9)

ρ : Y ς̃× t K1 −→ Y,
(
(x, u), f

)
�−→

(
xψ1(f), s(f)

)
, (10)

which is actually a left principal (H , K )-biset, and known as the pull-back principal biset of (X, ς, ϑ); we 
denote it by ψ∗

(
(X, ς, ϑ)

)
. A left principal biset is called a trivial left principal biset if it is the pull-back of 

the unit left principal biset, that is, of the form ψ∗(U (G )) for some morphism of groupoids ψ : K → G .
Next we expound the bicategorical constructions beyond the notion of principal groupoids-bisets. A 

morphism of left principal (H , G )-bisets F : (X, ς, ϑ) → (X ′, ς ′, ϑ′) is a map F : X → X ′ which is 
simultaneously G -equivariant and H -equivariant, that is, the following diagrams

X
ς ϑ

FG0 H0

X ′ς′ ϑ′

X ς× t G1

F × id

X

F

X ′
ς′× t G1 X ′

H1 s× ϑ X

id × F

X

F

H1 s× ϑ′ X ′ X ′

(11)

commute. An isomorphism of left principal bisets is a morphism whose underlying map is bijective. As in 
the geometric case we have:

Proposition 2.10. Given two groupoids G and H . Then any morphism between left principal (H , G )-bisets 
is an isomorphism.

Proof. Let F : (X, ς, ϑ) → (X ′, ς ′, ϑ′) be a morphism of left principal (H , G )-bisets. We first show that F
is injective. So take x, y ∈ X such that F (x) = F (y), whence ς(x) = ς(y). By Lemma 2.9, we know that 
there exists h ∈ H1 with s(h) = ϑ(x) such that hx = y. Therefore, we have F (hx) = F (y) = hF (x) = F (x)
and so h = ιϑ(x), since the left action is free. This shows that x = y. The surjectivity of F is derived as 
follows. Take an arbitrary element x′ ∈ X ′ and consider its image ς ′(x′) ∈ G0. Since ς is surjective, there 
exists x ∈ X such that ς(x) = ς ′F (x) = ς ′(x′). This means that F (x) and x′ are in the same orbit, so there 
exists h′ ∈ H1 (with s(h′) = ϑ(x)) such that h′F (x) = F (h′x) = x′, which shows that F is surjective. �
Remark 2.11. By Proposition 2.10, the category of left principal bisets PBl(H , G ) is actually a groupoid 
(not necessary a small category). On the other hand, notice that if (X, ς, ϑ) is a left principal (H , G )-biset, 
then its opposite (Xo, ϑ, ς) is a right principal (G , H )-biset, where the underlying set still the same set X
while the actions were switched by using the inverse maps of both groupoids. This in fact establishes an 
isomorphism of categories between PBl(H , G ) and the category of right principal bisets PBr(G , H ).

Remark 2.12. Given (X, ς, ϑ) an (H , G )-biset and (X ′, ς ′, ϑ′) a (G , K )-biset. One can endow the fibre 
product X ς× ϑ′ X ′ within a structure of an (H , K )-biset. Furthermore, G also acts on this set by the 
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action (x, x′).g = (xg, g−1x′), for g ∈ G1, (x, x′) ∈ X ς× ϑ′ X ′ with t(g) = ς(x) = ϑ′(x′). Denote by 
X ⊗G X ′ :=

(
X ς× ϑ′ X ′)/G its orbit set, then clearly this set inherits a structure of (H , K )-biset. This is 

the tensor product of bisets, also known as le produit contracté [15, Définition 1.3.1, page 114], [10, Chap. III, 
§4, 3.1]. It turns out that, if (X, ς, ϑ) is a left principal biset and (X ′, ς ′, ϑ′) is a left principal biset, then 
X ⊗G X ′ is a left principal (H , K )-biset. Moreover, one can show that the tensor product (over different 
groupoids) is associative, up to a natural isomorphism. This defines the bicategory PBl of left principal 
bisets. Analogously, we have the bicategories PBr and PBb (of principal bisets).

For a single 0-cell, i.e., a groupoid G , the category PBb(G , G ) turns to be a bigroup (or a categorical 
group). Moreover, in analogy with the group case, one can construct with the help of Proposition 2.10 and 
by using morphisms between left translation groupoids, a presheaf BG : Setsop −→ 2-Grpds to the category 
of 2-groupoids known as the classifying 2-stack of the groupoid G (compare with Example 2.1).

2.4. Principal groupoids-biset versus weak equivalences

A morphism of groupoids φ : H → G is said to be a weak equivalence if it satisfies the following two 
conditions:

(WE-1) The composition map G1 s× φ0 H0

pr1
G1

t
G0 is surjective.

(WE-2) The following diagram is cartesian

H1

(s,t)

φ1
G1

(s,t)

H0 ×H0

φ0×φ0
G0 ×G0

Equivalently there is a bijection Γ : H1
∼= H0 φ0× s G1 t× φ0 H0 such that pr2◦Γ = φ0 and (pr1, pr3) ◦

Γ = (s, t).

In categorical terms, condition (WE-1) says that φ is an essentially surjective functor: Each object of G
is isomorphic to the image by φ of an object in H . The second condition, means that φ is fully faithful: If 
u, v are two objects in H then φ defines a bijection between the sets of arrows H (u, v) and G

(
φ0(u), φ0(v)

)
. 

Both properties classically characterize functors which define equivalences of categories.
Two groupoids G and H are said to be weakly equivalent when there exists a third groupoid K with a 

diagram (i.e., a span) of weak equivalences:

K

G H .

For sake of completeness, next we give a result which relate the notion of principal biset with that of 
weak equivalence.

Proposition 2.13. Let G and H be two groupoids. Assume that there is (X, ς, ϑ) a principal (H , G )-biset. 
Then the canonical morphisms of groupoids

H �X � G
Θ Σ

H G

are weak equivalences, where Θ, Σ are as in (3) and (4). In particular, G and H are weakly equivalent.
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Proof. We only show that if (X, ς, ϑ) is a left principal (H , G )-biset, then the canonical morphism

Σ : H �X � G −→ G ,
((

(h, x, g), x
)
�−→ (g, ς(x)

)

is a weak equivalence. The proof of the fact that Θ is a weak equivalence follows similarly from the assumption 
that (X, ς, ϑ) is right principal (H , G )-biset.

Condition (WE-1) for Σ is clear, since ς is surjective by condition (P-1) of Definition 2.8. Consider the 
map

Γ : H1 s× ϑ X ς× s G1 X ς× s G1 t× ς X(
h, x, g

) (
x, g, hxg−1).

Using the map δ : X ς× ς X → H1 resulting from condition (P-2) on (X, ς, ϑ) and which satisfies equations 
(6)–(8), we define the inverse of Γ to be the map:

Γ−1 : X ς× s G1 t× ς X H1 s× ϑ X ς× s G1(
x, g, y

) (
δ(y, xg−1), x, g

)
,

which gives condition (WE-2) for Σ. �
Remark 2.14. As we have seen in Remark 2.11, the opposite of left principal (H , G )-biset is a right principal 
(G , H )-biset. Thus the opposite of principal biset is also a principal biset. In this way, Proposition 2.13
says that the “equivalence relation” between groupoids defined by “being connected by a principal biset” is 
contained in the equivalence relation defined by “being weakly equivalent”. An interesting question is then 
to check if both relations are the same. Precisely, one can ask whether two weakly equivalent groupoids H
and G are connected by a certain principal (H , G )-biset. The complete answer was recently given in [11, 
Theorem 2.9] (see Remark 3.10 below for these equivalence relations in Hopf algebroids context).

2.5. Transitive groupoids are characterized by weak equivalences

This subsection is the main motivation for the forthcoming sections. Here we show perhaps a well known 
result that characterizes transitive groupoids by means of weak equivalences and principal groupoids-bisets.

Proposition 2.15. Let G be a groupoid. Then the following are equivalent:

(i) For every map ς : X → G0, the induced morphism of groupoids φς : G ς → G is a weak equivalence;
(ii) G is a transitive groupoid;
(iii) For every map ς : X → G0, the pull-back biset φς ∗(U (G )) is a principal (G , G ς)-biset.

Proof. (i) ⇒ (ii). Is immediate.
(ii) ⇒ (iii). By definition φς ∗(U (G )) is a left principal (G , G ς)-biset. We need then to check that, under 

condition (ii), it is also right principal (G , G ς)-biset. This biset is given by φς ∗(U (G )) =
(
G1 s× ς X, ̃t, pr2

)
, 

where t̃ := t ◦ pr1 : G1 s× ς X → G1 → G0. The left and right actions are given as in equations (9) and (10)
by

g ⇀ (f, x) = (gf, x) and (f, x) ↼ (y, h, x) = (fh, y),
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for any (f, x) ∈ G1 s× ς X, g ∈ G1 with s(g) = t(f), and h ∈ G1 with s(h) = ς(y), t(h) = ς(x) and 
s(f) = t(h). Both conditions (1)–(2) in Definition 2.7 are then clearly satisfied. The right canonical map is 
defined by

∇′ :
(
G1 s× ς X

)
pr2× t G

ς
1 −→

(
G1 s× ς X

)
t̃× t̃

(
G1 s× ς X

)
,
[((

f, x
)
,
(
y, h, x

))
�−→

((
f, x

)
,
(
fh, y

))]
.

The map t̃ is clearly surjective, since G is transitive. This gives condition (P-1) of Definition 2.8 for 
φς ∗(U (G )) as a right principal biset. Now, we need to check that ∇′ is bijective, that is, condition (P-2) is 
fulfilled. However, the inverse of this map is easily shown to be the following map

∇′−1 :
(
G1 s× ς X

)
t̃× t̃

(
G1 s× ς X

)
−→

(
G1 s× ς X

)
pr2× t G

ς
1,[((

f, x
)
,
(
f ′, x′)) �−→

((
f, x

)
,
(
x′, f−1f ′, x

))]
.

(iii) ⇒ (i). If we assume that φς ∗(U (G )) is a principal (G , G ς)-biset, then the map t̃ above should be 
surjective. Therefore, the map

G1 s× ς X
pr1

G1
t

G0

is also surjective, which is condition (WE-1) for the morphism φς . Condition (WE-2) for this morphism is 
trivial, since by definition we know that Gς

1 = X ς× t G1 s× ς X. �
2.6. Correspondence between transitive groupoids and principal group-sets

A particular example of principal groupoids-bisets are, of course, principal group-sets. As we will see 
below transitive groupoids are characterized by these group-sets. Precisely, there is a (non canonical) cor-
respondence between transitive groupoids and principal group-sets, as we will show in this subsection.

Let π : P → G0 be a map and G a group which acts on the left side of P . Recall that the triple (P, G, π)
is said to be a left principal G-set, if the following conditions are satisfied:

(P’1) π is surjective;
(P’2) π(gp) = π(p), for every p ∈ P and g ∈ G;
(P’3) The canonical map G × P −→ P π× π P sending (g, p) �→ (gp, p) is bijective.

Equivalently, the action is free and G0 is the orbit set of P . Comparing with Definition 2.7, this means that 
the triple (P, ∗, π) with ∗ : P → {∗}, is a principal left (G, G0)-biset, where the group G is considered as a 
groupoid with one object {∗} and G0 is considered as a groupoid whose underlying category is a discrete 
category (i.e., category with only identities arrows) with set of objects G0, and acts trivially on P along π.

In the previous situation, consider P × P as a left G-set by the diagonal action and denote by G1 :=
(P × P )/G its set of orbits. The pair (G1, G0) admits as follows a structure of transitive groupoid. Indeed, 
let (p, p′) ∈ P × P and denote by [(p, p′)] ∈ (P × P )/G its equivalence class. The source and target 
are s

(
[(p, p′)]

)
= π(p′) and t

(
[(p, p′)]

)
= π(p). The identity arrow of an object x ∈ G0 is given, using 

conditions (P’1)–(P’2), by the class [(p, p)] where π(p) = x. Let p, q be two equivalence classes in G1 such 
that s(p) = t(q). Henceforth, if (p, p′) is a representative of p, then q can be represented by (p′, p′′). The 
multiplication pq is then represented by (p, p′′). This is a well defined multiplication since the action is free. 
By conditions (P’1), (P’3), we have that (G1, G0) is a transitive groupoid with a canonical morphism of 
groupoids
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P × P P

G1 := (P × P )/G P/G := G0.

Conversely, given a transitive groupoid G , and fix an object x ∈ G0. Set G := G x the isotropy group of 
x and let P := t−1({x}) be the set of all arrows with target this x, i.e., the left star set of x. Consider the 
left G-action G × P → P derived from the multiplication of G . Since G is transitive, the triple (P, G, π)
satisfies then the above conditions (P’1)–(P’3), which means that it is a left principal G-set.

3. Hopf algebroids: comodules algebras, principal bundles, and weak equivalences

This section contains the definitions of commutative Hopf algebroids and theirs bicomodules algebras. 
All definitions are given in the algebraic way. Nevertheless, we will use a slightly superficial language of 
presheaves, sufficiently enough to make clearer the connection with the contents of Section 2.

Parallel to subsections 2.3 and 2.4, we present a brief contents on principal bibundles between Hopf alge-
broids and their connection with weak equivalences. Dualizable objects in the category of (right) comodules 
are treated in the last subsection, where we also proof some useful lemmata.

3.1. Preliminaries and basic notations

We work over a commutative base field k. Unadorned tensor product − ⊗− stands for the tensor product 
of k-vector spaces − ⊗k−. By k-algebra, or algebra, we understand commutative k-algebras, unless otherwise 
specified. The category of (right) A-modules over an algebra A, is denoted by ModA. The k-vector space of 
all A-linear maps between two (right) A-modules M and N , is denoted by HomA (M, N). When N = A is 
the regular module, we denote M∗ := HomA (M, A).

Given two algebras R, S, we denote by S(R) := Alg
k
(S, R) the set of all k-algebra maps from S to R. 

In what follows, a presheaf of sets (of groups, or of groupoids) stands for a functor from the category of 
algebras Alg

k
to the category of sets (groups, or groupoids). Clearly, to any algebra A, there is an associated 

presheaf which sends C → A(C) = Alg
k
(A, C), thus, the presheaf represented by A.

For two algebra maps σ : A → T and γ : B → T we denote by σTγ (respectively, σT or Tγ , if one of the 
algebra maps is the identity) the underlying (A, B)-bimodule of T (respectively, the underlying A-module 
of T ) whose left A-action is induced by σ while its right B-action is induced by γ, that is,

a . t = σ(a)t, t . b = tγ(b), for every a ∈ A, b ∈ B, t ∈ T.

Assume there is an algebra map x ∈ A(R). The extension functor (−)x : ModA → ModR is the functor 
which sends any A-module M to the extended R-module Mx = M ⊗A R. In order to distinguish between 
two extension functors, we use the notation Mx := M ⊗x R and My := M ⊗y S, whenever another algebra 
map y ∈ A(S) is given.

In the sequel we will use the terminology coring (or cogébroïde as in [9,4]) for coalgebra with possibly 
different left-right structures on its underlying modules over the base ring. We refer to [6] for basic notions 
and properties of these objects.

3.2. The 2-category of Hopf algebroids

Recall from, e.g., [26] that a commutative Hopf algebroid, or a Hopf algebroid over a field k, is a pair 
(A, H) of two commutative k-algebras, together with algebra maps
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η : A⊗ A → H, ε : H → A, Δ : sHt → sHt ⊗A sHt, S : sHt → tHs

and a structure (sHt, Δ, ε) of an A-coring with S an A-coring map to the opposite coring. Here the source 
and the target are the algebra maps s : A → H and t : A → H defined by s(a) = η(a ⊗1) and t(a) = η(1 ⊗a), 
for every a ∈ A. The map S is called the antipode of H subject to the following equalities:

S 2 = Id, t(ε(u)) = S (u(1))u(2), s(ε(u)) = u(1)S (u(2)), for every u ∈ H, (12)

where we used Sweedler’s notation: Δ(u) = u(1) ⊗A u(2) and summation is understood. The algebras A and 
H are called, respectively, the base algebra and the total algebra of the Hopf algebroid (A, H).

As commutative Hopf algebra leads to an affine group scheme, a Hopf algebroid leads to an affine groupoid 
scheme (i.e., a presheaf of groupoids). More precisely, given a Hopf algebroid (A, H) and an algebra C, 
reversing the structure of (A, H) we have, in a natural way, a groupoid structure

H (C) : H(C) s∗

t∗
A(C).ε∗ (13)

This structure is explicitly given as follows: the source and the target of a given arrow g ∈ H(C) are, 
respectively, s∗(g) = g ◦ s and t∗(g) = g ◦ t, the inverse is g−1 = g ◦S . Given another arrow f ∈ H(C) with 
t∗(f) = s∗(g), then the groupoid multiplication is defined by the following algebra map

gf : H −→ C,
(
u �−→ f(u(1))g(u(2))

)
,

summation always understood. The identity arrow of an object x ∈ A(C) is ε∗(x) = x ◦ ε.
The functor H is referred to as the associated presheaf of groupoids of the Hopf algebroid (A, H), and the 

groupoids of equation (13) are called the fibres of H . Depending on the handled situation, we will employ 
different notations for the fibres of H at an algebra C:

H (C) :=
(
H(C), A(C)

)
:=

(
H1(C),H0(C)

)
.

The presheaf of groupoids H op is defined to be the presheaf whose fibre at C is the opposite groupoid 
H (C)op (i.e., the same groupoid with the source interchanged by the target).

Examples of Hopf algebroids can be then proportioned using well known constructions in groupoids, as 
we have seen in subsection 2.1.

Example 3.1. Let A be an algebra and set H := A ⊗ A. Then the pair (A, H) is clearly a Hopf algebroid 
with structure s : A → H, a �→ a ⊗ 1, t : A → H, a �→ 1 ⊗ a; Δ(a ⊗ a′) = (a ⊗ 1) ⊗A (1 ⊗ a′), ε(a ⊗ a′) = aa′, 
S (a ⊗ a′) = a′ ⊗ a. Clearly, the fibres of the associated presheaf of groupoids H are groupoids of pairs, 
as in Example 2.2. Thus, H ∼=

(
A × A , A

)
an isomorphism of presheaves of groupoids, where A is the 

presheaf of sets attached to the algebra A.

Example 3.2. Let (B, Δ, ε, S) be a commutative Hopf k-algebra and A a commutative right B-comodule 
algebra with coaction A → A ⊗B, a �→ a(0) ⊗ a(1). This means that A is right B-comodule and the coaction 
is an algebra map, see [23, §, 4]. Let B be the affine k-group attached to B. To any algebra C, one associated 
in a natural way, the following action groupoid as in Example 2.3:

(A × B)(C) : A(C) ×B(C) A(C),

where the source is given by the action (x, g) �→ xg sending a �→ (xg)(a) = x(a(0))g(a(1)), and the target is the 
first projection. Consider, on the other hand, the algebra H = A ⊗B with algebra extension η : A ⊗A → H, 
a′ ⊗ a �→ a′a(0) ⊗ a(1). Then (A, H) has a structure of Hopf algebroid, known as a split Hopf algebroid:
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Δ(a⊗ b) = (a⊗ b(1)) ⊗A (1A ⊗ b(2)), ε(a⊗ b) = aε(b), S (a⊗ b) = a(0) ⊗ a(1)S(b).

Obviously, the associated presheaf of groupoids H op (where H is the one associated to (A, H)) is canonically 
isomorphic to the action groupoids A ×B. Thus, we have an isomorphism H op ∼=

(
A ×B, A

)
of presheaves 

of groupoids.

Example 3.3. Let A be an algebra and consider the commutative polynomial Laurent ring over A ⊗A, that 
is, H = (A ⊗ A)[X, X−1] with the canonical injection η : A ⊗ A → H. The pair (A, H) is a Hopf algebroid 
with structure maps

Δ
(
(a⊗ a′)X

)
=

(
(a⊗A 1)X

)
⊗A

(
(1 ⊗ a′)X

)
, ε

(
(a⊗ a′)X

)
= aa′, S

(
(a⊗ a′)X

)
= (a′ ⊗ a)X−1.

The fibres of the associated presheaf H are described using the induced groupoid by the multiplicative 
affine k-group, in the sense of Example 2.4. Precisely, take an algebra C, then H(C) is canonically bijective 
to the set A(C) × Gm(C) × A(C), where Gm is the multiplicative affine k-group. This in fact induces, in a 
natural way, an isomorphisms of groupoids (H(C), A(C)) ∼=

(
A(C) ×Gm(C) ×A(C), A(C)

)
, where the later 

is the induced groupoid by the group Gm(C), as in Example 2.4. As presheaves of groupoids, we have then 
an isomorphism H ∼=

(
A × Gm × A , A

)
, where as above A is the presheaf attached to the algebra A.

There is in fact a more general construction: Take any commutative Hopf k-algebra B, then for any 
algebra A, the pair (A, A ⊗B⊗A) admits a canonical structure of Hopf algebroid whose associated presheaf 
is also of the form 

(
A × B × A , A

)
, where A and B are as before.

Example 3.4 (Change of scalars). Let (A, H) be a Hopf algebroid over k and consider L a field extension of 
k. Then the pair of algebras (AL, HL) := (A ⊗k L, H ⊗k L) admits, in a canonical way, a structure of Hopf 
algebroid over the field L. The structure maps are denoted using the subscript L, i.e., sL, tL, εL, . . . . If we 
denote by HL : AlgL → Grpds the presheaf of groupoids associated to (AL, HL), then the usual hom-tensor 
adjunction shows that HL factors through the forgetful functor AlgL → Alg

k
. That is we have a commutative 

diagram of functors:

AlgL

HL

O Alg
k

H Grpds.

The notion of character group in commutative Hopf algebras context is naturally extended to that of 
character groupoids in commutative Hopf algebroids:

Definition 3.5. Let (A, H) be a Hopf algebroid over a field k and H its associated presheaf of groupoids. 
The character groupoid of (A, H) is the fibre groupoid H (k) = (H(k), A(k)) at the base field k. Notice that 
the character groupoid might be empty (i.e., could be a category without objects).

The following definition, which we will frequently used in the sequel, can be found in [9, page 129]. It 
is noteworthy to mention that in our case (i.e., the case of affine k-schemes), the base presheaf H0 of the 
presheaf H associated to a given Hopf algebroid (A, H) with A �= 0, is always non empty. That is, the 
condition H0 �= ∅ in [9], is satisfied since H0 is represented by A and there is always a field extension L of 
k such that A(L) �= ∅ as A �= 0 (i.e., it have maximal ideals).

Definition 3.6. Let (A, H) be a Hopf algebroid and H its associated presheaf of groupoids. Given an algebra 
C, consider the fibre groupoid H (C). Two objects x, y ∈ A(C) are said to be locally isomorphic, in the 
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sense of the fpqc topology (or fpqc locally isomorphic), if there exists a faithfully flat extension p : C → C ′

and an arrow g ∈ H(C ′) such that

p ◦ x = g ◦ s, and p ◦ y = g ◦ t.

We say that any two objects of H are fpqc locally isomorphic (without specifying the algebra C), if for any 
algebra C and any two objects x, y ∈ A(C), x and y are fpqc locally isomorphic.

Remark 3.7. In case we have H (C) = ∅, for some algebra C, the condition of Definition 3.6 is conventionally 
assumed to be verified for this C. On the other hand, it is not difficult to check that if there exists a field 
extension L of k such that two objects of HL are fpqc locally isomorphic, then any two objects of H are 
also fpqc locally isomorphic. The converse is not immediate and follows from Theorem 4.8 below. More 
precisely, if H0(k) �= ∅ and any two objects of H are fpqc locally isomorphic, then any two objects of HL

are also fpqc locally isomorphic for any field extension L of k.

If the presheaf H is fibrewise transitive, that is, each of its fibres H (C) is a transitive groupoid, then 
obviously any two objects of H are fpqc locally isomorphic. For instance, this is the case for the Hopf 
algebroid (A, A ⊗A), since in this case each of the groupoid’s H (C) is the groupoid of pairs, see Example 3.1. 
The same holds true for the class of Hopf algebroids described in Example 3.3.

A morphism φ : (A, H) → (B, K) of Hopf algebroids consists of a pair φ = (φ0, φ1) of algebra maps 
φ0 : A → B and φ1 : H → K that are compatible, in a canonical way, with the structure maps of both H
and K. That is, the equalities

φ1 ◦ s = s ◦ φ0, φ1 ◦ t = t ◦ φ0, (14)

Δ ◦ φ1 = χ ◦ (φ1 ⊗A φ1) ◦ Δ, ε ◦ φ1 = φ0 ◦ ε, (15)

S ◦ φ1 = φ1 ◦ S , (16)

hold, where χ is the obvious map χ : K ⊗A K → K ⊗B K, and where no distinction between the structure 
maps of H, K was made. Clearly, any morphism φ : (A, H) → (B, K) of Hopf algebroids induces (in the 
opposite way) a morphism between the associated presheaves of groupoids, which is given over each fibre 
by

(φ0
∗, φ1

∗) : K (C) = (K(C), B(C)) −→ H (C) = (H(C), A(C)), sending (g, x) �→ (g ◦ φ1, x ◦ φ0).

In this way, the construction in the following example corresponds to the construction of the induced 
groupoid as expounded in Example 2.4.

Example 3.8 (Base change). Given a Hopf algebroid (A, H) and an algebra map φ : A → B, then the pair 
of algebras

(B,Hφ) := (B,B ⊗A H⊗A B)

is a Hopf algebroid known as the base change Hopf algebroid of (A, H), and (φ, φ1) : (A, H) → (B, Hφ) is 
a morphism of Hopf algebroids, where φ1 : H → Hφ sends u �→ 1B ⊗A u ⊗A 1B. Moreover, as in the case of 
groupoids, see subsection 2.1, any morphism φ : (A, H) → (B, K) factors through the base change morphism
(A, H) → (B, Hφ0), by using the map Hφ0 → K sending b ⊗A u ⊗A b′ �→ bb′φ1(u).

The associated presheaf of groupoids Hφ of the Hopf algebroid (B, Hφ) is fibrewise computed as the 
induced groupoid (see Example 2.4) of H along the map φ : B → A where B and A are the presheveas 
of sets associated to B and A, respectively.
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The aforementioned relation with the induced groupoids comes out as follows. Take an algebra C and 
consider the associated groupoid H (C). Then the map φ∗ : B(C) → A(C) leads, as in Example 2.4, to the 
induced groupoid H (C)φ(C). This in fact determines a presheaf of groupoids C → H (C)φ∗ which can be 
easily shown to be represented by the pair of algebras (B, Hφ).

We finish this subsection by recalling the construction of the 2-category of flat Hopf algebroids.
A Hopf algebroid (A, H) is said to be flat, when sH (or Ht) is a flat A-module. Notice, that in this case s

as well as t are faithfully flat extensions. As was mentioned before, groupoids, functors, and natural trans-
formations form a 2-category. Analogously (flat) Hopf algebroids over the ground field k form a 2-category, 
as was observed in [24, §3.1]. Precisely, 0-cells are Hopf algebroids, or even flat ones, 1-cells are morphisms 
of Hopf algebroids, and for two 1-cells (φ0, φ1), (ψ0, ψ1) : (A, H) → (B, K), a 2-cell c : (φ0, φ1) → (ψ0, ψ1) is 
defined to be an algebra map c : H → B that makes the diagrams

H c
B

A
φ0

s

H c
B

A
ψ0

t

H Δ

Δ

H⊗A H
mK ◦

(
φ1⊗A(t◦c)

)

H⊗A H
mK ◦

(
(s◦c) ⊗Aψ1

) K
(17)

commutative, where mK denotes the multiplication of K. The identity 2-cell for (φ0, φ1) is given by 1φ :=
φ0 ◦ ε. The tensor product (or vertical composition) of 2-cells is given as

c′ ◦ c : (φ0, φ1)
c (ψ0, ψ1)

c
′

(ξ0, ξ1),

where

c′ ◦ c : H → B, u �→ c(u(1))c′(u(2)). (18)

3.3. Comodules, bicomodules (algebras), and presheaves of orbit sets

A right H-comodule is a pair (M, �) consisting of right A-module M and right A-linear map (referred 
to as the coaction) � : M → M ⊗A sH, m �→ m(0) ⊗A m(1) (summation understood) satisfying the usual 
counitary and coassociativity properties. Morphisms between right H-comodules (or right H-colinear map) 
are A-linear maps compatible with both coactions. The category of all right H-comodules is denoted by 
ComodH. This is a symmetric monoidal k-linear category with identity object A endowed with the coaction 
t : A → Ht

∼= A ⊗A sHt.
The tensor product in ComodH is defined via the so called the diagonal coaction. Precisely, given (M, �)

and (N, �) two (right) H-comodules. Then the tensor product M⊗AN is endowed with the following (right) 
H-coaction:

�M⊗AN : M ⊗A N −→ (M ⊗A N) ⊗A H,
(
m⊗A n �−→ (m(0) ⊗A n(0)) ⊗A m(1)n(1)

)
. (19)

The vector space of all H-colinear maps between two comodules (M, �) and (N, �) will be denoted by 
HomH (M, N), and the endomorphism ring by EndH(M).

Inductive limit and cokernels do exist in ComodH, and can be computed in A-modules. Furthermore, it 
is well known that the underlying module sH is flat if and only if ComodH is a Grothendieck category and 
the forgetful functor UH : ComodH → ModA is exact. As it can be easily checked, the forgetful functor UH

has a right adjoint functor − ⊗A sH : ModA → ComodH.



L. El Kaoutit / Journal of Pure and Applied Algebra 222 (2018) 3483–3520 3501
The full subcategory of right H-comodules whose underlying A-modules are finitely generated is denoted 
by comodH. The category of left H-comodules is analogously defined, and it is isomorphic via the antipode 
to the category of right H-comodules.

A (right) H-comodule algebra can be defined as a commutative monoid in the symmetric monoidal 
category ComodH. This is a commutative algebra extension σ : A → R where the associated A-module Rσ

is also a (right) H-comodule whose coaction �R : Rσ → Rσ ⊗A sH is an algebra map, which means that

�R(1R) = 1R ⊗A 1H, �R(rr′) = r(0)r
′
(0) ⊗A r(1)r

′
(1), for every r, r′ ∈ R.

This of course induces a (right) H -action on the presheaf of sets R associated to R. Precisely, given an 
algebra C, consider the map σ∗ : R(C) → A(C) sending x �→ x ◦ σ, and set

R(C) σ∗× s∗ H1(C) → R(C), (x, g) �→ xg, where xg : R → C, r �→ x(r(0)) g(r(1)). (20)

Then this defines, in a natural way, a right action of the groupoid H (C) on the set R(C), in the sense of 
Definition 2.6. Equivalently such an action can be expressed as a pair morphism of presheaves R → H0 and 
R σ∗× s∗ H1 → R satisfying pertinent compatibilities. In this way, an action of a presheaf of groupoids on 
a presheaf of sets, can be seen as a natural generalization to the groupoids framework of the notion of an 
action of group scheme on a scheme [10, no 3, page 160], or more formally, as a generalization of the notion 
of “objet à groupe d’opérateurs à droite” [15, Chapitre III, §1.1].

For a right H-comodule algebra (R, σ), we have the subalgebra of coinvariants defined by

RcoinvH :=
{
r ∈ R| �R(r) = r ⊗A 1H

}
. (21)

Denote by RH the presheaf of sets represented by the algebra RcoinvH. On the other hand, we have the 
presheaf defining the orbit sets, which is given as follows: Take an algebra C and consider the action (20), 
we then obtain the orbits set R(C)/H (C). Clearly this establishes a functor: C −→ R(C)/H (C) yielding 
a presheaf OH (R) with a canonical morphism of presheaves OH (R) −→ RH .

Remark 3.9. An important example of the previous construction is the case of the right H-comodule algebra 
(A, t). In this case we have a commutative diagram of presheaves:

A
τ

ζ

A H

OH (A )

where as before A is the presheaf represented by the algebra A and A H is represented by AcoinvH .
Notice that the presheaf OH (A ) is not necessarily represented by AcoinvH , thus, the right hand map in 

the previous diagram is not in general an isomorphism of presheaves, see [25, page 54].
In this direction, both A τ× τ A and A ζ× ζ A enjoy a structure of presheaves of groupoids with fibres 

are groupoids of pairs described in Examples 2.2. Nevertheless, A ζ× ζ A is not necessarily representable. 
Furthermore, there is a commutative diagram

H A τ× τ A

A ζ× ζ A

of presheaves of groupoids.



3502 L. El Kaoutit / Journal of Pure and Applied Algebra 222 (2018) 3483–3520
Given two Hopf algebroids (A, H) and (B, K), the category of (H, K)-bicomodules is defined as follows. An 
object in this category is a triple (M, λ, �) consisting of left H-comodule (M, λ) and right K-comodule (M, �)
such that λ is a morphism of right K-comodules, or equivalently � is a morphism of left H-comodules. Mor-
phisms between bicomodules are simultaneously left and right comodules morphisms. On the other hand, 
the pair of tensor product (A ⊗B, Ho ⊗K) admits, in a canonical way, a structure of Hopf algebroid, where 
(A, Ho) is the opposite Hopf algebroid (i.e., the source and the target are interchanged, or equivalently, the 
fibres of the associated presheaf are the opposite groupoids H (C)op). This is the tensor product Hopf alge-
broid, and its category of right comodules is canonically identified with the category of (H, K)-bicomodules. 
Thus bicomodules form also a symmetric monoidal k-linear category.

A bicomodule algebra is a bicomodule which is simultaneously a left comodule algebra and right comodule 
algebra. As above, by using the actions of equation (20) a bicomodule algebra leads to a presheaf of groupoid 
bisets. That is, a presheaf with fibres groupoid-bisets, in the sense of Definition 2.7.

3.4. Weak equivalences and principal bundles between Hopf algebroids

Any morphism φ : (A, H) → (B, K) of Hopf algebroids induces a symmetric monoidal k-linear functor

φ∗ := UH(−) ⊗A B : ComodH −→ ComodK,

where, for any H-comodule (M, �), the K-comodule structure of M ⊗A B is given by

M ⊗A B −→ (M ⊗A B) ⊗B K, m⊗A b �−→ (m(0) ⊗A 1B) ⊗B φ1(m(1))t(b).

Following [17, Definition 6.1], φ is said to be a weak equivalence whenever φ∗ is an equivalence of categories. 
In this case, ComodH and ComodK are equivalent as symmetric monoidal k-linear categories.

Notice that if φ is a weak equivalence, then so is the associated morphism between the tensor product 
Hopf algebroids φo ⊗ φ : (A ⊗ A, Ho ⊗ H) → (B ⊗ B, Ko ⊗ K), which induces then a symmetric monoidal 
equivalence between the categories of H-bicomodules and K-bicomodules.

Two Hopf algebroids (A, H) and (B, K) are said to be weakly equivalent if there exists a diagram

(C,J )

(A,H) (B,K),

of weak equivalences.
As was shown in [11] weak equivalences between flat Hopf algebroids are strongly related to principal 

bi-bundles. Such a relation is in part a consequence of the analogue one for groupoids as was shown in 
Proposition 2.13 (see Remark 2.14).

Recall that, for two flat Hopf algebroids (A, H) and (B, K), a left principal (H, K)-bundle is a three-tuple 
(P, α, β) which consists of diagram of commutative algebras α : A → P ← B : β where the (A, B)-bimodule 

αPβ enjoys a structure of an (H, K)-bicomodule algebra such that

(PB1) β : B → P is a faithfully flat extension (the local triviality of the bundle in the fpqc topology);
(PB2) the canonical map canP, H : P ⊗B P → H⊗A P sending p ⊗B p′ �→ p(0) ⊗A p(1)p

′ is bijective.

Observe that these two conditions, in conjunction with the faithfully flat descent theorem [13, Theorem 
5.9], show that P coinvH = B, see (21) for the notation.
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The notion of principal bundles is a natural generalization of the notion of Torsor, where the group object 
is replaced by groupoid object, see [15, Définition 1.4.1, page 117] and [10, Chapter III, §4]. In case of Hopf 
algebras over commutative rings, these objects are termed Hopf Galois extensions, see [23,28].

Right principal bundles and bi-bundles are clearly understood. For instance to each left principal bundle 
(P, α, β), one can define a right principal bundle on the opposite bicomodule P co. As in the case of groupoids, 
see subsection 2.3, a simpler example of left principal bundle is the unit bundle U (H) which is H with 
its canonical structure of H-bicomodule algebra. A trivial bundle attached to a given morphism of Hopf 
algebroids φ : (A, H) → (B, K), is the one whose underlying bicomodule algebra is of the form P := H⊗AB, 
that is, the pull-back bundle φ∗(U (H)) of the unit bundle U (H).

Parallel to subsection 2.3, for any bicomodule algebra, and thus for any left principal bundle, one can 
associate the so called the two-sided translation Hopf algebroid, which is denoted by (P, H � P � K). The 
underlying pair of algebras is (P, Hs ⊗ αPβ ⊗ sK) and its structure of Hopf algebroid is given as follows:

• the source and target are given by

s(p) := 1H ⊗A p⊗B 1K, t(p) := S (p(−1)) ⊗A p(0) ⊗B p(1);

• the comultiplication and counit are given by:

Δ(u⊗A p⊗B w) :=
(
u(1) ⊗A p⊗B w(1)

)
⊗P

(
u(2) ⊗A 1P ⊗B w(2)

)
, ε(u⊗A p⊗B w) := α

(
ε(u)

)
pβ

(
ε(w)

)
;

• whereas the antipode is defined as:

S
(
u⊗A p⊗B w

)
:= S (up(−1)) ⊗A p(0) ⊗B p(1)S (w).

Furthermore, there is a diagram

(P,H� P �K)

(A,H)

α=(α, α1)

(B,K)

β=(β, β1) (22)

of Hopf algebroids, where α1 and β1 are, respectively, the maps u �→ u ⊗A 1P ⊗B 1K and w �→ 1H⊗A 1P ⊗B w. 
It is easily checked that (P, H� P �K) is a flat Hopf algebroid whenever (A, H) and (B, K) they are so.

Remark 3.10. It is noteworthy to mention that the fibres of the presheaf associated to a left principal bundle 
are not necessarily principal bisets over the fibres groupoids, in the sense of Definition 2.8 (but possibly the 
entry presheaf is locally so in the fpqc topology sense). To be precise, let P denote as before the presheaf 
of sets associated to the algebra P . This is a presheaf of (H , K )-bisets, that is, using left and right actions 
of equation (20), for any algebra C, we have that the fibre P(C) is actually an (H (C), K (C))-biset as in 
Definition 2.7. However, P(C) is not necessarily a left principal biset. Nevertheless, it is easily seen that 
the associated presheaf of two-sided translation groupoids is represented by the two-sided translation Hopf 
algebroid (P, H � P � K). Lastly, as in [11], two weakly equivalent flat Hopf algebroids are shown to be 
connected by a principal bibundle, for which the diagram (22) becomes a diagram of weak equivalences, see 
[11] for more characterizations of weak equivalences.

3.5. Dualizable right comodules

Recall that a (right) H-comodule (M, �M) is said to be dualizable, if there is another (right) H-comodule 
(N, �N) and two morphisms of comodules
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ev : (N ⊗A M,�N⊗AM) → (A, t), and db : (A, t) → (M ⊗A N, �M⊗AN) (23)

satisfying, up to natural isomorphisms, the usual triangle properties. Taking the underlying A-linear maps 
(ev, db) and using these triangle properties, one shows that UH(N) ∼= M∗ = HomA (M, A). Thus, the 
underlying A-module of any dualizable comodule is finitely generated and projective. Moreover, the dual 
of (M, �M) in the category ComodH is, up to an isomorphism, the comodule (M∗, �M∗) with the following 
coaction:

�M∗ : M∗ → M∗ ⊗A H,
(
ϕ �−→ e∗i ⊗A t(ϕ(ei, (0)))S (ei, (1))

)
, (24)

where {ei, e∗i } is a dual basis for MA, that is, db(1A) =
∑

i ei ⊗A e∗i . The converse holds true as well, that 
is, dualizable objects in ComodH are, up to natural isomorphisms, precisely the objects of the subcategory 
comodH which are projective as A-modules. This is a well known fact which will be implicitly used below:

Lemma 3.11. Let (M, �M) be a right H-comodule whose underlying A-module M is finitely generated and 
projective, and consider (M∗, �M∗) as right H-comodule with the coaction given by (24). Then (M, �M) is 
a dualizable object in ComodH with dual object (M∗, �M∗). In particular, the full subcategory of dualizable 
right H-comodules consists of those comodules with finitely generated and projective underlying A-modules.

The following lemma will be used in the sequel and the k-algebras involved in it are not necessary 
commutative.

Lemma 3.12. Let (A, H) and (A′, H′) be two corings. Assume that there are two bimodules BMA and B′M ′
A′

such that (M, �M) and (M,′ �M′) are, respectively, (B, H)-bicomodule and (B′, H′)-bicomodule (here B and 
B′ are considered as B-coring and B′-coring in a trivial way), and that MA, M ′

A′ are finitely generated and 
projective modules with dual bases, respectively, {mi, m∗

i } and {nj , n∗
j}.

(1) If the associated canonical map:

canM : M∗ ⊗B M → H,
(
m∗ ⊗A m �−→ m∗(m(0))m(1)

)
(25)

is injective, then EndM∗⊗BM(M) = EndH(M), where M∗ ⊗B M is the standard A-coring [4], or the 
comatrix A-coring [12].

(2) If both canM and canM′ are injective, BM and B′M ′ are faithfully flat modules, then

EndH⊗H′(M ⊗ M ′) ∼= B ⊗ B′ ∼= EndH(M) ⊗ EndH′(M ′).

Proof. (1) is a routine computation. Part (2) uses part (1) and the result [12, Theorem 3.10]. �
3.6. Dualizable comodule whose endomorphism ring is a principal bundle

This subsection is of independent interest. We give conditions under which the endomorphism ring (of 
linear maps) of a dualizable right comodule is a left principal bundle.

Let (A, H) be a flat Hopf algebroid and (M, �) a dualizable right H-comodule. Denote by B := EndH(M)
its endomorphism ring of H-colinear maps, and consider the endomorphism ring of A-linear maps EndA(M)
as right H-comodule via the isomorphism M∗⊗AM ∼= EndA(M) together with the following obvious algebra 
maps α : A −→ EndA(M) and β : B ↪→ EndA(M). The proof of the following is left to the reader.
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Proposition 3.13. Assume that AM, BM are faithfully flat modules and that the canonical map canM of 
equation (25) is bijective (e.g., when (M, �) is a small generator in the category of right H-comodules). 
Then the triple (EndA(M), α, β) is a right principal (B, H)-bundle (where (B, B) is considered as a trivial 
Hopf algebroid).

4. Geometrically transitive Hopf algebroid: definition, basic properties and the result

In this section we recall the definition of geometrically transitive Hopf algebroids and prove some of their 
basic properties. Most of the results presented here are in fact consequences of those stated in [4]. For sake 
of completeness, we give below slightly different elementary proofs of some of these results.

4.1. Definition and basic properties

We start by proving the following result which will help us to well understand the forthcoming definition.

Proposition 4.1 ([4, Proposition 6.2, page 5845]). Let (A, H) be a flat Hopf algebroid. Assume that (A, H)
satisfies the following condition

(GT1) H is projective as an (A ⊗ A)-module.

Then, we have

(GT11) Every H-comodule is projective as an A-module;
(GT12) comodH is an abelian category and the functor UH : comodH → ModA is faithful and exact;
(GT13) Every object in ComodH is a filtrated limit of subobjects in comodH.

Proof. (GT11). Let M be a right H-comodule. Then, as a right A-module M is a direct summand of 
M ⊗A H. Since AHA is a direct summand of a free (A ⊗ A)-module, M is a direct summand of the right 
A-module M ⊗A (A ⊗ A) ∼= M ⊗ A. Thus MA is projective. The same proof works for left H-comodules.

(GT12). The category comodH is additive with finite product and cokernels. Let us check that comodH
do have kernels. So, assume a morphism f : N → M in comodH is given. Then the kernel Ker(f) is a 
right H-comodule, since we already know that ComodH is a Grothendieck category. Thus we need to check 
that the underlying module of this kernel is a finitely generated A-module. However, this follows from the 
fact that fk : Ker(f) → N splits in A-modules, as we know, by the isomorphism of right H-comodules 
N/Ker(f) ∼= Im(f) and condition (GT11), that this quotient is projective as an A-modules. The last claim 
in (GT12) is now clear.

(GT13). Following [6, §20.1, §20.2], since sH is by condition (GT11) a projective module, we have that 
the category of rational left ∗H-modules is isomorphic to the category of right H-comodules, where ∗H =
HomA (sH, A) is the left convolution A-algebra of H. Since any submodule of a rational module is also 
rational, every rational module is then a filtrated limit of finitely generated submodules. Therefore, any 
right H-comodule is a filtrated limit of subcomodules in comodH, as any finitely generated rational module 
is finitely generated as an A-module. �

Recall that a (locally small) k-linear category C is said to be locally of finite type, if any object in C is of 
finite length and each of the k-vector spaces of morphisms C(c, c′) is finite dimensional.

Definition 4.2. [Bruguières] Let (A, H) be a flat Hopf algebroid. We say that (A, H) is a geometrically 
transitive Hopf algebroid (GT for short) if it satisfies the following conditions:
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(GT1 ) H is projective as an (A ⊗ A)-module.
(GT2 ) The category comodH is locally of finite type.
(GT3 ) EndH(A) ∼= k.

Here EndH(A) denotes the endomorphisms ring of the right H-comodule (A, t) which is identified with 
the coinvariant subring AcoinvH = {a ∈ A| t(a) = s(a)}. We are implicitly assuming that A �= 0 as a 
comodule.

The subsequent lemma gives others consequences of the properties stated in Definition 4.2, which will be 
used later on.

Lemma 4.3. Let (A, H) be a flat Hopf algebroid.

(a) If (A, H) satisfies (GT11) and (GT3), then A is a simple (right) H-comodule.
(b) If (A, H) satisfies (GT1) and (GT3), then every (right) H-comodule is faithfully flat as an A-module.

Proof. (a). First let us check that, under the assumption (G11), any subcomodule of (A, t) is a direct 
summand in ComodH. So let (I, �I) be an H-subcomodule of (A, t). Then A/I is an H-comodule which is 
finitely generated and projective as an A-module, by assumption (GT11). Therefore, I is a direct summand 
of A as an A-submodule. Denotes by π : A → I the canonical projection of A-modules, and let e2 = e be 
an idempotent element in A such that I = eA and π(a) = ea, for every a ∈ A.

Next we show that π is a morphism of right H-comodules, which proves that (I, �I) is a direct summand 
of (A, t). To this end, it suffices to check that s(e) = t(e), since we know that EndH(A) = AcoinvH =
{a ∈ A| t(a) = s(a)}. Clearly the coaction of I is entirely defined by the image of e, and we can write 
�I(e) = e ⊗A u, for some element u ∈ H, which satisfies the following equalities

s(e)u = t(e)1H, e⊗A u⊗A u = e⊗A u(1) ⊗A u(2) ∈ I ⊗A H⊗A H, (26)

where the first equation comes from the fact that the inclusion I ↪→ A is a morphism of H-comodules.
On the other hand, we know by Lemma 3.11 that I is a dualizable right H-comodule. Up to canonical 

isomorphism, its dual comodule have for the underlying A-module, the module I∗ = eA with coaction �I∗ :
eA → eA ⊗AH, sending ea �→ e ⊗A t(ea)S (u) given by equation (24). The evaluation map ev : I∗⊗A I → A, 
ea ⊗Aea

′ �→ eaa′ of equation (23), is then a morphism of right H-comodules. Therefore, we have the following 
equality

1 ⊗A t(e) = e⊗A t(e)S (u)u ∈ A⊗A sH ∼= sH. (27)

Combining the first equality of equation (26) and equation (27), we get t(e)S (u) = t(e). Hence s(e)u = s(e), 
and so s(e) = t(e), by the first equality in (26).

We have then show that any H-subcomodule of the H-comodule A is a direct summand, since by (GT3)
the endomorphism ring is a field EndH(A) ∼= k, we conclude that A is a simple H-comodule.

(b). By Proposition 4.1, we know that (A, H) satisfies conditions (GT11)-(GT13). Let us first show that 
any comodule in comodH is faithfully flat as an A-module. By condition (GT11), we know that any comodule 
in this subcategory is finitely generated and projective as A-module, so it is flat as an A-module. Moreover, 
we know from Lemma 3.11 that the subcategory comodH consists exactly of dualizable right H-comodules. 
Let us then pick a dualizable comodule M ∈ comodH, and assume that M ⊗A X = 0 for some A-module 
X. This in particular implies that evM ⊗A X = 0, from which we get that A ⊗A X ∼= X = 0, as evM is 
surjective, since we already know by item (a) that A is a simple comodule. This shows that every object in 
comodH is faithfully flat as an A-module.
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For an arbitrary comodule, we know by condition (GT13) stated in Proposition 4.1, that any right 
H-comodule is a filtrated limit of subcomodules in comodH. Therefore, any right H-comodule is a flat 
A-module. Given now a right H-comodule M and assume that M ⊗A X = 0, for some A-module X. We 
have that M = lim−−→(Mi) where {τij : Mi ↪→ Mj}i≤j ∈ Λ is a filtrated system in comodH with structural 
morphisms τij which are split morphisms of A-modules. This limit is also a filtrated limit of A-modules, and 
so the equality lim−−→(Mi ⊗A X) ∼= M ⊗A X = 0 implies that there exists some j ∈ Λ, such that Mj ⊗A X = 0. 
Hence X = 0, since Mj is a faithfully flat A-module by the previous argumentation. �
Lemma 4.4. Let (A, H) be a flat Hopf algebroid which satisfies conditions (GT11) and (GT3). Then the 
k-algebra map η : A ⊗ A → H is injective. In particular, if (A, H) is geometrically transitive, then η is 
injective.

Proof. We know from Lemma 4.3(a) that A is a simple H-comodule. Therefore, by [5, Theorem 3.1], the 
following map

HomH (A, H) ⊗ A −→ H,
(
f ⊗k a �−→ f(a)

)

is a monomorphism, which is, up to the isomorphism HomH (A, H) ∼= A derived from the adjunction between 
the forgetful functor UH and the functor − ⊗A sH, is exactly the map η. Hence η is injective. The particular 
case is immediately obtained form Definition 4.2 and Proposition 4.1. �
Remark 4.5 (Transitive Hopf algebroids). Recall from [4, Définitions pages 5838, 5850] that a Hopf algebroid 
(A, H) with A �= 0, is said to be transitive if it satisfies conditions (GT12), (GT13) and (GT2), (GT3) from 
Proposition 4.1 and Definition 4.2, respectively, and every comodule in comodH is projective. Thus the 
geometrically transitive property implies the transitive one. The converse holds true if the centre of the 
division ring of any simple comodule (left or right one) is a separable field extension of k, that is, if (A, H)
is a separable Hopf algebroid over k, as introduced in [4, Définition page 5847]. Obviously, over a perfect 
field k both notions coincide. It is noteworthy to mention that if we consider the associated presheaf H of 
a transitive Hopf algebroid (A, H), it is not clear, at least to us, how to express the transitivity of (A, H)
in terms of certain topology at the level of H . Lastly, let us mention that in general a Hopf algebroid 
(A, H) is a geometrically transitive if and only if (AL, HL) is transitive, for any filed extension L of k (see 
[4, Proposition 7.3 page 5851]), perhaps this justifies the terminology “geometrically transitive”.

We finish this section by characterizing dualizable objects over GT Hopf algebroids and by making some 
useful remarks on these algebroids.

Proposition 4.6. Let (A, H) be a flat Hopf algebroid. Assume that (A, H) satisfies the following condition:

(GT11)′ Every finitely generated right H-comodule is projective.

Then the full subcategory of ComodH of dualizable objects coincides with comodH. In particular, if (A, H)
is geometrically transitive, then the category comodH consists of all dualizable right H-comodules.

Proof. By Lemma 3.11, every dualizable right H-comodule is finitely generated and projective as an 
A-module. This gives the direct inclusion. Conversely, any object in comodH is, by condition (GT11)′
and Lemma 3.11, a dualizable right H-comodule, form which we obtain the other inclusion. The particular 
case of GT Hopf algebroids follows directly from Proposition 4.1. �
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Remark 4.7. Let (A, H) be a GT Hopf algebroid. Then, by condition (GT13) of Proposition 4.1 and Propo-
sition 4.6, the category of comodules ComodH has a set of small projective generators, which we denote 
by A. Therefore, by applying [13, Theorem 5.7], we obtain that the canonical map can : L (O) → H is an 
isomorphism of Hopf algebroids, where O : A → proj(A) is the forgetful functor to the category of finitely 
generated and projective A-modules, and where L (O) is the Hopf algebroid reconstructed from the pair 
(A, O), see [4] and also [13] for the explicit description of the underlying A-coring of L (O).

4.2. Characterization by means of weak equivalences

This subsection contains our main result. We give several new characterizations of geometrically transitive 
flat Hopf algebroids. The most striking one is the characterization of these Hopf algebroids by means of 
weak equivalences, which can be seen as the geometric counterpart of the characterization of transitive 
groupoids, as we have shown in subsection 2.5, precisely in Proposition 2.15.

Theorem 4.8. Let (A, H) be a flat Hopf algebroid over a field k and denote by H its associated presheaf of 
groupoids. Assume that H0(k) �= ∅. Then the following are equivalent:

(i) η : A ⊗ A → H is a faithfully flat extension;
(ii) Any two objects of H are fpqc locally isomorphic (see Definition 3.6);
(iii) For any extension φ : A → B, the extension α : A → Ht ⊗A φB, a �→ s(a) ⊗A 1B is faithfully flat;
(iv) (A, H) is geometrically transitive (Definition 4.2).

By [11, Proposition 5.1], condition (iii) in Theorem 4.8 is also equivalent to the following ones:

(v) For any extension φ : A → B, the associated canonical morphism of φ : (A, H) → (B, Hφ) is a weak 
equivalence;

(vi) The trivial principal left (H, Hφ)-bundle H⊗A B is a principal bi-bundle.

Given a GT Hopf algebroid (A, H) and an extension φ : A → B. Since Hφ is a flat Hopf algebroid, the 
forgetful functor ComodHφ

→ ModB is exact. Therefore, condition (v) implies that B is Landweber exact
over A, in the sense that the functor UH(−) ⊗A B : ComodH → ModB is exact, see [17, Definition 2.1].

Example 4.9. The following Hopf algebroids (A, A ⊗ A) and (A, (A ⊗ A)[X, X−1]) described, respectively, 
in Examples 3.1 and 3.3, are clearly geometrically transitive. This is also the case of (A, A ⊗B⊗A) for any 
Hopf algebra B. On the other hand, if A is a right B-comodule algebra whose canonical map A ⊗A → A ⊗B

is a faithfully flat extension, then the split Hopf algebroid (A, A ⊗ B) is obviously geometrically transitive.
A more elaborate example of GT Hopf algebroid, by using principal bundles over Hopf algebras (i.e., 

Hopf Galois extensions), is given in Proposition 5.11 below.

Next, we give the proof of Theorem 4.8.

The proof of (i) ⇒ (ii). Let C be an algebra and x, y two objects in A(C). Denote by x ⊗ y : A ⊗A → C

the associated algebra map and consider the obvious algebra map p : C → C ′ := H⊗A⊗A C. By assumption 
it is clear that p is a faithfully flat extension. Set the algebra map g : H → C ′ which sends u �→ u ⊗A⊗A 1C. 
We then have that p ◦ x = g ◦ s and p ◦ y = g ◦ t, which shows that x and y are locally isomorphic.

The proof of (ii) ⇒ (iii). We claim that under hypothesis (ii) the underlying A-module of any (left or 
right) H-comodule is faithfully flat. In particular, this implies that the comodule H ⊗A B, with coaction 
Δ ⊗AB, is faithfully flat for every A-algebra B, and this gives us condition (iii). Since there is an isomorphism 
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of categories between right H-comodules and left H-comodules, which commutes with forgetful functors, it 
suffices then to show the above claim for right H-comodules.

So let us fix a right H-comodule M and take two objects in different fibres groupoids x ∈ A(T ) and 
y ∈ A(S), where T, S are algebras. We claim that M⊗A xT is faithfully flat T -module if and only if M⊗A yS

is faithfully flat S-module. Clearly our first claim follows from this one since we know that A(k) �= ∅ and 
over a field any module is faithfully flat.

Let us then check this second claim; we first assume that R = T = S. In this case, we know that any pair 
of objects x, y ∈ A(R) are fpqc locally isomorphic, thus there exists a faithfully flat extension p : R → R′

and g ∈ H(R) such that x̃ := p ◦ x = g ◦ s and ỹ := p ◦ y = g ◦ t. On the other hand, the map

M ⊗A x̃R
′ −→ M ⊗A ỹR

′,
(
m⊗A r′ �−→ m(0) ⊗A g−1(m(1))r′

)

is clearly an isomorphism of R′-modules. Therefore, M ⊗A x̃R
′ is a faithfully flat R′-module if and only if 

M ⊗A ỹR
′ it is. However, we know that M ⊗A x̃R

′ ∼= (M ⊗A xR) ⊗R pR
′ is faithfully flat R′-module if and 

only if M ⊗A xR is faithfully flat R-module, as p is a faithfully flat extension. The same then holds true 
interchanging x by y. Therefore, M ⊗A xR is faithfully flat R-module if and only if M ⊗A yR so is.

For the general case, that is, when T �= S with x ∈ A(T ) and y ∈ A(S), we take R := T ⊗ S and consider 
the canonical faithfully flat extensions T → R ← S. This leads to the following two objects x : A → T → R

and y : A → S → R. Since M ⊗A xT (resp. M ⊗A yS) is faithfully flat T -module (resp. S-module) if and 
only if M ⊗A xR (resp. M ⊗A yR) is faithfully flat R-module, we have, by the proof of the previous case, 
that M ⊗A xT is faithfully flat T -module if and only if M ⊗A yS is faithfully flat S-module, and this finishes 
the proof of this implication.

The proof of (iii) ⇒ (iv). Take an object x in A(k) and denote by kx the base field endowed with 
its A-algebra structure via the algebra map x : A → k. By assumption A → H ⊗A kx is a faithfully 
flat extension. Therefore, by [11, Proposition 5.1], we know that the associated base change morphism x :
(A, H) → (kx, Hx), where (kx, Hx) is the Hopf k-algebra Hx = kx⊗AH⊗Akx, is actually a weak equivalence. 
This means that the induced functor x∗ := UH(−) ⊗A kx : ComodH → ComodHx

is a symmetric monoidal 
equivalence of categories, and thus transforms, up to natural isomorphisms, dualizable H-comodules into 
dualizable Hx-comodules. Similar property hods true for its inverse functor. In particular, taking an object 
M ∈ comodH, it is clear that x∗(M) = M⊗Akx is finite dimensional k-vector space and so a dualizable right 
Hx-comodule, see for instance Lemma 3.11. Therefore, M should be a dualizable right H-comodule. The 
converse is obvious and then the full subcategory comodH coincides with the full subcategory of dualizable 
right H-comodules, form which we have that comodH and comodHx

are equivalent k-linear categories. Hence 
comodH is locally of finite type, and the endomorphism ring EndH(A) ∼= k. This shows simultaneously 
conditions (GT2) and (GT3).

To check condition (GT1) we use the morphism between the tensor product Hopf algebroids, that is, 
xo ⊗ x : (A ⊗ A, Ho ⊗ H) → (kx ⊗ kx

∼= k, Hx ⊗ Hx). As we have seen in subsection 3.4, this is also a 
weak equivalence. Thus the category of right (Ho ⊗ H)-comodules is equivalent, as a symmetric monoidal 
category, to the category of right comodules over the Hopf k-algebra Hx ⊗ Hx, which as in the case of x
also implies that comodHo⊗H and comodHx⊗Hx

are equivalent. Therefore, from one hand, we have by the 
same reasoning as above that any comodule in comodHo⊗H is projective as an (A ⊗ A)-module since it is a 
dualizable comodule. On the other hand, we have that every right (Ho⊗H)-comodule is a filtrated inductive 
limit of objects in comodHo⊗H since right (Hx ⊗Hx)-comodules satisfies the same property with respect to 
finite-dimensional right comodules comodHx⊗Hx

. Now, by apply [4, Proposition 5.1(ii)] to the (A ⊗A)-coring 
Ho ⊗ H, we then conclude that every right (Ho ⊗ H)-comodule is projective as an (A ⊗ A)-module. Thus, 
H is projective as an (A ⊗ A)-module, which shows condition (GT1).

The proof of (iv) ⇒ (i). Set B := A ⊗A and K := Ho ⊗H. We know that (B, K) is a flat Hopf algebroid. 
Since H is projective as (A ⊗ A)-module, we have that K is projective as (B ⊗ B)-module. Now, since the 
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map η is injective by Lemma 4.4, we can apply Lemma 3.12 by taking M = A as right H-comodule and 
M ′ = A as right Ho-comodule, to obtain the following chain of isomorphism

EndK(B) = EndHo⊗H(A⊗ A) ∼= EndHo(A) ⊗ EndH(A) ∼= k⊗ k ∼= k.

This means that the Hopf algebroid (B, K) satisfies the conditions of Lemma 4.3(b). Therefore, any right 
K-comodule is faithfully flat as a B-module, henceforth, H is a faithfully flat (A ⊗A)-module. This finishes 
the proof of Theorem 4.8.

Remark 4.10. Let (A, H) be a flat Hopf algebroid over k with A �= 0 and A(k) = ∅. Then the same proof of 
the implication (ii) ⇒ (iii) in Theorem 4.8, works for (A, H) by using any field extension L of k such that 
A(L) �= ∅. Assume now that (A, H) satisfies condition (i) of Theorem 4.8 and take a field extension L such 
that A(L) �= ∅. Then (AL, HL) also satisfies this condition and by Theorem 4.8 we have that (AL, HL) is a 
GT Hopf algebroid, as we know that AL(L) = AlgL(AL, L) �= ∅. Furthermore, if L is a perfect field, then by 
applying [4, Théorème 6.1, page 5845] we can show that (A, H) is a GT Hopf algebroid as well. Summing 
up, given a Hopf algebroid (A, H) as above, if its satisfies condition (i) of Theorem 4.8 and k admits a 
perfect extension L such that A(L) �= ∅, then (A, H) satisfies all the other conditions of this Theorem.

5. More properties of geometrically transitive Hopf algebroids

In this section we give more properties of GT Hopf algebroids. First we set up an analogous property 
of transitive groupoids with respect to the conjugacy of their isotropy groups. To this end we introduce 
here perhaps a known notion of isotropy Hopf algebra. This is the affine group scheme which represents the 
presheaf of groups defined by the isotropy group at each fibre. Next we show that any two isotropy Hopf 
algebras are weakly equivalent. The notion of conjugacy between two isotropy Hopf algebras, is not at all 
obvious, and the 2-category of flat Hopf algebroids is employed in order to make it clearer. In this direction 
we show that two isotropy Hopf algebras are conjugated if and only if the character groupoid is transitive, 
and both conditions are fulfilled is the case of GT Hopf algebroids. Lastly, we give an elementary proof of 
the fact that any dualizable comodule is locally free of constant rank, which in some sense bear out the same 
property enjoyed by finite dimensional k-representations of a given transitive groupoid. The case when the 
character groupoid of a GT Hopf algebroid is an empty groupoid, is also analyzed.

5.1. The isotropy Hopf algebras are weakly equivalent

Let (A, H) be a flat Hopf algebroid and H its associated presheaf of groupoids. Assume as before that 
the base algebra satisfies A �= 0 and A(k) �= ∅, and consider H (k) the character groupoid of (A, H), see 
Definition 3.5. As before, for each object x ∈ A(k), we denote by kx the A-algebra k via the extension x, and 
consider the associated Hopf k-algebra of a base ring extension (given by the k-algebra map x : A → kx), 
that is, Hx := kx ⊗A H⊗A kx.

Definition 5.1. Given an object x ∈ A(k). The Hopf algebra (kx, Hx) is called the isotropy Hopf algebra of 
(A, H) at the point x.

It noteworthy to mention that the associated affine k-group of (kx, Hx) coincides with the one called 
groupe d’inertie de x relativement à H as referred to in [10, III, §2, no 2; page 303].

The terminology used in Definition 5.1 is, in relation with groupoids, justified by the following lemma. 
Fix an object x ∈ A(k), we denoted by 1x the unit element of the A-algebra kx. Take C to be an algebra with 
unit map 1C : k → C. Composing with x, we have then an object x∗(1C) = 1C ◦ x ∈ A(C). Let us denote 
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by G x(C) := H (C)x∗(1C ) the isotropy group of the object x∗(1C) in the groupoid H (C), see equation (1). 
This construction is clearly functorial and so leads to a presheaf of groups G x : Alg

k
→ Grps, C → G x(C).

Lemma 5.2. For any x ∈ A(k), the presheaf of groups G x is affine, and up to a natural isomorphism, is 
represented by the Hopf k-algebra Hx.

Proof. Given an element g in the group G x(C), that is, an algebra map g : H → C such that g ◦ t = g ◦ s =
x∗(1C), we can define the following algebra map:

κC(g) : Hx −→ C,
(
k1x ⊗A u⊗A k′1x �−→ kk′g(u)

)
,

which is clearly functorial in C. This leads to a natural transformation κ− : G x(−) −→ Alg
k
(Hx, −).

Conversely, to any algebra map h : Hx → C, one associate the algebra map

νC(h) := h ◦ τx : H −→ Hx −→ C,

where τx : H → Hx sends u �→ 1x ⊗A u ⊗A 1x. This construction is also functorial in C, which defines 
a natural transformation ν− : Alg

k
(Hx, −) −→ G x(−). It is not difficult now to check that both natural 

transformations κ and ν, are mutually inverse. �
Recall that for groupoids the transitivity property is interpreted by means of conjugation between theirs 

isotropy groups, which means that any two of these groups are isomorphic. Next we show how this last 
property is reflected at the level of the isotropy Hopf algebras. The conjugacy of the isotropy Hopf algebras, 
in relation with the transitivity of the character groupoid, will be considered in the next subsection.

Proposition 5.3. Let (A, H) be a flat Hopf algebroid with A �= 0 and A(k) �= ∅. Assume that (A, H) is 
geometrically transitive. Then any two isotropy Hopf algebras are weakly equivalent.

Proof. Take two objects x, y ∈ A(k) and consider as before the following diagram

(kx,Hx) (ky,Hy)

(A,H)
x y

(28)

of Hopf algebroids. By Theorem 4.8, both x and y are weak equivalences, in particular, the Hopf algebras 
(kx, Hx) and (ky, Hy) are Morita equivalent, in the sense that their categories of comodules are equivalent as 
symmetric monoidal k-linear categories. Therefore, (kx, Hx) and (ky, Hy) are weakly equivalent by applying 
[11, Theorem A]. �
Remark 5.4. In the terminology of [28, Definition 3.2.3], the Hopf algebras (kx, Hx) and (ky, Hy) are said 
to be monoidally Morita–Takeuchi equivalent. By applying [28, Corollary 3.2.3], there is a Hopf bi-Galois 
object, or a principal bi-bundle as in subsection 3.4, connecting Hx and Hy (notice here that the side on 
comodules is not relevant since the Hopf algebras are commutative).

Next, we compute explicitly, by using results from [11], the principal bi-bundle connecting (kx, Hx) and 
(ky, Hy), as was mentioned in the previous Remark. Following [11], any two weakly equivalent flat Hopf 
algebroids are connected by a two-stage zig-zag of weak equivalences, and this is the case for the previous 
Hopf algebras. That is, in the situation of Proposition 5.3, diagram (28) can be completed to a square by 
considering the two-sided translation Hopf algebroid built up by using the principal bibundle connecting 
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(kx, Hx) and (ky, Hy), see subsection 3.4. In more specific way, we have the two trivial principal bibundles 
Px := H⊗A kx and Py := H⊗A ky which correspond, respectively, to the weak equivalences x and y. Notice 
that Px is an (H, Hx)-bicomodule algebra with algebra maps

αx : A → Px,
(
a �→ s(a) ⊗A 1

)
and βx : kx → Px,

(
k �→ 1H ⊗A k1x

)
. (29)

Similar notations are applied to the (H, Hy)-bicomodule algebra Py. The cotensor product of these two 
bibundles Px

co �H Py is again a principal (Hx, Hy)-bibundle (recall here that Px
co is the opposite bundle of 

Px). The algebra maps defining this structure are β̃x : kx −→ Px
co �H Py ←− ky : β̃y, given by

β̃x(k) = βx(k)�H 1Py
, β̃y(k) = 1Px

�H βy(k),

where the notation is the obvious one. The associated two-sided translation Hopf algebroid is described as 
follows. First we observe the following general fact in Hopf algebroids with source equal to the target, i.e., 
Hopf algebras over commutative algebras.

Lemma 5.5. Let (R, L) and (R′, L′) be two commutative Hopf algebras, and assume that there is a diagram 
of Hopf algebroids:

(R,L) (R′, L′)

(A,H)
ω ω′

Then the pair 
(
R⊗A H⊗A R′, L ⊗A H⊗A L′) of algebras, admits a structure of Hopf algebroid with maps:

• the source and target:

s(r ⊗A u⊗A r′) := r1L ⊗A u⊗A r′1L′ , t(r ⊗A u⊗A r′) := rω(S (u(1))) ⊗A u(2) ⊗A ω′(u(3))r′;

• comultiplication and counit:

Δ(l ⊗A u⊗A l′) :=
(
l(1) ⊗A u⊗A l′(1)

)
⊗C

(
l(2) ⊗A 1H ⊗A l′(2)

)
, ε(l ⊗A u⊗A l′) := εL(l) ⊗A u⊗A εL′(l′);

• the antipode:

S (l ⊗A u⊗A l′) := SL

(
l ω(u(1))

)
⊗A u(2) ⊗A ω′(u(3))SL′(l′).

Proof. These are routine computations. �
Now we come back to the situation of Proposition 5.3. Consider the following algebras:

Px, y := kx ⊗A H⊗A ky, Hx, y := Hx ⊗A H⊗A Hy,

with the structure of Hopf algebroid, as in Lemma 5.5. Consider then the following obvious algebra maps

ωx : Hx −→ Hx, y,
(
k1x ⊗A u⊗A k′1x �−→ k1Hx

⊗A u⊗A k′1Hy

)
;

and

ωy : Hy −→ Hx,y,
(
k1y ⊗A u⊗A k′1y �−→ k1Hx

⊗A u⊗A k′1Hy

)
.



L. El Kaoutit / Journal of Pure and Applied Algebra 222 (2018) 3483–3520 3513
Proposition 5.6. Let (A, H) be as in Proposition 5.3, consider x, y ∈ A(k) and their associated isotropy Hopf 
algebras (kx, Hx) and (ky, Hy). Assume that (A, H) is geometrically transitive. Then there is an isomorphism

(
Px

co �H Py, Hx � (Px
co �H Py) �Hy

)
∼=

(
Px, y,Hx, y

)

of Hopf algebroids with the following diagram

(Px, y,Hx, y)

(kx,Hx)

ωx

(ky,Hy)

ωy

(A,H)
x y

of weak equivalences.

Proof. The stated isomorphism follows directly by comparing the structure of the two-sided translation Hopf 
algebroid, as given in subsection 3.4, with that of (Px, y, Hx, y) given in Lemma 5.5. By Proposition 5.3, we 
know that x and y are weak equivalences. Therefore, ωx and ωy are weak equivalences by applying [11, 
Proposition 6.3] in conjunction with the previous isomorphism of Hopf algebroids. �
Remark 5.7. The diagram stated in Proposition 5.6, is not necessarily strictly commutative; however, it is 
commutative up to a 2-isomorphism in the 2-category of flat Hopf algebroids described in subsection 3.2. 
Precisely, one shows by applying [11, Lemma 6.11] that there is a 2-isomorphism ωx ◦ x ∼= ωx ◦ y.

5.2. The transitivity of the character groupoid

Let (A, H) be a flat Hopf algebroid as in the previous subsection and consider its character groupoid 
H (k) = (H(k), A(k)). We have seen in Theorem 4.8 that (A, H) is geometrically transitive if and only if the 
attached presheaf of groupoids H is locally transitive, that is, satisfies condition (ii) of that theorem. The 
aim of this subsection is to characterize the transitivity of the groupoid H (k), by means of the conjugation 
between the isotropy Hopf algebras. First we introduce the notion of conjugacy.

Definition 5.8. Let x, y be two objects in H (k). We say that the isotropy Hopf algebras (kx, Hx) and (ky, Hy)
are conjugated, provided there is an isomorphism of Hopf algebras g : (kx, Hx) → (ky, Hy) such that the 
following diagram

(kx,Hx)
g

(ky,Hy)

(A,H)
x y

is commutative up to a 2-isomorphism, where Hopf k-algebras are considered as 0-cells in the 2-category of 
flat Hopf algebroids described in subsection 3.2.

As in [11, §6.4], this means that there is an algebra map g : H → k such that

g ◦ s = x, g ◦ t = y, and u(1)
− ⊗A u(1)

0 ⊗A u(1)
+g(u(2)) = g(u(1)) ⊗A u(2) ⊗A 1y ∈ Hy (30)

where, by denoting the Hopf algebroids map z := g ◦ x : (A, H) → (kx, Hx), we have

z0 = x and z1(u) = g(1x ⊗A u⊗A 1x) := u− ⊗A u0 ⊗A u+ (summation understood).
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Proposition 5.9. Let (A, H) be a flat Hopf algebroid with A �= 0 and A(k) �= ∅. Assume that (A, H) is 
geometrically transitive. Then the following are equivalent:

(i) the character groupoid H (k) is transitive;
(ii) for any two objects x, y in H (k), the algebras H⊗Akx and H⊗Aky are isomorphic as left H-comodules 

algebras;
(iii) any two isotropy Hopf algebras are conjugated.

Furthermore, under the same assumptions, condition (i) is always fulfilled.

Proof. We first check the equivalences between these conditions. So, let x ∈ A(k) = H0(k) and denote as 
before by Px := H⊗A kx the stated left H-comodule algebra.

(i) ⇒ (ii). Given x, y ∈ A(k), by assumption there is an algebra map h : H → k such that h ◦ s = x and 
h ◦ t = y. So we can define the following map

F : Px −→ Py,
(
u⊗A k1x �−→ u(1) ⊗A h

(
S (u(2))

)
k1y

)
.

Clearly F is an A-algebra map, and so it is left A-linear. The fact that F is left H-colinear is also clear, and 
this shows condition (ii), since F is obviously bijective.

(ii) ⇒ (iii). Assume for a given x, y ∈ A(k), there is a left H-comodule algebra isomorphism F : Px → Py. 
For any u ∈ H, we denote by F (u ⊗A 1x) = u− ⊗A u+ (summation understood). Consider the k-linear map 
g : H → k which sends u �→ y

(
ε(u−)

)
u+. This is a k-algebra map since F it is so. For any a ∈ A, we have

g
(
s(a)

)
= y

(
ε(s(a)−)

)
s(a)+ = y

(
ε(s(a))

)
1 = y(a)

and

g
(
t(a)

)
= y

(
ε(t(a)−)

)
t(a)+ = y

(
ε(1H)

)
x(a)1 = x(a),

as F is k-linear. Define the map

g : (kx,Hx) −→ (ky,Hy),
(
(k1x, 1x ⊗A u⊗A 1x) �−→ (k1y, g(S (u(1)))1y ⊗A u(2) ⊗A g(u(3))1y)

)
.

By using the characterization given in Lemma 5.2, or a direct computation, one can shows that this map is 
an isomorphism of Hopf algebras. Furthermore, it is easily seen that the pair (g, g) satisfies the equalities 
of equation (30). Thus, (kx, Hx) and (ky, Hy) are conjugated, which means condition (iii).

(iii) ⇒ (i). This implication follows immediately from equation (30).
Let us check that condition (i) is fulfilled under assumption. For a given element u ∈ H there exists, by 

the isomorphism of Remark 4.7, a finite family M1, · · · , Mk of dualizable right H-comodules and finite set of 
elements {(pl, ϕl)}1≤ l≤k, pl ∈ Ml and ϕl ∈ M∗

l , such that u is uniquely written as u =
∑

l s
(
ϕl(pl(0))

)
pl(1) (see 

[13, Section 4] for more details on the map can quoted in Remark 4.7). Given now two objects x, y ∈ A(k), 
we define g : H → k by g(u) := y

(
s
(
ϕl(pl(0))

))
x
(
ε(pl(1))

)
. It turns out that g is a well defined algebra map, 

which satisfies g ◦ s = y and g ◦ t = x. This shows that H (k) is transitive and finishes the proof. �
5.3. GT Hopf algebroids and principal bundles over Hopf algebras

Parallel to subsection 2.6 we study here the relationship between GT Hopf algebroids and principal 
bundles over Hopf algebras (i.e., commutative Hopf Galois extensions [23, §8], [28], or k-torsor as in [15]
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and [10]). This is a restricted notion of principal bundle, as defined in subsection 3.4, to the case of Hopf 
algebras.

To be precise, let B be a commutative Hopf algebra over k, a pair (P, α) consisting of an algebra extension 
α : A → P and a right B-comodule algebra P with left A-linear coaction, is said to be a right principal 
B-bundle provided α is faithfully flat and the canonical map canP : P ⊗A P → P ⊗H, x ⊗A y �→ xy(0) ⊗ y(1)

is bijective. Notice that if we translate this definition to the associated affine k-schemes, then the outcome 
characterizes in fact the notion of torsors as it was shown in [10, Corollaire 1.7, page 362], see also [15, 
Définition 1.4.1, page 117].

Let (A, H) be a Hopf algebroid as in subsection 5.1 and H its associated presheaf of groupoids. Take an 
object x ∈ A(k) and consider as before Px = H ⊗A kx the right comodule algebra over the isotropy Hopf 
algebra (kx, Hx) with the algebra extension αx : A → Px of equation (29). On the other hand denote by 
Px the presheaf of sets which associated to each algebra C the set Px(C) := t−1({1C ◦ x}

)
where t is the 

target of the groupoid H (C).

Lemma 5.10. For any x ∈ A(k), the presheaf of sets Px is affine, and up to a natural isomorphism, is 
represented by the algebra Px. Furthermore, if (A, H) is geometrically transitive, then (Px, αx) is a principal 
right Hx-bundle.

Proof. The first claim is an immediate verification. The last one is a consequence of Theorem 4.8. �
In contrast with the case of transitive groupoids described in subsection 2.6, the converse in Lemma 5.10

is not obvious. Specifically, it is not automatic to construct a GT Hopf algebroid from a principal bundle 
over a Hopf algebra. In more details, let (P, α) be a right principal B-bundle over a Hopf algebra B with 
extension α : A → P , and consider P ⊗ P as a right B-comodule algebra via the diagonal coaction and set

H := (P ⊗ P )coinvB =
{
u ∈ P ⊗ P | �P⊗P (u) = u⊗ 1B

}

its coinvariant subalgebra. The map α induces two maps s, t : A → H which going to be the source and 
the target. The counity is induced by the multiplication of P . The comultiplication is derived from that of 
(P, P ⊗ P ), however, not in an immediate way, because slightly technical assumptions are needed for this.

Precisely, consider M := (P ⊗ P ) ⊗A (P ⊗ P ) as a right B-comodule algebra with the coaction

� : M −→ M⊗ B, (x⊗ y) ⊗A (u⊗ v) �−→ (x(0) ⊗ y(0)) ⊗A (u(0) ⊗ v(0)) ⊗ x(1)y(1)u(1)v(1).

This is a well defined coaction since we know that P coinvB ∼= A. Clearly we have that H⊗A H ⊆ McoinvB , 
and under the assumption of equality we obtain:

Proposition 5.11. Let (P, α) be a right principal B-bundle over a Hopf algebra B with extension α : A → P . 
Denote by υ : H := (P ⊗ P )coinB → P ⊗ P the canonical injection where P ⊗ P is a right B-comodule 
algebra via the diagonal coaction. Assume that υ is a faithfully flat extension and that H⊗A H = McoinB .

Then (A, H) admits a unique structure of Hopf algebroid such that (α, υ) : (A, H) → (P, P ⊗ P ) is a 
morphism of GT Hopf algebroids.

Proof. First observe that the map s : A → H is a flat extension (and so is t) since α and υ are faithfully 
flat extension and we have a commutative diagram:

0 H υ
P ⊗ P

0 A
α

s t

P
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of algebra maps. The fact that (A, H) admits a coassociative comultiplication follows essentially form the 
second assumption. Indeed, let Δ′ : P ⊗ P → M be the map which sends x ⊗ y �→ (x ⊗ 1) ⊗A (1 ⊗ y), so 
it is easily checked that, under the stated assumption, there is a map H → H ⊗A H which completes the 
diagram:

0 H⊗A H M
�

−⊗1
M⊗ B

0 H υ

Δ

P ⊗ P

Δ′

This gives a coassociative comultiplication on the A-bimodule H using the structure of A-bimodule derived 
from the above source and the target s, t. To check that Δ is counital one uses the following equalities

(p⊗ 1) ⊗A (1 ⊗ q) =
(
p(0) ⊗ p−

(1)q
−
(1)

)
⊗A

(
p+

(1)q
+
(1) ⊗ q(0)

)
∈ (P ⊗ P ) ⊗A (P ⊗ P ),

together with the properties of the translation map δ : B → P ⊗A P , b �→ b− ⊗A b+ given by the inverse of 
the canonical map canP .

With the previous structure maps, (A, H) is now a Hopf algebroid such that the pair of maps (α, υ) :
(A, H) → (P, P ⊗ P ) is a morphism of Hopf algebroids with codomain a GT Hopf algebroid. Lastly, since 
α⊗α is a faithfully flat extension, s⊗t : A ⊗A → H is also faithfully flat, and hence (A, H) is by Theorem 4.8
a GT Hopf algebroid as well. �
5.4. GT Hopf algebroids with empty character groupoid

Let (A, H) be a flat Hopf algebroid over k with A �= 0 and A(k) = ∅. For example, taking any non zero 
algebra A with A(k) = ∅ and consider the Hopf algebroids given in Examples 3.1 and 3.3. Now, let L be a field 
extension of k such that A(L) �= ∅ and denote by OL : AlgL → Alg

k
the forgetful functor from the category 

of commutative L-algebras to k-algebras. Next, we will use the notations of Example 3.4. So, fix an algebra 
map q ∈ A(L) and denote by q̃ ∈ AL(L) = AlgL(AL, L) its image, that is, the L-algebra map q̃ : AL → L

sending a ⊗ l �→ q(a)l. Consider the base extension Hopf algebroid (Lq, Lq ⊗A H⊗A Lq) := (Lq, Hq) over k, 
where Lq is considered as an algebra extension of A via the map q. The associated presheaf of groupoids is 
denoted by Hq and its composition with OL by H̃q := Hq ◦ OL. In this way, we get a presheaf of groups

H̃q

	
: AlgL −→ Grps,

(
R −→ H̃q(R)z

)
(31)

where z : L → R is the k-algebra map defining R as an object in AlgL and where H̃q(R)z is the isotropy 
group of the groupoid H̃q(R) attached to the object z. Thus, for any pair (R, z) as before, we have by 
Example 3.8 that

H̃q(R)z :=
{

(z, g, z)| g ∈ H(R) such that gs = gt = zq
}

where the multiplication is given as in Example 2.4 and the unit is the element (z, zqε, z).
On the other hand, following Lemma 5.2 we can define the presheaf of groups attached to the Hopf 

algebroid (AL, HL) over L, at the point q̃. That is, we can consider the presheaf HL associated to (AL, HL), 
and denote by

G q̃

L : AlgL −→ Grps,
(
R −→ G q̃

L(R)
)

(32)
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where G q̃
L(R) is the isotropy group of the groupoid HL(R) at the point q̃ ∈ AL(L). Thus

G q̃

L(R) :=
{
h ∈ HL(R) = AlgL(HL, R)| hsL = htL = q̃

}
,

where the group structure comes from the groupoid HL(R).

Proposition 5.12. Given (R, z) as above, then the following morphisms of groups

G q̃
L(R)

φq, R

H̃q(R)z

h (z, ĥ, z),

where ĥ ∈ H(R) is the k-algebra map sending u �→ h(u ⊗ 1), establish a natural isomorphism

φq : G q̃

L −→ H̃q

	

of presheaves of groups. In particular, up to a natural isomorphism, H̃q

	
is represented by the isotropy Hopf 

L-algebra (L, HL, q̃) of the Hopf algebroid (AL, HL) at the point q̃.

Proof. Let us first check that φq, R is a well defined map. Take h ∈ G q̃
L , then, for every a ∈ A, we have

ĥ ◦ s(a) = h(s(a) ⊗ 1) = h ◦ sL(a⊗ 1) = h ◦ tL(a⊗ 1) = h ◦ (t(a) ⊗ 1) = ĥ ◦ t(a) = q̃(a) = q(a).1L = zq(a).

Hence (z, ̂h, z) ∈ H̃q(R)z. The image by φq, R of the identity element q̃εL is (z, ̂̃qεL, z) = (z, zqε, z) which is 
the identity element of the group H̃q(R)z. Now, given h, h′ ∈ G q̃

L(R) and u ∈ H, we have that

ĥh′(u) = (hh′)(u⊗ 1) = h′((u⊗ 1)(1)

)
h
(
(u⊗ 1)(2)

)
= h′(u(1) ⊗ 1

)
h
(
u(2) ⊗ 1

)
= ĥ′(u(1)) ĥ(u(2)) = (ĥ ĥ′)(u)

which implies that ĥh′ = ĥ ĥ′. Therefore,

(z, ĥ, z) (z, ĥ′, z) = (z, ĥĥ′, z) = (z, ĥh′, z),

which shows that φq, R is a morphism of groups. On the other hand, φq, R is clearly injective and if we take 
an element (z, g, z) ∈ H̃q(R)z and set h = ĝ : HL → R sending u ⊗ l �→ g(u) ⊗ l, then we have that 
(z, g, z) = φq, R(h). This shows that φq, R is also surjective, and thus an isomorphism of groups. Lastly, it 
is immediate to see that φq, − is a natural transformation and so a natural isomorphism as desired. The 
particular statement follows directly from Lemma 5.2. �
Remark 5.13. Let (Lq, Lq ⊗A H⊗A Lq) be as above the base change Hopf algebroid of (A, H) and denote by 
(L, Hq) its quotient Hopf L-algebra where Hq := Lq ⊗A H ⊗A Lq/〈s − t〉 is the quotient modulo the Hopf 
ideal generated by the set 

{
s(l) − t(l)

}
l ∈ L

. Then the following map of L-vector spaces

Hq HL, q̃

l ⊗A u⊗A l′ 1 ⊗AL
(u⊗ ll′) ⊗AL

1

is a surjective morphism of Hopf L-algebras. On the other hand, the presheaf of set Pq̃ : AlgL → Sets
defined as in Lemma 5.10 for the Hopf algebroid (AL, HL) is, up to a natural isomorphisms, represented 
by the left H-comodule L-algebra H⊗A Lq which under condition (i) of Theorem 4.8, becomes a principal 
(H, Hq)-bibundle.
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Proposition 5.14. Let (A, H) be a flat Hopf algebroid over k with A �= 0 and A(k) = ∅, denote by H its 
associated presheaf of groupoids. Consider L a field extension of k such that A(L) �= ∅. Assume that the 
unit map η = s ⊗ t : A ⊗ A → H is a faithfully flat extension. Then

(1) H (L) is a transitive groupoid;
(2) For every p, q ∈ A(L), the base change Hopf algebroids (Lq, Hq) and (Lp, Hp) are weakly equivalent.

Proof. As we have observed in Remark 4.10, if η is a faithfully flat extension, then so is ηL : AL ⊗L AL →
HL. Since AL(L) �= ∅, we have by Theorem 4.8, that (AL, HL) is geometrically transitive Hopf algebroid. 
Therefore, by applying Proposition 5.9, we know that HL(L) is a transitive groupoid. Now, given p, q ∈ A(L)
we obtain two objects p̃, ̃q ∈ AL(L) of this groupoid. Hence, there exists an L-algebra map h ∈ HL(L) such 
that h ◦ sL = p̃ and h ◦ tL = q̃. Consider the algebra map g = ĥ : H → L sending u �→ h(u ⊗ 1), so we have 
that g ◦ s = p and g ◦ t = q. This proves part (1). As for part (2), we know by Remark 4.10 that (A, H)
satisfies condition (iii) of Theorem 4.8. Henceforth, the canonical base change maps (A, H) → (Lp, Hp)
and (A, H) → (Lq, Hq) are weak equivalences by [11, Proposition 5.1]. Therefore, (Lp, Hp) and (Lq, Hq) are 
weakly equivalent by applying [11, Theorem A] and this finishes the proof. �

5.5. Dualizable comodules over GT Hopf algebroids are locally free of constant rank

The aim of this subsection is to apply Theorem 4.8 in order to give an elementary proof of the well know 
fact sated in [9, page 114] which implicitly asserts that over a GT Hopf algebroid with non empty character 
groupoid, any comodule which has a locally free fibre with rank n, then so are other fibres. An important 
consequence of this fact is that any dualizable comodule over such a Hopf algebroid is locally free with 
constant rank. This is an algebraic interpretation of a well known property on representations of transitive 
groupoid in vector spaces. Namely, if a given representation over such a groupoid has a finite dimensional 
fibre, then so are all other fibres and all the fibres have the same dimension. We start by the following 
general lemma which will be needed below.

Lemma 5.15. Let ϕ : R → T be a faithfully flat extension of commutative algebras. Then, for any R-module 
P , the following conditions are equivalent.

(i) P is locally free R-module of constant rank n;
(ii) Pϕ := P ⊗R T is locally free T -module of constant rank n.

Proof. By [2, Proposition 12, page 53, and Théorème 1, page 138], we only need to check that P is of a 
constant rank n if and only if so is Pϕ. So let us first denote by ϕ∗ : Spec(T ) → Spec(R) the associated 
continuous map of ϕ. Denote by rRP : Spec(R) → Z and rTPϕ

: Spec(T ) → Z, the rank functions corresponding, 
respectively, to P and Pϕ.

It suffices to check that rRP is a constant function with value n if and only if rTPϕ
is a constant function 

with the same value. Given a prime ideal a ∈ Spec(T ), consider the localising algebras Ta and Rϕ∗(a) at the 
prime ideals a and ϕ∗(a). It is clear that we have an isomorphism of Ta-modules P⊗RTa

∼= Pϕ∗(a)⊗Rϕ∗(a)
Ta, 

where ϕa : Rϕ∗(a) → Ta is the associated localisation map of the extension ϕ. Therefore, the free modules 
P ⊗R Ta and Pϕ∗(a) have the same rank. Hence, we have rRP

(
ϕ∗(a)

)
= rTPϕ

(a), for any a ∈ Spec(T ), and so 
rRP ◦ ϕ∗ = rTPϕ

. This shows that if rRP is a constant function with value n, then so is rTPϕ
. The converse also 

hods true since we know that ϕ∗ is surjective, because of the faithfully flatness of ϕ, and this finishes the 
proof. �
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Proposition 5.16. Let (A, H) be a flat Hopf algebroid with A �= 0 and A(k) �= ∅. Assume that (A, H) is 
geometrically transitive, and let M be a (right) H-comodule whose underlying A-module is finitely generated 
and projective. Given two objects x ∈ A(S) and y ∈ A(T ), then the following are equivalent

(i) Mx := M ⊗A S is locally free S-module of constant rank n;
(ii) My := M ⊗A T is locally free T -module of constant rank n.

Proof. Let us first show that the stated conditions are equivalent when R = S = T . In this case we know 
by Theorem 4.8, that the objects x, y ∈ A(R) are locally isomorphic. Therefore, there exists a faithfully 
flat extension p : R → R′ such that Mx̃ = M ⊗x̃ R′ is isomorphic as R′-module to Mỹ = M ⊗ỹ R

′, where 
x̃ = p ◦ x and ỹ = p ◦ y. Thus, Mx̃ and Mỹ they have the same rank function.

On the other hand, by applying Lemma 5.15 to Mx, we get that Mx̃ is locally free R′-module of constant 
rank n if and only if Mx is locally free R-module of constant rank n. The same result hold true using My

and Mỹ. Therefore, Mx is locally free R-module of constant rank n if and only if so is My.
For the general case S �= T , consider R := T ⊗ S and set the algebra maps x := ιS ◦ x, y := ιT ◦ y, where 

ιS : S → R ← T : ιT are the obvious maps. By the previous case, we know that Mx is locally free R-module 
of constant rank n if and only if so is My. Now by Lemma 5.15, we have, from one hand, that Mx is locally 
free R-module of constant rank n if and only if Mx is locally free S-module of constant rank n, and from 
the other, we have that My is locally free R-module of constant rank n if and only if My is locally free 
T -module of constant rank n. Therefore, Mx is locally free S-module of constant rank n if and only if My

is so as T -module. �
As a corollary of Proposition 5.16, we have:

Corollary 5.17. Let (A, H) be a flat Hopf algebroid with A �= 0 and A(k) �= ∅. Assume that (A, H) is 
geometrically transitive. Then every dualizable (right) H-comodule is a locally free A-module of constant 
rank. In particular, given a dualizable right H-comodule M and two distinct object x �= y ∈ A(k), then Mx

and My have the same dimension as k-vector spaces.
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