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Cohomology for bicomodules: Separable and Maschke functors
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Abstract

We introduce the category of bicomodules for a comonad on a Grothendieck
category whose underlying functor is right exact and preserves direct sums.
We characterize comonads with a separable forgetful functor by means of
cohomology groups using cointegrations into bicomodules. We present two
applications: the characterization of coseparable corings stated in [14], and
the characterization of coseparable coalgebra coextensions stated in [19].
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Introduction

In [16] D. W. Jonah studied the second and the third cohomology groups of
coalgebras defined in a, not necessary abelian, multiplicative category (see also
[2]). M. Kleiner gave in [17] a cohomological characterization of separable algebras
using integrations. Another approach via derivations was given by M. Barr and
G. Rinehart in [3]. This last one has been dualised to the case of coseparable
coalgebras by Doi [7]. Nakajima [19] showed that Doi’s result can be extended
to coalgebra extensions (or co-extension) with a co-commutative base coalgebra.
In [14], F. Guzman used Jonah’s methods to generalize Doi’s characterization for
corings over an arbitrary base-ring and unified this with a dualisation of Kleiner’s
approach of cointegrations. This gives rise to a nice characterization of coseparable
corings in terms of cohomology, derived functors and both cointegrations and
coderivations. Unfortunately this last characterization can not be applied to
coalgebra co-extensions, and Nakajima’s results are not recovered.

The common framework behind Guzman’s and Nakajima’s approach is the
fact that both coseparable corings and coseparable coalgebra co-extensions can be
interpreted as comonads with a separable forgetful functor (in the sense of [20],
see below). In all situations discussed before, the multiplicative base-category
was additive with cokernels and arbitrary direct sums, and the (co)monad functor
preserved cokernels and direct sums. In the present paper we will approach
the problem by this comonad point of view. We work with a comonad over a
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Grothendieck category (not necessary multiplicative) whose underlying functor fits
the above mentioned class of functors. These functors were studied in relation
with corings in [12], see also [11] and references cited there. We will present a
generalisation of Guzman’s characterization in this situation, and as a particular
application we also give, under different assumption, Nakajima’s result.

We will start by defining the category of bicomodules over a comonad as in
[16], and we consider its universal cogenerator [9] (i.e. the universal adjunction
defining the comonadic structure) in order to prove that the forgetful functor in this
universal adjunction is separable ([20], see below) if and only if the forgetful functor
in bicomodules is Maschke ([6], see below) if and only if the comultiplication splits
in the category of bicomodules. This will be the main result of section 1 (Theorem
1.6) (see [1] for a different approach). In section 2 we define cointegrations and
coderivations, we also establish, as in [14], an isomorphism between the abelian
group of cointegrations into a comonad and the group of all coderivations. This will
serve to show that the comultiplication splits as a morphism of bicomodules if and
only if the universal cointegration is inner if and only if the universal coderivation
is inner (Corollary 2.4). Section 3 is devoted to the relative cohomology for
bicomodules defined as in [10, 16] using a relative resolution with respect to
the injective class of sequences in the category of bicomodules which are cosplit
after forgetting the left coaction. Up to isomorphisms, cointegrations appear as 1-
cocycles and inner cointegrations as 1-coboundaries. The relative injectivity is thus
interpreted by the fact that all into-cointegrations are inner. This happens for all
bicomodules if and only if the comultiplication splits in the category of bicomodules
(Theorem 3.5). The last section presents two applications of this last Theorem, the
first one makes use of the comonad defined by tensor product over algebras [14], and
the second uses cotensor product over coalgebras over fields [19]. Since in recent
years it became clear that corings and comodules provide a general framework to
study entwining structures and entwined modules and by this all sorts of (relative)
Hopf-modules (we refer to [5] for a profound overview), separability properties of
these structures are covered by our theory as special cases.

NOTATIONS AND BASIC NOTIONS: Given any Hom-set category A , the
notation X 2 A means that X is an object of A . The identity morphism of X
will be denoted by X itself. The set of all morphisms f WX !X 0 in A , is denoted

by HomA

�
X;X 0

�
. The identity functor of A will be denoted by 11A W A ! A .

A natural transformation between two functors F ;G W A ! B, is denoted by
ˇ� W F ! G. If H W B ! C , and I W D ! A are other functors, then
ˇI.�/ (or ˇI) denotes the natural transformation defined at each object Z 2 D by
ˇI.Z/ W FI.Z/ ! GI.Z/, while Hˇ� (or Hˇ) denotes the natural transformation
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defined at each object X 2 A by H.ˇX / W HF.X/! HG.X/.
Any covariant functor F W A ! B leads to a (bi)functor

HomB.F.�/;F.�// W A op � A ! S et:

In particular, the identical functor 11A W A ! A gives rise to

HomA .�;�/ W A op � A ! S et:

So we find a natural transformation induced by F ,

F W HomA .�;�/! HomB.F.�/;F.�//I
defined by FX;X 0.f / D F.f /, for any arrow f W X ! X 0 in A . Recall from [21]
(see [20] for the original definition) that the functor F is called separable if and
only if F has a left inverse, i.e. there exists a natural transformation

P W HomB.F.�/;F.�//! HomA .�;�/
such that P ı F D 11HomA .�;�/. If in addition F has a right adjoint functor G W
B ! A with unit �� W 11A ! GF , then it is well known from [21], that F is
separable if and only if there exists a natural transformation � W GF ! 11A such that
� ı � D 11A .
Let F W A ! B be again a covariant functor. Recall from [6], that an object
M 2 A is called relative injective (or F-injective) if and only if for every morphism
i W X ! X 0 in A , such that F.i/ W F.X/ ! F.X 0/ has a left inverse j in B (i.e.
F.i/ is a split monomorphism or just split-mono) and for every f W X ! M in A
we can find a morphism g W X 0 ! M in A such that g ı i D f . The functor F
is said to be a Maschke functor if every object of A is F-injective. If in addition
F has a right adjoint functor G W B ! A with unit �� W 11A ! GF , then, by [6,
Theorem 3.4], an object M 2 A is F-injective if and only if �M has a left inverse.
In particular F is a Maschke functor if and only if for every object M 2 A , �M has
a left inverse.

Assume that a preadditive category A is given. Following [10, pages 3-4], a
sequence

E W X i �� X
j �� X 00

(i.e. j ı i D 0) is said to be co-exact if i has a cokernel and if in the commutative
diagram

X
i �� X 0 j ��

ic

��

X 00

Coker.i/
l

��������
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l is a monomorphism. If in addition l is a split-mono, then E is said to be cosplit.
The exact and split sequence are dually defined by using kernels. The notions of
sequence, coexact sequence, cosplit sequence,... are extended to long diagrams
simply by applying them to each consecutive pair of morphisms. One can prove that
the above notions of exact and coexact sequences coincide with the usual meaning
of exact sequences in abelian categories. In case of a diagram of the form

E 0 W 0 �� X �� X 0 �� X 00 �� 0

(i.e. short sequence) in the category A , we have by [16, Lemma 2.1], that E 0 is
cosplit if and only if it is split.

Next, we recall from [10, I.2] the notions of closed and injective classes. Let
E be a class of sequences in A , then an object X 2 A is said to be E -injective
if HomA .E;X/ is an exact sequence of abelian groups, for every sequence E in
E . The class of all E -injective objects is denoted by IE . Conversely, given I a
class of objects of A , a sequence E of morphism of A is said to be I -exact if
HomA .E;Y / is an exact sequence of an abelian groups, for every object Y in I .
The class of all I -exact sequences is denoted by EI . A class of sequences E in
A is said to be closed whenever E coincides with EIE

. An injective class is a
closed class of sequences E such that, for every morphism X ! X 0, there exists
a morphism X 0 ! Y with Y 2 IE and with X ! X 0 ! Y in E . A closed and
projective classes are dually defined.

If in addition the category A possesses cokernels, then one can check that the
class E0 of all cosplit sequences form an injective class and IE0 is exactly the class
of all objects of A . Given any adjunction F W A ��

B W G�� where F is left
adjoint functor to G (we use the notation F a G ), and a class of sequences E 0 in
B, denote by E D F �1.E 0/ the class of sequences E in A such that F .E/ is in
E 0. The dual of Eilenberg-Moore’s Theorem [10, Theorem 2.1, page 15] stated in
[16, Theorem 2.9] asserts that E is an injective class whenever E 0 is.

1. Bicomodules and Separability

Let A and B two Grothendieck categories, we denote by Funct.A;B/ the class of
all (additive) covariant functors F W A ! B such that F preserves cokernels and
commutes with direct sums. Thus F commutes with inductive limits. By [8, Lemma
5.1], the natural transformations between two objects of the class Funct.A;B/ form
a set. Henceforth, Funct.A;B/ is a Hom-set category (or Set-category).

A comonad on a category A is a three-tuple F D .F;ı;�/ consisting of an endo-
functor F W A ! A and two natural transformations ı W F ! F 2 D F ı F and
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� W F ! 11A such that

ıF ı ı D F ı ı ı and F � ı ı D �F ı ı D F; (1.1)

where we denote the identical natural transformation F ! F again by F . A
comonad homomorphism � W .F;ı;�/ ! .F 0;ı0;� 0/ is a natural transformation
� W F ! F 0 such that � 0 ı � D � and ı0 ı � D %� ı ı, where %� is the natural
transformation defined by .%�/� D F 0�� ı�F.�/ D �F 0.�/ ıF��, see [4].

It is well known from [15, 9, 18], that any adjunction S W B �� A W T�� with
S a T , leads to a comonad on A given by the three-tuple .ST;S�T ;�/, where
� W 11B ! TS and � W ST ! 11A are, respectively, the unit and the counit of this
adjunction.

Let F D .F;ı;�/ be a comonad on A with F 2 Funct.A;A/. We define the
category of .B;F/-bicomodules BM F by the following data:

� Objects: A .B;F/-bicomodule is a pair .M;m/ consisting of a functor M 2
Funct.B; A/ and natural transformation m W M ! FM satisfying

ıM ı m D Fm ı m; �M ı m D M: (1.2)

� Morphisms: A morphism f W .M;m/ ! .M0;m0/ is a natural transformation
f W M ! M0 satisfying

m0 ı f D F f ı m: (1.3)

It is easily seen that .FM;ıM/ is an object of the category BM F, for every object
M 2 Funct.B;A/. This in fact establishes a functor F W Funct.B;A/! BM F with a
left adjoint the forgetful functor O W BM F ! Funct.B;A/.

Similarly, we can define the category of .F;B/-bicomodules denoted by FMB,
using this time the objects of the category Funct.A;B/.
Remark 1.1 Given any adjunction M W B �� A W N�� such that M a N with counit
� and unit �, then [13, Proposition 1.1] establishes one-to-one correspondences
between natural transformations m W M ! FM satisfying equation (1.2) and
homomorphisms of comonads from .MN;M�N;�/ to F, and natural transformations
s W N ! NF satisfying the dual version of equation (1.2). When N and M are
both right exact and preserve direct sums, then the previous correspondence can
be interpreted in our terminology as follows: There are bijections between the
.F;B/-bicomodule structures on M, the .B;F/-bicomodule structures on N, and the
homomorphisms of comonads from .MN;M�N;�/ to F.

Take now G D .G;#;&/ another comonad on B with G 2 Funct.B;B/, we define
the category of .G;F/-bicomodules GM F as follows:
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� Objects: A .G;F/ bicomodule is a three-tuple .M;m;n/ consisting of a functor
M 2 Funct.B;A/ and two natural transformations m W M ! FM , n W M ! MG
such that .M;m/ 2 BM F and .M;n/ 2 GMA, that is

ıM ı m D Fm ı m; �M ı m D M and M# ı n D nG ı n;M& ı n D M (1.4)

with compatibility condition

mG ı n D F n ı m: (1.5)

In other words m is a morphism of GMA, equivalently, n is a morphism of
BM F, where .FM;F n/ 2 GMA and .MG;mG/ 2 BM F.

� Morphisms: A morphism f W .M;m;n/! .M0;m0;n0/ is a natural transformation
f W M ! M0 such that f W .M;m/ ! .M0;m0/ is a morphism of BM F and f W
.M;n/! .M0;n0/ is a morphism of GMA, that is

n0 ı f D fG ı n and m0 ı f D F f ı m: (1.6)

It is clear that 11BM F D BM F and GM 11A D GMA, where 11A and 11B are
endowed with a trivial comonad structure.

Remark 1.2 It is easily seen that Funct.A;A/ is a strict monoidal category (or
multiplicative category), taking the composition of functors as the tensor product
and 11A as the identity object. To any coalgebra in a monoidal category one can
associate in a canonical way a category of bicomodules, see [16, Section 1]. If we
consider F as a coalgebra in Funct.A;A/, then the category of .F;F/-bicomodules
as defined above coincides exactly with this canonical one. However, if we consider
.G;F/-bicomodules and thus the base-category is changed, the monoidal arguments
fail. In that case one must consider the 2-category of Grothendieck categories (0-
cells), additive functors that preserve cokernels and commute with direct sums (1-
cells), and natural transformations (2-cells). Observe that F and G are comonads
inside this 2-category (see [11] for elementary treatment).

By the observation that the bicomodules as introduced above coincide with
certain 1-cells in a 2-category, we can state the following well known lemma.

Lemma 1.3 Let A (respectively B) be a Grothendieck category, and F D .F;ı;�/

(respectively G D .G;#;&/) a comonad on A (respectively on B) whose underlying
functor F (respectively G) is right exact and commutes with direct sums. The
category of .G;F/-bicomodules GM F is a preadditive category with cokernels and
arbitrary direct sums.
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Consider the categories of bicomodules BM F and GM F. There are two functors
connecting those categories. The left forgetful functor S W GM F ! BM F, which
sends any .G;F/-bicomodule .M;m;n/ to the .B;F/-bicomodule .M;m/ and which is
identical on the morphisms. Secondly, the functor T W BM F ! GM F which sends
.M0;m0/ ! .M0G;m0

G ;M
0#/ and f ! fG . These functors form an adjunction, more

precisely we have

Lemma 1.4 For every pair of objects
�
.N;r;s/; .M;m/

�
of GM F �BM F, there is a

natural transformation

HomGM F

�
.N;r;s/;T .M;m/

�
ˆN;M �� HomBM F

�
S .N;r;s/; .M;m/

�
f

� �� M& ı f
gG ı s g:���

That is S is a left adjoint functor to T .

Let X be the discrete one-object category, then the category XM F can be
described as follows. A functor X W X ! A is completely determined by the image
X of the single object in X . A natural transformation x W X ! FX is completely
determined by a morphism dX W X ! F.X/. In this way, we can identify an
object in XM F with a pair .X;dX / consisting of an object X 2 A and a morphism
dX WX ! F.X/ satisfying

ıX ı dX D F.dX / ı dX ; �X ı dX D X:

Similarly, a morphism f W .X;dX / ! .X 0;dX 0

/ in XM F is completely determined
by a morphism f WX !X 0 of A such that

dX
0 ı f D F.f / ı dX :

Under this identification, we will denote this category by AF. Denote by S W AF !
A the forgetful functor and T W A ! AF;T.Y / D .F.Y /;ıY /, T D F.f /, for every
object Y and morphism f of A. Then we obtain an adjunction S a T, with ST D F

satisfying a universal property, see [9, Theorem 2.2].

Remark 1.5 It is well known that AF is an additive category with direct sums and
cokernels, admitting .F.U /;ıU / as a sub-generator, whenever U is a generator of
A. However, AF is not necessarily a Grothendieck category. But, if we assume that
F is an exact functor and that A possesses a generating set of finitely generated
objects, then one can easily check that AF becomes a Grothendieck category.

The main result of this section is the following



130 L. EL KAOUTIT & J. VERCRUYSSE

Theorem 1.6 Let A be a Grothendieck category. Consider a comonad F D .F;ı;�/

on A whose functor F preserves cokernels and commutes with direct sums. The
following statements are equivalent

(i) S W AF �! A is a separable functor;

(ii) S W FM F �! AM F is a Maschke functor;

(iii) ı W .F;ı;ı/ �! .F 2;ıF ;F ı/ is a split monomorphism in the category FM F.

Proof: .i/) .i i i/. The unit of the adjunction S a T is given by

�.X;dX / W .X;dX / dX �� TS.X;dX / D .F.X/;ıX / (1.7)

for every object .X;dX / of AF. By hypothesis there is a natural transformation
 W TS ! 11AF such that  ı � D 11AF . Let us denote by r W F 2 ! F the
natural transformation given by the collection of morphisms rX D S. .F .X/;ıX //,
where X runs through the class of objects of A. By construction r ı ı D F and
r W .F 2;ıF / ! .F;ı/ is a morphism of the category AM F. Since  is a natural
transformation and ıX W .F.X/;ıX /! .F 2.X/;ıF.X// is morphism in AF, we have
the following commutative diagram

F 3
S 
F2 �� F 2

F 2
S F ��

F ı

��

F

ı

��

Therefore ı ı r D rF ı F ı, which means that r W .F 2;ıF ;F ı/ ! .F;ı;ı/ is a
morphism in the category FM F. Thus ı is a split monomorphism of the category
FM F.
.i i i/ ) .i i/. Let us denote by ƒ W .F 2;ıF ;F ı/ ! .F;ı;ı/ the left inverse of
ı W .F;ı;ı/ ! .F 2;ıF ;F ı/, i.e. ƒ ı ı D F , in the category FM F. Let .M;m;n/ be
any F-bicomodule. The unit of the adjunction S a T stated in Lemma 1.4, at this
bicomodule is given by

‚.M;m;n/ W .M;m;n/ n �� T ı S .M;m;n/ D .MF;mF ;Mı/:

(1.8)
Consider the natural transformation defined by the following composition

� W MF
nF �� MF 2

Mƒ �� MF
M� �� M :
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It is easily seen that � ı n D M. The implication will be established if we show
that � is a morphism in the category of bicomodules FM F. We can compute

m ı� D m ı M� ı Mƒ ı nF

DFM� ı mF ı Mƒ ı nF ; m� isnatural

DFM� ıFMƒ ı mF 2 ı nF ; m� isnatural

DFM� ıFMƒ ıF nF ı mF ; by(1.5)

DF
�

M� ı Mƒ ı nF

�
ı mF

DF� ı mF ;

which proves that � is a morphism in AM F. On the other hand, we have

n ı� D n ı M� ı Mƒ ı nF

D MF � ı nF ı Mƒ ı nF ; n� isnatural

D MF � ı MFƒ ı nF 2 ı nF ; n� isnatural

D MF � ı MFƒ ı MıF ı nF ; by(1.4)

D MF � ı Mı ı Mƒ ı nF ; by(1.6)

D Mƒ ı nF ;

and

�F ı MıD M�F ı MƒF ı nF 2 ı Mı

D M� ı MƒF ı MF ı ı nF ; n� isnatural

D M�F ı M.ƒF ıF ı/ ı nF

D M�F ı Mı ı Mƒ ı nF ; by(1.6)

D Mƒ ı nF :

Therefore �F ı Mı D n ı � and � is a morphism of F-bicomodules. Hence S is a
Maschke functor.
.i i/) .i/. Given an F-bicomodule .M;m;n/, we denote by

�.M;m;n/ W T S .M;m;n/ D .MF;mF ;Mı/ �� .M;m;n/

the splitting morphism of ‚.M;m;n/ in the category of F-bicomodules. Here ‚� is
the unit of the adjunction S a T . Since .F;ı;ı/ is F-bicomodule, we put 	 WD
�.F;ı;ı/, thus 	 ı ı D F . For any object .X;dX / of the category AF, we consider
the composition

�.X;dX / W F.X/ F.dX / �� F 2.X/
�X �� F.X/

�X �� X :
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We claim that �� is a natural transformation which satisfies �� ı �� D 11AF , where
�� is the unit of the adjunction S a T given in (1.7). First of all, we have

�.X;dX / ı �.X;dX / D �X ı 	X ıF.dX / ı dX
D �X ı 	X ı ıX ı dX
D �X ı dX D .X;dX /;

for every object .X;dX / of AF. To see that �.X;dX / is a morphism in AF, we can
compute on one hand

dX ı�.X;dX / D dX ı �X ı 	X ıF.dX /
D �F.X/ ıF.dX / ı 	X ıF.dX /; �� isnatural

D �F.X/ ı 	F.X/ ıF 2.dX / ıF.dX /; 	� isnatural

D �F.X/ ı 	F.X/ ıF.ıX / ıF.dX /
D �F.X/ ı ıX ı 	X ıF.dX /; by(1.6)applied to	

D 	X ıF.dX /

and secondly,

F�.X;dX / ı ıX DF �X ıF	X ıF 2.dX / ı ıX
DF �X ıF	X ı ıF.X/ ıF.dX /; ı� isnatural

DF �X ı ıX ı 	X ıF.dX /; by(1.6)applied to	

D 	X ıF.dX /:

Therefore, F�.X;dX / ı ıX D dX ı �.X;dX /. Lastly, if we consider a morphism
f W .X;dX /! .Y;dY / in AF, then

f ı�.X;dX / D f ı �X ı 	X ıF.dX /
D �Y ıF.f / ı 	X ıF.dX /; �� isnatural

D �Y ı 	Y ıF 2.f / ıF.dX /; 	� isnatural

D �Y ı 	Y ıF.dY / ıF.f /
D�.Y;dY / ıF.f /;

which shows that �� is a natural transformation.

In view of Remark 1.2, condition .i i i/ in Theorem 1.6 means that F is
coseparable as a coalgebra in the monoidal category Funct.A;A/ (see [1, 2]).
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2. Coderivations and Cointegrations

Let F D .F;ı;�/ be a comonad on A with underlying functor F 2 Funct.A;A/.
Consider a bicomodule .M;m;n/ 2 FM F. A coderivation from M to F is a natural
transformation g W M �! F such that

ı ı g D F g ı m C gF ı n: (2.1)

The set of all coderivations from .M;m;n/ is an additive group which we denote
by Coder.M;F /. Notice that every coderivation g 2 Coder.M;F / satisfies the
equality � ı g D 0. A coderivation g 2 Coder.M;F / is said to be inner if there
exists a natural transformation 
 W M ! 11A such that

g D 
F ı n � F
 ı m: (2.2)

The sub-group of all inner coderivations will be denoted by InCoder.M;F /.
Let .M;m;n/ and .M0;m0;n0/ be two F-bicomodules. A left cointegration from

.M;m;n/ into .M0;m0;n0/ is a natural transformation h W M ! M0F which satisfies

m0
F ı h D F h ı m; M0ı ı h D n0

F ı h C hF ı n: (2.3)

The first equality means that h W S .M;m;n/ D .M;m/ ! S T S .M;m;n/ D
.M0F;m0

F / is a morphism in the category AM F. Right cointegrations are defined in
a similar way. Since we are only concerned with the left ones, we will not mention
the word “left” before cointegration. The additive group of all cointegrations from
.M;m;n/ into .M0;m0;n0/ will be denoted by Coint.M;M0/. A cointegration h 2
Coint.M;M0/ is said to be inner if there exists a natural transformation ' W M ! M0
which satisfies

m0 ı' D F' ı m; h D 'F ı n � n0 ı': (2.4)

The first equality means that ' W .M;m/ ! .M0;m0/ is a morphism in the category
AM F. The sub-group of all inner cointegrations will be denoted by InCoint.M;M0/.
The following Proposition was first stated for bimodule over ring extension in [17]
and for bicomodules over corings in [14]. For the sake of completeness, we give the
proof.

Proposition 2.1 For any F-bicomodule .M;m;n/, there is a natural isomorphism of
additive groups

Coint.M;F / � �� Coder.M;F /

h � �� �F ı h

F g ı m g���

whose restriction to the inner sub-groups gives again an isomorphism

InCoint.M;F /Š InCoder.M;F /:
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Proof: We only show that the mutually inverse maps are well defined. Let h 2
Coint.M;F /, and put g WD �F ı h. We have

ı ıgD ı ı �F ı h

D �F 2 ıF ı ı h; ı� isnatural

D �F 2 ı
�
ıF ı h C hF ı n

�
D .�F ı ı/F ı h C �F 2 ı hF ı n

D h C �F 2 ı hF ı n

and

F �F ıF h ı m C �F 2 ı hF ı n D F �F ı ıF ı h C �F 2 ı hF ı n D h C �F 2 ı hF ı n:

That is g 2 Coder.M;F /. Conversely, given g 2 Coder.M;F /, we put h D F g ı m.
We find

ıF ı h D ıF ıF g ı m

DF 2g ı ıM ı m; ı� isnatural

DF 2g ıFm ı m; by(1.4)

DF h ı m;

which shows the first equality of equation (2.3). Now,

F ı ı h DF ı ıF g ı m

DF.ı ı g/ ı m

DF
�
F g ı m C gF ı n

�
ı m

DF 2g ıFm ı m CF gF ıF n ı m; by(1.4)and(1.5)

DF 2g ı ıM ı m CF gF ı mF ı n

D ıF ıF g ı m C
�
F g ı m

�
F

ı n; ı� isnatural

D ıF ı h C hF ı n

which proves that h D F g ı m 2 Coint.M;F /.

Following [14], we will give in the next step the notion of universal cointegration
and that of universal coderivation.

Given .M;m;n/ any F-bicomodule, consider the F-bicomodule .MF;mF ;Mı/,
which is the image of .M;m;n/ under the functor T S . We call it the bicomodule
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induced by M. Since n W .M;m;n/! .MF;mF ;Mı/ is a morphism of F-bicomodules,
we obtain by Lemma 1.3 the following sequence of F-bicomodules

0 �� .M;m;n/ n �� .MF;mF ;Mı/
nc �� .K .M/;u;v/ �� 0 ; (2.5)

where .K .M/;u;v/ and nc denote the cokernel of n in the category FM F. Notice,
that this is still a cokernel in the category AM F, after forgetting by S . Consider
the natural transformation

w0 WD MF � n ı M� W MF �! MF:

It is easily checked that mF ıw0 D Fw0 ımF , thus w0 is a morphism in the category
AM F. Also, w0 satisfies w0 ın D 0. So, by the universal property of cokernels, there
exists a morphism in the category AM F, w W .K .M/;v/! .MF;mF / which makes
the following diagram commutative

M
n �� MF

nc ��

w0

��

K .M/

w
��� � � � � �

MF

(2.6)

Thus w ı nc D w0, and so nc ı w ı nc D nc . Hence nc ı w D K .M/, since nc is an
epimorphism.

A universal cointegration into M is a cointegration u from K .M/ into M such
that every cointegration into M factors through u. That is, u satisfies the following
universal property: for every F-bicomodule .M0;m0;n0/ and every cointegration
h 2 Coint.M0;M/, there exists a morphism of F-bicomodules f W .M0;m0;n0/ !
.K .M/;u;v/ such that h D u ı f.

Proposition 2.2 The morphism w constructed in diagram (2.6) is a universal
cointegration into M. Moreover, the following conditions are equivalent

(i) The sequence

0 �� .M;m;n/ n �� .MF;mF ;Mı/
nc �� .K .M/;u;v/ �� 0

splits in the category of bicomodules FM F;

(ii) The universal cointegration w W K .M/! MF is inner.
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Proof: For the first statement, it is enough to show that w0 is cointegration into M,
since nc is an epimorphism. By construction w0 satisfies the first equality in (2.3).
The second equality in (2.3), is obtained as follows

Mı ı w0 D Mı� Mı ı n ı M� D Mı� nF ı n ı M�

and

nF ı w0 C w0
F ı MıD nF � nF ı n ı M�C Mı� nF ı M�F ı Mı

D Mı� nF ı n ı M�

D Mı ı w0:

The fact that w is universal follows from the following isomorphism of additive
groups

HomFM F

�
M0;K .M/

� � �� Coint.M0;M/

' � �� w ı'
nc ı h h���

(2.7)

whose proof is an easy computation. Now we check the stated equivalence.
.i/ ) .i i/. Let us denote by 
 W .K .M/;u;v/ ! .MF;mF ;Mı/ the right inverse of
nc in the category FM F, i.e. nc ı
 D K .M/. Define the composition

' W K .M/ � �� MF
M� �� M :

Then we have

mı' D mı M� ı
 D FM� ımF ı
 D FM� ıF
ıu D F
�

M� ı

�

ıu D F' ıu;

which entails that ' is a morphism in AM F. The cointegration w is inner by '.
Namely,

'F ı v � n ı'D M�F ı
F ı v � n ı M� ı

D M�F ı Mı ı
� n ı M� ı

D
� n ı M� ı

D

�
MF � n ı M�

�
ı


D w ı nc ı
 D w:

.i i/ ) .i/. Suppose that there exists a morphism ˇ W K .M/ ! M in AM F such
that w D ˇF ı v � n ıˇ. Consider the natural transformation

� W K .M/ v �� K .M/F
ˇF �� MF :
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Then we find nc ı � D nc ı ˇF ı v D nc ı w C nc ı n ı ˇ D nc ı w D K .M/.
Furthermore, � is a morphism in the category of bicomodules FM F, as the
following commutative diagrams show

K .M/ v ��

u
��

K .M/F
ˇF ��

uF
��

MF
mF

��
FK .F /

F v
��FK .M/F

FˇF

��FMF

K .M/ v ��

v
��

K .M/F
ˇF ��

K .M/ı
��

K .M/F

Mı
��

K .M/F
vF

��K .M/F 2
ˇ
F2

��MF 2:

Therefore the listed sequence splits in the category FM F.

From now on w denotes the universal cointegration into the F-bicomodule
.F;ı;ı/. That is w W K .F / ! F 2 with properties w ı ıc D F 2 � ı ı F � and
ıc ı w D K .F /, where

0 �� .F;ı;ı/
ı �� .F 2;ıF ;F ı/

ıc �� .K .F /;u;v/ �� 0

is the canonical sequence. Consider the natural transformation d W K .F / ! F

defined by d WD F � ı w � �F ı w.

Lemma 2.3 The morphism d is a coderivation with the following universal prop-
erty. For every F-bicomodule .M;m;n/ and every coderivation g 2 Coder.M;F /,
there exists a natural transformation g0 W M ! K .F / such that d ıg0 D g.

Proof: First, observe that

d ı ıc D F � � �F

as w ı ıc D F 2 � ı ıF �. Now, since ıc is an epimorphism, in order to get that d is
a coderivation, it is enough to check that e WD F � � �F is a coderivation and in fact
we have

F e ı ıF C eF ıF ıDF 2� ı ıF � .F � ı ı/F CF .�F ı ı/� �F 2 ıF ı
DF 2� ı ıF � �F 2 ıF ı
D ı ıF � � ı ı �F D ı ı e:

Take g 2 Coder.M;F /. By Proposition 2.1, F g ı m 2 Coint.M;F / so we can apply
Proposition 2.2 to obtain a morphism of F-bicomodules f W M ! K .F / such that
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F g ı m D w ıf . We have

d ıf D e ı w ıf
D e ıF g ı m

DF � ıF g ı m � �F ıF g ı m

DF .� ı g/ ı m � �F ı .ı ı g � gF ı n/

DF .� ı g/ ı m � �F ı ı ı g � �F ı gF ı n

DF .� ı g/ ı m � g � .� ı g/F ı n:

Once observed that � ı g D 0 (since g 2 Coder.M;F/), it is clear that we can set
g0 D �f .

Corollary 2.4 Let F D .F;ı;�/ be a comonad on a Grothendieck category A
such that F is right exact and commutes with direct sums. Consider the universal
cointegration w and the universal coderivation d associated to the F-bicomodule
.F;ı;ı/. The following conditions are equivalent

(i) The sequence

0 �� F
ı �� F 2

ıc �� K .F / �� 0

is a split sequence in the category of bicomodules FM F;

(ii) the universal cointegration w is inner;

(iii) the universal coderivation d is inner.

Proof: The equivalence .i/, .i i/ is consequence of Proposition 2.2. Let us check
the equivalence between .i i/ and .i i i/.
.i i/) .i i i/. We know there exists a morphism ' W K .F /! F in AM F such that
w D 'F ı v � ı ı'. We have

�F ı w D �F ı'F ı v �' D
�
� ı'

�
F

ı v �';
F � ı w DF � ı'F ı v �':

Hence

d DF � ı'F ı v �' �
�
� ı'

�
F

ı v C'

D ' ı K .F /� ı v �
�
� ı'

�
F

ı v

D ' �
�
� ı'

�
F

ı v:
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But F
�
� ı'

�
ı u D ', as ' is a morphism in AM F, which proves that d is inner by

�� ı'.
.i i i/ ) .i i/. Let us denote by 
 W K .F / ! 11A the natural transformation which
satisfies d D 
F ı v �F
 ı u. We define the map  as the following composition
 D F
 ı u W K .F /! FK .F /! F . This  satisfies

ı ı D ı ıF
 ı u D F 2
 ı ıK .F / ı u D F 2
 ıF u ı u D F ı u;

that is,  is a morphism in AM F. The universal cointegration is inner by � , as
the following computations show

 F ı v � ı ı D
�
F
 ı u

�
F

ı v � ı ıF
 ı u

DF
F ı uF ı v � ı ıF
 ı u

DF
F ıF v ı u � ı ıF
 ı u

DF
�

F ı v

�
ı u � ı ıF
 ı u

DF

��
F � � �F

�
ı w CF
 ı u

�
ı u � ı ıF
 ı u

DF 2� ıFw ı u �F �F ıFw ı u CF 2
 ıF u ı u � ı ıF
 ı u

DF 2� ı ıF ı w �F �F ı ıF ı w C ı ıF
 ı u � ı ıF
 ı u

DF 2� ı ıF ı w �
�
F � ı ı

�
F

ı w

D ı ıF � ı w � w D
�
ı ıF � �F 2

�
ı w D �w ı ıc ı w D �w:

3. Cohomology For Bicomodules

The following lemma, which will be used in the sequel, was in part proven in [6,
Theorem 3.4]. For sake of completeness we will give a detailed proof.

Lemma 3.1 Let A and B be two preadditive categories with cokernels, and F W
A ! B a covariant functor with right adjoint functor G W B ! A . Denote by
� and � respectively, the counit and unit of this adjunction. Let E0 be the injective
class of all cosplit sequences in B, and put E D F �1.E0/. For every object M 2
A , the following conditions are equivalent

(i) M is F -injective;

(ii) M is E -injective;
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(iii) the unit at M , �M WM ! G F .M/, is a split-mono in A .

In particular every object of the form G .N / is E -injective, for every object N 2 B.
Moreover the functor F is Maschke if and only if the class of E -injective objects
coincides with the class of all objects of A .

Proof: .i/ ) .i i i/. We know by adjunction properties that �F.M/ ı F .�M / D
F .M/. Since M is F -injective, �M has a left inverse.
.i i i/ ) .i i/. Let us denote by 	 W G F .M/ ! M the left inverse of �M . For any
sequence

E WX i �� X 0 j �� X 00

in E , we need to prove that its corresponding sequence of abelian groups

HomA .X
00;M/ �� HomA .X

0;M/ �� HomA .X;M/

is exact (in the usual sense). Given such E in E , we have a commutative diagram in
B

F .X/
F.i/ �� F .X 0/ F.j / ��

F.i/c

��

F .X 00/

Coker.F .i//

l

�������������

where l is split as monomorphism by l 0. Let  WX 0 !M be a morphism in A , such
that  ı i D 0. Then there exists a morphism g W Coker.F .i//! F .M/ of B such
that g ı F .i/c D F ./. This leads to the composition

X 00

�X00

��

˛ ����������� M

G F .X 00/ G .gıl 0/ �� G F .M/

�

��

The morphism ˛ satisfies

˛ ı j D 	 ı G .g ı l 0/ ı �X 00 ı j
D 	 ı G .g ı l 0/ ı G F .j / ı �X 0

D 	 ı G
�
g ı l 0 ı F .j /

�
ı �X 0

D 	 ı G
�
g ı l 0 ı l ı F .i/c

�
ı �X 0

D 	 ı G
�
g ı F .i/c

�
ı �X 0

D 	 ı G F ./ ı �X 0

D 	 ı �M ı  D 
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which proves the exactness of the sequence of abelian groups.
.i i/ ) .i/ Let i W X ! X 0 be a morphism of A such that F .i/ has a left inverse.

The later condition means that 0 �� F .X/
F.i/ �� F .X 0/ is a cosplit sequence

in B. Thus 0 �� X
i �� X 0 is a sequence in E . Therefore, the corresponding

sequence of abelian groups

HomA

�
X 0;M

�
�� HomA

�
X;M

�
�� 0

is exact. Whence HomA

�
i;M

�
is surjective and so M is F -injective.

Consider in the category of bicomodules AM F the class E0 of all co-split
sequences. This is an injective class, as AM F is an additive category with cokernels.
As we have mentioned, the corresponding class of E0-injective objects coincides

with the class of all objects of AM F. Denote by E WD S �1
�
E0

�
the class of

sequences E in the category FM F such that S .E/ is a sequence in E0, as we have
pointed out E is also an injective class.

Proposition 3.2 Let .M;m;n/ be an F-bicomodule. The following statements are
equivalent

(i) .M;m;n/ is E -injective;
(ii) .M;m;n/ is S -injective;

(iii) the unit ‚.M;m;n/ of the adjunction S a T at .M;m;n/, stated in (1.8), is a
split monomorphism.

In particular every bicomodule of the form T .N;r/ is E -injective, for every
bicomodule .N;r/ 2 AM F, and so is every induced F-bicomodule T S .M;m;n/ D
.MF;mF ;Mı/.

Proof: Follows immediately from Lemma 3.1.
Fix a comonad F D .F;ı;�/ on a Grothendieck category A with F 2

Funct.A;A/. For every F-bicomodule .M;m;n/ and each i � 1, we consider the
i�th induced F-bicomodule .MF i ;mF i ;MF i�1ı/.
Proposition 3.3 Let .M;m;n/ be any F-bicomodule. The following sequence in the
category of F-bicomodules

0 �� M
n �� MF

d0 �� MF 2
d1 �� ��� �� MF nC1 dn �� MF nC2 �� ��� (3.1)

where d0 D Mı� nF and recursively

dnC1 D dnF C .�1/nC1MF nC1ı; nD 0;1;2;::: (3.2)
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defines an E -injective resolution for .M;m;n/.

Proof: Let us denote by E.M/ the sequence defined in (3.1). One can easily check
that the family of morphisms

un WD .�1/nC1MF n� W MF nC1 �! MF n

in AM F, defines a contracting homotopy for S .E.M//. This implies by [16,
Lemma 2.4] that S .E.M// is sequence in E0. Hence E.M/ is in E .

Let .N;r;s/ be another F-bicomodule and denote by ExtE
�
N;M

�
the homology

of the complex

0 �� HomFM F

�
N;MF

�
�� HomFM F

�
N;MF 2

�
�� ��� (3.3)

obtained by applying the functor HomFM F

�
N;�

�
to the E -injective resolution of M

given in (3.1). Using the natural isomorphism stated in Lemma 1.4, we can show
that the complex (3.3) is isomorphic to

0 �� HomAM F

�
N;M

�
@0 �� HomAM F

�
N;MF

�
@1 �� ��� (3.4)

where

@0.f/D fF ı s � n ı f;

@1.f/D Mı ı f � fF ı s � nF ı f;

@n.f/D
n�1X
iD0
.�1/iMF iıF n�i�1 ı f C .�1/nfF ı s � nF n ı f; nD 2;3;:::

In particular, we have

Ker.@1/D ff W .N;r/! .MF;mF /jMı ı f D fF ı s C nF ı fg
Im.@0/D ff W .N;r/! .MF;mF /jf D 'F ı s � n ı'; forsome' W .N;r/! .M;m/g:

That is the 1-cocycle are cointegrations and the 1-coboundaries are inner cointegra-
tions. Thus

Ext1E
�
N;M

�
Š Coint.N;M/=InCoint.N;M/: (3.5)

The pair .T S ;‚�/ form a resolvent pair in the sense of [16, Proposition 2.10]
(dual to [10, Corollary 2.3, page 16]) for the injective class E . Since FM F has
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cokernels, [16, Lemma 2.11] implies that the cokernels constructed in (2.5) lead to
a functor

K W FM F ! FM F;

and a natural transformation
T S ! K :

Furthermore, K .E/ is a sequence in E , whenever E is a sequence in E . By the

isomorphism given in (2.7), we find that HomFM F

�
N;K .E/

�
Š Coint.N;E/ is

an exact sequence of abelian groups, for every E -projective F-bicomodule N and
every sequence E in E . On the other hand, given an E -injective F-bicomodule M,
then K .M/ is clearly E -injective. Thus Coint.E;M/, which by (2.7) is isomorphic

to HomFM F

�
E;K .M/

�
, is an exact sequence of abelian groups. This proves that

the E -derived functor of the bifunctor Coint.�;�/ can be constructed. For two
F-bicomodules N and M, let H�.N;M/ be this E -derived functor which can be
computed using the E -injective resolution given in Proposition 3.3. Using this time
the natural isomorphisms of (2.7) and the fact that T S .M/ are E -injective for every
F-bicomodule M, we can easily show that

ExtnE
�

N;K .M/
�

ŠHn.N;M/; n� 0 (3.6)

ExtnC1
E

�
N;M

�
Š ExtnE

�
N;K .M/

�
; n� 1: (3.7)

By both Propositions 3.2 and 2.2, and the isomorphisms given in (3.5), (3.6),
and (3.7), we have

Corollary 3.4 For a F-bicomodule .M;m;n/, the following conditions are equiva-
lent

(i) M is E -injective;

(ii) M is S -injective;

(iii) the sequence

0 �� M
n �� MF

nc �� K .M/ �� 0

splits in the category of bicomodules FM F;

(iv) the universal cointegration from K .M/ into M is inner;

(v) every cointegration into M is inner.

Now we can formulate a characterization of comonads with a separable forgetful
functor by means of the cohomology groups of their bicomodules.
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Theorem 3.5 Let A be a Grothendieck category and F D .F;ı;�/ a comonad on A
with universal cogenerator the adjunction S W AF �� A W T�� . If F is right exact
and preserves direct sums, then the following statements are equivalent

(i) S W AF ! A is a separable functor;

(ii) S W FM F ! AM F is a Maschke functor;

(iii) ı W F ! F 2 is a split monomorphism in the category of bicomodules FM F;

(iv) .F;ı;ı/ is E -injective F-bicomodule;

(v) the universal coderivation from K .F / into F is inner;

(vi) every coderivation into F is inner;

(vii) all cointegrations between F-bicomodules are inner;

(viii) ExtnE .�;�/ D 0 for all n� 1;

(ix) Hn.N;F / D 0 for all F-bicomodule N and all n� 1.

Proof: Corollary 3.4, Proposition 2.1, and properties of Ext give the following
equivalences .i i/ , .vi i/, .i i/ , .vi i i/, .iv/ , .ix/, .iv/ , .vi/. Proposition
3.2 gives the equivalence .iv/ , .i i i/, and lastly both Theorem 1.6 and Corollary
2.4 give the equivalences .i/, .i i/, .i i i/, .v/.

4. Applications

We present in this section two different applications of Theorem 3.5. The first one
is devoted to coseparable corings [14], where of course the comonad is defined by
the tensor product over algebra. The second deals with the coalgebra co-extensions
over fields, and the comonad is defined using cotensor product. Here we obtain
Nakajima’s results [19] without requiring the co-commutativity of the base co-
algebra. This condition is however replaced, in our case, by assuming that the
extended coalgebra is left co-flat.

4.1. Coseparable corings

Let K be commutative ring with 1. In what follows all algebras are K-algebras, and
all bimodules over algebras are assumed to be central K-bimodules. Let R be an
algebra. An R-coring [22] is a three-tuple .C;�;"/ consisting of an R-bimodule C

and two R-bilinear maps

� W C ! C ˝R C and " W C !R;

known as the comultiplication and the counit, which satisfy

.C ˝R�/ ı� D .�˝R C/ ı�; .C ˝R "/ ı� D C D ."˝R C/ ı�:
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In this sub-section the unadorned symbol � ˝ � between R-bimodules and R-
bilinear maps denotes the tensor product � ˝R �. We denote as usual by CM C the
category of C-bicomodules. The objects are three-tuples .M;%M ;
M / consisting of
an R-bimodule M and two R-bilinear maps %M W M ! M ˝ C (right C-coaction),

M WM ! C ˝M (left C-coaction) satisfying

.C ˝ 
M / ı
M D .�˝M/ ı
M ; ."˝M/ ı
M D M I

.%M ˝ C/ ı %M D .M ˝�/ ı %M ; .M ˝ "/ ı %M D M I

.C ˝ %M / ı
M D .
M ˝ C/ ı %M :
It is clear that F WD .F;ı;�/ where F D � ˝ C W MR ! MR, ı D � ˝ �,

and � D � ˝ ", is a comonad on the category of right R-modules MR, with F 2
Funct.MR;MR/.

Given any F-bicomodule .M;m;n/ we can use Watts’s Theorem [23] to find a
natural isomorphism

ÈM� W M �! � ˝ M.R/ (4.1)

satisfying .� ˝ R/ ı ÈM� D ÈM0

� ı for every natural transformation  W M ! M0
with .M0;m0;n0/ is another F-bicomodule. With the help of this natural isomorphism
we can establish a functor

G W FM F �� CM C

.M;m;n/ ��
�

M.R/;%M.R/;
M.R/

�
f �� fR

where the C-coactions are defined by %M.R/ D mR and 
M.R/ D ÈM
F.R/

ı nR.
Conversely, given any C-bicomodule .M;%M ;
M /, we clearly obtain an F-bico-

module defined by the three-tuple
�

� ˝M;� ˝ %M ;
�
ÈM
F

��1
ı .� ˝
M /

�
. This in

fact entails an inverse functor, up to the natural isomorphisms È��, to the functor G .
Henceforth, G is an equivalence of categories FM F and CM C. It is then obvious
that ı is a split-mono in the category of F-bicomodules if and only if � is a split-
mono in the category of C-bicomodules. It is well known (see [5]) that this later
condition is satisfied if and only if the right coaction forgetful functor is separable.

Consider two C-bicomodules .M;%M ;
M / and .N;%N ;
N /. Following [14], a
R-bilinear map g WM ! C is said to be coderivation if it satisfies

� ıg D .g˝ C/ ı %M C .C ˝g/ ı
M :
The coderivation g is said to be an inner coderivation if there exists aR-bilinear map
	 WM !R such that g D .C˝	/ı
M �.	˝C/ı%M . We denote by CoderC.M;A/



146 L. EL KAOUTIT & J. VERCRUYSSE

the abelian group of all coderivations from M to C. A (left) cointegration from N

into M is an R-bilinear morphism f WN ! C ˝M such that

.�˝ C/ ıf D .C ˝
M / ıf C .C ˝f / ı
N :
The cointegration f is said to be an inner cointegration if there exists an R-bilinear
map ' WN !M satisfying

%M ı' D .'˝ C/ ı %N ; andf D .C ˝'/ ı
N �
M ı':
The abelian group of all cointegrations from N into M will be denoted by
CointC.N;M/.

Cointegrations and coderivations in both categories of bicomodules FM F and
CM C are connected by the following isomorphisms of abelian groups

Coder.M;F / Š �� CoderC
�

M.R/;C
�

g � �� gR

.� ˝g/ ıÈM� g���

and

Coint.N;M/ Š �� CointC
�

N.R/;M.R/
�

f
� �� ÈM

F.R/
ı fR�

ÈM
F.�/

��1
ı .� ˝f / ıÈN� f

���

where the isomorphism F.R/ Š C was used as isomorphism of R-corings. The
restrictions of the above isomorphisms to the sub-groups of inner coderivations or
inner cointegrations, are also isomorphisms.

Applying Theorem 3.5 to this situation, we obtain

Corollary 4.1 ([14, Theorem 3.10]) For any R-coring .C;�;"/, the following
statements are equivalent

(i) The forgetful functor S W M C ! MR from the category of right C-comodules
to the category of right R-modules is a separable functor;

(ii) the forgetful functor CM C ! CMR is a Maschke functor;

(iii) the short exact sequence

0 �� C
� �� C ˝ C

�c �� �.C/ �� 0

splits in the category of bicomodules CM C;



Cohomology for bicomodules: Separable and Maschke functors 147

(iv) C is E -injective, where E is the injective class in CM C whose sequences split
in the category of R-bimodules RMR;

(v) the universal coderivation from �.C/ into C is inner;

(vi) every coderivation into C is inner;

(vii) all cointegrations between C-bicomodules are inner;

(viii) ExtnE .�;�/ D 0 for all n� 1;

(ix) Hn.N;C/ D 0 for all C-bicomodule N and all n� 1.

4.2. Coseparable coalgebras co-extension

In what follows K is assumed to be a field. The unadorned symbol ˝ between K-
vector spaces means the tensor product ˝K. Let A, C are two K-coalgebras, and
consider � W A! C a morphism of K-coalgebras. This defines an adjunction

��CA W M C ��
MA W O��

between the categories of right comodules with ��CA right adjoint to O , and where
��C� is the co-tensor product over C . In the remainder, we denote this bi-functor
by ��� WD ��C�. Notice that ��� is associative (up to natural isomorphism),
as C is a K-coalgebra and K is a field. From now on, we assume that ��A W
M C ! MA is right exact, and thus exact. Put F WD O.��A/ W M C ! M C , since
M C is a Grothendieck category we can construct the category Funct.M C ;M C /,
and we have in this case that F 2 Funct.M C ;M C /. Let us denote by � W A !
A�A the resulting map from the universal property of kernels. This is in fact an
A-bicomodule map, and thus a C -bicomodule map by applying O . Furthermore,
we have

.A��/ ı�D .��A/ ı�
.��A/ ı�D .A��/ ı� D A.uptoisomorphism/:

Using these equalities, on can easily check that there is a comonad F WD .F;ı;�/ on
the category of right C -comodules M C , where ı and � are defined by the following
commutative diagrams of natural transformations

��A ��� �� ��A�A;

F
ı ��������� F 2

��A ��� �� ��C:
Š

��
F

� ������� 11MC
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Given .M;m;n/ any F-bicomodule, we know that M W M C ! M C is right exact
and preserves direct sums. If M is assumed to be left exact, then by [12, Theorem
3.5], M.C / WDM is a C -bicomodule, and there is a natural isomorphism

‡M� W M Š �� ��M; (4.2)

which satisfies .��ˇC /ı‡M� D ‡N� ıˇ, for every natural transformation ˇ W M ! N
with N 2 Funct.M C ;M C / and N an exact functor. The natural transformation m

and n induces by this isomorphism a structure of A-bicomodule on M . The right
and left A-coactions are given by

M
mC ��

%M 		������ M�A
eqkM;A

��
M ˝A

M
nC ��

�M


���������������� MF.C /

‡M
F.C/

Š �� F.C /�M Š A�M

eqkA;M
��

A˝M

where, for every right C -comodule X and left C -comodule Y , eqkX;Y denotes the

equalizer map. That is the kernel of the map eqX;Y WX ˝Y
��
X ˝C ˝Y��

defined by eqX;Y D %X ˝ Y � X ˝ 
Y . The counitary conditions of these new
A-coactions are easily seen, while the co-associatively and compatibility conditions
need a routine and long computations using properties of cotensor product over
coalgebras over fields.

Let us denote by FEF the full subcategory of FM F whose objects are F-
bicomodules .M;m;n/ such that M W M C ! M C is an exact functor which
commutes with direct sums. For instance, .F;ı;�/ is by hypothesis an object of
this category.

The above arguments establish in fact a functor from the subcategory of F-
bicomodules FEF to the category of A-bicomodules sending

F W FEF �! AMA;

��
M;m;n

�
!

�
M;%M ;
M

��
;
�

f ! fC
�
: (4.3)

For every F-bicomodule M 2 FEF, it is clear that F .M/ D M is a co-flat left C -
comodule.

Conversely, given any A-bicomodule .N;%N ;
N / such that the underlying left
C -comodule CN is co-flat, then we have a functor ��N W M C ! M C which is
exact and preserves direct sums together with two natural transformations

��N ���0
N �� ��A�N; ��N ��%0

N �� ��N�A;
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where 
0
N and %0

N are C -bicolinear defined by universal property

N
�N ��

�0
N ��������� A˝N;

A�N

eqkA;N

�� N
%N ��

%0
N ��������� N ˝A:

N�A

eqkN;A

��

By definition and the properties of cotensor product 
0
N and %0

N satisfy the following
equalities

.��N/ ı
0
N D .A�
0

N / ı
0
N ; .��N/ ı
0

N D N .uptoisomorphism/

.N��/ ı %0
N D .%0

N�A/ ı %0
N ; .N��/ ı %0

N D N .uptoisomorphism/

.A�%0
N / ı
0

N D .
0
N�A/ ı %0

N :

Consider the obtained three-tuple .N;r;s/, where N WD ��N W M C ! M C

is a functor, and r WD ��%0
N W N ! FN, s WD ��
0

N W N ! NF are two
natural transformation. Since N is assumed to be co-flat left C -comodule, the
previous equalities show that .N;r;s/ is actually an object of the category FEF, whose
image by F is isomorphic to the initial A-bicomodule .N;%N ;
N /, via the natural
isomorphisms ‡�� . Now, given an A-bicolinear morphism g W .N;%N ;
N / !
.N 0;%N 0 ;
N 0/, we get an F-bicomodule morphism g WD ��g W N ! N0. This shows
that the above constructions are in fact functorial.

In conclusion, we have shown that the functor F defined in (4.3), establishes
an equivalence of categories between FEF and AC A, where the later is the full
subcategory of the category of A-bicomodules AMA whose objects are co-flat left
C -comodules after forgetting the right C -coaction.

Recall from [19] thatA is said to be a separable C -coalgebra if theA-bicolinear
map � W A ! A�A is a split-mono in the category of A-bicomodules. By [12,
Theorem 5.6] this is equivalent to say that the forgetful functor O is a separable
functor. Using the equivalence of categories established above, it is easy to check
that ı is a split-mono in FEF (or equivalently in FM F) if and only if� is a split-mono
in AC A (or equivalently in AMA).

Given two A-bicomodules .M;%M ;
M / and .N;%N ;
N /, a C -bicolinear map
g WM ! A is said to be C -coderivation if its satisfies

� ıg D .g�A/ ı %0
M C .A�g/ ı
0

M :

The C -coderivation g is said to be an inner C -coderivation if there exists a C -
bicolinear map 	 W M ! C such that g D .A�	/ ı 
0

M � .	�A/ ı %0
M . We denote
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by CoderC .M;A/ the abelian group of all C -derivations from M to A. A (left) C -
cointegration fromN intoM is a morphism of C �A-bicomodules f WN ! A�M
such that

.��A/ ıf D .A�
0
M / ıf C .A�f / ı
0

N :

The C -cointegration f is said to be an inner C -cointegration if there exists a C -
bicolinear map ' WN !M satisfying

%0
M ı' D .'�A/ ı %0

N ; andf D .A�'/ ı
0
N �
0

M ı':
The abelian group of all C -cointegration from N into M will be denoted by
CointC .N; M/.

Let .M;m;n/ and .N;r;s/ be two F-bicomodules in FEF and consider their
associated A-bicomodule via the above equivalence of categories F :�

M.C / WDM;%M ;
M

�
and

�
N.C / WDN;%0

N ;

0
N

�
:

We have an abelian group isomorphism

Coder.M;F / Š �� CoderC
�

M.C /;A
�

g � �� �A ı gC

.��g/ ı‡M� g���

where �� W C�� ! 11MC is the obvious natural isomorphism. The isomorphism of
cointegrations groups is given by

Coint.N;M/ Š �� CointC
�

N.C /;M.C /
�

f
� �� .�A�M.C // ı‡M

F.C/
ı fC�

‡M
F.�/

��1
ı .��f / ı‡N� f:

���

Of course the restrictions of those isomorphisms to the sub-groups of inner
cointegrations or inner coderivations are also group isomorphisms. Applying now
Theorem 3.5, we arrive to the following

Corollary 4.2 (compare with [19, Theorem 1.2]) Let � W A ! C be a morphism
of K-coalgebras over a field K. Assume that CA is a co-flat left C -comodule. The
following statements are equivalent

(i) A is a separable C -coalgebra;
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(ii) for any A-bicomodule M such that CM is co-flat, every C -coderivation from
M to A is inner;

(iii) for any pair of A-bicomodules M and N such that CM and CN are co-flat,
every C -cointegration from M into N is inner.
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