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Abstract

To a B-coring and a (B, A)-bimodule that is finitely generated and projective as a right A-module
an A-coring is associated. This new coring is termed a base ring extension of a coring by a module. We
study how the properties of a bimodule such as separability and the Frobenius properties are reflected
in the induced base ring extension coring.Any bimodule that is finitely generated and projective on one
side, together with a map of corings over the same base ring, lead to the notion of a module-morphism,
which extends the notion of a morphism of corings (over different base rings). A module-morphism of
corings induces functors between the categories of comodules. These functors are termed pull-back
and push-out functors, respectively, and thus relate categories of comodules of different corings. We
study when the pull-back functor is fully faithful and when it is an equivalence. A generalised descent
associated to a morphism of corings is introduced. We define a category of module-morphisms, and
show that push-out functors are naturally isomorphic to each other if and only if the corresponding
module-morphisms are mutually isomorphic.All these topics are studied within a unifying language of
bicategories and the extensive use is made of interpretation of corings as comonads in the bicategory
Bim of bimodules and module-morphisms as 1-cells in the associated bicategories of comonads
in Bim.
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1. Introduction

1.1. Motivation and overview

The aim of this paper is to study properties of corings and functors between comodule
categories from a bicategorical point of view, and thus argue that bicategories provide a
natural and unifying point of view on corings.

In context of corings, bicategories arise in a very natural way. The categorical information
about rings is contained in a bicategory of bimodules Bim in which objects (0-cells) are
rings, 1-cells are bimodules (with composition given by the tensor product) and 2-cells are
bilinear maps. This is the most fundamental example of a bicategory, and provides the ideal
set-up for studying problems such as Morita theory. Building upon a pioneering work of
Street [28], Lack and Street [21] have considered the bicategory EM(B) obtained as the
free completion under Eilenberg–Moore objects of a given bicategory B. When B is taken
to be Bim, the suitable dual of EM(B) is a bicategory in which objects are corings. The
resulting bicategory (and its sub-bicategories) is the main object of studies in the present
paper.

Our motivation for studying the bicategory of corings is twofold, deeply rooted in non-
commutative geometry. First, it appears that there is a growing appreciation for the language
of bicategories in non-commutative geometry. For example, in a recent paper [23] Manin
argues that the classification of vector bundles over the non-commutative torus (or the
K-theory of this torus) is best explained in terms of a Morita bicategory associated with
this torus. This particular example of the role that bicategories play in non-commutative
geometry can be seen in a much wider context, as bicategories appear very naturally in
quantisation of Poisson manifolds in terms of C∗-algebras or in the theory of von Neumann
algebras [22].

Second motivation originates from the appearance of corings in non-commutative alge-
braic geometry. Here corings feature in two different ways. On one hand, if an A-coring C
is flat as a left A-module, then the category of its right comodules is a Grothendieck cat-
egory, hence a non-commutative space or a non-commutative quasi-scheme in the sense
of Van den Bergh [30] and Rosenberg [25,26]. Natural isomorphism classes of func-
tors between Grothendieck categories play the role of maps between non-commutative
spaces (cf. [27]). In relation to corings, one needs to consider bimodules between cor-
ings that induce functors between corresponding comodule categories. Natural maps be-
tween these functors arise from morphisms between corresponding bimodules. It turns
out that to study all these structures in a unified way one is led to considering a suitable
bicategory. In another approach to non-commutative algebraic geometry, certain classes
of corings appear as covers of non-commutative spaces [20]. Bimodules between cor-
ings can then be understood as a change of cover of the underlying space. The change
of cover affects the corresponding quasi-scheme, i.e. the category of comodules. Again to
study these effects in a uniform way, one should study a bicategory in which corings are
0-cells.

Our presentation and the choice of topics for the present paper are motivated by the
above geometric interpretation. We begin by applying (the comonadic version of) the Lack
and Street construction to the bicategory of bimodules and describe explicitly the resulting
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bicategory of corings REM(Bim). With an eye on the interpretation of corings as covers of
non-commutative spaces we introduce the bicategory fREM(Bim), by restricting 1-cells in
REM(Bim) to those that arise from adjoint pairs in Bim (finitely generated and projective
modules). The Lack and Street construction has an obvious ‘left-sided’ version resulting
in bicategories LEM(Bim) and fLEM(Bim). We show that there is a duality between the
hom-categories of fLEM(Bim) and fREM(Bim).

Next we introduce the notion of a base extension of a coring by a bimodule (a ‘change
of cover’ of a non-commutative space). We show that any such base extension gives rise
to 1-cells in fLEM(Bim) and fREM(Bim). We study in what way properties of a bimodule
such as separability and the Frobenius property are reflected by the resulting base extension
coring.

The appearance of 1-cells in fLEM(Bim) and fREM(Bim) associated to a base extension
of a coring by a bimodule leads to the notion of a module-morphism of corings as a pair
consisting of a bimodule that is finitely generated and projective as a right module, and
of a coring map. We introduce two functors between categories of comodules induced
by a module-morphism. Following the geometric interpretation these are called a push-
out and a pull-back functors. In Section 5 we determine when these functors are inverse
equivalences, and also we define and give basic properties of a generalised descent associated
to a morphism of corings.

1.2. Notation and preliminaries

We work over a commutative ring k with a unit. All algebras are over k, associative and
with a unit. The identity morphism for an object V is also denoted by V. For a ring (algebra)
R, the category of right R-modules and right R-linear maps is denoted by MR . Symmetric
notation is used for left modules. As is customary, we often write MR to indicate that M is
a right R-module, etc. The dual module of MR , consisting of all R-linear maps from MR

to RR , is denoted by M∗, while the dual of RN is denoted by ∗N . The multiplication in
the endomorphism ring of a right module (comodule) is given by composition of maps,
while the multiplication in the endomorphism ring of a left module (comodule) is given
by opposite composition (we always write argument to the right of a function). The
symbol −⊗R− between maps and modules denotes the tensor product bifunctor over the
algebra R.

Let A be an algebra. The comultiplication of an A-coring C is denoted by �C : C →
C⊗AC, and its counit by �C : C → A. To indicate the action of �C on elements we use the
Sweedler sigma notation, i.e. for all c ∈ C,

�C(c) =
∑

c(1)⊗Ac(2),

(�C⊗AC) ◦ �C(c) = (C⊗A�C) ◦ �C(c) =
∑

c(1)⊗Ac(2)⊗Ac(3),

etc. Gothic capital letters always denote corings. To indicate that C is an A-coring we often
write (C : A). The category of right C-comodules and right C-colinear maps is denoted
by MC. Recall that MC is built upon the category of right A-modules, in the sense that
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there is a forgetful functor MC → MA. In particular, any right C-comodule is also a
right A-module, and any right C-comodule map is right A-linear. For a right C-comodule
M, �M : M → M⊗AC denotes the coaction, and Hom−C(M, N) is the k-module of
C-colinear maps M → N . On elements, the action of �M is expressed by Sweedler’s
sigma-notation �M(m)=∑ m(0) ⊗m(1). Symmetric notation is used for left C-comodules.
In particular, the coaction of a left C-comodule N is denoted by N�, and, on elements, by
N�(n) =∑

n(−1) ⊗ n(0) ∈ C⊗AN .
For any A-coring C, the dual module C∗ = Hom−A(C, A) is a k-algebra with the product

f ∗g(c)=∑ f (g(c(1))c(2)) and unit �C. This is known as a right dual ring ofC. Similarly, the
dual module ∗C=HomA−(C, A) is a k-algebra with the product f ∗g(c)=∑ f (c(1)g(c(2)))

and unit �C. This is known as a left dual ring of C. The k-linear map �A : A → ∗C, a �→
[c �→ �C(ca)] is an anti-algebra map.

Given A-coringsC,D, a morphism of A-coringsD → C is an A-bimodule map � : D → C

such that �C ◦ � = (�⊗A�) ◦ �D and �C ◦ � = �D. The category of A-corings is denoted by
A-Crg

If D is a B-coring and � : B → A is an algebra map, then one views A as a B-bimodule
via � and defines an A-coring structure on the A-bimodule A�[D] := A⊗BD⊗BA by

�A�[D] : A�[D] → A�[D]⊗AA�[D] � A⊗BD⊗BA⊗BD⊗BA,

a⊗Bd⊗Ba′ �→
∑

a⊗Bd(1)⊗B1⊗Bd(2)⊗Ba′,

and �A�[D] : a ⊗ d ⊗ a′ �→ a�D(d)a′. A�[D] is known as a base ring extension of D. The
construction of a base ring extension allows one to consider morphisms of corings over
different rings. Given corings (C : A) and (D : B) a morphism of corings (D : B) → (C :
A) is a pair (�, �), where � : B → A is an algebra map and � : D → C is a B-bimodule
map such that the induced map �̃ : A�[D] → C, a⊗Bd⊗Ba′ �→ a�(d)a′ is a morphism of
A-corings.

Recall that, given a right C-comodule M and a left C-comodule N one defines a cotensor
product M�CN by the following exact sequence of k-modules:

0−−→M�CN−−→M⊗AN
�M,N−−→ M⊗AC⊗AN ,

where �M,N =�M⊗AN −M⊗N
A�, and �M and N� are coactions. Suppose that C is flat as a

left A-module.A leftC-comodule N is said to be coflat (resp. faithfully coflat), if the cotensor
functor −�CN : MC → Mk preserves (resp. preserves and reflects) exact sequences in
MC. A detailed account of the theory of corings and comodules can be found in [6].

Henceforth, {ei, e
∗
i }, with ei ∈ �, e∗

i ∈ �∗ always denotes a finite dual basis for a finitely
generated and projective module �A.

2. The bicategories of corings

For general definitions of bicategories and their morphisms we refer the reader to the
fundamental paper [2]. Following [2, (2.5)] and the conventions adopted there, the bicate-
gory of bimodules Bim is defined as follows. Objects (i.e. 0-cells) are algebras A, B, . . . ,
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1-cells from A to B are objects of the category BMA of (B, A)-bimodules, and 2-cells are
bilinear maps. The composition of 1-cells is given by the tensor product of bimodules, and
the identity 1-cell of A is the regular bimodule AAA. Given a bicategory B, the transpose
bicategory of B is the bicategory Bop obtained from B by reversing 1-cells, while the con-
jugate bicategory Bco is obtained by reversing 2-cells, and the bicategory Bcoop is obtained
by reversing both (cf. [2, Section 3]).

2.1. The right bicategory of corings

Following [21, p. 249] (cf. [28]), the bicategoryREM(Bim) := EM(Bimcoop)coop consists
of the following data:

• Objects: Corings (C : A) (i.e. C is an A-coring).
• 1-cells: A 1-cell from (C : A) to (D : B) is a pair (�, s) consisting of a (B, A)-bimodule

� and a (B, A)-bilinear map s : D⊗B� → �⊗AC rendering commutative the following
diagrams

The identity 1-cell of an object (C : A) is given by (A,C).
• 2-cells: Given 1-cells (�, s) and (�̃, s̃) from (C : A) to (D : B), 2-cells are defined as

(B, A)-bilinear maps a : D⊗B� → �̃ rendering commutative the following diagram

The category consisting of all 1 and 2-cells from (C : A) to (D : B) is denoted by

(D:B)R(C:A). The composition of 2-cells is defined as follows: Let (�, s), (�̃, s̃) be 1-cells
from (C : A) to (D : B), and (W,w), (W̃ , w̃) be 1-cells from (E : C) to (C : A). The
composition of 1-cells leads to the following 1-cells from (E : C) to (D : B):

(�⊗AW, (�⊗Aw) ◦ (s⊗AW)) and (�̃⊗AW̃ , (�̃⊗Aw̃) ◦ (̃s⊗AW̃)).
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If a : D⊗B� → �̃ and b : C⊗AW → W̃ are 2-cells, then the horizontal composition
a⊗ b is given by

Every 1-cell in REM(Bim) defines a functor between categories of right comodules. This
statement is made explicit in the following

Proposition 2.1. Let (�, s)be a 1-cell from (C : A) to (D : B) in the bicategoryREM(Bim).
There is a functor �◦ : MD −→ MC sending

((M, �M) �→ (M⊗B�, �M⊗B� = (M⊗Bs) ◦ (�M⊗B�)), (f �→ f ⊗B�).

In particular D⊗B� admits the structure of the (D,C)-bicomodule.

Proof. For any object (C : A), the category (k:k)R(C:A) is isomorphic to the category MC

of right C-comodules. The functor �◦ is then identified with the horizontal composition
functor—⊗(�, s):(k:k)R(D:B) −→ (k:k)R(C:A). ViewD⊗B� as a leftD-comodule with the
coaction D⊗B�� = �D⊗B�, and compute

(D⊗B�D⊗B�) ◦ (�D⊗B�) = (D⊗BD⊗Bs) ◦ (D⊗B�D⊗B�) ◦ (�D⊗B�)

= (D⊗BD⊗Bs) ◦ (�D⊗BD⊗B�) ◦ (�D⊗B�)

= (�D⊗B�⊗AC) ◦ (D⊗Bs) ◦ (�D⊗B�)

= (�D⊗B�⊗AC) ◦ �D⊗B�.

Hence D⊗B�� is right C-colinear, i.e. D⊗B� is a (D,C)-bicomodule, as stated. �

As observed in [21, p. 249], 2-cells in a bicategory of monads can be defined in a reduced
or an unreduced form. This bijective correspondence can be dualised to bicategories of
comonads, and, in the case of REM(Bim), can be interpreted in terms of bicomodules.
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Proposition 2.2. Let (�, s) and (�̃, s̃) be two 1-cells from (C : A) to (D : B) in the
bicategory REM(Bim). There is a bijection

(D:B)R(C:A)

(
(�, s), (�̃, s̃)

) � HomD,C(D⊗B�,D⊗B �̃),

where D⊗B� and D⊗B �̃ are (D,C)-bicomodules by Proposition 2.1. Explicitly,

(a �−→ (D⊗Ba) ◦ (�D⊗B�)), ((�D⊗B �̃) ◦ f f ).

Proof. We only need to prove that the mutually inverse maps are well-defined. For a 2-cell
a : D⊗B� → �̃, the leftD-colinearity of ((D⊗Ba) ◦ (�D⊗B�)) follows by the following
simple calculation that uses the coassociativity of �D:

(�D⊗B �̃) ◦ (D⊗Ba) ◦ (�D⊗B�) = (D⊗BD⊗Ba) ◦ (�D⊗BD⊗B�) ◦ (�D⊗B�)

= (D⊗B((D⊗Ba) ◦ (�D⊗B�))) ◦ (�D⊗B�).

Using the above calculation (to derive the second equality) and the fact that a is a 2-cell (to
derive the third equality), one computes

�D⊗B �̃ ◦ (D⊗Ba) ◦ (�D⊗B�) = (D⊗B s̃) ◦ (�D⊗B �̃) ◦ (D⊗Ba) ◦ (�D⊗B�)

= (D⊗B(̃s ◦ (D⊗Ba) ◦ (�D⊗B�))) ◦ (�D⊗B�)

= (D⊗Ba⊗AC) ◦ (D⊗BD⊗Bs) ◦ (D⊗B�D⊗B�) ◦ (�D⊗B�)

= (D⊗Ba⊗AC) ◦ (D⊗BD⊗Bs) ◦ (�D⊗BD⊗B�) ◦ (�D⊗B�)

= (D⊗Ba⊗AC) ◦ (�D⊗B�⊗AC) ◦ (D⊗Bs) ◦ (�D⊗B�)

= (((D⊗Ba) ◦ (�D⊗B�) )⊗AC) ◦ �D⊗B�,

thus proving the right C-colinearity of ((D⊗Ba) ◦ (�D⊗B�)).
Conversely, consider a (D,C)-bicolinear map f : D⊗B� → D⊗B �̃. We need to check

that the bilinear map a= (�D⊗B �̃) ◦ f : D⊗B� → �̃ is a 2-cell in REM(Bim). Using the
D-colinearity of f, we compute

s̃ ◦ (D⊗Ba) ◦ (�D⊗B�) = s̃ ◦ (D⊗B�D⊗B �̃) ◦ (D⊗Bf ) ◦ (�D⊗B�)

= s̃ ◦ (D⊗B�D⊗B �̃) ◦ (�D⊗B �̃) ◦ f = s̃ ◦ f .

On the other hand,

(a⊗AC) ◦ (D⊗Bs) ◦ (�D⊗B�)

= (�D⊗B �̃⊗AC) ◦ (f ⊗AC) ◦ (D⊗Bs) ◦ (�D⊗B�)

= (�D⊗B �̃⊗AC) ◦ (D⊗B s̃) ◦ (�D⊗B �̃) ◦ f = s̃ ◦ f ,
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where we have used the C-colinearity of f. Therefore,

s̃ ◦ (D⊗Ba) ◦ (�D⊗B�) = (a⊗AC) ◦ (D⊗Bs) ◦ (�D⊗B�),

i.e. a is a 2-cell as required. �

Remark 2.3. Morphisms between corings over different base rings have a natural meaning
in REM(Bim). Given an algebra morphism � : B → A, any 1-cell from (C : A) to (D : B)

of the form (A, s), defines a morphism of corings (�, �) : (D : B) → (C : A) with

� : D D⊗B�−−−−−−→D⊗BA
s−−−−−−→ A⊗AC � C.

Conversely, any coring morphism (�, �) : (D : B) → (C : A) entails a 1-cell (A, s) from
(C : A) to (D : B) with

s : D⊗BA
�⊗BA−−−−−−→C⊗BA

�−−−−−−→C � A⊗AC,

where � is the multiplication map.

2.2. The locally finite duality

To study functors between categories of comodules, it is convenient to introduce a dif-
ferent bicategory of corings. Thus we define fREM(Bim) as a bicategory obtained from
REM(Bim) by restricting the class of 1-cells to those that are finitely generated and projec-
tive as right modules. Explicitly, fREM(Bim) has the same objects and 2-cells as REM(Bim),
while a 1-cell (�, s) from (C : A) to (D : B) in REM(Bim) is a 1-cell in fREM(Bim) pro-
vided �A is a finitely generated and projective module. The hom-category consisting of
1-cells from (C : A) to (D : B) and their 2-cells in the bicategory fREM(Bim) is denoted
by (D:B)R

f
(C:A)

.
In order to understand better the meaning of fREM(Bim) for REM(Bim) we need to study

the left bicategory of corings LEM(Bim) := EM(Bimco)coop (cf. [21, p. 249]). LEM(Bim)

has corings as objects. 1-cells from (C : A) to (D : B) are pairs (	, x) consisting of an
(A, B)-bimodule 	 and an (A, B)-bilinear map x : 	⊗BD → C⊗A	, which is compatible
with the comultiplications and counits of both D and C. The identity 1-cell associated to
(C : A) is the pair (A,C). If (	, x) and (	̃, x̃) are 1-cells from (C : A) to (D : B), then a
2-cell is an (A, B)-bilinear map a : 	⊗BD → 	̃, which is compatible with x, x̃ and the
comultiplication of D.

The category consisting of all 1 and 2-cells form (C : A) to (D : B) in LEM(Bim)

is denoted by (D:B)L(C:A). Furthermore, (D:B)L
f
(C:A)

denotes the full subcategory of

(D:B)L(C:A) whose objects are 1-cells (	, x) such that A	 is a finitely generated and pro-
jective left module. We use the notation fLEM(Bim) for the bicategory induced by the
hom-categories (D:B)L

f
(C:A)

.
Recall that a duality between categories is an equivalence of categories via contravari-

ant functors. The standard duality between left and right finitely generated and projective
modules induces a duality between the hom-categories of fLEM(Bim) and
fREM(Bim).
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Lemma 2.4. Let (C : A) and (D : B) be corings. For any object (�, s) in (D:B)R
f
(C:A)

,
define s∗ : �∗⊗BD → C⊗A�∗ by

s∗⊗Bd �−→
∑

i

((s∗⊗AC) ◦ s(d⊗Bei))⊗Ae∗
i .

For any morphism a : D⊗B� → �̃ in (D:B)R
f
(C:A)

, define a∗ : (�̃)∗⊗BD → �∗ by

s̃∗⊗Bd �−→
∑

i

s̃∗(a(d⊗Bei))e
∗
i .

The functor

D((D : B), (C : A)) : (D:B)R
f
(C:A)−−−−−−−−−→ (D:B)L

f
(C:A)

,

given by ((�, s) �→ (�∗, s∗)) and (a �→ a∗) is a duality of categories.

Proof. The maps s∗, a∗ are well-defined because, for all b ∈ B,
∑

i bei⊗Ae∗
i =∑i ei⊗Ae∗

i b

and the canonical element
∑

i ei⊗Ae∗
i is basis-independent. The quasi-inverse contravariant

functor is analogously constructed (its action is denoted by the asterisk on the left). For
every object (�, s) ∈ (D:B)R

f
(C:A)

, we need to show that the evaluating isomorphism ev :
� � ∗(�∗) is an isomorphism in (D:B)R

f
(C:A)

. This follows from the (easily checked)
commutativity of the following diagram

Therefore, (�, s) � ( ∗(�∗), ∗(s∗)) in (D:B)R
f
(C:A)

by Proposition 2.2. The proof is com-
pleted by routine computations that use the dual basis criterion. �

Observe that the compatibility of the functors D(−, −) of Lemma 2.4 with the horizontal
and vertical compositions is guaranteed by the functoriality of tensor products. In other
words, functors D(−, −) give local equivalences between the bicategories fREM(Bim) and
(fLEM(Bim))co. Since both bicategories have the same objects, we obtain the following:

Proposition 2.5. The functors D(−, −) of Lemma 2.4 establish a biequivalence of
bicategories fREM(Bim) and (fLEM(Bim))co.

3. Base ring extensions by modules

Base ring extensions of corings described in the introduction correspond to extensions
of base rings, i.e. to ring maps. Since the work of Sugano [29], it has become clear that a



T. Brzeziński et al. / Journal of Pure and Applied Algebra 205 (2006) 510–541 519

more general and unifying framework for studying ring extensions is provided by bimodules
rather than ring maps. In this section, we describe base extension of corings provided by a
bimodule and also study properties of modules reflected by base extensions of corings.

3.1. Definition of a base ring extension by a bimodule

The basic idea of the construction of a base ring extension of corings by a bimodule
hinges on the relationship between comatrix corings and Sweedler’s corings.

Theorem 3.1. Given a coring (D : B), let � be a (B, A)-bimodule that is finitely generated
and projective as a right A-module. Then the A-bimodule

�[D] := �∗⊗BD⊗B�

is an A-coring with the comultiplication

��[D] : �[D] → �[D]⊗A�[D],
s∗⊗Bd⊗Bs �→

∑
i

s∗⊗Bd(1)⊗Bei⊗Ae∗
i ⊗Bd(2)⊗Bs,

and the counit

��[D] : �[D] → A, s∗⊗Bd⊗Bs �→ s∗(�D(d)s).

The coring �[D] is called a base ring extension of a coring by a module.

Proof. A B-coring D induces a comonad (F = −⊗BD, 
 = −⊗B�D, � = −⊗B�D) in
MB .On the other hand, � induces an adjunction

S = −⊗A� : MB�MA : T = −⊗A�∗

with unit � and counit , given by, for all X ∈ MB , Y ∈ MA,

�X : X−−→X⊗B�⊗A�∗, Y : Y⊗A�∗⊗B�−−→Y ,

x �−→
∑

i

x⊗Bei⊗Ae∗
i , y⊗As∗⊗Bs �−→ ys∗(s). (3.1)

By [16, Theorem 4.2] (cf. the dual version of [10, Proposition 2.3]), these data give rise to
a comonad in MA,

(SFT , SF �FT ◦ S
T ,  ◦ S�T ).

Therefore, SFT (A) = A⊗A�∗⊗BD⊗B� � �∗⊗BD⊗B� is an A-coring. The resulting
comultiplication and counit come out as stated. �

Examples of base ring extensions of a coring by a module include both base ring ex-
tensions and comatrix corings. In the former case, given an algebra map � : B → A, one
views A as a (B, A)-bimodule via � and multiplication in A, i.e. baa′ = �(b)aa′, for all
a, a′ ∈ A, b ∈ B. Obviously, A is a finitely generated and projective right A-module, and



520 T. Brzeziński et al. / Journal of Pure and Applied Algebra 205 (2006) 510–541

the identification of A with its dual A∗ immediately shows that if �=A then �[D] � A�[D].
To obtain a comatrix coring �∗⊗B�, take D to be the trivial B-coring B.

Remark 3.2. By [11, Example 5.1], comatrix corings can be understood as the coendo-
morphism corings of suitable quasi-finite bicomodules. The coring introduced in Theorem
3.1 can also be understood in this way. Start with the following adjunctions

where UB is the forgetful functor. The counit and unit of the composite adjunction

−⊗A(�∗⊗BD) : MA�MD : (−⊗B�) ◦ UB (3.2)

are given, respectively, for all Y ∈ MA and X ∈ MD,

�Y : UB(Y⊗A�∗⊗BD)⊗B�−−−−−−→Y ,∑
�

y�⊗As∗
�⊗Bd�⊗Bu� �−→

∑
�

y�s∗
�(�D(d�)u�) (3.3)

and

�X : X−−→(UB(X)⊗B�)⊗A�∗⊗BD,

x �−→
∑
i,(x)

x(0)⊗Bei⊗Ae∗
i ⊗Bx(1). (3.4)

Since (−⊗B�)◦UB is the left adjoint to −⊗A(�∗⊗BD), �∗⊗BD is an (A,D)-quasi-finite
(A,D)-bicomodule, where A is considered trivially as an A-coring (cf. [13, Definition 4.1]).
The corresponding co-hom functor comes out as hD(�∗⊗BD, −)=UB(−)⊗B�. Therefore,
the discussion of [11, Section 5] implies that the coendomorphism A-coring associated to
�∗⊗BD is

eD(�∗⊗BD) = hD(�∗⊗BD, �∗⊗BD) = �∗⊗BD⊗B�.

This is precisely the coring constructed in Theorem 3.1, and the forms of the unit and the
counit of the defining adjunction imply immediately the stated form of the comultiplication
and counit.

The constructions given in Theorem 3.1 are functorial. The following proposition sum-
marises basic properties of these functors.

Proposition 3.3. Let � be a (B, A)-bimodule that is finitely generated and projective as a
right A-module.
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(1) The assignment

D �→ �[D], f �→ �∗⊗Bf ⊗B�

defines a functor �[−] : B-Crg→ A-Crg, which commutes with colimits.
(2) For any (C, B)-bimodule 	 that is finitely generated and projective as a right B-module,

�[−] ◦ 	[−] � (	⊗B�)[−]
as functors.

Proof. (1) A straightforward calculation that uses the definitions of the comultiplication
and counit in �[D] and the fact that f is a morphism of B-corings, confirms that �∗⊗Bf ⊗B�
is a morphism of A-corings. Since the compositions in B-Crg and A-Crg are the same as
composition of k-modules, �[−] is a functor. That �[−] commutes with colimits is an easy
consequence of the fact that tensor products commute with colimits, and that the colimit of
an inductive system of B-corings is already computed in the category of B-bimodules.

(2) For any C-coring D, consider the (A, A)-bimodule isomorphism

��,	,D : �∗⊗B	∗⊗CD⊗C	⊗B� → (	⊗B�)∗⊗CD⊗C(	⊗B�),

s∗⊗Bx∗⊗Cd⊗Cx⊗Bs �→ (s∗⊗Bx∗)⊗Cd⊗Cx⊗Bs,

where (−) : �∗⊗B	∗ → (	⊗B�)∗ is the (A, C)-bilinear isomorphism sending s∗⊗Bx∗
to x⊗Bs �→ (s∗⊗Bx∗)(x⊗Bs) = s∗(x∗(x)s). We need to prove that ��,	,D is an A-coring
map, natural inD. Write V =	⊗B�. ClearlyV is a (C, A)-bimodule that is finitely generated
and projective as a right A-module. Let {fk, f

∗
k } be a dual basis for 	B and let {ei, e

∗
i } be

a dual basis for �A. Then {fk⊗Bei, (e
∗
i ⊗Bf ∗

k )}i,k is a finite dual basis for VA. For all
s∗ ∈ �∗, x∗ ∈ 	∗, x ∈ 	, s ∈ � and d ∈ D,

�V [D](��,	,D(s∗⊗Bx∗⊗Cd⊗Cx⊗Bs)) = (s∗⊗Bx∗)(�D(d)x⊗Bs)

= s∗(x∗(�D(d)x)s)

= ��[	[D]](s∗⊗Bx∗⊗Cd⊗Cx⊗Bs).

Furthermore,

�V [D](��,	,D(s∗⊗Bx∗⊗Cd⊗Cx⊗Bs))

=
∑
i,k

(s∗⊗Bx∗)⊗Cd(1)⊗C(fk⊗Bei)⊗A(e∗
i ⊗Bf ∗

k )⊗Cd(2)⊗C(x⊗Bs)

= (��,	,D⊗A��,	,D)

⎛⎝∑
i,k

s∗⊗Bx∗⊗Cd(1)⊗Cfk⊗Bei⊗A

e∗
i ⊗Bf ∗

k ⊗Cd(2)⊗Cx⊗Bs

⎞⎠
= (��,	,D⊗A��,	,D) ◦ ��[	[D]](s∗⊗Bx∗⊗Cd⊗Cx⊗Bs).
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This proves that

�(	⊗B�)[D] ◦ ��,	,D = ��[	[D]] and

�(	⊗B�)[D] ◦ ��,	,D = (
��,	,D⊗A��,	,D

) ◦ ��[	[D]],

i.e. that for all C-corings D, the (A, A)-bimodule isomorphism ��,	,D is a morphism of
A-corings. Since a bijective morphism of corings is an isomorphism, all the ��,	,D are
isomorphisms of A-corings and their explicit forms immediately imply that they are natural
in D. �

In particular, Proposition 3.3 leads to

Corollary 3.4. Let � be a (B, A)-bimodule that is finitely generated and projective as a
right A-module and let D be a B-coring.

(1) The map

�D,� : �[D] → �∗⊗B�, s∗⊗Bd⊗Bs �→ s∗⊗B�D(d)s,

is a morphism of A-corings.
(2) The maps

s : D⊗B� → �⊗A�∗⊗B�, d⊗Bs �→
∑

i

ei⊗Ae∗
i ⊗B�D(d)s,

and

s′ : D⊗B� → �⊗A�[D], d⊗Bs �→
∑

i

ei⊗Ae∗
i ⊗Bd⊗Bs,

define, respectively, 1-cells (�, s) and (�, s′) from (�∗⊗B� : A) to (D : B) and from
(�[D] : A) to (D : B) in the bicategory fREM(Bim).

(3) The maps

t : �∗⊗BD → �∗⊗B�⊗A�∗, s∗⊗Bd �→
∑

i

s∗�D(d)⊗Bei⊗Ae∗
i ,

and

t′ : �∗⊗BD → �[D]⊗A�∗, s∗⊗Bd �→
∑

i

s∗⊗Bd⊗Bei⊗Ae∗
i ,

define, respectively, 1-cells (�∗, t) and (�∗, t′) from (�∗⊗B� : A) to (D : B) and from
(�[D] : A) to (D : B) in the bicategory fLEM(Bim).

Proof. (1) View B as a trivial B-coring. Then �D : D → B is a morphism of B-corings.
Note that �D,� = �[�D], hence it is a morphism of A-corings. The proofs of statements (2)

and (3) use the dual basis criterion, and are left to the reader. �

Given a comatrix coring �∗⊗B�, � is a right comodule and �∗ is a left comodule of
�∗⊗B� (cf. [11, p. 891]). This can be extended to the following observation.
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Lemma 3.5. Given a coring (D : B), let � be a (B, A)-bimodule that is finitely generated
and projective as a right A-module and let �[D] be the associated base ring extension
coring. Then:

(1) D⊗B� is a (D, �[D])-bicomodule with the left coaction D⊗B�� = �D⊗B� and the
right coaction

�D⊗B� : D⊗B� → D⊗B�⊗A�[D],
d⊗Bs �→

∑
i

d(1)⊗Bei⊗Ae∗
i ⊗Bd(2)⊗Bs.

(2) �∗⊗BD is a (�[D],D)-bicomodule with the right coaction ��∗⊗BD = �∗⊗B�D and
the left coaction

�∗⊗BD� : �∗⊗BD → �[D]⊗A�∗⊗BD,

s∗⊗Bd �→
∑

i

s∗⊗Bd(1)⊗Bei⊗Ae∗
i ⊗Bd(2).

Proof. This is a direct consequence of Proposition 2.1 (and its left-handed version) and
Corollary 3.4. �

3.2. Properties reflected by base ring extensions

In [5] it has been studied how properties of bimodules are reflected by the associated
finite comatrix corings. The aim of this section is to study such reflection of properties
by the base ring extensions of corings by modules and thus to generalise the main results
of [5].

Following [29], a (B, A)-bimodule � is said to be a separable bimodule, if the evaluation
map

�⊗A
∗� → B, s⊗As∗ �→ s∗(s)

is a split epimorphism of (B, B)-bimodules. Furthermore, recall from [1] and [17] that �
is said to be a Frobenius bimodule if B� and �A are finitely generated projective modules,
and �∗ � ∗� as (A, B)-bimodules.

An A-coring C is said to be a Frobenius coring if the forgetful functor UA : MC → MA

is a Frobenius functor in the sense of [7,8] (cf. [3,4] for more details and other equivalent
characterisations of a Frobenius coring). An A-coring C is said to be a cosplit coring if and
only if �C is a split epimorphism of (A, A)-bimodules. Equivalently, C is a cosplit coring if
there exists an invariant element c ∈ C (i.e. ac = ca, for all a ∈ A) such that �C(c) = 1A.
An A-coring C is called a coseparable coring if and only if �C is a split monomorphism of
C-bicomodules (cf. [15,14] for more details on coseparable corings).

Take a (B, A)-bimodule � that is finitely generated and projective as a right A-module, and
consider its right endomorphism ring S=End−A(�). Then there is a canonical isomorphism
of (S, S)-bimodules �⊗A�∗ � S given by �⊗A�∗ 	 s⊗As∗ → [s′ �→ ss∗(s′)]. Its inverse
is given by f �→ ∑

i f (ei)⊗Ae∗
i .
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Proposition 3.6. Let D be a B-coring and � a (B, A)-bimodule such that �A is a finitely
generated projective module.

(1) If B�A is a separable bimodule and D is a coseparable B-coring, then �[D] is a
coseparable A-coring.

(2) If A�∗
B is a separable bimodule and D is a cosplit B-coring, then �[D] is a cosplit

A-coring. Conversely, if �[D] is a cosplit A-coring, then A�∗
B is a separable bimodule.

(3) If B�A is a Frobenius bimodule andD is a Frobenius B-coring, then �[D] is a Frobenius
A-coring.

Proof. (1) By [18, Theorem 3.1(1)], the ring extension B → S is split. Let � : S → B be a
B-bilinear splitting map. Since 1S is sent to

∑
i ei⊗Ae∗

i by the isomorphism S � �⊗A�∗,
�
(∑

i ei⊗Ae∗
i

)=1B . Let ∇D : D⊗BD → D be aD-bicolinear map such that ∇D◦�D=D.
Consider an A-bilinear map,

∇�[D] : �[D]⊗A�[D]−−−−−−−−−→�[D],
s∗⊗Bd⊗Bs⊗As̃∗⊗Bd ′⊗Bs̃ �−→ s∗⊗B∇D(d�(s⊗As̃∗)⊗Bd ′)⊗Bs̃.

Take any s∗ ∈ �∗, s ∈ � and d ∈ D and compute

∇�[D] ◦ ��[D](s∗⊗Bd⊗Bs) = ∇�[D]

(∑
i

s∗⊗Bd(1)⊗Bei⊗Ae∗
i ⊗Bd(2)⊗Bs

)
=
∑

i

s∗⊗B∇D(d(1)�(ei⊗Ae∗
i )⊗Bd(2))⊗Bs

=
∑

s∗⊗B∇D(d(1)⊗Bd(2))⊗Bs

= s∗⊗Bd⊗Bs.

Thus, ∇�[D] ◦��[D] =�[D], as required. We need to show that ∇�[D] is a �[D]-bicolinear
map. Take any s∗, s̃∗ ∈ �∗, d, d ′ ∈ D and s, s̃ ∈ �, and compute

��[D] ◦ ∇�[D](s∗⊗Bd⊗Bs⊗As̃∗⊗Bd ′⊗Bs̃)

=
∑

i

s∗⊗B∇D(d�(s⊗As̃∗)⊗Bd ′
(1))⊗Bei⊗Ae∗

i ⊗Bd ′
(2)⊗Bs̃

= (∇�[D]⊗A�[D])
(∑

i

s∗⊗Bd⊗Bs⊗As̃∗⊗Bd ′
(1)⊗Bei⊗Ae∗

i ⊗Bd ′
(2)⊗Bs̃

)
= (∇�[D]⊗A�[D]) ◦ (�[D]⊗A��[D])(s∗⊗Bd⊗Bs⊗As̃∗⊗Bd ′⊗Bs̃).

To derive this equality we have used the rightD-colinearity of ∇D. This proves that ∇�[D]
is a right �[D]-colinear map. Similarly, one uses the left D-colinearity of ∇D to obtain
the left �[D]-colinearity of ∇�[D]. Thus we conclude that �[D] is a coseparable coring as
claimed.

(2) Consider the composition of A-bilinear maps � : A → �∗⊗B
∗(�∗) � �∗⊗B�,

where the first map is a splitting of the evaluation map that is provided by the separa-
bility of A�∗

B . Put �(1A) = ∑
k s∗

k ⊗Bsk . Note that �(1A) is an invariant element of the
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A-bimodule �∗⊗B� that in addition satisfies
∑

k s∗
k (sk)= 1A. By hypothesis,D is a cosplit

B-coring, hence there exists an invariant element d ∈ D such that �D(d) = 1B . Combin-
ing d with �(1A) one obtains an invariant element

∑
k s∗

k ⊗Bd⊗Bsk ∈ �[D], such that
��[D]

(∑
k s∗

k ⊗Bd⊗Bsk
)= 1A.

Conversely, if �[D] is a cosplit A-coring, and
∑

l s
∗
l ⊗Bdl⊗Bsl is the corresponding

invariant element, then
∑

l s
∗
l ⊗B�D(dl)sl ∈ �∗⊗B� gives a section for the evaluation

�∗⊗B
∗(�∗) → A.

(3) Suppose that � is a Frobenius (B, A)-bimodule and let � : �∗ → ∗� be the corre-
sponding (A, B)-bilinear isomorphism. Let T be the opposite ring to the left dual ring ∗D.
By [3, Theorem 4.1], there is an isomorphism � : D → T of (B, T )-bimodules and BD is a
finitely generated and projective module. Consider an A-bilinear map �= ( ∗�⊗B�⊗B�) ◦
(�⊗BD⊗B�). This leads to an (A, B)-bimodule isomorphism

� : �∗⊗BD⊗B�
�−−→ ∗�⊗B

∗D⊗B� �−−→ HomB−(D⊗B�, �),

where the last isomorphism is a consequence of the fact that both BD and B� are finitely
generated and projective modules. Note that A�[D] is a finitely generated and projective
module. In view of [3, Theorem 4.1], it suffices to show that �[D] � R as (A, R)-bimodules,
where R is the opposite ring of the left dual ring ∗�[D]. Consider the following chain of
isomorphisms

�∗⊗BD⊗B� �−−→ HomB−(D⊗B�, �)
�−−→ HomB−(D⊗B�, HomA−(�∗, A))

�−−−−−−−−−→ HomA−(�∗⊗BD⊗B�, A) = R,

where the second isomorphism follows from the fact that �A is a finitely generated and
projective module. One easily checks that all these isomorphisms are (A, R)-bimodule
maps and thus their composition provides one with the required map. �

Remark 3.7. There are properties of a B-coring D that are directly reflected in A-coring
�[D] without any assumption on bimodule �. For instance, ifD is a cosemisimple B-coring
[12], then by [11, Theorem 4.4], D decomposes into a direct sum of comatrix corings,
D � ⊕	∈�	∗⊗D		, where each of the 	 is a finitely generated and projective right B-
module and each D	 is a division subring of the endomorphism ring End−B(	). Thus,
D � ⊕	∈�	[D	] as B-corings. Applying the functor �[−] to this isomorphism and using
Proposition 3.3, one obtains an isomorphism of A-corings

�[D] � ⊕	∈��[−] ◦ 	[D	]
� ⊕	∈�(	⊗B�)[D	].

Therefore, [11, Theorem 4.4] implies that �[D] is a cosemisimple A-coring.

4. Module-morphisms and push-out and pull-back functors

Following the general strategy of replacing algebra maps by bimodules we introduce
the notion of a module-morphism of corings and study properties of associated functors
between categories of comodules.
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4.1. The categories of module-morphisms and module-representations

Definition 4.1. Let (C : A) and (D : B) be corings. A ((D : B), (C : A))-module-
morphism is a pair � = (�, �), where � is a (B, A)-bimodule that is finitely generated
and projective as a right A-module and � : �[D] → C is a morphism of A-corings. A
((D : B), (C : A))-module-morphism � is often denoted by (D:B)�(C:A).

Example 4.2. (1) Any morphism of corings (�, �) : (D : B) → (C : A) gives rise to a
module-morphism (A, �̃), where A is a left B-module via � and �̃ : A⊗BD⊗BA → C is
the induced map a⊗Bd⊗Ba′ �→ a�(d)a′.

(2) Let C be an A-coring and let M be a right C-comodule that is finitely generated and
projective as a right A-module. Let B be the endomorphism ring B = End−C(M) so that M
is a (B, A)-bimodule. Take any B-coring D. Then

canD,M : M∗⊗BD⊗BM → C, m∗⊗Bd⊗Bm �→
∑

m∗(�D(d)m(0))m(1),

is an A-coring map. Thus (M, canD,M) is a ((D : B), (C : A))-module-morphism.

Proof. Example (1) follows immediately from the definition of a morphism of corings. To
check (2) simply note that canD,M = canM ◦ �D,M , where �D,M is the A-coring morphism
in Corollary 3.4 and canM := canB,M is an A-coring morphism by [6, 18.26] and [11,
Proposition 2.7]. Thus canD,M is an A-coring morphism as required. �

Corollary 3.4 leads to the following interpretation of module-morphisms in terms of
1-cells in the bicategory fREM(Bim),

Lemma 4.3. ((D : B), (C : A))-module-morphisms are in bijective correspondence with
1-cells from (C : A) to (D : B) in fREM(Bim).

Proof. The correspondence follows from the natural isomorphism

HomA,A(�∗⊗BD⊗B�,C) � HomB,A(D⊗B�, �⊗AC). (4.1)

Explicitly, if (�, �) is a ((D : B), (C : A))-module-morphism, then (�, s�), with

s� : D⊗B� → �⊗AC, d⊗Bs �→
∑

i

ei⊗A�(e∗
i ⊗Bd⊗Bs) (4.2)

is a 1-cell in fREM(Bim). Conversely, given a 1-cell (�, s) in fREM(Bim), define �s as the
composition

�s : �∗⊗BD⊗B� �∗⊗Bs−−−−−−→ �∗⊗B�⊗AC
��[B]⊗AC−−−−−−→ A⊗AC � C.

Then (�, �s) is a module-morphism. That this correspondence is well-defined and bijective
can be checked directly by using the properties of dual bases. �
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Remark 4.4. Put together, Lemmas 4.3 and 2.4 establish a bijective correspondence be-
tween module-morphisms and 1-cells in the bicategory fLEM(Bim). For a module-morphism

(D:B)�(C:A), define the (A, B)-bilinear map

t� : �∗⊗BD → C⊗A�∗, s∗⊗Bd �→
∑

i

�(s∗⊗Bd⊗Bei)⊗Ae∗
i . (4.3)

Then (�∗, t�) is a 1-cell from (C : A) to (D : B) in fLEM(Bim). In the converse direction,
an object (	, x) ∈ (D:B)L

f
(C:A)

induces a module-morphism (∗	, �x), where

�x : ( ∗	)∗⊗BD⊗B
∗	 � 	⊗BD⊗B

∗	 t⊗B
∗	−−−−−−→C⊗A	⊗B

∗	 C⊗A� ∗	[B]−−−−−−→C⊗AA � C.

In view of Proposition 2.2 and Lemma 4.3, for any module-morphism (D:B)�(C:A), the
(B, A)-bimoduleD⊗B� is a (D,C)-bicomodule with the leftD-coaction �D⊗B� and the
right C-coaction ��◦(D) given by Proposition 2.1. A map of ((D : B), (C : A))-module-
morphisms � → �̃ is defined as a (D,C)-bicomodule mapD⊗B� → D⊗B �̃. The category
of ((D : B), (C : A))-module-morphisms (with arrows given by module-morphism maps
and composed as bicolinear maps) is denoted by (D:B)M(C:A).

Proposition 4.5. The category of ((D : B), (C : A))-module-morphisms (D:B)M(C:A) is

isomorphic to the category (D:B)R
f
(C:A)

.

Proof. On objects, mutually inverse functors are given by the bijective correspondence of
Lemma 4.3. The actions on morphisms are given by the bijections of the hom-sets stated in
Proposition 2.2. �

The duality in Lemma 2.4 and observations made in Remark 4.4 allow one to construct
a category dual to (D:B)M(C:A). The resulting category generalises that of representations
of a coring in a coring (cf. [6, 24.3]). By Remark 4.4, any module-morphism (D:B)�(C:A)

can be viewed as an object in (D:B)L
f
(C:A)

. The hom-set bijections

HomA,A(�∗⊗BD⊗B �̃, A) � HomA,B(�∗⊗BD, �̃
∗
), (4.4)

allow for identification of morphisms in (D:B)L
f
(C:A)

with A-bimodule maps

f : �∗⊗BD⊗B �̃ → A, (4.5)

such that for all s∗ ∈ �∗, s̃ ∈ �̃ and d ∈ D,∑
j

f (s∗⊗Bd(1)⊗Bẽj )�̃(ẽ∗
j⊗Bd(2)⊗Bs̃)

=
∑

i

�(s∗⊗Bd(1)⊗Bei)f (e∗
i ⊗Bd(2)⊗Bs̃). (4.6)
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where {ei, e
∗
i } is a dual basis of � and {ẽj , ẽ

∗
j } is a dual basis of �̃. The composition of

f in Eq. (4.5) with g : �̃
∗⊗BD⊗B �̂ → A, transferred from that in (D:B)L

f
(C:A)

, comes
out as

g � f : �∗⊗BD⊗B �̂ → A,

s∗⊗Bd⊗Bŝ �→
∑
j

f (s∗⊗Bd(1)⊗Bẽj )g(ẽ∗
j⊗Bd(2)⊗Bŝ). (4.7)

In view of Lemma 2.4 and Proposition 4.5, the category RepM(D : B|C : A) with objects
module-morphisms and arrows given as maps f satisfying condition (4.6) and composed
according to (4.7), is dual (in fact, anti-isomorphic) to (D:B)M(C:A). Since any morphism
can be viewed as a module-morphism as in Example 4.2, the category Rep(D : B|C : A)

of representations of (D : B) in (C : A) (cf. [6, 24.3]) is a full subcategory of RepM(D :
B|C : A).

4.2. Push-out and pull-back functors

Since any module-morphism (D:B)�(C:A) induces a 1-cell in the bicategory fREM(Bim)

by Lemma 4.3, Proposition 2.1 yields the existence of the functor �◦ : MD → MC,
(M, �M) �→ (

M⊗B�, �M⊗B�). In terms of �, the coaction is derived from Eq. (4.2), and
reads

��◦(M) : M⊗B� → M⊗B�⊗AC,

m⊗Bs �→
∑

i

m(0)⊗Bei⊗A�(e∗
i ⊗Bm(1)⊗Bs). (4.8)

The functor �◦ is called a (right) push-out functor. Taking into account that � is a morphism
of corings and the observations made in Remark 3.2, it is reasonable to compare the cotensor
functor induced by the quasi-finite bicomodule D⊗B� and the right push-out functor �◦.
This leads to the following:

Proposition 4.6. If (D:B)�(C:A) is a module-morphism, then D⊗B� induces a functor

−�D(D⊗B�) : MD → MC which is naturally isomorphic to �◦.

Proof. Start with an arbitrary rightD-comodule M and consider the following commutative
diagram
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where f is uniquely determined by the universal property of the kernel �k
M,D⊗B� in the

category of right A-modules. Clearly, (M⊗B�D⊗B�) ◦ �k
M,D⊗B� is the inverse map of f,

and so f is an isomorphism of right A-modules. Consider the composition map

where �− is the natural transformation in Eq. (3.4) defined at M by

�M(m⊗Bs) =
∑

i

m(0)⊗Bei⊗Ae∗
i ⊗Bm(1),

for every m ∈ M , s ∈ �. Since the coaction �D⊗B� of Lemma 3.5 satisfies �M⊗BD⊗B� =
M⊗B�D⊗B�, we obtain the following commutative diagram

The right �[D]-coaction M⊗B�D⊗B� induces the structure of a right �[D]-comodule on
both M�D(D⊗B�) and M⊗B�. The coactions are given, respectively, by �′ and �M⊗B�.
Furthermore, the A-module isomorphism M�D(D⊗B�) � M⊗B� becomes an isomor-
phism of right �[D]-comodules.Applying the induction functor associated to the underlying
morphism of corings � to this �[D]-comodule isomorphism, we obtain an isomorphism of
right C-comodules which gives the desired natural isomorphism. �

By Remark 4.4 and the left-handed versions of both Proposition 2.1 and Proposition 4.6,
a module-morphism (D:B)�(C:A) induces a (left) push-out functor

◦� : DM → CM, N �→ (�∗⊗BD)�DN � �∗⊗BN .

Explicitly, using Eq. (4.3), the left C-coaction reads, for all s∗ ∈ �∗ and n ∈ N ,

◦�(N)�(s∗⊗Bn) =
∑

i

�(s∗⊗Bn(−1)⊗Bei)⊗Ae∗
i ⊗Bn(0). (4.9)
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In particular, in view of Lemma 3.5, ◦�(D) is a (C,D)-bicomodule. We say that a module-
morphism (D:B)�(C:A) is right pure if for all right C-comodules L the coaction equalising
map

�L, ◦�(D) = �L⊗A ◦�(D) − L⊗A
◦�(D)� : L⊗A ◦�(D) → L⊗AC⊗A ◦�(D)

is a D⊗BD-pure morphism of right B-modules. Obviously, if D is a flat left B-module,
then every right B-module map is D⊗BD-pure, hence any module-morphism (D:B)�(C:A)

is right pure in this case.
If (D:B)�(C:A) is right pure then for all right C-comodules N, N�C◦�(D) is a right D-

comodule (cf. [6, 22.3]). Thus any right pure module-morphism (D:B)�(C:A) gives rise to a
functor

�◦ : MC → MD, N �→ N�C ◦�(D).

The D-coaction on �◦(N), ��◦(N) : N�C(�∗⊗BD) → (N�C(�∗⊗BD))⊗BD explicitly
reads:

��◦(N)

(∑
�

n�⊗As∗
�⊗Bd�

)
=
∑
�

n� ⊗As∗
�⊗Bd�

(1)⊗Bd�
(2).

The functor �◦ is called a (right) pull-back functor associated to a right pure module-
morphism (D:B)�(C:A).

In a similar way one defines a left pure morphism and a (left) pull-back functor. There
is an obvious left-right symmetry, hence we restrict ourselves to right pure morphisms and
(right) pull-back functors.

Theorem 4.7. For any right pure module-morphism (D:B)�(C:A), the pull-back functor �◦
is the right adjoint to the push-out functor �◦.

Proof. First we construct the unit of the adjunction. For any M ∈ MD, consider a k-linear
map

�M : M → �◦(�◦(M)) = (M⊗B�)�C(�∗⊗BD),

m �→
∑

i

m(0)⊗Bei⊗Ae∗
i ⊗Bm(1).

Clearly, the map �M is well-defined and it immediately follows from the definitions of the
coactions on �◦(M) and ◦�(D) that the image of �M is in the required cotensor product.
The way in which the definition of the map �M depends upon the coaction �M ensures that
�M is a right B-module map (since �M is such a map). One easily checks that �M is also a
morphism in MD. Next, take any f : M → M ′ in MD and compute for any m ∈ M ,

�M ′(f (m)) =
∑

i

f (m)(0)⊗Bei⊗Ae∗
i ⊗Bf (m)(1)

=
∑

i

f (m(0))⊗Bei⊗Ae∗
i ⊗Bm(1) = �◦(�◦(f ))(�M(m)).
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The second equality follows, since f is a morphism of right D-comodules. Thus we have
constructed a natural map � : IMD → �◦�◦ that will be shown to be the unit of the
adjunction.

Now, for any N ∈ MC, consider a right A-module map

�N : �◦(�◦(N)) = (N�C(�∗⊗BD))⊗B� → N ,∑
�

n�⊗As∗
�⊗Bd�⊗Bs �→

∑
�

n�s∗
�(�D(d�)s).

First we need to check whether the map �N is a morphism in the category of right C-
comodules. Take any x =∑

� n�⊗As∗
�⊗Bd�⊗Bs ∈ (N�C(�∗⊗BD))⊗B�. Then,∑

�N(x(0))⊗Bx(1) =
∑
i,�

�N(n�⊗As∗
�⊗Bd�

(1)⊗Bei)⊗A�(e∗
i ⊗Bd�

(2)⊗Bs)

=
∑
i,�

n�s∗
�(�D(d�

(1))ei)⊗A�(e∗
i ⊗Bd�

(2)⊗Bs)

=
∑
i,�

n�⊗As∗
�(ei)�(e∗

i ⊗Bd�⊗Bs)

=
∑
�

n�⊗A�(s∗
�⊗Bd�⊗Bs).

The final equality is a consequence of the left A-linearity of � and the dual basis property.
Since

∑
� n�⊗As∗

�⊗Bd� ∈ N�C(�∗⊗BD),∑
�

n�
(0)⊗An�

(1)⊗As∗
�⊗Bd� =

∑
�,i

n�⊗A�(s∗
�⊗Bd�

(1)⊗Bei)⊗Ae∗
i ⊗Bd�

(2),

hence∑
�

n�
(0)⊗An�

(1)⊗As∗
��D(d�) =

∑
�,i

n�⊗A�(s∗
�⊗Bd�⊗Bei)⊗Ae∗

i .

Using this equality, the A-linearity of � and the properties of a dual basis, we can compute∑
�N(x(0))⊗Bx(1) =

∑
�

n�⊗A�(s∗
�⊗Bd�⊗Bs)

=
∑
�,i

n�⊗A�(s∗
�⊗Bd�⊗Beie

∗
i (s))

=
∑
�,i

n�⊗A�(s∗
�⊗Bd�⊗Bei)e

∗
i (s)

=
∑
�

n�
(0)⊗An�

(1)s
∗
�(�D(d�)s)

=
∑

�N(x)(0)⊗A�N(x)(1).

Therefore, �N is a right C-comodule map as required. Thus for any right C-comodule
N we have constructed a morphism �N in MC. Noting that any right C-comodule map is
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necessarily a right A-module map, one easily checks that the map �N is natural in N, i.e. the
collection of all the �N defines a morphism of functors � : �◦�◦ → IMC .

The verification that � and � are the unit and counit respectively, i.e. that for all M ∈ MD

and N ∈ MC, ��◦(M)◦�◦(�M)=�◦(M) and �◦(�N)◦��◦(N)=�◦(N), is a straightforward
application of the properties of a dual basis, and is left to the reader. �

Remark 4.8. One easily checks that the unit and counit defined in the proof of Theorem
4.7 are induced, respectively, by the unit and counit of the adjunction (3.2) (i.e. by the
natural transformations (3.4) and (3.3)). If a module-morphism (D:B)�(C:A) is right pure,
then Theorem 4.7 asserts that this last adjunction is extended to the category of right C-
comodules. That is, Theorem 4.7 and its proof can be seen as an example and also an
application of the statements and the proof of [13, Proposition 4.2(1)].

In case (D:B)�(C:A) corresponds to a morphism of corings, i.e. there is an algebra map
B → A, �=A and � : A⊗BD⊗BA → C is an A-coring map (cf. Example 4.2), the functor
�◦ is the induction functor and �◦ is the ad-induction functor introduced in [13]. In this
case Theorem 4.7 reduces to [13, Proposition 5.4].

Theorem 4.7 tantamounts to the existence of isomorphisms, for all M ∈ MD and
N ∈ MC,

�M,N : Hom−C(M⊗B�, N) → Hom−D(M, N�C(�∗⊗BD)), (4.10)

for a right pure module-morphism (D:B)�(C:A). Explicitly, these isomorphisms read, for all
� ∈ Hom−C(M⊗B�, N) and m ∈ M ,

�M,N(�)(m) =
∑

i

�(m(0)⊗Bei)⊗Ae∗
i ⊗Bm(1). (4.11)

To write out the inverse of �M,N explicitly, take any �̃ ∈ Hom−D(M, N�C(�∗⊗BD)) and
m ∈ M , and write �̃(m) =∑

�̃(m)[1]⊗A�̃(m)[2]⊗B �̃(m)[3]. Then, for all s ∈ �,

�−1
M,N(�̃)(m⊗Bs) =

∑
�̃(m)[1]�̃(m)[2](�D(�̃(m)[3])s). (4.12)

A module-morphism (D:B)�(C:A) is assumed to be right pure to assure that for all right C-
comodules N, �◦(N) is a rightD-comodule. On the other hand, for any module-morphism
there exist right C-comodules N, such that �◦(N) is a right D-comodule. For any such
comodule the isomorphisms in Eqs. (4.10)–(4.12) are well-defined. This observation leads
to the following:

Corollary 4.9. For any module-morphism (D:B)�(C:A) and any right D-comodule M,

Hom−D(M, �∗⊗BD) � Hom−C(M⊗B�,C) � Hom−A(M⊗B�, A)

= (M⊗B�)∗,

as k-modules.
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Proof. Note that �◦(C) = C�C(�∗⊗BD) � �∗⊗BD, so that it is a right D-comodule.
Thus �M,C : Hom−C(M⊗B�,C) → Hom−D(M, �∗⊗BD) are well-defined isomor-
phisms. In view of Eqs. (4.11)–(4.12), and the identification C�C(�∗⊗BD) � �∗⊗BD,
these isomorphisms and their inverses come out explicitly as, for all m ∈ M and � ∈
Hom−D(M, �∗⊗BD),

�M,C(�)(m) =
∑

i

�C(�(m(0)⊗Bei))e
∗
i ⊗Bm(1),

and for all �̃ ∈ Hom−C(M⊗B�,C), m ∈ M and s ∈ �,

�−1
M,C

(�̃)(m⊗Bs) = �(�̃(m)⊗Bs).

The second isomorphism follows from Hom−C(N,C) � Hom−A(N, A), which holds
for any right C-comodule N (and is given by the counit with the inverse provided by the
coaction). �

Corollary 4.10. For any module-morphism (D:B)�(C:A), the endomorphism ring of the
right D-comodule �∗⊗BD is isomorphic to the right dual ring of the A-coring �[D], i.e.
End−D(�∗⊗BD) � (�∗⊗BD⊗B�)∗, as rings.

Proof. Setting M = �∗⊗BD in Corollary 4.9, one obtains an isomorphism of k-modules

� : End−D(�∗⊗BD) → (�∗⊗BD⊗B�)∗,

� �→ [s∗⊗Bd⊗Bs �→ �C(�(�(s∗⊗Bd)⊗Bs))].

We need to check if this isomorphism is an algebra map. For any � ∈ End−D(�∗⊗BD),
d ∈ D and s∗ ∈ �∗, write �(s∗⊗Bd)=∑�(s∗⊗Bd)[1]⊗B�(s∗⊗Bd)[2] ∈ �∗⊗BD. Since
� is a morphism of A-corings,

�C(�(�(s∗⊗Bd)⊗Bs)) = ��[D](�(s∗⊗Bd)⊗Bs) =
∑

�(s∗⊗Bd)[1](�D(�(s∗⊗Bd)[2]s)).

In particular � maps the identity morphism in �∗⊗BD to the counit ��[D]. Furthermore,
since � is a right D-comodule map

�(s∗⊗Bd(1))⊗Bd(2) =
∑

�(s∗⊗Bd)[1]⊗B�(s∗⊗Bd)
[2]

(1)⊗B�(s∗⊗Bd)
[2]

(2),

so that∑
�(s∗⊗Bd(1))

[1]�D(�(s∗⊗Bd(1))
[2])⊗Bd(2) = �(s∗⊗Bd).
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Taking this into account we can compute, for all �, �′ ∈ End−D(�∗⊗BD), d ∈ D, s ∈ �
and s∗ ∈ �∗,

(�(�′) ∗ �(�))(s∗⊗Bd⊗Bs) =
∑

i

�(�′)(�(�)(s∗⊗Bd(1)⊗Bei)e
∗
i ⊗Bd(2)⊗Bs)

=
∑

i

�(�′)(�(s∗⊗Bd(1))
[1]

× (�D(�(s∗⊗Bd(1))
[2])ei)e

∗
i ⊗Bd(2)⊗Bs)

=
∑

i

�(�′)(�(s∗⊗Bd)[1](ei)

× e∗
i ⊗B�(s∗⊗Bd)[2]⊗Bs)

=
∑

�(�′)(�(s∗⊗Bd)[1]⊗B�(s∗⊗Bd)[2]⊗Bs)

=
∑

�(�′)(�(s∗⊗Bd)⊗Bs)

= �C(�(�′(�(s∗⊗Bd))⊗Bs))

= �(�′ ◦ �)(s∗⊗Bd⊗Bs).

Thus we conclude that � is an algebra map as required. �

In case D = B, Corollary 4.10 implies that the ring of endomorphisms of the right B-
module �∗ is isomorphic to the right dual ring of the corresponding comatrix coring. This
is a right-handed version of one of the assertions in [11, Proposition 2.1].

4.3. Natural isomorphisms between push-out functors

The horizontal composition in bicategory fREM(Bim) induces the cotensor product of
module-morphisms. Start with morphisms � : � → �̃ in (D:B)M(C:A) and � : � → �̃ in

(E:C)M(D:B), i.e. � : D⊗B� → D⊗B �̃ is a (D,C)-bicomodule map and � : E⊗C	 →
E⊗C	̃ is a (E,D)-bicomodule map. Therefore, we can consider the (E,C)-bicomodule
map

��D� : (E⊗C	)�D(D⊗B�) → (E⊗C	̃)�D(D⊗B �̃).

Using the isomorphismsE⊗C	⊗B� � (E⊗C	)�D(D⊗B�) and (E⊗C	̃)�D(D⊗B �̃) �
E⊗C	̃⊗B �̃ we thus arrive at an (E,C)-bicomodule map, hence the map of module-
morphisms,

��D� : E⊗C	⊗B� → E⊗C	̃⊗B �̃.

The morphisms in the category of module-morphisms detect relationships between push-
out functors. More precisely, one can formulate the following

Proposition 4.11. There is a bijective correspondence between morphisms in the cate-
gory of module-morphisms and natural transformations between corresponding push-out
functors. This correspondence is compatible with horizontal compositions.
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Proof. Let (D:B)�(C:A), (D:B)�̃(C:A) be module-morphisms and suppose that f : �◦ → �̃◦
is a natural map. This means that for all M ∈ MD, there is a right C-comodule map
fM : M⊗B� → M⊗B �̃. Consider morphisms in MD, �M : M → M⊗BD and, for all
m ∈ M , �m : D → M⊗BD, d �→ m⊗Bd . The naturality of f implies that, for all m ∈ M ,
d ∈ D and s ∈ �,

fM⊗BD(m⊗Bd⊗Bs) = m⊗BfD(d⊗Bs),

fM⊗BD ◦ (�M⊗B�) = (�M⊗B �̃) ◦ fM .

Put together, this means that

(�M⊗B �̃) ◦ fM = (M⊗BfD) ◦ (�M⊗B�). (4.13)

If M = D Eq. (4.13) implies that fD is a left D-comodule map, hence it is a (D,C)-
bicomodule map. Recall that M�D(D⊗B�) � M⊗B� by M⊗B�D⊗B� and �M⊗B�.
Thus, applying M⊗B�D⊗B �̃ to Eq. (4.13) we obtain

fM = (M⊗B�D⊗B �̃) ◦ (M⊗BfD) ◦ (�M⊗B�) � M�DfD.

Hence the required bijective correspondence is provided by

Nat(�◦, �̃◦) 	 f �→ fD ∈ HomD,C(D⊗B �̃,D⊗B�),

with the inverse, for all M ∈ MD,

HomD,C(D⊗B �̃,D⊗B�) 	 � �→ (M⊗B�D⊗B �̃) ◦ (M⊗B�) ◦ (�M⊗B�)

� M�D�.

Note that this is natural in M by the functoriality of the cotensor product. Clearly, this
bijective correspondence is compatible with compositions. �

Corollary 4.12. Let (D:B)�(C:A), (D:B)�̃(C:A) be ((D : B), (C : A))-module-morphisms.
Then the following statements are equivalent:

(a) push-out functors �◦ and �̃◦ are naturally isomorphic to each other.
(b) (D:B)�(C:A) � (D:B)�̃(C:A) in RepM(D : B|C : A).
(c) (D:B)�(C:A) � (D:B)�̃(C:A) in (D:B)M(C:A).

Proof. This follows immediately from Proposition 4.11 and the duality between RepM(D :
B|C : A) and (D:B)M(C:A). �

5. Equivalences induced by push-out and pull-back functors

In this section we study when a push-out functor is an equivalence. In terms of non-
commutative algebraic geometry, this is a problem of determining which changes of covers
are admissible (a change of cover of a non-commutative space should not change the space,
i.e. the associated category of sheaves). We then proceed to study the generalised descent
associated to a morphism of corings.
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5.1. Criteria for an equivalence

Theorem 5.1. Let � = (�, �) be a ((D : B), (C : A))-module-morphism and assume that
BD is flat.

(1) If � is an isomorphism of A-corings andD⊗B� is a coflat leftD-comodule, then AC is
flat and the pull-back functor �◦ is full and faithful.

(2) If the pull-back functor �◦ is full and faithful then � is an isomorphism of
A-corings.

Proof. First note that since BD is flat, � is a right pure module-morphism so that the
pull-back functor is well-defined. Furthermore, MD is a Grothendieck category.

(1) IfD⊗B� is a coflat leftD-comodule, then the cotensor functor −�D(D⊗B�) is exact.
Since M�D(D⊗B�) � M⊗B�, every short exact sequence 0 → M → M ′ → M ′′ → 0
of right D-comodules yields an exact sequence 0 → M⊗B� → M ′⊗B� → M ′′⊗B� →
0.

Consider an exact sequence 0 → V → V ′ → V ′′ → 0 of right A-modules. Since A�∗
and BD are flat, the above sequence yields an exact sequence

0 → V ⊗A�∗⊗BD → V ′⊗A�∗⊗BD → V ′′⊗A�∗⊗BD → 0

of right D-comodules. The coflatness of D⊗B� then produces an exact sequence

0 → V ⊗A�∗⊗BD⊗B� → V ′⊗A�∗⊗BD⊗B� → V ′′⊗A�∗⊗BD⊗B� → 0.

Hence �[D] is a flat left A-module, and since � : �[D] → C is an isomorphism of
A-bimodules, also AC is flat.

For any right C-comodule N, consider the following commutative diagram with exact
rows

The top row is the defining sequence of a cotensor product tensored with B�, hence it is
exact (forD⊗B� is coflat). The bottom row is exact by the coassociativity of the coaction.
Since � is an isomorphism of right C-comodules, so are the second and third vertical maps.
This implies that the counit of the adjunction �N is an isomorphism of right C-comodules.
Thus the pull-back functor �◦ is full and faithful.

(2) If �◦ is a full and faithful functor, the counit �N is an isomorphism of right C-
comodules for any N ∈ MC. In particular, �C : (C�C(�∗⊗BD))⊗B� → C is an
isomorphism of right C-comodules. Using the definitions of the left coaction ◦�(C)� in
Eq. (4.9) and of �C from the proof of Theorem 4.7, we can compute, for all s ∈ �, d ∈ D
and s∗ ∈ �∗,
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�C(( ◦�(C)�⊗B�)(s∗⊗Bd⊗Bs)) = �C

(∑
i

�(s∗⊗Bd(1)⊗Bei)⊗Ae∗
i ⊗Bd(2)⊗Bs

)
=
∑

i

�(s∗⊗Bd(1)⊗Bei)e
∗
i (�D(d(2))s)

=
∑

i

�(s∗⊗Bd⊗Bei)e
∗
i (s) = �(s∗⊗Bd⊗Bs).

Since ◦�(C)�⊗B� : �∗⊗BD⊗B� → (C�C(�∗⊗BD))⊗B� is an isomorphism, � is a
composition of isomorphisms, hence also an isomorphism (of A-corings). �

Theorem 5.2. Let � = (�, �) be a ((D : B), (C : A))-module-morphism and assume that
BD is flat. The following statements are equivalent:

(a) � is an isomorphism of A-corings and D⊗B� is a faithfully coflat left D-comodule;.
(b) AC is flat and �◦ is an equivalence of categories with the inverse �◦.

Proof. (a) ⇒ (b) By Theorem 5.1, C is a flat left A-module. We need to show that for all
M ∈ MD, N ∈ MC, a morphism � ∈ Hom−C(M⊗B�, N) is an isomorphism if and
only if �M,N(�) ∈ Hom−D(M, N�C(�∗⊗BD)) is an isomorphism. Here �M,N is the
adjunction isomorphism given in Eq. (4.11). Observe that there is an isomorphism

�N : N → (N�C(�∗⊗BD))�D(D⊗B�),

obtained as the following composition of isomorphisms:

N
�N

−−→ N�CC
N�C�−1

−−−−−−→ N�C(�∗⊗BD⊗B�)

N�C(�∗⊗B�D⊗B�)−−−−−−−−−→ N�C((�∗⊗BD)�D(D⊗B�))

−−→(N�C(�∗⊗BD))�D(D⊗B�).

The last isomorphism is a consequence of the fact that D⊗B� is a (faithfully) coflat left
D-comodule. In this way we are led to the following commutative diagram

Since the rows are isomorphisms andD⊗B� is a faithfully coflat leftD-comodule, the map
� is an isomorphism if and only if �M,N(�) is an isomorphism. Thus �◦ is an equivalence
as required.

(b) ⇒ (a) Since AC and BD are flat, both MD and MC are Abelian categories, and
kernels (and cokernels) are computed in Abelian groups. The functor �◦ = −�D(D⊗B�)

is an equivalence, hence it reflects and preserves exact sequences. In view of the fact that
a sequence in MC is exact if and only if it is exact as a sequence of Abelian groups, this
implies that D⊗B� is a faithfully coflat left D-comodule. �
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Corollary 5.3. Let D be a B-coring, and � a (B, A)-bimodule such that �A is a finitely
generated and projective module. If BD is a flat module and B� is a faithfully flat module,
then

−⊗B� : MD−−→M�[D]

is an equivalence of categories with the inverse

−��[D](�∗⊗BD) : M�[D]−−−−−−−−−→MD.

In particular, if B → A is a left faithfully flat ring extension (i.e. BA is a faithfully flat
module), B�A = BA

(n)
A for a positive integer n, and BD andDB are flat modules, then the

functors −⊗BA(n) : MD → MA(n)[D] and A(n)⊗B − :DM→A(n)[D]M are equivalences
(i.e. D is Morita-Takeuchi equivalent to A(n)[D]).

Proof. In the notation of Theorem 5.2, take C=�[D] and � the identity map. Observe that
since, for all rightD-comodules M, M�D(D⊗B�) � M⊗B�, the fact that � is a faithfully
flat left B-module implies thatD⊗B� is a faithfully coflat leftD-comodule. Finally, in this
case −⊗B� is the push-out functor and −��[D](�∗⊗BD) is the pull-back functor, hence
the assertions follow from Theorem 5.2. �

5.2. Generalised descent

To any ring extension � : B → A one can associate a category of right descent data
Desc� defined in [24, 3.3] (cf. [9,19]).As observed in [3, Example 1.2], the category Desc� is
isomorphic to the category of right comodules over the canonical Sweedler A-coring A⊗BA.
This isomorphism allows one to formulate a generalised descent theorem [3, Theorem 5.6].
In this subsection we introduce the category of descent data relative to a coring morphism,
and give a descent theorem in this general case.

Let (�, �) : (D : B) → (C : A) be a coring morphism, and consider the base ring
extension coring A�[D] = A⊗BD⊗BA. There are two coring morphisms associated to
(�, �),

�̃ : A�[D]−−−−−−→C, (̃�, �) : (D : B)−−−−−−→(A�[D] : A),

a⊗Bd⊗Ba′ �−→ a�(d)a′, (d, b) �−→ (1⊗Bd⊗B1, �(b)),

such that

(5.1)

is a commutative diagram of coring morphisms (cf. [6, Section 24]).
A descent datum associated to a coring morphism (�, �) : (D : B) → (C : A) is a pair

(X, �′
X) consisting of a right A-module X and a right A-linear map �′

X : X → X⊗BD⊗BA
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(here X is considered as a right B-module by restriction of scalars) rendering commutative
the following diagrams

Here �l− : −⊗BA → − is the natural transformation defined by right multiplication, and
�−,− : −⊗B− → −⊗BA⊗B− is the canonical natural transformation. A morphism of
descent data is a right A-linear map f : (X, �X) → (Z, �′

Z) such that

is a commutative diagram. Descent data associated to a coring morphism (�, �) and their
morphisms form a category called the category of right descent data associated to (�, �)

and denoted by Desc(�,�).

Lemma 5.4. Let (�, �) : (D : B) → (C : A) be a morphism of corings. Then Desc(�,�) is

isomorphic to MA�[D].

Proof. The isomorphism of categories is provided by the following two functors. Given
any right A�[D]-comodule X, define a right A-linear map

�′
X : X

�X

−−→ X⊗AA⊗BD⊗BA
�−−→ X⊗BD⊗BA.

It is clear that (X, �′
X) is an object of Desc(�,�). Obviously, any right A�[D]-colinear map

induces a morphism in Desc(�,�). Conversely, let (X, �′
X) be an object of Desc(�,�). Then X

is a right A�[D]-comodule with the coaction

�X : X
�′

X−−→ X⊗BD⊗BA
�−−→ X⊗AA⊗BD⊗BA.

Clearly any arrow of Desc(�,�) induces a right A�[D]-colinear map. Finally, a straightfor-
ward computation shows that the constructed functors are mutually inverse. �
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Corollary 5.5. Let (�, �) : (D : B) → (C : A) be a coring morphism. If BD is a flat
module and BA is a faithfully flat module, then

MD −⊗BA−−−−−−−−−→MA�[D] ≡ Desc(�,�)

is an equivalence of categories.

Proof. This corollary is a straightforward consequence of Lemma 5.4 and Corollary 5.3.
�

The following commutative diagram of functors summarises and combines the old and
the new situations

Here −⊗BA : MD → MC is the right push-out functor induced by the module-morphism
(A�, �̃), and (−)̃� and (−)�D,A�

are the induction functors associated to the coring morphisms
�̃ and �D,A� , respectively (the latter defined in diagram (5.1)).
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