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1. Introduction

Algebras and coalgebras are dual notions, in the sense that the latter ones are obtained 
from the first ones by reversing the structure arrows, that is using the opposite base 
category. Furthermore, over vector spaces there is a contravariant adjunction (or duality) 
between the category of algebras and that of coalgebras, whose functors are described 
as follows. In one direction, with each coalgebra one associates, in a functorial way, its 
convolution algebra. In the other direction, with each algebra one associates, in a similar 
way, its topological dual (i.e. finite dual) coalgebra. This adjunction descends in fact to 
the category of bialgebras (and in particular to Hopf algebras), and also establishes a 
contravariant adjunction between the category of Lie algebras and the category of Lie 
coalgebras. All these adjunctions and other ones are captured by the following diagram

Alg
k

(−)◦
Coalg

k

(−)∗

Bialg
k

(−)◦

P

Bialg
k

Pc

(−)◦

Liek

U

(−)•
LieCok

(−)∗

Uc

(1)

where k denotes the base field, and the notations for the involved categories as well as 
the ones used in the sequel, are summarized in Table 1 below.

It is noteworthy to mention that in diagram (1), the functor P : Bialg
k
→ Liek as-

sociates with each bialgebra its Lie algebra of primitive elements, and its left adjoint 
U : Liek → Bialg

k
is the universal enveloping algebra functor. Note that in characteristic 

zero there is a natural isomorphism PU ∼= idLie
k
, see [16, Theorem 5.18]. The functor P c is 

the one given by the vector space of indecomposables, see e.g. [15, Definition 1.9] where 
this functor is denoted by Q, and Uc is a functor defined by Michaelis. The adjunction 
P c � Uc is established in [15, Theorem 3.11] for Hopf algebras instead of bialgebras (the 
same proof can be adapted to our case, as the antipode is not used therein). The bot-
tom contravariant adjunction is established in [15, Theorem 3.7]. For the top horizontal 
adjunction see e.g. [19, Theorem 6.0.5]. Concerning the middle horizontal adjunction, 
the finite dual yields an endofunctor of Bialg

k
in view of [19, Section 6.2]. Moreover, this 

comes out to be adjoint to itself as in case of Hopf algebras (cf. e.g. [1, page 87]).
Quasi-bialgebras are generalization of ordinary bialgebras, in which the constraint of 

coassociativity at the coalgebra level is weakened. Dual quasi-bialgebras are in a certain 
sense a dual notion, which can also be seen as a generalization of bialgebras, by affecting 
this time the associativity constraint.

The main aim of this paper is to investigate the second horizontal adjunction of 
diagram (1) in the context of quasi- and dual quasi-bialgebras. Explicitly, we establish 
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Table 1
Notations for the handled categories.

Abbreviation The category of
Vectk · · · · · · vector spaces
Alg

k
· · · · · · associative algebras

Coalg
k

· · · · · · coassociative coalgebras
Bialg

k
· · · · · · bialgebras

Liek · · · · · · Lie algebras
LieCok · · · · · · Lie coalgebras
NAlg

k
· · · · · · non-associative algebras

NCoalg
k

· · · · · · non-coassociative coalgebras
NAlg

(
Coalg

k

)
· · · · · · non-associative algebras inside the monoidal category of coalgebras

NCoalg
(
Alg

k

)
· · · · · · non-coassociative coalgebras inside the monoidal category of algebras

QBialg
k

· · · · · · quasi-bialgebras
DQBialg

k
· · · · · · dual quasi-bialgebras

SDQBialg
k

· · · · · · split dual quasi-bialgebras
(i.e. the 3-cocycle splits as a finite sum of tensor products of linear maps)

a contravariant adjunction between the category of quasi-bialgebras and the one of split 
dual quasi-bialgebras (a certain full subcategory of the category of dual quasi-bialgebras) 
here introduced. To do so, we investigate how some of the adjunctions represented in 
diagram (1) extend to the wider framework of non-(co)associative (co)algebras, as in 
diagram (2). We just point out here that the upper adjunction in diagram (2) already 
appeared in [2, page 4700].

NAlg
k

(−)•

NCoalg
k(−)∗

Liek

(−)•

LieCok

(−)∗

NAlg
(
Coalg

k

) (−)•

NCoalg
(
Alg

k

)
(−)◦

DQBialg
k

QBialg
k(−)◦

SDQBialg
k

(−)•
QBialg

k

(−)◦

(2)

By a non-associative algebra we mean a unital but not necessarily associative algebra 
over k, i.e. a vector space A endowed with two linear maps m : A ⊗A −→ A, a ⊗b �−→ ab

(the multiplication) and u : k −→ A, k �−→ k1A (the unit) such that a1A = a = 1Aa, for 
every a ∈ A. A similar terminology is used for coalgebras.
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2. The construction of the finite dual of a non-associative algebra and examples

In this section we give the main construction of the paper. More explicitly, starting 
from a non-associative algebra, we are able to construct a non-coassociative coalgebra, 
which in the associative case coincides with the so called finite dual coalgebra, see [1,17,
19,3] for coalgebras over commutative rings. This is the largest coalgebra inside the linear 
dual of the underlying vector space of the initial algebra. To illustrate our techniques, 
we include two basic examples concerning alternative and (special) Jordan algebras.

Given a vector space V , we denote by V ∗ := Homk (V, k) its linear dual. The un-
adorned tensor product ⊗ stands for ⊗k. The identity morphism of a vector space V will 
be denoted by idV or by V itself.

2.1. Good subspace of linear dual vector space

Given two vector spaces V and W , we can consider the canonical natural injection

ϕV,W : V ∗ ⊗W ∗ −→ (V ⊗W )∗ ,
(
f ⊗ g �−→

[
v ⊗ w �→ f(v)g(w)

])
, (3)

which is clearly a natural isomorphism over finite-dimensional vector spaces.
Let (A,m, u) be a non-associative algebra, see e.g. [5, page 428]. Mimicking [14, 

page 13], a subspace V ⊆ A∗ is called good in case m∗ (V ) ⊆ ϕA, A (V ⊗ V ), where 
m∗ : A∗ → (A ⊗ A)∗ is the dual of the multiplication map m. For instance, let I be an 
ideal of A, that is a vector subspace of A stable under both left and right A-actions: 
for every a ∈ A, we have aI ⊆ I, Ia ⊆ I, see [5, page 430]. Assume that A/I is finite 
dimensional as a vector space. Set V = (A/I)∗ which we identify with a subspace of A∗. 
One can show that V is a good subspace of A∗.

Let G denote the set of all good subspaces of A∗ and set

A• :=
∑
V ∈G

V. (4)

By the same proof of [14, Proposition, page 13], one gets that A• is a good subspace of 
A∗ and hence it is the maximal good subspace of A∗.

Given two non-associative algebras A and B and a linear map f : A → B such that 
f∗(B•) ⊆ A•, then we can consider the linear map f• : B• → A•, h �→ f∗(h), which is 
uniquely determined by the commutativity of the following diagram:

B• f•

jB

A•

jA

B∗ f∗

A∗

(5)

where the vertical arrows are the canonical injections.
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If we consider a good subspace V ⊆ A∗, then we may define a unique map ΔV : V →
V ⊗ V such that

ϕA,A (ΔV (f)) = m∗ (f) , for every f ∈ V.

In particular, for every f ∈ A•, a, b ∈ A, ΔA• (f) =
∑

f1 ⊗ f2 is uniquely determined 
by

f (ab) = m∗ (f) (a⊗ b) = ϕA,A (ΔA• (f)) (a⊗ b) =
∑

f1 (a) f2 (b) . (6)

2.2. The coalgebra structure of A• and examples

Parts of the subsequent lemma find their analogues for associative algebras in [19, 
Lemma 6.0.1] and for Lie algebras in [14, pages 14–15].

Lemma 2.1. For every pair of non-associative algebras (A, m, u) and (B, m′, u′) and for 
any morphism f : A −→ B, denote with f∗ : B∗ −→ A∗ the dual map. Then the dual 
map m∗ : A∗ → (A⊗A)∗ induces a map ΔA• := m∗ : A• → A• ⊗ A• and the dual 
map u∗ : A∗ → k

∗ ∼= k : f �→ f (1) restricts to a map εA• := u∗ : A• → k such that 
(A•, ΔA• , εA•) becomes a non-coassociative coalgebra.

Proof. First observe that ΔA• exists by definition of the finite dual and satisfies (6). 
Therefore, let us show that εA• is a counit for ΔA• . Pick an element f ∈ A•. For every 
a ∈ A we have that:

(((εA• ⊗A•) ◦ ΔA•)(f)) (a) =
(
(εA• ⊗A•)

(∑
f1 ⊗ f2

))
(a) =

(∑
f1(1)f2

)
(a)

=
∑

f1(1)f2(a)
(6)= f(a),

(((A• ⊗ εA•) ◦ ΔA•)(f)) (a) =
(
(A• ⊗ εA•)

(∑
f1 ⊗ f2

))
(a) =

(∑
f2(1)f1

)
(a)

=
∑

f2(1)f1(a)
(6)= f(a),

whence (A•, ΔA• , εA•) is a non-coassociative coalgebra in Vectk. �
Remark 2.2. Let A be an object in NAlg

k
and set

A◦ =
{
g ∈ A∗ | ker(g) contains a finite-codimensional ideal of A

}
. (7)

Here an ideal I of A is of finite codimension, means that A/I is a finite-dimensional vector 
space. For any f ∈ A◦, there exists a finite-codimensional ideal I such that f(I) = 0. 
Then f belongs to the space (A/I)∗, which is identified with a good subspace of A∗ as 
in subsection 2.1. By equation (4), this means that f ∈ A•. We have so proved that 
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A◦ ⊆ A•. This fact can also be seen as a consequence of [2, Theorem (2.6)] which asserts 
that A◦ = Loc(A•), where the latter denotes the sum of all locally finite subcoalgebras 
of A• (recall that a non-coassociative coalgebra C is named locally finite if and only if 
any x ∈ C lies in some finite-dimensional subcoalgebra D ⊂ C).

For any A in Alg
k

the finite dual A• coincides with A◦. By the foregoing A◦ ⊆ A•. 
Conversely, identifying A∗ ⊗ A∗ with ϕA, A(A∗ ⊗ A∗), if V ⊆ A∗ is any good subspace 
then for every v ∈ V , m∗(v) ∈ A∗ ⊗ A∗. Therefore, in view of [19, Proposition 6.0.3], 
v ∈ A◦ and hence V ⊆ A◦. Thus A• ⊆ A◦ so that A• = A◦.

We now provide two examples of finite dual of a non-associative algebra.

Example 2.3 (Coalternative coalgebras). Assume k has a characteristic �= 2. Let A be an 
alternative algebra, that is a not necessarily associative algebra over k, which satisfies 
the following identity

x(yx) = (xy)x, for every x, y ∈ A.

Replacing x by x + z one sees that the last equality is equivalent to the identity

x(yz) + z(yx) = (xy)z + (zy)x, for every x, y, z ∈ A.

Denote by τ : V ⊗ W → W ⊗ V the natural flip map, and set τ1 = τ ⊗ id and 
τ2 = id ⊗ τ . Consider the finite dual coalgebra C = A• as in Lemma 2.1. Then the 
comultiplication of C satisfies the identity

(
id +

(
τ1 ◦ τ2 ◦ τ1

))
◦
(
(Δ ⊗ C) − (C ⊗ Δ)

)
◦ Δ = 0, (8)

which, over elements, says that for any function f ∈ C we have

∑
f1,1⊗f1,2⊗f2 +

∑
f2⊗f1,2⊗f1,1 =

∑
f1⊗f2,1⊗f2,2 +

∑
f2,2⊗f2,1⊗f1. (9)

A coalgebra C which satisfies the identity (8) is called a coalternative coalgebra.

Example 2.4 (Jordan coalgebra). Assume k has a characteristic �= {2, 3}. Let A be a (spe-
cial) Jordan algebra, that is a not necessarily associative algebra over k, which satisfies 
the following identities

xy = yx, x2(yx) = (x2y)x, for every x, y ∈ A.

The second equality above comes out to be equivalent to

((xy)z)t + ((xt)z)y + ((ty)z)x = (xy)(zt) + (xt)(zy) + (ty)(zx).
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Denote by τ : V ⊗ W → W ⊗ V the natural flip map, and set τ1 = τ ⊗ id ⊗ id, 
τ2 = id ⊗ τ ⊗ id and τ3 = id ⊗ id ⊗ τ . Following [2, Example (3) page 4709], we can 
consider the finite dual coalgebra C = A• as in Lemma 2.1. Then the comultiplication 
of C is cocommutative and satisfies the identity[

id +
(
τ3 ◦ τ2 ◦ τ3

)
+
(
τ3 ◦ τ2 ◦ τ1 ◦ τ2 ◦ τ3

)]
◦
[
(Δ ⊗ C ⊗ C) − (C ⊗ C ⊗ Δ)

]
◦ (Δ ⊗ C) ◦ Δ = 0, (10)

which, over elements, says that for any function f ∈ C we have
∑

f1,1,1 ⊗ f1,1,2 ⊗ f1,2 ⊗ f2 +
∑

f1,1,1 ⊗ f2 ⊗ f1,2 ⊗ f1,1,2 +
∑

f2 ⊗ f1,1,2 ⊗ f1,2 ⊗ f1,1,1

=
∑

f1,1 ⊗ f1,2 ⊗ f2,1 ⊗ f2,2 +
∑

f1,1 ⊗ f2,2 ⊗ f2,1 ⊗ f1,2 +
∑

f2,2 ⊗ f1,2 ⊗ f2,1 ⊗ f1,1.

(11)

A cocommutative coalgebra C which satisfies the identity (10) is called a Jordan 
coalgebra.

3. Contravariant adjunction between non-associative algebras and non-coassociative 
coalgebras

In [2, page 4700] it is claimed that the contravariant functor (−)• is the right adjoint 
of the functor (−)∗ from the category NCoalg

k
of non-coassociative coalgebras to the 

category NAlg
k
of non-associative algebras (we just point out that their (co)algebras have 

no (co)unit). Such an adjunction extends the usual contravariant adjunction between 
algebras and coalgebras, that is the first horizontal adjunction in diagram (1). For the 
sake of completeness, and as reference for the sequel, we decided to detail the relevant 
proofs. We first check that the construction A �−→ A• of Section 2 defines a contravariant 
functor from the category NAlg

k
to the category NCoalg

k
. Next we show that it is adjoint 

to the functor (−)∗ defined as in the classical case by using the convolution product. In 
addition, we prove that (A ⊗B)• ∼= A• ⊗B•, for every A, B in NAlg

k
.

3.1. The functorial construction

Keep the notations of Section 2.

Lemma 3.1. Let f : A → B be a morphism of non-associative algebras and f∗ : B∗ −→ A∗

its linear dual map. Then f∗(B•) ⊆ A•, whence f∗ induces a map f• : B• → A•, which 
comes out to be a morphism in NCoalg

k
. Moreover, the assignments A �−→ A• and 

f �−→ f• establish a functor

(−)• : NAlg
k
−→ NCoalg

k

op.
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Proof. Since f is multiplicative, the left-hand side diagram below commutes, so that, by 
functoriality of (−)∗, the right-hand side one commutes, too.

A⊗A
mA

f⊗f

A

f

B ⊗B
mB

B

A∗ m∗
A (A⊗A)∗

B∗
m∗

B

f∗

(B ⊗B)∗

(f⊗f)∗

The latter diagram is part of the following bigger one:

A∗ m∗
A (A⊗A)∗

B∗
m∗

B

f∗

(B ⊗B)∗

(f⊗f)∗

A∗ ⊗A∗

ϕA,A

B•
ΔB•

jB

B• ⊗B•
jB⊗jB

B∗ ⊗B∗

ϕB,B

f∗⊗f∗

which still commutes by definition of ΔB• and by naturality of ϕ−,−. In particular, for 
every g ∈ B•

m∗
A (f∗(g)) = ϕA,A ((f∗ ⊗ f∗) (ΔB•(g))) ∈ ϕA,A (f∗ (B•) ⊗ f∗ (B•))

so that f∗ (B•) is a good subspace of A∗. Furthermore, the commutativity of all the other 
quads in the subsequent diagram implies the commutativity of the one at the bottom, 
which encodes the comultiplicativity of f•:

B∗ m∗
B

f∗

(B ⊗B)∗

(f⊗f)∗

A∗ m∗
A (A⊗A)∗

A•

jA

ΔA•
A• ⊗A•

ϕA,A◦(jA⊗jA)

B•
ΔB•

f•

jB

B• ⊗B•

ϕB,B◦(jB⊗jB)

f•⊗f•
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Moreover, f• is counital, since εA• ◦ f• = (uA)• ◦ f• = (f ◦ uA)• = (uB)• = εB• . By 
Lemma 2.1 it follows that (−)• actually defines a contravariant functor from NAlg

k
to 

NCoalg
k
. �

3.2. The contravariant adjunction

Recall that the assignment (−)∗ : Coalg
k
−→ Alg

k
defines a contravariant func-

tor between the category of coassociative k-coalgebras and the category of associative 
k-algebras (cf., e.g., [19, Theorem 6.0.5]) that easily extends to a contravariant functor 
(−)∗ : NCoalg

k
−→ NAlg

k
. In this way, we will show that this functor is in fact an adjoint 

to the functor (−)• of subsection 3.1. By adapting this construction to the categories 
Liek and LieCok, one recovers Michaelis’ result [14, Theorem on page 15].

Proposition 3.2. Let (A, m, u) be a non-associative algebra and (C, Δ, ε) a non-
coassociative coalgebra. We have a natural isomorphism

Φ(A,C) : NAlg
k
(A,C∗) −→ NCoalg

k
(C,A•). (12)

Therefore the functor (−)• : NAlg
k

−→ (NCoalg
k
)op is left adjoint to (−)∗ :

(NCoalg
k
)op −→ NAlg

k
.

Proof. Denote by χV : V −→ V ∗∗ the canonical injection, defined for every vector space 
V by χV (v)(f) = f(v) for all v ∈ V and f ∈ V ∗. Recall that χ : (−) −→ (−)∗∗ is 
a natural transformation and let us check that if C is a coalgebra then χC (C) ⊆ C∗•

(compare with [14, Note on page 15]). This follows once proved that χC (C) is a good 
subspace of C∗∗. Given c ∈ C and φ, ψ ∈ C∗ we have that:

(mC∗)∗(χC (c))(φ⊗ ψ) = χC (c) (mC∗(φ⊗ ψ)) = mC∗(φ⊗ ψ)(c)

=
∑

φ(c1)ψ(c2) =
∑

χC (c1) (φ)χC (c2) (ψ)

= ϕC∗,C∗

(∑
χC (c1) ⊗ χC (c2)

)
(φ⊗ ψ)

so that (mC∗)∗(χC (c)) = ϕC∗,C∗ (
∑

χC (c1) ⊗ χC (c2)) for all c ∈ C and

(mC∗)∗(χC (C)) ⊆ ϕC∗,C∗(χC (C) ⊗ χC (C))

so that χC(C) is good by definition. Note also that we have just proved that

(mC∗)∗ ◦ χC = ϕC∗,C∗ ◦ (χC ⊗ χC) ◦ Δ. (13)

If we denote by jA : A• −→ A∗ the inclusion of the finite dual of a non-associative 
algebra A into its ordinary dual, then we have just shown that for any non-coassociative 
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coalgebra C, χC induces a k-linear map εC : C −→ C∗• that is still natural in C and it 
satisfies

jC∗ ◦ εC = χC . (14)

Let us check that εC actually is a comultiplicative and counital map. Denote by ΔC∗• the 
comultiplication of C∗•. This is the only map that satisfies ϕC∗, C∗ ◦(jC∗ ⊗jC∗) ◦ΔC∗• =
(mC∗)∗ ◦ jC∗ .

As a consequence:

ϕC∗, C∗ ◦ (jC∗ ⊗ jC∗) ◦ ΔC∗• ◦ εC = (mC∗)∗ ◦ jC∗ ◦ εC
(14)= (mC∗)∗ ◦ χC

(13)= ϕC∗, C∗ ◦ (χC ⊗ χC) ◦ Δ
(14)= ϕC∗, C∗ ◦ (jC∗ ⊗ jC∗) ◦ (εC ⊗ εC) ◦ Δ

and, by injectivity of ϕC∗, C∗ and of jC∗ , we have that ΔC∗• ◦ εC = (εC ⊗ εC) ◦ Δ. 
Moreover,

εC∗•(εC(c)) (†)= (u•
C∗(εC(c))) (1k) = (εC(c)) (uC∗(1k)) = (εC(c)) (εC) = εC(c)

for any c ∈ C, where in (†) we identified k∗ with k. Hence, εC is comultiplicative and 
counital.

On the other hand, the injection jA : A• ↪→ A∗ induces a map ηA : A → A•∗ given 
by

ηA := j∗A ◦ χA. (15)

We claim that this is an algebra morphism. Set η = ηA for shortness. Then, for all 
a, b ∈ A and for any f ∈ A•:

mA•∗(η(a) ⊗ η(b))(f) = ϕA•, A•
(
η(a) ⊗ η(b)

)
(ΔA•(f)) =

∑
η(a) (f1) η(b) (f2)

=
∑

f1(a)f2(b)
(6)= f(ab) = η(ab)(f).

Moreover, η(u(1))(f) = f(1A) = εA•(f) = (εA•)∗(1)(f) = uA•∗(1)(f), for all f ∈ A•.
Let us check finally that η and ε satisfy the conditions to be the unit and the counit 

of the adjunction, respectively. By a direct calculation:

jA ◦ η•A ◦ εA•
(5)= η∗A ◦ jA•∗ ◦ εA•

(14)= η∗A ◦ χA•
(15)= χ∗

A ◦ j∗∗A ◦ χA•
(∗)= χ∗

A ◦ χA∗ ◦ jA = jA

where in (∗) we used the naturality of j and the last equality follows from the fact the 
(−)∗ is adjoint to itself at the level of vector spaces. Therefore, by injectivity of jA, we 
have that η•A ◦ εA• = idA• . For the other composition, let us compute
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ε∗C ◦ ηC∗
(15)= ε∗C ◦ j∗C∗ ◦ χC∗

(14)= χ∗
C ◦ χC∗ = idC∗

and this concludes the proof. �
3.3. The functor (−)• and the tensor product

Next we study how the functor (−)• behaves with respect to the tensor product of 
two algebras.

Proposition 3.3. Let A and B be in NAlg
k
. Then the canonical injection ϕA, B : A∗ ⊗

B∗ −→ (A ⊗B)∗ of equation (3) induces the natural isomorphism in NCoalg
k

ϕ′
A,B := (ϕA•,B• ◦ (ηA ⊗ ηB))• ◦ ε(A•⊗B•) : A• ⊗B• ∼=−→ (A⊗B)•. (16)

Proof. Observe that for any C, D in NCoalg
k
, ϕC,D : C∗⊗D∗ → (C⊗D)∗ is a morphism 

in NAlg
k
. Thus the morphism defined in equation (16) is well-defined. For all f ∈ A•, 

g ∈ B•, a ∈ A, b ∈ B we have that

((ϕA•,B• ◦ (ηA ⊗ ηB))• ◦ ε(A•⊗B•))(f ⊗ g)(a⊗ b)

= (ϕA•,B•)•(ε(A•⊗B•)(f ⊗ g))(ηA(a) ⊗ ηB(b))

= ε(A•⊗B•)(f ⊗ g)(ϕA•,B•(ηA(a) ⊗ ηB(b)))

= ϕA•,B•(ηA(a) ⊗ ηB(b))(f ⊗ g)

= ηA(a)(f)ηB(b)(g) (15)= f(a)g(b)

= (ϕA,B(f ⊗ g)) (a⊗ b).

Therefore jA⊗B ◦ϕ′
A,B = ϕA,B ◦ (jA⊗ jB) and in particular ϕ′

A,B is injective. It remains 
to find an inverse for ϕ′

A,B. To this aim consider the algebra morphisms

iA : A −→ A⊗B : a �−→ a⊗ 1 and iB : B −→ A⊗B : b �−→ 1 ⊗ b.

Then we can consider the map

ψA,B := (A⊗B)•
Δ(A⊗B)•

(A⊗B)• ⊗ (A⊗B)•
(iA)•⊗(iB)•

A• ⊗B•.

Note that ψA,B satisfies, for all f ∈ (A ⊗B)•, a ∈ A, b ∈ B:

ϕ′
A,B(ψA,B(f))(a⊗ b) := ϕ′

A,B(((iA)• ⊗ (iB)•)(Δ(A⊗B)•(f)))(a⊗ b)

= ϕ′
A,B

(∑
f1 ⊗ f2

)
(iA(a) ⊗ iB(b))

=
∑

f1(a⊗ 1)f2(1 ⊗ b) (6)= f((a⊗ 1) · (1 ⊗ b)) = f(a⊗ b).
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This means that ϕ′
A,B is also surjective and hence, a fortiori, it is an isomorphism with 

inverse ψA,B. �
Remark 3.4. Let A be in NAlg

k
. We can consider A◦ as defined in (7). It should be 

observed that in general A◦ is strictly contained in A•. To show this take A = C∗ for 
a non-coassociative coalgebra C that is not locally finite, then A• cannot be locally 
finite (since εC : C −→ C∗• is injective). At the same time, in view of Remark 2.2, 
A◦ = Loc(A•) so that it is locally finite and hence it cannot coincide with A•. We 
now provide an example of a coalgebra which is not locally finite. Explicitly, consider 
C = k[X] the polynomial ring in the indeterminate X endowed with the comultiplication 
given by

Δ(1) = 1 ⊗ 1, Δ(X) = X ⊗ 1 + 1 ⊗X,

Δ(Xn) = Xn ⊗ 1 + 1 ⊗Xn + Xn+1 ⊗X + X ⊗Xn+1, n ≥ 2

and the counit given by ε(Xn) = δn,0 for all n ≥ 0. It is easy to check that (C, Δ, ε)
belongs to NCoalg

k
. Note that factoring out by the coideal k1 and denoting, for n ≥ 0, by 

xn the class of Xn+1 in the quotient yields the Lie coalgebra E considered in [14, page 9]. 
As for E, one easily proves that X2 does not lie in any finite-dimensional subcoalgebra 
of C. Thus C is not locally finite.

4. Contravariant adjunction between the categories NAlg
(
Coalg

k

)
and NCoalg

(
Alg

k

)
In this section we recall the definitions of the category of coalgebras with multipli-

cation and unit and of that of algebras with comultiplication and counit, denoted by 
NAlg

(
Coalg

k

)
and NCoalg

(
Alg

k

)
respectively. For an object C ∈ NAlg

(
Coalg

k

)
, we inves-

tigate some basic properties of C•. The key result will be that, in this context, C• is an 
algebra with comultiplication and counit. This will allow us to extend the contravariant 
adjunction of the previous section to a contravariant adjunction between the categories 
NAlg

(
Coalg

k

)
and NCoalg

(
Alg

k

)
.

Let us start be recalling from [13, Preliminaries], [11, Definition XV.1.1 and Proposi-
tion XV.1.2], the following definitions.

Definition 4.1. A coalgebra with multiplication and unit is a datum (C, Δ, ε, m, u) where

(1) the triple (C, Δ, ε) is in Coalg
k
;

(2) the maps m : C⊗C → C and u : k → C are morphisms in Coalg
k
, called multiplication

and unit respectively, such that m is unital with unit u.

In other words this is a not necessarily associative monoid (or algebra) inside the 
monoidal category of coassociative and counital coalgebras. A morphism of coalgebras 
with multiplication and unit is a linear map which is compatible with both structures, 
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that is, simultaneously a morphism of coalgebras and of algebras. The category so ob-
tained will be denoted by NAlg

(
Coalg

k

)
.

Dualizing Definition 4.1 leads to the construction of the category of algebras with 
comultiplication and counit denoted by NCoalg

(
Alg

k

)
, whose objects are denoted by 

(A, m, u, Δ, ε). Thus, an object in NCoalg
(
Alg

k

)
is a not necessarily coassociative 

comonoid inside the monoidal category of associative and unital algebras.

Proposition 4.2. Let (C,Δ, ε,m, u) be a coalgebra with multiplication and unit. Then 
(C•,Δ•, ε•,m•, u•) is an algebra with comultiplication and counit. Moreover, this estab-
lishes a well-defined contravariant functor

(−)• : NAlg
(
Coalg

k

)
−→ NCoalg

(
Alg

k

)
.

Proof. For the reader’s sake, in this proof we will write explicitly the isomorphism ϕ′
C,D :

C•⊗D• → (C⊗D)• of equation (16), although in the statement we identified the domain 
and the codomain of this map. For this reason the multiplication of C• is more precisely 
mC• := Δ• ◦ ϕ′

C, C while its comultiplication is ΔC• :=
(
ϕ′
C, C

)−1 ◦m•. We compute

jC ◦mC• = jC ◦Δ•◦ϕ′
C, C

(5)= Δ∗◦jC⊗C ◦ϕ′
C, C

(16)= Δ∗◦ϕC, C ◦(jC⊗jC) = mC∗ ◦(jC⊗jC).

Furthermore, since idk ∈ k
∗ = k

•, we can compute ε•C(idk) obtaining εC = ε•C(idk) ∈ C•. 
Thus we can set 1C• := εC and we have that jC(1C•) = 1C∗ . Since jC is injective, we 
deduce that C• is an algebra. Explicitly, for every f, g ∈ C• we have that mC•(f ⊗ g)
equals the convolution product f ∗ g. Moreover u∗ : C∗ → k

∗ ∼= k : f �→ f (1) restricts 
to a map εC• := u∗ : C• → k.

For all x, y ∈ C and f, g ∈ C•, we have
∑

(f ∗ g)1 (x) · (f ∗ g)2 (y) = (f ∗ g) (xy) =
∑

f ((xy)1) · g ((xy)2)

=
∑

f (x1y1) · g (x2y2)

=
∑

f1 (x1) · f2 (y1) · g1 (x2) · g2 (y2)

=
∑

(f1 ∗ g1) (x) · (f2 ∗ g2) (y) ,

and 
∑

ε1 (x) · ε2 (y) = ε (xy) = ε (x) · ε (y). This implies that
∑

(f ∗ g)1 ⊗ (f ∗ g)2 =
∑

(f1 ∗ g1) ⊗ (f2 ∗ g2) and
∑

ε1 ⊗ ε2 = ε⊗ ε.

Thus ΔC• is multiplicative and unital. Moreover

εC• (f ∗ g) = (f ∗ g) (1) = f (1) · g (1) = εC• (f) · εC• (g)

and εC• (ε) = ε (1) = 1 so that εC• is multiplicative and unital as well.



A. Ardizzoni et al. / Journal of Algebra 449 (2016) 460–496 473
Take a morphism f : C → D in NAlg
(
Coalg

k

)
. By Lemma 3.1, we know that f• :

D• → C• is a coalgebra map. It remains to check that it is multiplicative and unital. 
For every x ∈ C,

f• (1D•) (x) = 1D•
(
f (x)

)
= εD

(
f (x)

)
= εC (x) = 1C• (x) ,

where in the third equality we used the fact that f is a counital map. Furthermore, for 
every α and β in D•

f• (α ∗ β) (x) = (α ∗ β)
(
f(x)

)
=

∑
α
(
f (x)1

)
β
(
f (x)2

)
=

∑
α
(
f (x1)

)
β
(
f (x2)

)
=

(
f• (α) ∗ f• (β)

)
(x),

where we have used the fact that f is comultiplicative. This establishes the stated functor 
which is clearly a contravariant one. �

As we have mentioned in Remark 2.2, see also the references quoted therein, there is 
a functor

(−)◦ : Alg
k
−→ Coalg

k
, (17)

which is the restriction of the functor (−)• defined in subsection 3.1. Even thought we 
could use the same notation for these two functors without ambiguity, we preferred to 
keep different notations, in order to make clear the distinction between the associative 
and the non-associative case.

Lemma 4.3. The functor (−)◦ is lifted to a functor (−)◦ : NCoalg
(
Alg

k

)
→ NAlg

(
Coalg

k

)
. 

That is, we have a commutative diagram

NCoalg
(
Alg

k

) (−)◦
NAlg

(
Coalg

k

)

Alg
k

(−)◦
Coalg

k

where the vertical functors are the forgetful ones.

Proof. Take an object (A, m, u, Δ, ε) in NCoalg
(
Alg

k

)
. Analogously to subsection 3.3, 

we can consider the datum (A◦, m◦, u◦, Δ◦, ε◦), where (A◦, m◦, u◦), Δ◦ and ε◦ are the 
images, up to the natural isomorphism of Proposition 3.3, through the functor (17) of 
(A, m, u), Δ and ε, respectively. We know that (A◦, m◦, u◦) is coassociative counital 
coalgebra, and also that Δ◦ and ε◦ are coalgebra maps. The unital property of Δ◦

with respect to ε◦ is automatically derived from the counitality of Δ with respect to ε. 
Summing up, we have that (A◦, m◦, u◦, Δ◦, ε◦) is an object in the category NAlg

(
Coalg

k

)
. 
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To check that the stated functor is well-defined on morphisms one mimics the last part 
of the proof of Proposition 4.2. �

The following is our first main result.

Theorem 4.4. There is a natural isomorphism:

NCoalg
(
Alg

k

)(
A,C•

)
∼= NAlg

(
Coalg

k

)(
C,A◦

)

for every pair of objects A in NCoalg
(
Alg

k

)
and C in NAlg

(
Coalg

k

)
. That is, there is a 

contravariant adjunction

NAlg
(
Coalg

k

) (−)•

NCoalg
(
Alg

k

)
(−)◦

where the contravariant functor (−)◦ is defined by Lemma 4.3 and (−)• by Proposi-
tion 4.2.

Proof. In order to prove the theorem let us consider the unit ηA : A → A◦∗ and the 
counit εC : C → C∗◦ defined in (15) and (14) respectively, where A is in NCoalg

(
Alg

k

)
and C is in NAlg

(
Coalg

k

)
.

We already know that ηA is multiplicative and unital. We claim that it lands into A◦•, 
indeed let us show that Im(ηA) is a good subspace of A◦∗. For all a ∈ A and f, g ∈ A◦

we have that

m◦∗ (ηA(a)) (f ⊗ g) = ηA(a)(f ∗ g) = (f ∗ g)(a) =
∑

f(a1)g(a2)

=
∑

ηA(a1)(f)ηA(a2)(g) =
(∑

ηA(a1) ⊗ ηA(a2)
)

(f ⊗ g)

i.e. for all a ∈ A, m◦∗(ηA(a)) ∈ ϕA◦, A◦ (Im(ηA) ⊗ Im(ηA)) where ϕ−,− is the canonical 
inclusion of equation (3). Therefore we denote by ξA : A → A◦• the corestriction of ηA. 
Observe further that, in particular, this means that ηA (and hence ξA) is comultiplicative. 
Moreover, ξA is also counital since

u◦ (ξA(a)) = ξA(a) (1A◦) = ξA(a) (ε) = ε(a)

for all a ∈ A. By the foregoing, ξA is a morphism in the category NCoalg
(
Alg

k

)
. Now we 

can check the naturality in A of ξA: pick a morphism f : A → B in NCoalg
(
Alg

k

)
and 

consider the diagram
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A
ξA

f

A◦•

f◦•

jA◦
A◦∗

f◦∗

B
ξB

B◦•
jB◦

B◦∗

The commutativity of the outer diagram encodes the naturality of η, while the right-hand 
side diagram follows by (5). Hence the left-hand side diagram commutes too whence the 
naturality of ξ is settled. To construct the counit one proceeds in a very similar way. 
Explicitly, for an object (C, Δ, ε, m, u) in NAlg

(
Coalg

k

)
, the map εC induces the counit 

which is given by

ϑC : C −→ C•◦, x �−→
[
C• → k, g �→ g(x)

]
. (18)

It remains to check the commutativity of the following two diagrams

C•◦• (ϑC)•
C•

C•

ηC•
=

A◦•◦

(ηA)◦

A◦ϑA◦

=

A◦

As for the first one, for every g ∈ C• and for every c ∈ C a direct calculation shows that

(ϑC)• (ηC• (g)) (c) = ηC• (g) (ϑC(c)) = ϑC(c)(g) = g(c)

while for the second one, for every f ∈ A◦ and for every a ∈ A,

(ξA)◦ (ϑA◦ (f)) (a) = ϑA◦ (f) (ξA(a)) = ξA(a) (f) = f(a).

This finishes the proof. �
5. Contravariant adjunction between quasi-bialgebras and split dual quasi-bialgebras

This section contains our main result. We show that the contravariant adjunction of 
Theorem 4.4 can be restricted to an adjunction between the category of quasi-bialgebras 
and that of split dual quasi-bialgebras. The latter is a full subcategory of the category of 
dual quasi-bialgebras characterized by the fact that the 3-cocycle (i.e. the reassociator) 
splits as a finite sum of tensor products of linear maps.

5.1. Quasi-bialgebras and dual quasi-bialgebras: definitions and examples

We start by recalling the definition of the main objects of this section. The definitions 
presented here are quoted form [7,13,11].
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Definition 5.1. (See [7]) A quasi-bialgebra is an object (H, m, u, Δ, ε) in the category 
NCoalg

(
Alg

k

)
(see after Definition 4.1), endowed with a counital 3-cocycle Φ, i.e. an 

invertible element in the algebra H ⊗H ⊗H that satisfies

(H ⊗H ⊗ Δ) (Φ) · (Δ ⊗H ⊗H) (Φ) = (1 ⊗ Φ) · (H ⊗ Δ ⊗H)(Φ) · (Φ ⊗ 1), (19)

(ε⊗H ⊗H)(Φ) = (H ⊗ ε⊗H)(Φ) = (H ⊗H ⊗ ε)(Φ) = 1 ⊗ 1, (20)

Φ · (Δ ⊗H)(Δ(h)) = (H ⊗ Δ)(Δ(h)) · Φ. (21)

The element Φ is called the reassociator1 of the quasi-bialgebra. Obviously, if Φ =
1 ⊗ 1 ⊗ 1, then (H, m, u, Δ, ε) is a usual bialgebra.

A linear map f : (H,m, u,Δ, ε,Φ) → (H ′,m′, u′,Δ′, ε′,Φ′) is a morphism of quasi-
bialgebras if it is a morphism in NCoalg

(
Alg

k

)
such that

(f⊗ f⊗ f) (Φ) = Φ′. (22)

The category of quasi-bialgebras and their morphisms will be denoted by QBialg
k
.

Example 5.2. Let C be in NCoalg
k

and consider the tensor algebra T (C). By the uni-
versal property of the tensor algebra, the comultiplication and the counit of C induce a 
comultiplication and a counit on T = T (C) respectively that make it into an object in 
NCoalg

(
Alg

k

)
. Suppose that T is in QBialg

k
. Then it admits a reassociator Φ ∈ T⊗3 but, 

in view of Corollary B.4, Φ ∈ k · 1 ⊗ 1 ⊗ 1. By (20), Φ = 1 ⊗ 1 ⊗ 1 which means that T is 
in Bialg

k
. This forces C to be in Coalg

k
. Therefore, if we consider C in NCoalg

k
but not 

in Coalg
k
, then T (C) is in NCoalg

(
Alg

k

)
but not in QBialg

k
.

We now give an explicit example of such a C. Consider the alternative algebra A, 
see Example 2.3, constructed as follows. As a vector space, A = ke ⊕ kx ⊕ ky, with 
multiplication table given as follows:

· e x y

e e x y

x x y x

y y x x

This is a unital, commutative but not associative algebra. Let us take its ordinary lin-
ear dual C = A∗ = kE ⊕ kX ⊕ kY where {E,X, Y } is the dual basis. It comes out to be 
a counital, cocommutative but not coassociative coalgebra. The induced comultiplication 
and counit are given by

Δ(X) = X ⊗ Y + Y ⊗X + Y ⊗ Y + X ⊗ E + E ⊗X, ε(X) = 0,

1 In [11, page 369] this is called the Drinfeld associator.
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Δ(Y ) = X ⊗X + Y ⊗E + E ⊗ Y, ε(Y ) = 0,

Δ(E) = E ⊗E, ε(E) = 1.

Observe further that cocommutativity ensures that T (C) satisfies the condition to be 
a coalternative coalgebra, as given explicitly in Example 2.3 equation (8).

Besides algebras with comultiplication and counit that are not quasi-bialgebras, we 
also have quasi-bialgebras that are not bialgebras.

Example 5.3. Let us retrieve a couple of examples. First we exhibit a way to produce 
non-trivial quasi-bialgebras from ordinary bialgebras. Following [7], we consider a quasi-
bialgebra (H, m, u, Δ, ε, Φ) and we recall that a twist on H (also referred to as gauge 
transformation, cf. [11, Definition XV.3.1]) is an invertible element F of H ⊗ H such 
that

(H ⊗ ε)(F ) = 1 = (ε⊗H)(F ).

Given a twist, we can construct the twisted quasi-bialgebra HF := (H, m, u, ΔF , ε, ΦF )
where

ΔF (a) := F ·Δ(a) ·F−1 and ΦF := (1⊗F ) ·(A⊗Δ)(F ) ·Φ ·(Δ⊗A)(F−1) ·(F−1⊗1).

This is still a quasi-bialgebra (cf. [11, Proposition XV.3.2], [7, page 1422]). Now, assume 
we have (G, m, u, Δ, ε) an ordinary bialgebra. We can endow it with a trivial structure 
of quasi-bialgebra by considering Φ = 1 ⊗ 1 ⊗ 1. If we take a non-trivial twist F on G, 
then GF is a quasi-bialgebra, but it is not necessarily an ordinary bialgebra. Indeed:

ΦF = (1 ⊗ F ) · (G⊗ Δ)(F ) · (Δ ⊗G)(F−1) · (F−1 ⊗ 1)

does not equal 1 ⊗ 1 ⊗ 1 in general, and ΔF is not coassociative. In such cases, GF is a 
non-trivial example of quasi-bialgebra.

Next, let us show a case in which an ordinary bialgebra can be endowed with a 
non-trivial structure of quasi-bialgebra without changing its underlying structure. This 
example comes from [8, Preliminaries 2.3] (see also [4, Example 2.5]). Let C2 = 〈g〉 be 
the cyclic group of order 2 with generator g and let k be a field of characteristic different 
from 2. Consider the group algebra H(2) := kC2 with its ordinary bialgebra structure, 
i.e., Δ(g) = g ⊗ g and ε(g) = 1. Observe that H(2) is a two-dimensional commutative 
algebra. Now, set p := 1

2 (1 − g) and consider the non-trivial reassociator

Ψ := (1 ⊗ 1 ⊗ 1) − 2(p⊗ p⊗ p).

It can be easily verified that (H(2), m, u, Δ, ε, Ψ) satisfies the conditions to be a quasi-
bialgebra.
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Actually this example can tell us more: H(2) with this non-trivial quasi-bialgebra 
structure turns out to be not twist equivalent to any ordinary bialgebra (by twist equiv-
alent to a bialgebra G′ we mean that there exists a twist F on H(2) and an isomorphism 
of quasi-bialgebras G′ ∼= H(2)F ; cf. [7, page 1422]). Hence this is a genuine example of 
a quasi-bialgebra. To see this note that H(2) can be endowed with a quasi-antipode, i.e. 
a triple (s, α, β) composed by an algebra anti-homomorphism s : H(2) → H(2) and two 
distinguished elements α and β such that

∑
s(a1)αa2 = ε(a)α,

∑
a1βs(a2) = ε(a)β,∑

Φ1βs(Φ2)αΦ3 = 1,
∑

s(φ1)αφ2βs(φ3) = 1,

where 
∑

Φ1 ⊗ Φ2 ⊗ Φ3 := Φ and 
∑

φ1 ⊗ φ2 ⊗ φ3 := Φ−1 (a quasi-bialgebra with quasi-
antipode is usually called a quasi-Hopf algebra; cf. [7, page 1424]). In particular, H(2) can 
be endowed with the quasi-antipode (idH(2), g, 1). By [7, page 1425], it is possible to twist 
a quasi-Hopf algebra too, and get again a quasi-Hopf algebra. As a consequence, if there 
were a twist F on H(2) such that H(2)F ∼= G′ where G′ is an ordinary bialgebra, then 
H(2)F would turn out to be an ordinary Hopf algebra. In particular βF · αF = 1. How-
ever, writing F :=

∑
F 1⊗F 2, F−1 :=

∑
f1⊗f2 and recalling that H(2) is commutative 

we get

βF :=
∑

F 1 · β · s(F 2) =
∑

F 1 · F 2, αF :=
∑

s(f1) · α · f2 =
∑

f1 · f2 · g,

and

βF · αF =
(∑

F 1 · F 2
)
·
(∑

f1 · f2 · g
)

=
∑

F 1 · f1 · F 2 · f2 · g = g �= 1.

Therefore, H(2) cannot be twist equivalent to any ordinary bialgebra.

For any quasi-bialgebra (H, m, u, Δ, ε, Φ), we denote by

Φ :=
∑

Φ1 ⊗ Φ2 ⊗ Φ3 =
∑

Ψ1 ⊗ Ψ2 ⊗ Ψ3 =
∑

Θ1 ⊗ Θ2 ⊗ Θ3,

the reassociator Φ of Definition 5.1, whose inverse is

φ :=
∑

φ1 ⊗ φ2 ⊗ φ3 =
∑

ψ1 ⊗ ψ2 ⊗ ψ3 =
∑

θ1 ⊗ θ2 ⊗ θ3.

This notations will be soon understood. Explicitly, equations (19), (20) and (21) can be 
rewritten as

∑
Φ1 · Ψ1

1 ⊗ Φ2 · Ψ1
2 ⊗ Φ3

1 · Ψ2 ⊗ Φ3
2 · Ψ3

=
∑

Ψ1 · Θ1 ⊗ Φ1 · Ψ2
1 · Θ2 ⊗ Φ2 · Ψ2

2 · Θ3 ⊗ Φ3 · Ψ3,
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∑
Φ1ε(Φ2) ⊗ Φ3 = 1 ⊗ 1,∑

Φ1h1, 1 ⊗ Φ2h1, 2 ⊗ Φ3h2 =
∑

h1Φ1 ⊗ h2, 1Φ2 ⊗ h2, 2Φ3.

The dual version of Definition 5.1, led in [13] to the notion of dual quasi-bialgebra, 
which, for sake of reader convenience, we recall here with details.

Definition 5.4. A dual quasi-bialgebra is an object (U, Δ, ε, m, u) in the category 
NAlg

(
Coalg

k

)
, endowed with a unital 3-cocycle ω, i.e. a convolution invertible element 

ω : U ⊗ U ⊗ U → k that satisfies
(
ω ◦ (U ⊗U ⊗m)

)
∗
(
ω ◦ (m⊗U ⊗U)

)
=

(
ε⊗ ω

)
∗
(
ω ◦ (U ⊗m⊗ U)

)
∗
(
ω ⊗ ε

)
(23)

ω (h⊗ k ⊗ l) = ε (h) ε (k) ε (l) , whenever 1U ∈ {h, k, l} ⊂ U

(24)(
u ◦ ω

)
∗
(
m ◦ (m⊗ U)

)
=

(
m ◦ (U ⊗m)

)
∗
(
u ◦ ω

)
, (25)

where the star ∗ in equation (23) stands for the convolution product of the algebra 
(U⊗4)∗, while in equation (25) it is the convolution product of the non-associative algebra 
Vectk

(
U⊗3, U

)
. The map ω is also called the reassociator of the dual quasi-bialgebra (this 

is an invertible element in the convolution algebra (U⊗3)∗).

A linear map g : (U,m, u,Δ, ε, ω) → (U ′,m′, u′,Δ′, ε′, ω′) is a morphism of dual quasi-
bialgebras if it is a morphism in the category NAlg

(
Coalg

k

)
satisfying:

ω′ ◦ (g⊗ g⊗ g) = ω. (26)

The category of dual quasi-bialgebras and their morphisms will be denoted by DQBialg
k
.

On elements, the equations (23), (24) and (25) are written, for all x, y, z, t ∈ U , as

∑
ω
(
x1 ⊗ y1 ⊗ z1t1

)
ω
(
x2y2 ⊗ z2 ⊗ t2

)
=

∑
ω
(
y1 ⊗ z1 ⊗ t1

)
ω
(
x1 ⊗ y2z2 ⊗ t2

)
ω
(
x2 ⊗ y3 ⊗ z3

)
,

ω(x⊗ y ⊗ 1) = ω(x⊗ 1 ⊗ y) = ω(1 ⊗ x⊗ y) = ε(x)ε(y),∑
ω
(
x1 ⊗ y1 ⊗ z1

)(
x2y2

)
z2 =

∑
x1

(
y1z1

)
ω
(
x2 ⊗ y2 ⊗ z2

)
.

5.2. The contravariant adjunction

We first check that the functor of Lemma 4.3, leads to a functor from the category 
QBialg

k
to DQBialg

k
. Consider a quasi-bialgebra (H, m, u, Δ, ε, Φ). Since the underlying 
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object (H, m, u, Δ, ε) is in NCoalg
(
Alg

k

)
, we can consider its image (H◦, m◦, u◦, Δ◦, ε◦)

in NAlg
(
Coalg

k

)
by the functor of Lemma 4.3. Set U = H◦ and consider the natural 

transformation of (15) at H⊗3

H⊗3
η
H⊗3 ((

H⊗3
)◦)∗ (16)∼=

((
H◦)⊗3

)∗
=

(
U⊗3

)∗
,

which by construction is an algebra map. Therefore, the following k-linear map

ω := ηH⊗3(Φ) : U⊗3 −→ k,
(
f ⊗ g ⊗ h �−→

∑
f(Φ1)g(Φ2)h(Φ3)

)
, (27)

is an invertible element in the convolution algebra 
(
U⊗3

)∗, since Φ is so in the alge-
bra H⊗3.

We claim that (U, m◦, u◦, Δ◦, ε◦, ω) is now a dual quasi-bialgebra. Taken an element 
x ∈ H, we can compute

(∑
ω(f1 ⊗ g1 ⊗ h1

)(
f2g2

)
h2

)
(x)

=
∑

f1(Φ1)g1(Φ2)h1(Φ3)f2(x1, 1)g2(x1, 2)h2(x2)

(21)=
∑

f1(Φ1)g1(Φ2)h1(Φ3)f2(φ1x1Φ1)g2(φ2x2, 1Φ2)h2(φ3x2, 2Φ3)

(6)=
∑

f(Φ1φ1x1Φ1)g(Φ2φ2x2, 1Φ2)h(Φ3φ3x2, 2Φ3)

=
∑

f(x1Φ1)g(x2, 1Φ2)h(x2, 2Φ3)

(6)=
∑

f1(x1)g1(x2, 1)h1(x2, 2)f2(Φ1)g2(Φ2)h2(Φ3)

=
∑

f1(x1)g1(x2, 1)h1(x2, 2)ω
(
f2 ⊗ g2 ⊗ h2

)
=

(∑
f1

(
g1h1

)
ω
(
f2 ⊗ g2 ⊗ h2

))
(x).

This gives equation (25) for (U, ω). Equation (24) for (U, ω), follows by:

ω(f ⊗ 1 ⊗ h) = f(Φ1)ε(Φ2)h(Φ3) (20)= f(1)h(1) = ε(f)ε(h),

and similarly when 1 appears in the other entries.
Let us check equation (23) for (U, ω). Considered f, g, h, e ∈ U , we have

∑
ω
(
f1 ⊗ g1 ⊗ h1e1

)
ω
(
f2g2 ⊗ h2 ⊗ e2

)
=

∑
f1(Φ1)g1(Φ2)

(
h1e1

)
(Φ3)

(
f2g2

)
(Ψ1)h2(Ψ2)e2(Ψ3)
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=
∑

f1(Φ1)g1(Φ2)h1(Φ3
1)e1(Φ3

2) f2(Ψ1
1)g2(Ψ1

2)h2(Ψ2)e2(Ψ3)

=
∑

f
(
Φ1Ψ1

1

)
g
(
Φ2Ψ1

2

)
h
(
Φ3

1Ψ2)e(Φ3
2Ψ3)

(20)=
∑

f
(
Ψ1Θ1)g(Φ1Ψ2

1Θ2)h(Φ2Ψ2
2Θ3)e(Φ3Ψ3)

=
∑

f1(Ψ1)f2(Θ1) g1(Φ1)g2(Ψ2
1)g3(Θ2)h1(Φ2)h2(Ψ2

2)h3(Θ3) e1(Φ3)e2(Ψ3)

=
∑(

g1(Φ1)h1(Φ2)e1(Φ3)
)(

f1(Ψ1)g2(Ψ2
1)h2(Ψ2

2)e2(Ψ3)
)(

f2(Θ1)g3(Θ2)h3(Θ3)
)

=
∑(

g1(Φ1)h1(Φ2)e1(Φ3)
)(

f1(Ψ1)(g2h2)(Ψ2)e2(Ψ3)
)(

f2(Θ1)g3(Θ2)h3(Θ3)
)

=
∑

ω
(
g1 ⊗ h1 ⊗ e1

)
ω
(
f1 ⊗ g2h2 ⊗ e2

)
ω
(
f2 ⊗ g3 ⊗ h3

)
,

where we have used the convolution product and the formula (6). This completes the 
proof of the claim.

Furthermore, it is by definition that any morphism f : (H, m, u, Δ, ε, Φ) −→ (H ′,

m′, u′, Δ′, ε′, Φ′) of quasi-bialgebras, is a morphism in the category NCoalg
(
Alg

k

)
. Then, 

by applying the functor (−)◦ of Lemma 4.3, we get that f◦ : (H ′◦, Δ′◦, ε′◦, m′◦, u′◦) −→
(H◦, Δ◦, ε◦, m◦, u◦) is a morphism in the category NAlg

(
Coalg

k

)
. Therefore, we only need 

to check the compatibility condition with reassociators constructed in equation (27), 
which is derived as follows:

ω
(

(f◦ ⊗ f◦ ⊗ f◦) (f ⊗ g ⊗ h)
)

= ω
(

(f ◦ f) ⊗ (g ◦ f) ⊗ (h ◦ f)
)

= (f ⊗ g ⊗ h)
(

(f⊗ f⊗ f) (Φ)
)

(22)= (f ⊗ g ⊗ h) (Φ′) = ω′ (f ⊗ g ⊗ h) .

Hence f satisfies (26) and it is a morphism of dual quasi-bialgebras. Then, we have 
established a contravariant functor

(−)◦ : QBialg
k
−→ DQBialg

k
, (28)

which obviously converts the following diagram

NCoalg
(
Alg

k

) (−)◦
NAlg

(
Coalg

k

)

QBialg
k

(−)◦
DQBialg

k

commutative, where the vertical functors are the canonical forgetful functors.
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In the other way around, take an object (U, Δ, ε, m, u, ω) in the category DQBialg
k
. 

Thus, we can take the image of its underlying object (U, Δ, ε, m, u) by the functor of 
Proposition 4.2, that is the object (U•, m•, u•, Δ•, ε•) of the category NCoalg

(
Alg

k

)
. The 

problem now is to construct a reassociator Φ for U•, i.e. a unital 3-cocycle. It seems that 
a priori there is no obvious way to deduce this cocycle directly from the starting datum 
(U, Δ, ε, m, u, ω). To this aim, an assumption should be postulated. First, we consider 
the following natural transformation:

ζ :
(
U•)⊗3

(jU )⊗3 (
U∗)⊗3 ϕU, U⊗U∗ (

U ⊗ U
)∗ ⊗ U∗ ϕU⊗U, U (

U⊗3
)∗
, (29)

which, up to the isomorphism 
(
U⊗3

)• ∼=
(
U•)⊗3 of equation (16), coincides with the 

canonical injection of the total good subspace of 
(
U⊗3

)∗. Notice that ζ is an algebra 
map, as it is a composition of algebra maps. Moreover, it is easily seen that ζ is in fact 
a natural transformation at U .

Proposition 5.5. Let (U, Δ, ε, m, u, ω) be a dual quasi-bialgebra. Assume there exists an 
invertible element Φ ∈ (U•)⊗3 such that ζ (Φ) = ω, then (U•, m•, u•, Δ•, ε•, Φ) is a 
quasi-bialgebra.

Proof. Write Φ =
∑

Φ1 ⊗Φ2 ⊗Φ3. Then ω(x ⊗ y⊗ z) =
∑

Φ1(x)Φ2(y)Φ3(z), for every 
x, y, z ∈ U . Using this equality, equations (23), (24) and (25) are easily transferred to 
equations (19), (20) and (21), respectively. This concludes the proof. �
Corollary 5.6. Let (H, m, u, Δ, ε, Φ) be a quasi-bialgebra. Then (H◦•, m◦•, u◦•, Δ◦•, ε◦•)
is still a quasi-bialgebra with reassociator Ψ := (ξH)⊗3 (Φ), where ξ is the unit of the 
adjunction of Theorem 4.4.

Proof. We already know from (28) that (H◦, m◦, u◦, Δ◦, ε◦, ω) is a dual quasi-bialgebra 

with reassociator given by ω = ζ
(
(ξH)⊗3 (Φ)

)
. Now apply Proposition 5.5 to con-

clude. �
Let us denote by SDQBialg

k
the full subcategory of the category DQBialg

k
whose 

objects are split dual quasi-bialgebras, i.e. dual quasi-bialgebras (U, Δ, ε, m, u, ω) such 
that there exists an invertible element Φ ∈ (U•)⊗3 with ζ (Φ) = ω. In this way the 
assignment described in Proposition 5.5 yields the functor

(−)• : SDQBialg
k
−→ QBialg

k
, (30)

acting on morphisms as in Proposition 4.2 (the compatibility with reassociators follows 
by using the natural transformation of (29)). We are led to the following main result.

Theorem 5.7. The contravariant adjunction of Theorem 4.4 induces the contravariant 
adjunction
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SDQBialg
k

(−)•

QBialg
k(−)◦

where the contravariant functor (−)◦ is the one of (28), and (−)• is the one of (30).

Proof. The only thing we need to check is that the unit and the counit of the adjunction 
of Theorem 4.4 preserve the reassociator of a quasi-bialgebra and the one of a dual 
quasi-bialgebra respectively. For the unit, which is given by

ξ : idNCoalg
(
Alg

k

) −→ (−)• ◦ (−)◦

as in the proof of Theorem 4.4, this follows directly from Corollary 5.6.
As for the counit

ϑ : idNAlg
(
Coalg

k

) −→ (−)◦ ◦ (−)•

which is given by (18), consider a dual quasi-bialgebra (U, Δ, ε, m, u, ω) in SDQBialg
k
; 

this means that there exists an element Φ ∈ (U•)⊗3 such that ζ(Φ) = ω and that 
(U•, Δ•, ε•, m•, u•, Φ) is a quasi-bialgebra, where ζ is the natural transformation of (29). 
From the definition of the functor in (28), we have that the reassociator for the dual 
quasi-bialgebra (U•◦, Δ•◦, ε•◦, m•◦, u•◦) is clearly given by ζ

(
(ξU•)⊗3 (Φ)

)
. Now observe 

that the following computation

ζ
((

ξU•
)⊗3(Φ)

)
◦ (ϑU )⊗3

=
(
(ϑU )⊗3

)∗ (
ζ
((

ξU•
)⊗3(Φ)

)) (nat. of ζ)= ζ
((

(ϑU )•
)⊗3

((
ξU•

)⊗3(Φ)
))

= ζ
((

(ϑU )• ◦ ξU•
)⊗3(Φ)

)
= ζ(Φ) = ω

shows that ϑ preserves reassociators as desired. Hence, the unit comes out to be a quasi-
bialgebra map and the counit a dual quasi-bialgebra map, settling the adjunction. �
Remark 5.8. Recall that a subcategory B of a category A is closed under sources when-
ever for any morphism f : a → b in A , if b is in B then a is in B. Let us check 
that SDQBialg

k
is closed under sources when regarded as a subcategory of DQBialg

k
. 

Let g : (U ′, ω′) → (U, ω) be a morphism in DQBialg
k

such that (U, ω) is an object in 
SDQBialg

k
. By assumption, there exists Φ =

∑
Φ1 ⊗ Φ2 ⊗ Φ3 ∈

(
U•)⊗3 such that 

ω = ζ (Φ). Since g preserves the reassociator, we have that

ω′ = ω ◦
(
g⊗3) = ζ(Φ) ◦

(
g⊗3)

= ϕ′
U′⊗U′,U′ ◦ (ϕ′

U′,U′ ⊗ U ′∗)
( (

Φ1 ◦ g
)
⊗

(
Φ2 ◦ g

)
⊗

(
Φ3 ◦ g

) )
= ζ

((
g•
)⊗3 (Φ)

)
,
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where ϕ′
−,− is the natural transformation of equation (16). This means that ω′ itself 

comes out to be the image by ζ of 
(
g•
)⊗3 (Φ) that lies in 

(
U ′)•. Therefore, (U ′, ω′)

belongs to SDQBialg
k
.

Let us observe briefly that SDQBialg
k
is a proper subcategory of DQBialg

k
: in fact the 

subsequent example exhibits a dual quasi-bialgebra whose reassociator does not split. 
This means moreover that this particular dual quasi-bialgebra cannot be the finite dual 
of a quasi-bialgebra (in view of the definition of the reassociator given in (27)).

Example 5.9. Let k be a field and consider k[X] the ring of polynomials in one indeter-
minate X with the monoid bialgebra structure, i.e. Δ (X) = X ⊗X, ε (X) = 1. Let us 
consider a map ϕ : k[X] −→ k not in k[X]◦, the ordinary finite dual of k[X] (which, 
in this case, coincides with k[X]•), and such that ϕ(1) = 1, ϕ (Xn) �= 0 for all n ≥ 1. 
Let us build a 3-cocycle ω that does not split by mean of ϕ. Recalling that a basis for 
k[X] ⊗k[X] ⊗k[X] is given by the elements Xn⊗Xk ⊗Xm for m, k, n ≥ 0, let us define 
ω on this basis as follows, and then extend it by linearity. For all m, n, k ≥ 0 let us set:

ω (1 ⊗Xn ⊗Xm) = ω (Xn ⊗ 1 ⊗Xm) = ω (Xn ⊗Xm ⊗ 1) := 1;

ω
(
Xn ⊗Xk+1 ⊗Xm

)
:= ϕ

(
Xk

)−2
ϕ
(
Xn+k

)
ϕ
(
Xm+k

)
, n,m ≥ 1.

Observe that the given comultiplication ensures that we have

ω−1 (Xn ⊗Xk ⊗Xm
)

= ω
(
Xn ⊗Xk ⊗Xm

)−1 = 1
ω (Xn ⊗Xk ⊗Xm)

for all m, k, n ≥ 0. Now, let us show that ω is actually a unital 3-cocycle. It is unital by 
definition. If 0 ∈ {m, n, r, s} then we trivially have

ω (Xm ⊗Xr ⊗Xs)ω
(
Xn ⊗Xm+r ⊗Xs

)
ω (Xn ⊗Xm ⊗Xr)

= ω
(
Xn ⊗Xm ⊗Xr+s

)
ω
(
Xn+m ⊗Xr ⊗Xs

)
.

For all m, n, r, s ≥ 1 we have

ω (Xm ⊗Xr ⊗Xs)ω
(
Xn ⊗Xm+r ⊗Xs

)
ω (Xn ⊗Xm ⊗Xr)

= ϕ
(
Xr−1)−2

ϕ
(
Xm+r−1)ϕ (

Xs+r−1)ϕ (
Xm+r−1)−2

ϕ
(
Xn+m+r−1)

ϕ
(
Xs+m+r−1)ϕ (

Xm−1)−2
ϕ
(
Xn+m−1)ϕ (

Xr+m−1)
= ϕ

(
Xm−1)−2

ϕ
(
Xn+m−1)ϕ (

Xs+m+r−1)ϕ (
Xr−1)−2

ϕ
(
Xs+r−1)ϕ (

Xn+m+r−1)
= ω

(
Xn ⊗Xm ⊗Xr+s

)
ω
(
Xn+m ⊗Xr ⊗Xs

)
.

This proves that ω is a 3-cocycle. If ω ∈ k[X]• ⊗ k[X]• ⊗ k[X]•, then

ϕ = ω(−⊗X ⊗X) = (k[X]• ⊗ η(X) ⊗ η(X)) (ω) ∈ k[X]•
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where η = ηk[X] is the map defined in equation (15), a contradiction. Since the comultipli-
cation Δ is cocommutative, the datum (k[X],m, u,Δ, ε, ω) defines a dual quasi-bialgebra 
whose reassociator does not split, as desired. An example of a map ϕ as above is exhibited 
in Lemma B.6.

Remark 5.10. As we mentioned above, starting from a quasi-bialgebra (U, Δ, ε, m, u, ω), 
the construction of a reassociator for U• is not at all clear and perhaps an impossible 
task. This in fact is connected to a certain problem of localization in non-commutative 
algebras as follows. Precisely, we are asking for the construction of an invertible element 
Φ in a certain algebra R (in our case R = (U•)⊗3), by only knowing the existence of 
an invertible element ω in an algebra extension T of R (in our case T = (U⊗3)∗ using 
the algebra map ζ : R → T of equation (29)). In our opinion this construction is not at 
all realistic except perhaps in some very concrete situation. This is why we think that 
Theorem 5.7 was not established in a naive way and that it is the best result which can 
be extracted from this theory.
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Appendix A. New characterization

In this section we give an alternative description of the finite dual in the non-
associative case. Given a linear map, several useful criteria are shown in order to 
guarantee that this map belongs to the finite dual. Further characterizations can be 
found in [2].

Given a vector space V and S ⊆ V ∗, we denote by

S⊥ :=
{
v ∈ V | s(v) = 0, ∀s ∈ S

}
.

For every a ∈ A in an algebra A and f ∈ A∗, we define in A∗ the elements a ⇀ f and 
f ↼ a by setting, for every b ∈ A

(a ⇀ f) (b) := f (ba) and (f ↼ a) (b) := f (ab) . (31)

Furthermore, the vector subspace of A∗ generated by the set {a ⇀ f | a ∈ A} will be 
simply denoted by A ⇀ f . A similar notation will be adopted for the right action ↼. 
The subsequent lemma is an analogue of [19, Proposition 6.0.3] or [17, Lemma 9.1.1] and 
can be proved by the same argument.
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Lemma A.1. Let f ∈ A∗. Then the following are equivalent.

(1) m∗ (f) ∈ Im (ϕA, A).
(2) dimk

(
A ⇀ f

)
< ∞.

(3) dimk

(
f ↼ A

)
< ∞.

One cannot expect, as in the case of associative algebras [17, Lemma 9.1.1], that the 

equivalent conditions (1)–(3) in Lemma A.1, imply either that dimk

(
A ⇀ (f ↼ A)

)
<

∞ or that dimk

(
(A ⇀ f) ↼ A

)
< ∞. Nevertheless, the converse remains true.

A.1. The tensor algebra and finite codimensional subspaces

Let V and W be vector spaces endowed with a k-linear map φ1
V,W : V → Endk (W ). 

Then this map induces a unique algebra map φV,W : T (V ) → Endk (W )op such that 
(φV,W )|V = φ1

V,W and (φV,W )|k is the unit k → Endk (W )op : k �→ kidW , where T (−)
stands for the tensor algebra functor.

Then W becomes a right T (V )-module via � defined, for every z ∈ T (V ) , w ∈ W , 
by setting

w � z := φV,W (z) (w) .

Hence we can consider the left T (V )-module structure on W ∗ uniquely defined by setting

(z � f) (w) := f (w � z) , for every z ∈ T (V ) , w ∈ W, f ∈ W ∗.

Example A.2. Consider the so-called enveloping algebra Ae := A ⊗Aop as V and A as W . 
Then one can consider the map

φ1
V,W : Ae → Endk (A) : l ⊗ r �→ [a �→ r (al)] .

For shortness, we set

φ1
A := φ1

V,W and φA := φV,W .

In particular, for every l, r ∈ A, we get

x � (l ⊗ r) = φA (l ⊗ r) (x) = φ1
A (l ⊗ r) (x) = r (xl) (32)

and

((l ⊗ r) � f) (a) = f (a � (l ⊗ r)) (32)= f (r (al)) = (l ⇀ (f ↼ r)) (a)
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so that

((l ⊗ r) � f) = (l ⇀ (f ↼ r)) . (33)

For a subset S ⊆ T (Ae) and an element f ∈ A∗, we denote by S � f the vector 
subspace of A∗ spanned by the set of elements {s � f | s ∈ S}.

Proposition A.3. Let (A,m, u) be in NAlg
k
. Then

A• (4)=
∑
V ∈G

V =
{
f ∈ A∗ | dimk

(
(Ae)⊗n � f

)
< ∞, for every n ∈ N

}
.

Proof. Set T := T (Ae). We write a generator of (Ae)⊗i in the form (l1 ⊗ r1) ⊗ · · · ⊗
(li ⊗ ri) where l1, . . . , li ∈ A and r1, . . . , ri ∈ Aop. Note that

[φA (1 ⊗ r) ◦ φA (l ⊗ 1)] (a) =
[
φ1
A (1 ⊗ r) ◦ φ1

A (l ⊗ 1)
]
(a)

= φ1
A (1 ⊗ r) (al) = r (al)

= φ1
A (l ⊗ r) (a) = φA (l ⊗ r) (a)

and hence

φA (l ⊗ r) = φA (1 ⊗ r) ◦ φA (l ⊗ 1) = φA (l ⊗ 1) ◦op φA (1 ⊗ r) ,

where the notation ◦op stands for the multiplication of Endk (A)op. Thus

φA [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)]

= φA [(l1 ⊗ r1) ·T · · · ·T (li ⊗ ri)]

= φA (l1 ⊗ r1) ◦op · · · ◦op φA (li ⊗ ri)

= φA (l1 ⊗ 1) ◦op φA (1 ⊗ r1) ◦op · · · ◦op φA (li ⊗ 1) ◦op φA (1 ⊗ ri)

= φA [(l1 ⊗ 1) ·T (1 ⊗ r1) ·T · · · ·T (li ⊗ 1) ·T (1 ⊗ ri)]

= φA [(l1 ⊗ 1) ⊗ (1 ⊗ r1) · · · ⊗ (li ⊗ 1) ⊗ (1 ⊗ ri)]

where the notation .T stands for the multiplication of T . Therefore

a � [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] = φA [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] (a)

= φA [(l1 ⊗ 1) ⊗ (1 ⊗ r1) · · · ⊗ (li ⊗ 1) ⊗ (1 ⊗ ri)] (a)

= a � [(l1 ⊗ 1) ·T (1 ⊗ r1) ·T · · · ·T (li ⊗ 1) ·T (1 ⊗ ri)]

Set L := A ⊗ 1 and R := 1 ⊗ Aop. For shortness we write l ∈ L for l ⊗ 1 and r ∈ R for 
1 ⊗ r. We also omit the product over T . Using this notation, we obtain

a � [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] = a � (l1r1 · · · liri) .
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For every n ≥ 1, f ∈ A∗, we set

Wn (f) := Spank

{
(a1a2 · · · an−1an) � f | a1, . . . , an ∈ L ∪R

}
.

Set also W0 (f) := kf . Since both A and Aop contain 1, it is clear that Wi (f) ⊆ Wj (f)
for i ≤ j.

Note further that Wi (f) ⊆
(
(Ae)⊗i � f

)
⊆ W2i (f) for every i ∈ N so that 

dimk

(
(Ae)⊗n � f

)
< ∞ if and only if dimk (Wn (f)) < ∞ for every n ∈ N. Set

B :=
{
f ∈ A∗ | dimk (Wn (f)) < ∞ for every n ∈ N

}
.

It remains to prove that A• = B.
⊆) It suffices to prove that V ⊆ B for every V ∈ G . Let us prove that Wn (f) is finite 

dimensional for every f ∈ V by induction on n ∈ N. For n = 0 there is nothing to prove.
Let n > 0 be such that Wn−1 (v) is finite-dimensional for every v ∈ V . Let f ∈ V . 

Write ΔV (f) =
∑t

i=1 gi ⊗ hi ∈ V ⊗ V . Let a1, . . . , an ∈ L ∪ R and w := a1a2 · · · an−1. 
Then

((wan) � f) (x) = f (x � (wan)) = f ((x � w) � an) .

If an = l ∈ L, then

((wan) � f) (x) = f ((x � w) � l) (32)= f ((x � w) l) =
t∑

i=1
gi (x � w)hi (l)

=
t∑

i=1
(w � gi) (x)hi (l)

so that (wan) � f =
∑n

i=1 hi (l) · (w � gi) ∈
∑n

i=1 Wn−1 (gi). If an = r ∈ R, then

((wan) � f) (x) = f ((x � w) � r) (32)= f (r (x � w)) =
t∑

i=1
gi (r)hi (x � w)

=
t∑

i=1
gi (r) (w � hi) (x)

so that

((wan) � f) =
t∑

gi (r) · (w � hi) ∈
t∑

Wn−1 (hi) .

i=1 i=1
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Thus

(a1a2a3a4 · · · an−1an) � f ∈
t∑

i=1
Wn−1 (gi) +

t∑
i=1

Wn−1 (hi)

for every a1, . . . , an ∈ L ∪R, which means that

Wn (f) ⊆
t∑

i=1
Wn−1 (gi) +

t∑
i=1

Wn−1 (hi) .

Since, by inductive hypothesis, the latter is finite-dimensional so is Wn (f).
⊇) Let f ∈ B and let us prove that V := (T � f) is good (this implies f = (1 � f) ∈

V ⊆ A•). Consider an element v ∈ V . Then there is z ∈ T such that v = z � f . Write 
z :=

∑n
i=0 zi with zi ∈ (Ae)⊗i so that

v = z � f =
n∑

i=0
zi � f ∈

n∑
i=0

(
(Ae)⊗i � f

)
⊆

(
(Ae)⊗n � f

)
.

Henceforth it is not restrictive to assume z ∈ (Ae)⊗n. We have then that

(A ⇀ v)
(33)
⊆ (Ae) � v ⊆ (Ae) � (z � f) ⊆ (Ae) �

(
(Ae)⊗n � f

)
⊆ (Ae)⊗(n+1) � f

and the latter is finite-dimensional. Hence (A ⇀ v) is finite-dimensional and, by 
Lemma A.1, we have that m∗ (v) ∈ Im (ϕA,A). Write m∗ (v) =

∑n
i=1 gi ⊗ hi ∈ A∗ ⊗A∗. 

By the proof of the same lemma, we can choose g1, . . . , gn to form a basis of (A ⇀ v). 
Thus there exist a1, . . . , an ∈ A such that gi (aj) = δi,j . We compute

((1 ⊗ aj) � v) (x) (33)= (v ↼ aj) (x) = v (ajx) =
n∑

i=1
gi (aj)hi (x) = hj (x)

so that hj = (1 ⊗ aj) � v ∈ (Ae � v) ⊆ V . We have so proved that m∗ (v) =
∑n

i=1 gi ⊗
hi ∈ A∗ ⊗ V . A similar argument shows that m∗ (v) ∈ V ⊗ A∗ and hence m∗ (v) ∈
(A∗ ⊗ V ) ∩ (V ⊗A∗) = V ⊗ V . �
Remark A.4. Let f ∈ A∗ be such that f(I) = 0 for some finite codimensional ideal in A
(an ideal in a non-associative algebra is just a k-vector subspace such that aI ⊆ I and 
Ia ⊆ I for all a ∈ A). Let l ⊗ r ∈ Ae and let x ∈ I. We have that

((l ⊗ r) � f) (x) = f(r(xl)) ⊆ f(I) = 0.

Inductively, if z ∈ (Ae)⊗n, z = (l1 ⊗ r1)⊗· · ·⊗ (ln−1 ⊗ rn−1)⊗ (ln ⊗ rn) = w⊗ (ln ⊗ rn), 
then
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(z � f) (x) = ((ln ⊗ rn) � f) (x � w) = f(rn ((x � w) ln)) ⊆ f(rn (Iln)) ⊆ f(I) = 0.

Therefore (Ae)⊗n � f is contained in I⊥, that injects into 
(
A
I

)∗, which has finite dimen-
sion for all n ∈ N. Hence, if f vanishes on a finite codimensional ideal of A, then f ∈ A•. 
This is an alternative way to show that A◦ is contained in A•, see Remark 2.2.

Remark A.5. Another description of A• by using the so-called standard filtration(
T(n)

)
n∈N

of T := T (Ae), is also possible. Precisely, this filtration is defined by set-
ting T(n) :=

⊕n
i=0 (Ae)⊗i, where (Ae)⊗0 := k. Then

A• =
{
f ∈ A∗ | dimk

(
T(n) � f

)
< ∞ for every n ∈ N

}
.

In fact

(
T(n) � f

)
⊆

((
n⊕

i=0
(Ae)⊗i

)
� f

)
⊆

n∑
i=0

(
(Ae)⊗i � f

)
⊆

(
(Ae)⊗n � f

)

so that 
(
T(n) � f

)
=

(
(Ae)⊗n � f

)
.

We now give a characterization of A• in the spirit of [17, Definition 1.2.3].

Proposition A.6. Let (A,m, u) be in NAlg
k

and let f ∈ A∗. Then the following are 
equivalent

(i) f ∈ A•;
(ii) There is a family (In)n∈N

of subspaces of A of finite codimension such that, for each 
n ≥ 1,

(In � Ae) ⊆ In−1, and f (I0) = 0.

Moreover, if one the these conditions holds true, then we can choose

I0 = Ker(f) and In =
{
a ∈ A | a � Ae ⊆ In−1

}
, for every n > 0.

Proof. (i) ⇒ (ii). Assume f ∈ A• and set In :=
(
(Ae)⊗n � f

)⊥
. For every n ≥ 1, 

u ∈ In, z ∈ Ae, w ∈ (Ae)⊗(n−1),

(w � f) (u � z) = (z � (w � f)) (u) = ((zw) � f) (u) ∈
(
(Ae)⊗n � f

)
(u) = 0

so that u � z ∈
(
(Ae)⊗(n−1) � f

)⊥
= In−1 and hence (In � Ae) ⊆ In−1. Since (

(Ae)⊗0 � f
)

= (k � f) = kf we get that f (I0) = 0.
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(ii) ⇒ (i). Inductively one proves that 
(
In � (Ae)⊗n

)
⊆ I0 so that we have

(
(Ae)⊗n � f

)
(In) ⊆ f

(
In � (Ae)⊗n

)
⊆ f (I0) = 0.

Therefore 
(
(Ae)⊗n � f

)
⊆ I⊥n which is finite-dimensional as In has finite codimension, 

which by Proposition A.3 implies that f ∈ A•.
Let us check the last statement. For n = 0 we have that

I0 =
(
(Ae)⊗0 � f

)⊥
= (k � f)⊥ = (kf)⊥ = Ker(f),

and for n > 0 we have:

In :=
(
(Ae)⊗n � f

)⊥
=

{
a ∈ A |

(
(Ae)⊗n � f

)
(a) = 0

}
=

{
a ∈ A |

(
(Ae)⊗(n−1) � f

)
(a � Ae) = 0

}

=
{
a ∈ A | (a � Ae) ⊆

(
(Ae)⊗(n−1) � f

)⊥ }
=

{
a ∈ A | (a � Ae) ⊆ In−1

}
,

and this finishes the proof. �
Let C be a coalgebra. Then the coalgebra structure of C, through the universal prop-

erty of the tensor algebra, induces a bialgebra structure on T (C) so that it makes sense 
to use the notation ΔT(C)(z) :=

∑
z1 ⊗ z2 for any z ∈ T (C), for the comultiplication of 

T (C); see e.g. [18, Theorem 5.3.1].

Lemma A.7. Let C and D be two coalgebras with a k-linear map φ1
C,D : C → Endk (D) as 

in subsection A.1. Assume that D⊗C → D : d ⊗ c �→ d � c is a coalgebra map. Then D
is a right T (C)-module coalgebra through � and (D∗,mD∗ , uD∗) is a left T (C)-module 
algebra through � where

mD∗ (f ⊗ g) = f ∗ g (convolution product), and uD∗ (k) = kεD

for every f, g ∈ D∗, k ∈ k.

Proof. By hypothesis for every c ∈ C, d ∈ D, we have that

(d1 � c1) ⊗ (d2 � c2) = (d � c)1 ⊗ (d � c)2 ,

εD (d) εC (c) = εD (d � c) .
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We need to prove that for every z ∈ T (C), d ∈ D, we have

(d1 � z1) ⊗ (d2 � z2) = (d � z)1 ⊗ (d � z)2 ,

εD (d) εT (C) (z) = εD (d � z) .

For k ∈ k we have

d � k = φC,D (k) (d) = (kidD) (d) = kd.

Then, for every z ∈ k we have

(d1 � z1) ⊗ (d2 � z2) = (d1 � z1) ⊗ (d2 � 1) = zd1 ⊗ d2

= (zd)1 ⊗ (zd)2 = (d � z)1 ⊗ (d � z)2 ,

and

εD (d) εT (C) (z) = εD (d) z = εD (dz) = εD (d � z) .

Let c1, . . . , cn ∈ C. Let us prove, by induction on n ≥ 1, that

(d1 � z1) ⊗ (d2 � z2) = (d � z)1 ⊗ (d � z)2 and εD (d) εT (C) (z) = εD (d � z) ,

where z := c1 · · · cn is the multiplication of the ci’s, each one viewed as an element 
in T (C).

For n = 1 there is nothing to prove. Let n > 1 and assume the statement true for 
n − 1. If we set z′ := c1 · · · cn−1, then we get from the one hand that

(d1 � z1) ⊗ (d2 � z2) = (d1 � (z′cn)1) ⊗ (d2 � (z′cn)2)

= (d1 � z′1 (cn)1) ⊗ (d2 � z′2 (cn)2)

= ((d1 � z′1) � (cn)1) ⊗ ((d2 � z′2) � (cn)2)

= ((d � z′)1 � (cn)1) ⊗ ((d � z′)2 � (cn)2)

= ((d � z′) � cn)1 ⊗ ((d � z′) � cn)2
= (d � (z′cn))1 ⊗ (d � (z′cn))2 = (d � z)1 ⊗ (d � z)2

and from the other hand that

εD (d) εT (C) (z) = εD (d) εT (C) (z′cn) = εD (d) εT (C) (z′) εT (C) (cn)

= εD (d � z′) εT (C) (cn) = εD ((d � z′) � cn)

= εD (d � (z′cn)) = εD (d � z) .
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This shows the claimed formulae for every z ∈ T (C). Therefore D is a right T (C)-module 
coalgebra through �. Since (D,ΔD, εD) is a coassociative coalgebra, we know that 
(D∗,mD∗ , uD∗) is an associative algebra. Let us check that it is a left T (C)-module 
algebra through �. For all f, g ∈ D∗, z ∈ T (C), d ∈ D we have

∑[
(z1 � f) ∗ (z2 � g)

]
(d) =

∑
(z1 � f) (d1) (z2 � g) (d2)

=
∑

f (d1 � z1) g (d2 � z2)

=
∑

f
(

(d � z)1
)
g
(

(d � z)2
)

= (f ∗ g) (d � z) = (z � (f ∗ g)) (d)

so that 
∑

(z1 � f) ∗ (z2 � g) = (z � (f ∗ g)). Moreover

(z � εD) (d) = εD (d � z) = εD (d) εT (C) (z)

so that z � εD = εT (C) (z) εD. This proves that (D∗,mD∗ , uD∗) is a left T (C)-module 
algebra through �. �
Remark A.8. More generally, given a bialgebra B, the obvious contravariant functor 
(−)∗ : MB → BM, from the category of right to the category of left B-modules, is 
lax monoidal so that it induces the covariant functor (−)∗ : MB → (BM)op which is 
colax monoidal. Thus the latter functor induces a functor Coalg

(
(−)∗

)
: Coalg (MB) →

Coalg ((BM)op) ≡ (Alg (BM))op which means that (−)∗ maps right B-module coalgebras 
to left B-module algebras as in the particular case of Lemma A.7.

Appendix B. Complementary results

The following result is probably well-known but we were not able to find a reference.

Lemma B.1. Let A =
⊕

n∈N
An be an N-graded ring. Suppose that the product of two 

non-zero homogeneous elements is non-zero. Then the invertible element of A are con-
centrated in A0. Moreover, A is a domain.

Proof. Let x, y ∈ A be non-zero elements. Write x = x0 + x1 + · · · + xs, where xi ∈ Ai, 
and y = y0 + y1 + · · · + yt, where yi ∈ Ai, with xs �= 0 and yt �= 0. By assumption, 
xsyt �= 0 and it is clearly the homogeneous element with greatest degree of xy.

If xy = 1, then the only possibility is s + t = 0 whence s = 0 which means x ∈ A0.
If xy = 0, then we must have xsyt = 0, which is a contradiction. �

Corollary B.2. Given a vector space V , the group of units of the tensor algebra T (V ) is 
k \ {0} and T (V ) is a domain.
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Proof. We have that T = T (V ) is graded with respect to Tn := V ⊗n. Given x ∈ Ts and 
y ∈ Tt non-zero elements, we have that x · y = x ⊗ y which is non-zero. �
Lemma B.3. Let R be a k-algebra that is also a domain. Then T (V ) ⊗R is a domain.

Proof. Set T = T (V ). By the Axiom of Choice we can choose a totally ordered basis 
BV := {vi | i ∈ I} for V . Mimicking [10, Examples 2 and 3] we can construct an admissi-
ble graded lexicographic order on the basis BT := {vi1vi2 · · · vin | n ≥ 1 and i1, . . . , in ∈
I} ∪ {1k} of T (V ) as follows

vi1vi2 · · · vin < vj1vj2 · · · vjm

if n < m or n = m, vis = vjs for 0 ≤ s ≤ (t −1) < n and vit < vjt with respect to the total 
order on B. Let x, y ∈ T⊗R with x �= 0 and y �= 0. We can write x = bi1⊗x1+· · ·+bis⊗xs

where x1, . . . , xs ∈ R with xs �= 0, bi1 , · · · , bis ∈ BT and bi1 < · · · < bis . Analogously 
write y = bj1 ⊗ y1 + · · · + bjt ⊗ yt where y1, . . . , yt ∈ R with yt �= 0, bj1 , · · · , bjt ∈ BT

and bj1 < · · · < bjt . Since R is a domain, xsyt �= 0. Moreover, bisbjt ∈ BT whence 
(bis ⊗ xs) (bjt ⊗ yt) = bisbjt ⊗ xsyt �= 0. Note that xy = bi1bj1 ⊗ x1y1 + · · · + bisbjt ⊗
xsyt where bisbjt is the greatest of all the first entries of the summands involved. Thus 
xy �= 0. �
Corollary B.4. Given a vector space V and n ∈ N, the group of units of the n-th power 
of the tensor algebra T (V )⊗n is k \ {0} and T (V )⊗n is a domain.

Proof. By induction on n, in view of Lemma B.3, T (V )⊗n is a domain. Moreover, since 
T (V ) is a graded algebra, T (V )⊗n is graded too. By Lemma B.1, the group of units of 
T (V )⊗n is concentrated in degree zero. �
Remark B.5. Obviously Corollary B.2 follows also by Corollary B.4.

Lemma B.6. Let k be a field and consider k[X] the (bi)algebra of polynomials in one 
indeterminate X. The map ϕ : k[X] −→ k given by ϕ (Xn) := n! and extended by 
linearity does not belong to k[X]◦, the ordinary finite dual of k[X].

Proof. Assume, by contradiction, that ϕ ∈ k[X]◦. Then there exists a (finite-codi-
mensional) ideal I := 〈p (X)〉 in k[X] with ϕ (I) = 0. Consider the system of the 
equations ϕ 

(
Xip (X)

)
= 0 for i = 0, . . . , n. If we write p (X) =

∑n
j=0 pjX

j , these 
equations become 

∑n
j=0 pjϕ 

(
Xi+j

)
= 0 for i = 0, . . . , n. The matrix associated with

this system is
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T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0! 1! · · · (n− 1)! n!
1! 2! · · · n! (n + 1)!
...

...
. . .

...
...

(n− 1)! n! · · · (2n− 2)! (2n− 1)!
n! (n + 1)! · · · (2n− 1)! (2n)!

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus T =
(

(i + j)!
)

for i, j that run from 0 to n. We claim that det (T ) �= 0, or equiva-
lently that T is invertible, which is impossible since p(X) �= 0, as I is finite-codimensional. 
To show this, let us consider the n-th Pascal matrix Qn = (qij), i.e. the matrix whose 
entries are given by the relation qij :=

(
i+j
i

)
. Then:

det (T ) = det
(

(i + j)!
)

= det (i!j!qij) =
n∏

i=0
i!

n∏
j=0

j! det (Qn)

=
(
0!1! · · · (n− 1)!n!

)2
det (Qn) .

In view of [6, Discussion preceding Theorem 4], we know that det (Qn) = 1, whence 
det(T ) �= 0 and the claim is proved. �
Remark B.7. The fact that the map ϕ (Xn) = n! is not in k[X]◦ seems to be well-known, 
see [9, Section 2]. This depends on the correspondence between elements in k[X]◦ and 
linearly recursive sequences, see e.g. [12]. Since we could not find an explicit proof that 
n! defines a non-linearly recursive sequence, we included the previous lemma.
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