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Introduction

Let R ⊆ S be an extension of rings with identity element, and Z(R), Z(S) their centers. In [6,7],
Yôichi Miyashita constructs the following four exact sequences of groups

U (Z(R)) Aut(S/R) Pic(S)

U (Z(R)) ∩ U (Z(S)) U (End(S S R)) P(S/R)

U (Z(S)) InvR(S) Pic(R),
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where Aut(S/R) is the group of ring automorphisms of S that acts by identity on R , InvR(S) is the
group of invertible R-subbimodules of S , Pic(R) and Pic(S) denote respectively the Picard group of R
and S; P(S/R) is the group constructed in [7, Theorem 1.3], and wherein the notation U (X) stands
for the unit group of an unital ring X . These sequences were the key steps used by Miyashita in his
program of studying non-commutative Galois extensions using a generalized crossed product. One of
the outcomes of that program was the generalization to the non-commutative setting of the well-
known seven terms exact sequence given by Chase, Harrison and Rosenberg in [4]. He also proved
that this seven terms exact sequence is a Morita-invariant object.

This paper is the first step of our project of extending Miyashita’s program to the framework
of small additive categories. Given such a category C , one can associate to it a ring with enough
orthogonal idempotents R(C) = ⊕

p,q∈C HomC(p,q) known as Gabriel’s ring. If we think about all
small additive categories and their bimodules as additive functors from Cop × C to the category of
abelian groups, then the correspondence R establishes in fact a bi-equivalence from the 2-category of
all small additive categories to the bicategory of unital bimodules over rings with enough orthogonal
idempotents. This suggests that a most appropriate context for studying small additive categories is
that of unital bimodules over rings with enough orthogonal idempotents. Rings with local units (see
definition below) are a slight generalization of rings with enough orthogonal idempotents. In this
direction, our first task to be completed is the construction of sequences similar to those above for
extension of rings R ⊆ S with same set of local units. This will be fulfilled in this paper. It is worth
noticing that Miyashita’s construction cannot be transfered word by word to our context, since we are
dealing with several objects rather than with only one. This makes a big difference in time to make
any calculations. It is noteworthy that our methods can be seen as complete and detailed, even for
the unital case.

Notations and basic notions: In this paper a ring means an associative and not necessary unital ring.
We denote by Z(R) (resp. Z(G)) the center of a ring R (resp. of a group G), and if R is unital we will
denote by U (R) the unit group of R , that is, the set of all invertible elements of R .

Let R be a ring with a fixed set of local units E. This means that E is a set of idempotent elements
such that for every finite subset {r1, . . . , rn} of R , there exists an element e ∈ E such that

eri = rie = ri, for i = 1, . . . ,n,

see [1,2]. We will use the notation

Unit{r1, . . . , rn} := {e ∈ E | eri = rie = ri, for i = 1,2, . . . ,n}.
A right R-module X is said to be unital provided one of the following equivalent conditions hold

(i) X ⊗R R ∼= X via the right R-action of X ,
(ii) X R := {∑finite xiri | ri ∈ R, xi ∈ X} = X ,

(iii) for every element x ∈ X , there exists an element e ∈ E such that xe = x.

Left unital R-modules are defined analogously. A unital R-bimodule is an R-bimodule which is
left and right unital. Obviously any right R-module X contains X R as the largest right unital R-
submodule. In all what follows we consider an extension of rings with local units R ⊆ S (having
the same set of local units E). Observe that since R and S have the same set of local units, any
right (resp. left) unital S-module can be considered as right (resp. left) unital R-module by restricting
scalars. Furthermore, for any right S-module X , we have X R = X S . Given two subsets W and V of S ,
we denote by

W V =
{ ∑

finite

wi vi ∈ S
∣∣∣ wi ∈ W , vi ∈ V

}
.
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1. The first exact sequence of groups

Let R ⊆ S be an extension of rings with local units. We consider the set of all unital R-
subbimodules of S as a multiplicative monoid with the operation (X, X ′) 	→ X X ′. Denote by InvR(S)

the set of invertible unital R-subbimodules of S . That is, X ∈ InvR(S) provided that X is a unital R-
subbimodule of S and there exists another R-subbimodule Y of S such that XY = Y X = R . Clearly,
InvR(S) is the unit group of the monoid of all R-subbimodules of S whose neutral element is R .

1.1. Lemma. Let X be an element of the group InvR(S) with inverse Y . Then there are two R-bilinear isomor-
phisms

X ⊗R Y
∼=

R Y ⊗R X .
∼=

In particular, the maps

S ⊗R X
ml

S,

s ⊗R x sx

and

X ⊗R S
mr

S,

x ⊗R s xs

are isomorphisms of (S, R) and (R, S)-bimodules, respectively.

Proof. By [3, Theorem 2.2] the first isomorphism is given by the map ς : R −→ X ⊗R Y which sends
r 	−→ ∑

(r) x(r) ⊗R y(r) , where r = ∑
(r) x(r) y(r) ∈ R = XY . Similarly we have that R ∼= Y ⊗R X .

The inverse map of mr is defined as follows: Given an element s ∈ S , with unit e, we set m−1
r (s) =∑

(e) x(e) ⊗R y(e)s ∈ X ⊗R S , where e = ∑
(e) x(e) y(e) ∈ XY . If f is another unit for s, then we can

consider h ∈ Unit{e, f } and we have

∑
(h)

x(h) ⊗R y(h)s =
∑
(h)

x(h) ⊗R y(h)es

=
∑

(h),(e)

x(h) ⊗R y(h)x(e) y(e)s

=
∑

(h),(e)

x(h) y(h)x(e) ⊗R y(e)s

=
∑
(e)

hx(e) ⊗R y(e)s,
∑
(e)

x(e) ⊗R y(e)h =
∑
(e)

hx(e) ⊗R y(e)

=
∑
(e)

x(e) ⊗R y(e)hs, s = hs = sh

=
∑
(e)

x(e) ⊗R y(e)s.
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By the same way, we obtain the equality
∑

(h) x(h) ⊗R y(h)s = ∑
( f ) x( f ) ⊗R y( f )s. Whence∑

(e) x(e) ⊗R y(e)s = ∑
( f ) x( f ) ⊗R y( f )s, and m−1

r is a well-defined inverse map of mr . Similarly, we
show that ml is an isomorphism of unital (S, R)-bimodules. �

The Picard group Pic(R) of a ring with local units R is defined to be the set of isomorphism
classes [P ] where P is a unital R-bimodule such that there exists a unital R-bimodule Q with R-
bilinear isomorphisms

Q ⊗R P
r

∼= R P ⊗R Q .
l

∼= (1)

These isomorphisms define in fact an auto-equivalence on the category of unital right R-modules via
the tensor product functors −⊗R P and −⊗R Q and the natural isomorphisms −⊗R r : −⊗R Q ⊗R P ∼=
id, − ⊗R l : − ⊗R P ⊗R Q ∼= id. The naturality of these isomorphisms implies in particular that

Q ⊗R P ⊗R r = r ⊗R Q ⊗R P , P ⊗R Q ⊗R l = l ⊗R P ⊗R Q .

These equalities clearly imply the following ones

(P ⊗R r) ◦ (P ⊗R Q ⊗R l ⊗R P ) = (l ⊗R P ) ◦ (P ⊗R r ⊗R Q ⊗R P ), (2)

(r ⊗R Q ) ◦ (Q ⊗R l ⊗R P ⊗R Q ) = (Q ⊗R l) ◦ (r ⊗R Q ⊗R P ⊗R Q ). (3)

Furthermore, we can deduce from [5, Proposition 5.1] that the right (resp. left) unital R-module e P
(resp. Pe) is finitely generated and projective, for every unit e ∈ E. Thus, for every right unital R-
module N , there is a natural isomorphism

ΘN : N ⊗R Q −→ HomR(P , N)R.

Explicitly Θ− is given by the following composition:

ΘN : N ⊗R Q
η′

N⊗ Q
HomR(P , N ⊗R Q ⊗R P )R

HomR (P ,ξN )
HomR(P , N)R,

where η′− is the unit of the adjunction − ⊗R P � HomR(P ,−)R , and

ξN = (N ⊗R r) ◦ (N ⊗R Q ⊗R l ⊗R P ) ◦ (
N ⊗R r−1 ⊗R Q ⊗R P

)
is the counit of the adjunction − ⊗R P � − ⊗R Q . Henceforth, for every n ∈ N , q ∈ Q , we have

ΘN(n ⊗R q)(p) = (N ⊗R r) ◦ (N ⊗R Q ⊗R l ⊗R P )

◦ (
N ⊗R r−1 ⊗R Q ⊗R P

)
(n ⊗R e ⊗R q ⊗R p), (4)

with an arbitrary element p ∈ P and a common unit e ∈ Unit{p,n,q}. Note that the Morita context
corresponding, up to isomorphism, to our auto-equivalence of unital right R-modules is given by
l : P ⊗R Q → R and r̃ : Q ⊗R P → R , where

r̃ = r ◦ (Q ⊗R l ⊗R P ) ◦ (
r−1 ⊗R Q ⊗R P

)
.
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1.2. Remark. An element [P ] ∈ Pic(R) is not necessarily represented by a finitely generated right (or
left) module P R (or R P ). It is in fact a direct limit of finitely generated and projective right modules
of the form Pe, e ∈ E. This of course marks a big difference between the study of the Picard group of
a ring with unit and a ring with local units.

The multiplication in Pic(R) is defined by [P ][P ′] = [P ⊗R P ′] and the neutral element is [R]. By
Lemma 1.1, we have a morphism of groups

InvR(S)
[−]

Pic(R).

Now, define AutS−R(S) to be the unit group of the monoid HomS–R(S, S) of all S–R-bilinear endomor-
phisms of S . In other words the set of all S–R-bilinear automorphisms of S . In the unital case one can
easily check that this group is isomorphic to the group of units of the subring of R-invariant elements
of S . Here, one can show that for every idempotent element e ∈ R and every element λ ∈ Aut(S S R),
we have

λ(e)λ−1(e) = e = λ−1(e)λ(e). (5)

That is, λ(e) belongs to the unit group of the unital subring of (eRe)-invariant elements of eSe.

1.3. Lemma. Let R ⊆ S be a ring extension with the same set of local units. Then the map

Aut(S S R)
D

InvR(S),

λ λ−1(R)

is a homomorphism of groups with kernel in the center sub-group of Aut(S S R), i.e.,

Ker(D) ⊆ Z
(
Aut(S S R)

)
.

Proof. For every λ ∈ Aut(S S R), we have

λ(R)λ−1(R) = λ−1(λ(R)R
) = λ−1 ◦ λ(R) = R.

Similarly, we get λ−1(R)λ(R) = R . Therefore, λ−1(R) ∈ InvR(S). Thus D is a well-defined map. Now,
we have D(1) = R (here 1 denotes the neutral element of the group Aut(S S R)), and for every pair of
elements λ and γ in Aut(S S R), we have

D(λ ◦ γ ) = γ −1(λ−1(R)
)

= γ −1(λ−1(R)R
)

= λ−1(R)γ −1(R)

= D(λ)D(γ ).

Thus D is a morphism of groups. Moreover, if λ ∈ Ker(D), then λ(R) = R . So let γ be an arbitrary
element of Aut(S S R), we have
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λ ◦ γ (s) = λ
(
γ (se)

)
, es = se = s, e ∈ Unit{s}

= γ (s)λ(e), λ(e) ∈ R

= γ
(
sλ(e)

)
= γ λ(se) = γ ◦ λ(s),

for every element s ∈ S . So we have λ◦γ = γ ◦λ, for every element γ ∈ Aut(S S R). Whence, Ker(D) ⊆
Z(Aut(S S R)). �
1.4. Proposition. Let R ⊆ S be a ring extension with the same set of local units E. Then we have a commutative
diagram of groups with exact rows

1 Ker(D) Aut(S S R)
D

InvR(S)
[−]

Pic(R)

1 Z(Aut(S S R)) Aut(S S R).

Moreover, we have

Ker(D) = {
λ ∈ Aut(S S R)

∣∣ λ(e) ∈ U
(
Z(eRe)

)
, for every element e ∈ E

}
, (6)

and so Ker(D) ∼= Aut(R R R) as groups, where the later is the group of all R-bilinear automorphisms of R.

Proof. Let us first show that Ker([−]) = Im(D). So given X ∈ InvR(S) such that [X] = [R], we know
that there is an R-bilinear isomorphism ϕ : X → R . Set

λ : S
m−1

l
S ⊗R X

S⊗Rϕ
S ⊗R R ∼= S,

where ml is the isomorphism of Lemma 1.1. By definition λ is an S–R-bilinear automorphism of S .
We claim that λ−1(R) = X . To this end, consider r ∈ R and put r = ∑

(r) y(r)x(r) ∈ Y X , where Y is the
inverse of X in InvR(S). So λ(r) = ∑

(r) y(r)ϕ(x(r)), and we have

λ−1(r) = ml ◦
(

S ⊗R ϕ−1)(r ⊗R e), where r = er = re, e ∈ E

= ml
(
r ⊗R ϕ−1(e)

)
= rϕ−1(e) ∈ X,

and this shows that λ−1(R) ⊆ X . Conversely, given an element x ∈ X , we have ϕ(x) ∈ R , and

λ−1(ϕ(x)
) = ml ◦

(
ϕ(x) ⊗R ϕ−1(e)

)
, where ex = xe = x, e ∈ E

= ϕ(x)ϕ−1(e)

= ϕ−1(ϕ(x)e
) = ϕ−1 ◦ ϕ(x) = x,

that is, X ⊆ λ−1(R) which completes the proof of the claim. This shows that Ker([−]) ⊆ Im(D).
Conversely, let X ∈ Im(D), that is, X = λ−1(R) for some λ ∈ Aut(S S R). The restriction of λ to the
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R-subbimodule R gives an R-bilinear isomorphism ϕ = (λ−1)|R : R → X . This means that [X] = [R] in
Pic(R). Therefore, Im(D) ⊆ Ker([−]), and this proves the stated exactness. The first statement is then
deduced from Lemma 1.3.

Now, let λ ∈ Aut(S S R) such that D(λ) = R , that is, λ−1(R) = R . So we have λ(R) = R , and that
λ(e) ∈ R for every unit e ∈ E. Given an arbitrary element r ∈ R and e ∈ Unit{r}, we have λ(r) = rλ(e) =
λ(e)r. Hence, λ(e) ∈ Z(eRe), for every element e ∈ E. By Eq. (5), we get that λ(e) ∈ U (Z(eRe)), for
every element e ∈ E. Conversely, if λ ∈ Aut(S S R) such that λ(e) ∈ U (Z(eRe)), for every element e ∈ E,
then clearly we have λ(R) ⊆ R . The reciprocal inclusion also holds since by Eq. (5), λ−1(r) = rλ−1(e) ∈
R , for every r ∈ R and e ∈ Unit{r}. Thus λ(R) = R , and the stated equality is proved.

Finally, the isomorphism Ker(D) ∼= Aut(R R R) is given by the map

Λ : Aut(R R R) Ker (D),

γ
[
s 	→ sγ (e)

]
,

where e ∈ Unit{s}, whose inverse is given as follows. Using (6), we set for every λ ∈ Ker (D), Λ−1(λ):
r 	→ rλ(e)(= λ(e)r) ∈ Aut(R R R), where e ∈ Unit{r}. �
2. The second exact sequence of groups

Let us denote by AutR-rings(S) the unit group of the monoid EndR-rings(S) of all ring endomor-
phisms which act by identity on R . Given an element φ ∈ AutR-rings(S) and unital S-bimodule M , we
denote by Mφ the unital S-bimodule whose underlying left S-module coincides with S M and its right
S-module structure is given by restriction of scalars using φ. That is, M with the following S-biaction

t.mφ = (tm)φ, and mφ.t = (
mφ(t)

)
φ
, for every mφ ∈ Mφ, t ∈ S.

2.1. Lemma. Let R ⊆ S be a ring extension with the same set of local units E. Then there is a morphism of
groups

AutR-rings(S)
[S−]

Pic(S),

φ Sφ.

Proof. It is clear that [S1] = [S], where 1 is the neutral element of the group AutR-rings(S). Now, if
φ,ψ ∈ AutR-rings(S), then the identity map Sφψ → (Sφ)ψ sending sφψ 	→ (sφ)ψ defines an S-bilinear
isomorphism. Namely, this map is clearly left S-linear, since both bimodules have the same underlying
left S-module. So we need to check the right S-linearity. Given an element t ∈ S , we have

sφψ .t = sφψ(t) = sφ.ψ(t) = (sφ)ψ .t,

for every element sφψ ∈ Sφψ . This shows that [Sφψ ] = [(Sφ)ψ ] in the group Pic(S). On the other
hand, we know that Sφ is a right unital S-module, thus Sφ

∼= Sφ ⊗S S . Applying the restricting
scalars functor (−)ψ , we obtain (Sφ)ψ ∼= (Sφ ⊗S S)ψ . We then get [Sφψ ] = [Sφ ⊗S Sψ ], since the map
(Sφ ⊗S S)ψ → Sφ ⊗S Sψ sending (sφ ⊗S t)ψ 	→ sφ ⊗S tψ is an S-bilinear isomorphism. We then con-
clude that the stated map is a morphism of groups. �
2.2. Lemma. Let R ⊆ S be a ring extension with the same set of local units E. Then there is a morphism of
groups
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Aut(S S R)
(̂−)

AutR-rings(S),

λ λ̂,

where λ̂ : S −→ S sends s 	−→ λ−1(e)sλ(e), for e ∈ Unit{s}.

Proof. Let us first check that λ̂ is a well-defined map. Consider f , e ∈ Unit{s} two units for a fixed
element s, and let h ∈ Unit{e, f }. Then, we have

λ−1(h)sλ(h) = λ−1(h)eseλ(h)

= λ−1(he)sλ(eh)

= λ−1(e)sλ(e).

Similarly, we get λ−1(h)sλ(h) = λ−1( f )sλ( f ). Thus λ̂ is independent from the chosen unit. This map
is clearly additive, and for every pair of elements s, t ∈ S , we have

λ̂(st) = λ−1(e)stλ(e), e ∈ Unit{s, t}
= λ−1(e)setλ(e)

(5)= λ−1(e)sλ(e)λ−1(e)tλ(e)

= λ̂(s)̂λ(t).

This shows that λ̂ is multiplicative. Now, given an element r ∈ R , we have

λ̂(r) = λ−1(e)rλ(e), e ∈ Unit{r}
= λ−1(er)λ(e)

= λ−1(r)λ(e)

= λλ−1(re) = λλ−1(r) = r.

We have proved that λ̂ ∈ AutR-rings(S). It is clear that 1̂ = 1. Given a pair of elements γ ,λ ∈ Aut(S S R),
we have

̂λ ◦ γ (s) = (λ ◦ γ )−1(e)s(λ ◦ γ )(e), e ∈ Unit{s}
= γ −1(λ−1(e)

)
sλ

(
γ (e)

)
= λ−1(e)γ −1(e)sγ (e)λ(e)

= λ−1(e)γ̂ (s)λ(e)

= λ̂ ◦ γ̂ (s).

Therefore, (̂−) is a morphism of groups. �
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2.3. Proposition. Let R ⊆ S be a ring extension with the same set of local units E. Then there is an exact
sequence of groups

1 Ker((̂−)) Aut(S S R)
(̂−)

AutR-rings(S)
[S−]

Pic(S),

where

Ker
(
(̂−)

) = {
λ ∈ Aut(S S R)

∣∣ λ(e) ∈ U
(
Z(eSe)

)
, for every idempotent e ∈ E

}
.

In particular Ker((̂−)) = Aut(S S S) the group of all S-bilinear automorphisms of S.

Proof. Let φ ∈ AutR-rings(S) such that [Sφ] = [S] in the Picard group Pic(S). This implies that there
exists an S-bilinear isomorphism ω : S S S → S (Sφ)S . In particular, this map satisfies the following
equation

ω(tsu) = tω(s)φ(u), for every elements s, t, u ∈ S.

Thus, the inverse of ω satisfies

ω−1(tsφu) = ω−1((tsφ(u)
)
φ

) = tω−1(sφ)u, for every elements s, t, u ∈ S. (7)

Since φ acts by identity on R , the isomorphism ω induces an S–R-bilinear isomorphism λ : S S R →
S S R sending s 	→ ω(s). Given s ∈ S with unit e ∈ Unit{s}, we have

λ̂(s) = λ−1(e)sλ(e)

= ω−1(e)sω(e)

(7)= ω−1(eφ(s)
)
ω(e)

= ω
(
ω−1(eφ(s)

)
e
)

= ωω−1(φ(e)φ(s)φ(e)
) = φ(ese) = φ(s),

that is, λ̂ = φ, and this shows that Ker([S−]) ⊆ Im((̂−)).
Conversely, given λ ∈ Aut(S S R), consider the unital S-bimodule S (S λ̂)S . Define a map ω : S(S λ̂)S →

S S S by sending s 	→ λ−1(s). This is clearly a left S-linear map. On the other hand, if s, t ∈ S with
e ∈ Unit{s, t} are given, then we have

ω
(
ŝλ(t)

) = λ−1(sλ−1(e)tλ(e)
)

= λ−1(λ−1(s)λ(t)
)

= λ−1(s)λ−1(λ(t)
)

= λ−1(s)t = ω(s)t,

which implies that ω is also right S-linear. Therefore, [S λ̂] = [S] in Pic(S), for every λ ∈ Aut(S S R),
and this proves that the stated sequence is exact.

Now, let λ ∈ Ker((̂−)). Then for every s ∈ S , we have λ̂(s) = s. By Eq. (5), we thus get λ(e)s = sλ(e),
for every element s ∈ S with e ∈ Unit{s}. In particular, we have
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eteλ(e) = λ(e)ete, for every e ∈ E and t ∈ S.

Therefore, λ(e) ∈ U (Z(eSe)), for every e ∈ E. Conversely, consider λ ∈ Aut(S S R) such that λ(e) ∈
U (Z(eSe)), for every e ∈ E. Then, we have

λ̂(s) = λ−1(e)sλ(e) = λ−1(e)λ(e)s = es = s,

where the third equality is derived from Eq. (5), and thus

Ker
(
(̂−)

) = {
λ ∈ Aut(S S R)

∣∣ λ(e) ∈ U
(
Z(eSe)

)
, for every idempotent e ∈ E

}
.

The last stated equality is an easy consequence of the previous one. �
3. The group P(S/R)

Let R ⊆ S be an extension of rings with the same set of local units E. Given a unital S-bimodule X ,
we can consider it obviously as a unital R-bimodule. Let P be a unital R-bimodule and X a unital
S-bimodule together with an R-bilinear map φ : P → X such that

P ⊗R S
φr

X,

p ⊗R s φ(p)s,

S ⊗R P
φl

X,

t ⊗R q tφ(q)

(8)

are isomorphisms, respectively, of (R, S)-bimodules and (S, R)-bimodules. We will denote this situa-
tion by P [φ] X . These objects define in fact a category which we denote by M(S/R) and given
by the following data:

Objects: They are those P [φ] X described above.

Morphisms: They are pairs (α,β) : (P [φ] X ) → (P ′ [φ′] X ′) where α : P → P ′ and

β : X → X ′ are, respectively, R-bilinear and S-bilinear map, rendering commutative the fol-
lowing diagram

P X

P ′ X ′.

φ

α β

φ′

The composition operation and the identity morphisms are the obvious ones. This category is in
fact a monoidal category with multiplication defined as follows: Given two objects P [φ] X and

Q [ψ] Y in M(S/R), one can define the map

χ : P ⊗R Q
φ⊗Rψ

X ⊗R Y
ωX,Y

X ⊗S Y ,

where ω−,− is the obvious natural transformation. The map χ is clearly R-bilinear. By definition, we
have a chain of isomorphisms
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P ⊗R Q ⊗R S

χ r

P⊗Rψr
P ⊗R Y

P⊗Rψ l
−1

P ⊗R S ⊗R Q

∼=

P ⊗R S ⊗S S ⊗R Q

φr⊗Sψ l

X ⊗S Y ,

whose composition is exactly χ r . Similarly we show that χ l is also an isomorphism. This proves

that (P ⊗R Q ) [χ ] (X ⊗S Y ) is again an object of the category M(S/R) which we denote by

(P ⊗R Q ) [φ]·[ψ] (X ⊗S Y ).

Now, given two morphisms (α,β) : (P [φ] X ) → (P ′ [φ′] X ′) and (μ,ν) : (Q [ψ] Y )

→ (Q ′ [ψ ′] Y ′) in M(S/R), we have a morphism

(P ⊗R Q ) [φ]·[ψ]

(α⊗Rμ,β⊗Rν)

(X ⊗S Y )

(P ′ ⊗R Q ′) [φ′]·[ψ ′] (X ′ ⊗S Y ′)

in M(S/R). The unit object with respect to this multiplication is proportioned by the object

R [ι] S , where ι is the inclusion R ⊆ S . The axioms of a monoidal category are easily veri-
fied for M(S/R) since it was built upon the monoidal categories of unital R-bimodules and unital
S-bimodules.

3.1. Lemma. Let R and S be as above, and consider a unital R-bimodule P and a unital S-bimodule X with an
R-bilinear map φ : P → X with associated maps φr and φl as in (8). If [P ] ∈ Pic(R) and [X] ∈ Pic(S), then
the following are equivalent

(i) φr : P ⊗R S → X is an R–S-bilinear isomorphism;
(ii) φl : S ⊗R P → X is an S–R-bilinear isomorphism.

Moreover, φ is an injective map provided one of the conditions (i) or (ii) holds.

Proof. We only prove (i) ⇒ (ii), the reciprocal implication follows similarly. So assume that φr is an
isomorphism, since [X] ∈ Pic(S), we have the following chain of isomorphisms:

S

κ

∼=
SHomS(X, X)

∼=
SHomS(P ⊗R S, X)

∼=
SHomR(P ,HomR(S, X))

SHomR(P ,HomR(S, X)R)

∼=

SHomR(P , X),
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whose composition κ is given explicitly by κ(s) : P → X sending p 	→ sφ(p), for every element s ∈ S .
Now, since [P ] ∈ Pic(R), we know that e P is a finitely generated and projective right unital R-module,
for every e ∈ E. Therefore, the map

υ : SHomR(P , X) ⊗R P −→ X,
(
sf ⊗R p 	−→ sf (p)

)

is an S–R-bilinear isomorphism. This implies that φl = υ ◦ (κ ⊗R P ) is also an S–R-bilinear isomor-
phism. The rest of the proof is clear since P R and R P are flat modules. �
3.2. Definition. Let R ⊆ S be an extension of rings with the same set of local units, and consider its
associated monoidal category M(S/R). Let us denote by S(S/R) the skeleton of M(S/R) (i.e., the set
of all isomorphism classes). We consider S(S/R) as a monoid with multiplication and unit induced
by the monoidal structure of M(S/R). We define P(S/R) to be the submonoid of S(S/R), consisting

entirely of classes [P ] [φ] [X], where [P ] ∈ Pic(R) and [X] ∈ Pic(S). By Lemma 3.1, the class of

an object P [φ] X belongs to P(S/R) provided only φl (or φr ) is an isomorphism, see Eq. (8).

3.3. Proposition. Let R ⊆ S be an extension of rings with the same set of local units, and consider P(S/R) as
in Definition 3.2. Then P(S/R) is the unit group of the monoid S(S/R).

Proof. It is clear from definitions that if P(S/R) inherits a group structure from S(S/R), then it coin-
cides with the whole unit group of S(S/R). Thus we only need to show that P(S/R) is a group with
multiplication induced from S(S/R). Since P(S/R) is clearly stable under multiplication and contains

the neutral element [R] [ι] [S], it suffices to show that each element [P ] [φ] [X] has an

inverse in P(S/R). To this end set P∗ = HomR(P , R) and X∗ = HomS (X, S) which we consider canon-
ically as an R-bimodule and S-bimodule, respectively. Let [Q ] = [P ]−1 in Pic(R) and [Y ] = [X]−1 in
Pic(S), we know by Eq. (4) that there exist natural isomorphisms Θ− : −⊗R Q

∼=−→ HomR(P ,−)R and
Γ : − ⊗S Y

∼=−→ HomS (X,−)S . In particular, we have P∗R ∼= Q as unital R-bimodules and X∗ S ∼= Y as

unital S-bimodules. Define Q [ψ] Y an object of M(S/R), where ψ is given by the following

composition of R-bilinear maps

ψ : Q
∼=

R ⊗R Q
ΘR

∼= P∗R
φ∗

X∗R = X∗ S
Γ −1

S

∼=
Y ,

where φ∗ is the restriction of the map

P∗ φ∗
X∗,

σ (σ ⊗R S) ◦ (φr)
−1.

In this way, we have a chain of S–R-bilinear isomorphisms
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S ⊗R Q

ψr

ΘS
HomR(P , S)R

∼=
HomR(P ,HomS(S, S)R)R

∼=

HomS(P ⊗R S, S)R

∼=

HomS(X, S)R

HomS(X, S)S

Γ −1
S

Y

whose composition coincides exactly with ψr , since we have ΘS (s ⊗R q) = sΘR(e ⊗R q) for ev-

ery element q ∈ Q and s ∈ S with unit e ∈ R . We claim that [Q ] [ψ] [Y ] is the inverse of

[P ] [φ] [X] in P(S/R). For this we only need to show that the following diagram is commuta-

tive

P ⊗R Q

l ∼=

φ⊗Rψ
X ⊗R Y

ωX,Y
X ⊗S Y

l′∼=

R [ι] S,

where l, l′ are defined as in Eq. (1). So let p ∈ P and q ∈ Q both with unit e ∈ E, and set

r−1(e) =
∑

q(e) ⊗R p(e), l′−1(e) =
∑

x(e) ⊗S y(e),

and for each of those x(e) , we set φr
−1(x(e)) = ∑

px(e) ⊗R sx(e) . Computing the image, we get

l′ ◦ ωX,Y ◦ (φ ⊗R ψ)(p ⊗R q) =
∑

l′
(
φ(p) ⊗S er

(
q(e)l

(
p(e) ⊗R q

) ⊗R px(e)

)
sx(e) y(e)

)
=

∑
l′
(
φ(p)er

(
q(e)l

(
p(e) ⊗R q

) ⊗R px(e)

)
sx(e) ⊗S y(e)

)
.

On the other hand, we have

φ(p)er
(
q(e)l

(
p(e) ⊗R q

) ⊗R px(e)

) = φ
(

per
(
q(e)l

(
p(e) ⊗R q

) ⊗R px(e)

))
= φ

(
pr

(
q(e)l

(
p(e) ⊗R q

) ⊗R px(e)

))
= φ ◦ (P ⊗R r) ◦ (P ⊗R Q ⊗R l ⊗R P )

◦(P ⊗R r−1 ⊗R Q ⊗R P
)
(p ⊗R e ⊗R q ⊗R px(e) )
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(2)= φ ◦ (l ⊗R P )(p ⊗R q ⊗R px(e) )

= l(p ⊗R q)φ(px(e) ),

substituting this in the last computation, we get

l′ ◦ ωX,Y ◦ (φ ⊗R ψ)(p ⊗R q) =
∑

l′
(
l(p ⊗R q)φ(px(e) )sx(e) ⊗S y(e)

)
=

∑
l′
(
l(p ⊗R q)φr(px(e) ⊗R sx(e) ) ⊗S y(e)

)
=

∑
l′
(
l(p ⊗R q)φr ◦ φ−1

r (x(e)) ⊗S y(e)
)

=
∑

l′
(
l(p ⊗R q)x(e) ⊗S y(e)

)
=

∑
l(p ⊗R q)l′(x(e) ⊗S y(e))

= l(p ⊗R q)e = l(p ⊗R q).

This shows that the above diagram is actually commutative, and this finishes the proof. �
3.4. Remark. In contrast with the unital case, and as we have seen in this section, the construction
of the group P(S/R) is a complicated task. This is due to the fact that the inverse of an element
[P ] ∈ Pic(R) (resp. [X] ∈ Pic(S)) is not represented by the right dual R-module P∗ (resp. X∗). Our
approach can be seen also as a complete construction even in the case of extension of rings with
unit.

4. The third exact sequence of groups

Let R ⊆ S be an extension of rings with a same set of local units, and P(S/R) the associated group
of Section 3. Consider the following maps

D′ : InvR(S) −→ P(S/R)
(

X 	−→ ([X] [⊆] [S])),
and

Or : P(S/R) −→ Pic(S)
(([P ] [φ] [X]) 	−→ [X]),

Ol : P(S/R) −→ Pic(R)
(([P ] [φ] [X]) 	−→ [P ]).

It is not hard to see that these maps are in fact morphisms of groups. Furthermore, we have

4.1. Proposition. Let R ⊆ S be an extension of rings with the same set of local units. Then there is an exact
sequence of groups:

1 Ker(D) ∩ Ker (̂−) Ker (̂−)
D/

InvR(S)
D′

P(S/R)
Or

Pic(S),

where (̂−) is the map of Lemma 2.2, and D/ is the restriction of the map D defined in Lemma 1.3.
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Proof. Let X ∈ InvR(S) such that ([X] [⊆] [S]) = ([R] [ι] [S]). That is, there exist two

isomorphisms γ : X → R and λ : S → S , R-bilinear and S-bilinear, respectively, rendering commuta-
tive the following diagram

X

γ ∼=

⊆ S

λ∼=

R ι S.

Thus γ (X) = λ(X) = R . So we have λ ∈ Aut(S S R) with λ−1(R) = X . Since λ is S-bilinear, we have
λ ∈ Ker (̂−). We then get Ker(D′) ⊆ Im(D/). Conversely, let X ∈ Im(D/), that is, there exists by Propo-
sition 2.3 a morphism λ ∈ Aut(S S S ) such that X = λ−1(R). This means that the following diagram

X

λ

⊆ S

λ

R ι S

is commutative. Whence, ([X] [⊆] [S]) = ([R] [ι] [S]), and the converse inclusion is ful-

filled. Now, let ([P ] [φ] [X]) ∈ P(S/R) such that Or([P ] [φ] [X]) = [X] = [S]. Thus X ∼= S

as an S-bimodule. Denote by V the copy of φ(P ) in S . Since by Lemma 3.1 φ is injective, we have

[V ] = [P ] in Pic(R), and so V ∈ InvR(S). Hence D′(V ) = ([V ] [⊆] [S]) = ([P ] [φ] [X]).

This shows that Im(D′) ⊆ Ker(Or). The converse inclusion is easy to check. �
5. The fourth exact sequence of groups

Let R ⊆ S be an extension of rings with the same set of local units, and consider the associated
groups AutR-rings(S) and P(S/R) as were defined in Sections 2 and 3, respectively. Define the map

E : AutR-rings(S) −→ P(S/R)
(
γ 	−→ ([R] [ιγ ] [Sγ ])),

where Sγ is the unital S-bimodule of Section 2. That is, Sγ is the S-bimodule with underlying abelian
group S and with biactions:

s′tγ s = (
stγ (s)

)
γ
, for every tγ ∈ Sγ , and s, s′ ∈ S.

The map ιγ is the canonical inclusion of R-bimodules. Using the isomorphisms stated in the proof of
Lemma 2.1, we can easily check that the map E is in fact a morphism of groups.

5.1. Proposition. Let R ⊆ S be an extension of rings with a same set of local units. Then there is an exact
sequence of groups

1 Ker(D) ∩ Ker (̂−) Ker(D)
(̂−)/

AutR-rings(S)
E

P(S/R)
Ol

Pic(R),

where (̂−)/ is the restriction of the map (̂−) defined in Lemma 2.2.
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Proof. Let γ ∈ AutR-rings(S) such that ([R] [ιγ ] [Sγ ]) = ([R] [ι] [S]) in the group P(S/R).

So we have a commutative diagram

R

∼=

ι S

λ∼=

R ιγ Sγ ,

where λ is an isomorphism of S-bimodules. The commutativity of this diagram ensures that λ−1(R) =
R . Now, given s ∈ S with unit e, we have

λ(es) = λ(e)γ (s) = sλ(e), in the bimodule Sγ .

Hence γ (s) = λ−1(e)sλ(e). Therefore, γ = λ̂ with λ−1(R) = R . That is, γ ∈ Im((̂−)/), and so Ker(E) ⊆
Im((̂−)/). Conversely, if γ ∈ AutR-rings(S) with γ = λ̂, for some λ ∈ Ker(D), i.e. λ ∈ Aut(S S R) such that
λ−1(R) = R . Then one can easily see that

R

λ ∼=

ι S

γ∼=

R ιγ Sγ ,

is a commutative diagram, and thus ([R] [ι] [S]) = ([R] [ιγ ] [Sγ ]) in P(S/R). This shows

the exactness at the third term of the stated sequence.

Now, let [P ] [φ] [X] ∈ P(S/R) such that [P ] = [R]. So there is an R-bilinear isomorphism

f : R → P , which leads to the following R–S-bilinear and S–R-bilinear isomorphisms

α : S
∼=

R ⊗R S
f ⊗R S

P ⊗R S
φr

X,

β : S
∼=

S ⊗R R
S⊗R f

S ⊗R P
φl

X .

If we set γ := β−1 ◦ α : S → S , then by definitions we get

γ (s)φ
(

f (e)
) = φ

(
f (e)

)
s, for every s ∈ S with unit e. (9)

For every pair of elements s, t ∈ S with a common unit e, we obtain

α(ts) = φ
(

f (e)
)
ts

(9)= γ (t)φ
(

f (e)
)
s

(9)= γ (t)γ (s)φ
(

f (e)
)
, e ∈ Unit

{
γ (t), γ (s)

}
, since γ is R-linear

= φl
(
γ (t)γ (s) ⊗R f (e)

)
= β

(
γ (t)γ (s)

)
,
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1

Aut(R R R ) AutR-rings(S)

E

[S−]

1 Pic(S)

Aut(S S S ) ∩ Aut(R R R ) Aut(S S R )

D

(̂−)

P(S/R)

Ol

Or

1 Pic(R)

Aut(S S S ) InvR (S)

[−]

D′

1

Fig. 1. R ⊆ S is an extension of rings with same set of local units.

whence γ (ts) = γ (t)γ (s). This implies that γ ∈ AutR-rings(S), since γ is R-bilinear. Using again Eq. (9),
we can easily check that the map β : Sγ → S is in fact an S-bilinear isomorphism. Furthermore, the
diagram

R

f ∼=

ιγ Sγ

β∼=

P φ X,

is commutative. This shows that E(γ ) = ([P ] [φ] [X]). Therefore, Ker(Ol) ⊆ Im(E). The recipro-

cal inclusion is clear. This completes the exactness of the stated sequence, since the exactness in the
second term is obvious. �

Fig. 1 displays the four exact sequences of groups associated to the extension R ⊆ S of rings with
the same set of local units.
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