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J. Gómez-Torrecillas

Departamento de Algebra, Facultad de Ciencias, Universidad de Granada,
E18071 Granada, Spain

and

L. EL Kaoutit
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de Tétouan, B.P. 2121, Tétouan, Morocco

Communicated by Michel Broué
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INTRODUCTION

Hodges and Levasseur described the primitive spectra of quantized coor-
dinate rings of SL3 [14], and then of SLn [15]. These results established a
close connection between primitive ideals, torus action, and Poisson geom-
etry. The proofs relied on explicit computations involving generators and
relations.
Subsequently, Joseph generalized the Hodges–Levasseur program to

semisimple algebraic quantum groups [17]. Hodges et al. then expanded
Joseph’s work to include certain multiparameter deformations [16]. These
papers rely less on concrete calculations and more on deeper, more
conceptual, techniques.
It is a natural and important question, then, as to how the preceding

theory might apply to other algebras, particularly other algebras arising in
the study of quantum groups.
Goodearl and Letzter established parallel results for certain iterated skew

polynomial rings [13], with application to quantum Weyl algebras and to
some quantum coordinate rings.
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There have also been several papers (including [22–26]) by S. Q. Oh and
collaborators that further the above program for certain other quantum
coordinate rings.
The present paper fits into the above framework by, first, extending the

work of Oh on primitive spectra [22, 26] to the prime spectra of the iterated
Ore extensions introduced in [23], and second, providing a more detailed
version of the Goodearl–Letzter study for these cases [13].
Goodearl and Letzter’s general framework is to consider some group �

acting as automorphisms on a ring R which give the set �-Spec(R) consist-
ing of all �-prime ideals of R. The �-stratification of the prime spectrum
Spec�R� is then defined as

Spec�R� = ⊎
j∈�-Spec�R�

SpecJ�R��(1)

where each stratum SpecJ�R� consists of those prime ideals P of R such
that

⋂
h∈� h�P� = J.

In the case that � is a torus of rank r acting rationally on a noetherian
algebra R over an infinite field k (see [13] for details), the strata SpecJ�R�
corresponding to completely prime �-invariant ideals J of R are described
in [13, Theorem 6.6] as follows.

(a) For each completely prime �-invariant ideal J of R, there exists an
Ore set �J in the algebra R/J such that the localization map R→ R/J →
RJ = �R/J���−1J � induces a homeomorphism of SpecJ�R� onto Spec�RJ�.

(b) Contraction and extension induce mutually inverse homeomor-
phisms between Spec�RJ� and Spec�Z�RJ��, where Z�RJ� is the centre
of RJ .

(c) Z�RJ� is a commutative Laurent polynomial ring over an extension
of k, in r or fewer indeterminates.

The foregoing description of the �-strata applies to iterated Ore exten-
sions of k under suitable conditions [13, Sect. 4]. For some quantized
coordinate rings, the aforementioned general stratification of the prime
spectrum can be worked out in detail. This non-trivial research has been
done for the coordinate algebras of quantum symplectic spaces �q���k2×n�
in [8]. These algebras belong to the class of algebras R�C���n �k� introduced
in [23], which also includes the coordinate rings �q��k2×n� of quantum
euclidean spaces and the quantum Weyl algebras A�q� ��

n �k�.
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The aim of this note is to give a detailed description of the prime spectra of
the k-algebras R�C���n �k� (see Definition 1.1), where C = �c1� � � � � cn� d� λ� u�
is an element of �k×�n+2 × k, such that d = 1 if u �= 0 and� = �λij�� λii = 1 is
a multiplicatively anti-symmetric matrix with entries in k×.
We first define a rational action of the torus � = �k×�r , where r = n if

u �= 0 and r = n+ 1 if u = 0, on the k-algebra R�C���n �k� for an infinite base
field k, and we show that [13, Theorem 6.6] applies to R�C���n �k� for any
�-prime ideal. The algebra R�C���n �k� is filtered with a finite-dimensional
filtration with semi-commutative associated graded algebra, (see, e.g., [4,
Section 3; 5]) which implies, by [19, Theorem 3.8], that R�C���n �k� satisfies
the Nullstellensatz over an arbitrary field k, so [13, Corollary 6.9] applies
to R�C���n �k�.
In a second step we give a more explicit description of the �-stratification

of the spectra of R�C���n �k� in the following aspects.

(1) We prove that the �-prime ideals are just the ideals generated
by the admissible sets in the sense of [22]. More explicitly, consider the
finite subset ℘n of R

�C���
n �k� as defined later in (6). The map J �→ J ∩ ℘n

gives a bijection between the �-prime ideals of R�C���n �k� and the admissible
subsets of ℘n (Proposition 2.10).

(2) For each �-prime ideal J, let T = J ∩ ℘n the corresponding
admissible set. We give explicitly a McConnell–Pettit k-algebra P�QT �,
which is strictly contained in RJ , such that the Jth stratum is described as

SpecJ�R�C���n �k�� = �P ∈ Spec�R�C���n �k��� P ∩ ℘n = T��
and it is homeomorphic to the spectrum of P�QT � (Theorem 3.4).

(3) By using [12], we obtain that each stratum is homeomorphic to
the spectrum of the centre Z�P�QT �� of P �QT � for a suitable admissible set
T . In the particular case R�C���n �k� = �q��k2×n�, we give an explicit method
to compute the number of indeterminates in the Laurent polynomial ring
Z�P�QT �� over k, for any admissible set T (Corollary 4.8).

The first obstacle is to prove the nice properties of the ideals gener-
ated by the admissible sets as in [22]. Using well known results from [11],
we prove that each admissible set T generates a polynormal prime ideal
�T �. We compute the Gelfand–Kirillov dimension of the factor algebras
R
�C���
n �k�/�T � by using Gröbner–Basis techniques; see [3]. An explicit

homomorphism �T connecting R�C���n �k� and the McConnell–Pettit alge-
bra P�QT � is given. Such a mapping was used by Rigal in the case of
quantum Weyl algebras [27] (see also [26] for a similar morphism in the
quantum euclidean case).
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FIG. 1. The prime spectrum of �q��k2×2� (k is algebraically closed, α� γ ∈ k×).

Our methods allow us to give an effective description (modulo Commu-
tative Algebra) of Spec��q��k2×n�� for each given n (Corollary 4.9). This is
possible because each prime ideal in the stratum SpecT ��q��k2×n�� is rec-
ognized as the inverse image under the algebra homomorphism �T . In the
algebraically closed case, we give an effective method to compute the primi-
tive ideals of �q��k2×n�. As an illustration, we compute Spec��q��k2×2�� and
Prim��q��k2×2�� (see Fig. 1). Using the epimorphism defined in [23, Exam-
ple 5], we determine the prime spectrum of �q��k2n+1� (q has a square root
in k), and we compute Spec��q��k3�� as an example (see Fig. 2).

FIG. 2. The prime spectrum of �q��k3� �k is algebraically closed, α� γ ∈ k×).
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1. DEFINITION AND BASIC PROPERTIES

Throughout this note we will consider different quantum spaces, so
we will use some convenient notation. Let � = �λij� be a p × p matrix
with entries in k such that λii = 1 and λji = λ−1ji . Consider the k-algebra
k��t1� � � � � tp� generated by t1� � � � � tp subject to the relations titj = λijtjti.
This is called the coordinate algebra of the p-dimensional quantum affine
space associated to � and it is the iterated Ore extension

k��t1� � � � � tp� = k�t1��t2�σ2� · · · �tp�σp��(2)

where σi�tj� = λijtj for every 1 ≤ j < i ≤ p. This k-algebra is a noethe-
rian domain, and its skew field of fractions is denoted by k��t1� � � � � tp�.
A useful intermediate algebra is the McConnell–Pettit algebra P��� =
k��t±1 � � � � � t±p � (see [20]).

Definition 1.1. Let k be a field and let n be a strictly positive
integer. Let C = �c1� c2� � � � � cn� d� λ� u� be an element of �k×�n+2 × k

with d = 1 if u �= 0. Consider a multiplicatively anti-symmetric matrix
� = �λji�1≤i<j≤n with entries in k× such that λii = 1 for all i =
1� � � � � n. Define R

�C���
n �k� to be the finitely generated k-algebra with

generators y1� x1� � � � � yn� xn, satisfying the following relations

yjyi=λjiyiyj� yjxi = λ−1ji dxiyj �j > i�
xjxi=λjic−1i d−1xixj� xjyi = λ−1ji ciyixj �j > i�

xiyi= ciyixi + λ
i−1∑
l=1
�λd�i−1−l�cld − 1�ylxl + �dλ�i−1u �i ≥ 1��

(3)

This algebra was defined by Oh in [23]. By [23, p. 39], R�c���n �k� is an
iterated Ore extension

R0 ⊆ R1 ⊆ · · · ⊆ R�c���n �k� = Rn�
where R0 = k and Rk = Rk/2�xk�βk� δk�� Rk/2 = Rk−1�yk� αk� for all k ≥ 1,
and αi� βi are algebra automorphisms defined by

αj�yi� = λjiyi� αj�xi� = λ−1ji dxi� i < j

βj�yi� = λ−1ji ciyi� βj�xi� = λjic−1i d−1xi� i < j

βi�yi� = ciyi�
(4)

and each δi is a left βi-derivation defined by

δi�yi� = λ
i−1∑
l=1
�λd�i−1−l�cld − l�ylxl + �λd�i−1u� i > 1

δi�Ri−1� = 0� i ≥ 1� and δ1�y1� = u�
By

∑n
k we denote the set �αk�βk� δk� � � � � αn� βn� δn� for each k = 1� � � � � n.
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This class of algebras includes the quantum Weyl algebras A�q���
n �k��C =

�q� 1� 1� 1� with q = �ci�ni=1�, the coordinate rings of quantum symplectic
spaces �q���k2×n��C = �q2� � � � � q2� 1� q� 0�, λji = q�, and the coordinate
rings of quantum Euclidean spaces �q��k2×n��C = �1� � � � � 1� q−2� q� 0�,
λji = q−1�.
Following [23, p. 39], we have

Lemma 1.2. Set zi = dxiyi − yixi for i = 1� � � � � n� and z0 = du. Then

zjyi = ciyizj� zjxi = c−1i xizj �i ≤ j�
zjyi = d−1yizj� zjxi = dxizj �i > j�
zjzi = zizj �all i� j�
xiyi = ciyixi + λzi−1 �i = 2� � � � � n�� x1y1 = c1y1x1 + d−1z0
zi = �cid − 1� yixi + dλzi−1 �i = 2� � � � � n�� z1 = �c1d − 1� y1x1 + z0�
Observe that δi�yi� = λzi−1 for all i > 1.

The quantum space attached to R�C���n �k� is kQn�Y1�X1� � � � � Yn�Xn�, where
Qn is the matrix defined by

(5)

Y1 X1 Y2 X2 · · · · · · Yn Xn

Y1
X1
Y2
X2
���
Yn
Xn




1 c−11 λ−121 λ21c
−1
1 · · · λ−1n1 λn1c

−1
1

c1 1 λ21d
−1 λ−121 c1d · · · λn1d

−1 λ−1n1 c1d
λ21 λ−121 d 1 c−12 · · · λ−1n2 λn2c

−1
2

λ−121 c1 λ21c
−1
1 d

−1 c2 1 · · · λn2d
−1 λ−1n2 c2d

���
���

���
���

� � �
���

���
λn1 λ−1n1 d λn2 λ−1n2 d · · · 1 c−1n
λ−1n1 c1 λn1c

−1
1 d

−1 λ−1n2 c2 λn2c
−1
2 d

−1 · · · cn 1



�

Notice that Y1u = duY1 and X1u = d−1uX1.

Remark 1.3. We have δiβi = cidβiδi for all i ≥ 1. So if cid is not a root
of unity for every i = 1� � � � � n, then [10, Theorem 2.3] each prime ideal of
R
�C���
n �k� is completely prime.
In order to classify the prime and the primitive ideals of R�C���n �k� we

will suppose that for each i = 1� � � � � n the scalar cid is not a root of unity.
Denote by ℘n the following subset of R:

℘n =


�z1� y1� x1� � � � � zn� yn� xn�� if z0 = 0�

�z1� z2� y2� x2� � � � � zn� yn� xn�� if not�
(6)
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Definition 1.4 [22]. A subset T of ℘n is said to be admissible if it sat-
isfies the conditions:

(1) yi or xi ∈ T ⇔ zi and zi−1 ∈ T , for all i ≥ 2
(2) xi or yi ∈ T ⇔ z1 ∈ T , if z0 = 0.

For an admissible set T , let us denote by ind�T � = �i ∈ �1� � � � � n��zi ∈
T�. An index i ∈ ind�T � is said to be removable if T contains xi and yi; the
set of removable indices is denoted by Remv�T �. If we denote �T = �i ∈
�1� � � � � n��yi ∈ T� and �T = �j ∈ �1� � � � � n��xj ∈ T�, then Remv�T � = �
if and only if �T ∩ �T = �. We say that T is connected if for any i� j ∈
ind�T � such that i < k < j, then k ∈ ind�T �. A connected component of
T is a connected admissible subset U of T such that for all connected
admissible subsets V of T with U ⊆ V then U = V . Each admissible set T
decomposes uniquely as T = T1 ∪ T2 ∪ · · · ∪ Tr , where Ti are the connected
components of T . This decomposition is called a connected decomposition of
T . Put ik = min�ind�Tk��� jk = max�ind�Tk��; we will always suppose that
jk−1 < ik− 1� k = 2� � � � � r. An example of such decomposition is to put n =
3 and take T = �x1� z1� ∪ �z3� in R�C���3 �k� with z0 = 0; so �x1� z1�� �z3�
are the connected components of T .
If T is a connected admissible set we define the length of T , denoted by

length�T �, as
length�T � = card�ind�T �� + card�Remv�T ���

where card�ind�T ���resp� card�Remv�T ��� is the cardinal of ind�T �(resp.
the cardinal of Remv�T ��. The length of a not necessarily connected admis-
sible set T is

length�T � =
r∑
k=1

length�Tk��

where T = T1 ∪ T2 ∪ · · · ∪ Tr is the connected decomposition of T .
Our next aim is to prove that �T � is a prime ideal for every admissible

set T .

Proposition 1.5. For k ≥ 2, let Q be an �αk�βk�-stable prime ideal of
Rk−1 such that zk−1 /∈ Q. Then the ideals P = QRk + zkRk and QRk are
prime extensions of Q to Rk.

Proof. By [11, Theorem 10.3(ii)], applied to Q in the iterations
Rk/2 and Rk, we have QRk is a prime extension of Q. We apply
[11, Theorem 10.3(iv)] to get the proposition. Consider frac�Rk/2/QRk/2� =
Ak/2, the Goldie quotient ring of Rk/2/QRk/2. We need to show
that the extension of δk, denoted also by δk, to Ak/2 is an inner
βk-derivation, where βk is the extension of βk to Ak/2. It is sufficient
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to show this for the extension of δk to the skew Laurent polynomial ring
Fk/2 = �Rk−1/Q��Y±1

k � αk�. Put uk = �1 − ckd�−1λz̄k−1y−1k ∈ Fk/2, where
z̄k−1 is the image of zk−1 in Fk/2. Then δk�yk� = ukyk − ckykuk and
δk�y−1k � = −βk�y−1k �δk�yk�y−1k = uky

−1
k − c−1k y−1k uk. Therefore δk is an

inner βk-derivation of Fk/2, hence δk�a� = uka−βk�a�uk, for all a ∈ Ak/2.
So, by [9, Lemma 1.4], we have the following isomorphisms of k-algebras

Rk
QRk

�Ck/2�−1 ∼= Ak/2�xk�βk� δk� ∼= Ak/2�xk − uk�βk��

where Ck/2 = �Rk/2/QRk/2�\�0�. Now, by [11, Theorem 10.3(iv)], the
inverse image of the prime ideal �xk − uk� in Rk is a prime extension of
QRk/2. Check that xk − uk = −ck�1− ckd�−1z̄ky−1k , where z̄k is the image
of zk in Rk/QRk. So the inverse image of �z̄ky−1k � in Rk is exactly the ideal
P = QRk + zkRk.
Corollary 1.6. The ideal �zi� is prime for all i ≥ 2. If z0 �= 0, then �z1�

is a prime ideal too.

Proof. It is clear that �zi� ∩ Ri = ziRi = Rizi is
∑n
i+1-stable ideal for

all i ≥ 1. So it suffices to show that Rizi is a prime ideal of Ri. But
this follows from Proposition 1.5 with Q = 0 in Ri−1 and i ≥ 2. For the
case z0 �= 0 and i = 1 consider F0 = k�y±11 � and the element v1 = �1 −
c1d�−1uy−11 ∈ F0. We denote by δ1� β1 the extensions of δ1� β1 to F0,
respectively. So δ1�y1� = v1y1 − c1y1v1 and δ1�y−11 � = −c−11 d

−1uy−21 ; thus
δ1�y−11 � = v1y−11 − c−11 y

−1
1 v1. Therefore δ1 is an inner β1-derivation of F0,

and so F0�x1� β1� δ1� ∼= F0�x1 − v1� β1�. By the equality x1 − v1 = −�1 −
c1d�−1c1z1y−11 , the inverse image of the prime ideal �z1y−11 � in R1 is the
prime ideal z1R1.

Proposition 1.7. Let I be a
∑n
j+1-stable prime ideal of Rj for j < n− 2,

and T be a connected admissible set of Rn such that i = min�ind�T �� > j+ 1.
Then J = IRn + �T � is a prime ideal of Rn.

Proof. Let k denote max�ind�T ��; we use induction on k. If k = j + 2,
then i = k, and T = �zk�. As zj+1 /∈ IRj+1, by Proposition 1.5, we have
that IRj+2 + zj+2Rj+2 is a prime

∑n
j+3-stable ideal of Rj+2. Then J =

�IRj+2 + zj+2Rj+2�Rn is a prime extension of IRj+2 + zj+2Rj+2. Now sup-
pose that the proposition is true for any connected admissible set T ′, with
max�ind�T ′�� < k. Let T ′ = T ∩ Rk−1, so T ′ is a connected admissible set
of Rk−1 and

T =


T ′ ∪ �yk� zk�� if k ∈ �T � k /∈ �T
T ′ ∪ �xk� zk�� if k ∈ �T � k /∈ �T
T ′ ∪ �yk� xk� zk�� if k ∈ Remv�T �.
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Put Jk−1 = IRk−1 + T ′Rk−1. So by induction hypothesis Jk−1Rn is a prime
ideal of Rn. Recall that in each iteration every prime ideal is completely
prime; hence Jk−1 is a

∑n
k-stable prime ideal of Rk−1. We claim that J is a

prime extension to Rn of the prime ideal Jk−1. To show this we will consider
the three cases listed below

(1) If T = T ′ ∪ �yk� zk� then, by the isomorphism

Rk
Jk−1Rk

∼= Rk−1
Jk−1

�yk� αk��xk�βk��

the ideal Jk = Jk−1Rk + ykRk is a prime ideal of Rk. Check that Jk =
IRk + TRk, which is

∑n
k+1-stable. Thus J = JkRn is a prime extension of

Jk−1 to Rn.
(2) The case T = T ′ ∪ �xk� zk� is similar to the first one by taking

Jk = Jk−1Rk + xkRk.
(3) If T = T ′ ∪ �yk� xk� zk�, then consider Jk = Jk−1Rk + ykRk +

xkRk and Jk/2 = Jk−1Rk/2 + ykRk/2. It is clear that Jk = Jk/2Rk + xkRk
(observe that zk−1 ∈ Jk−1) and Jk/2 is a prime extension of Jk−1 to Rk/2,
which is βk-stable. Therefore Jk/2Rk is a prime ideal of Rk and we have
the following algebra isomorphism:

Rk
Jk/2Rk

∼= Rk/2

Jk/2
�xk�βk��

Hence Jk is a prime ideal of RK and Jk = IRk + TRk. This is a
∑n
k+1-

stable ideal, so JkRn = J is a prime extension of Jk to Rn. Thus J is a
prime extension of Jk−1 to Rn.

A polynormal sequence �a1� � � � � as� in a ring R is a sequence of elements
of R such that a1 is normal in R, and each ak is normal modulo the ideal
�a1� � � � � ak−1� for all k ≥ 2. An ideal I of R generated by a polynormal
sequence is called a polynormal ideal.

Theorem 1.8. Let T be an admissible set of R�C���n �k�. Then �T � is a
polynormal prime ideal.

Proof. Clearly, T is a polynormal sequence. We prove that T is prime by
induction on the number of connected components of T . If T is a connected
admissible set with min�ind�T �� > 1, then �T � is prime by Proposition 1.7.
Otherwise it is easy to see that �T � is a prime extension of �T ∩ R1�R1.
Let now T = T1 ∪ T2 · · · ∪ Tr , r > 1, ik = min�ind�Tk��, jk = max�ind�Tk��,
k = 1� � � � � r. Consider I = �T1 ∪ · · · ∪ Tr−1�Rjr−1 as an ideal of Rjr−1 ; by
induction hypothesis IRn is a prime ideal of Rn. As in each Ore iteration
Rk�Rk/2, k = 1� � � � � n, every prime ideal is completely prime, we have I is a
prime ideal of Rjr−1 . Check that �T � = IRn+ TrRn; applying Proposition 1.7
we have �T � is a prime ideal of Rn.
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Now we need to compute the Gelfand–Kirillov dimension of the factor
algebra of R�C���n �k� by an ideal generated by an admissible set. As R�C���n �k�
is a PBW k-algebra with respect to the graded lexicographical order ≤deglex,
we can use [2, Sect. 3; 3, Sect. 4].

Lemma 1.9. Let T be an admissible set of R�C���n �k�. Then T is a two-
sided Gröbner basis.

Proof. In this proof we use the notation of [2, 3]. Let T = T1 ∪ · · · ∪ Tr
be a connected decomposition of an admissible set T . It is clear that
T Sl�u� v� = 0 for any u ∈ Ts and v ∈ Tt with s �= t ∈ �1� � � � � r�. Fix
k ∈ �1� � � � � r� and consider Tk, i = min�ind�Tk��� j = max�ind�Tk��. By
Lemma 1.2, zs is a semi-commuting element for every s = 1� � � � � n. So
TkSl�zs� vt� = 0 for every s ∈ �i� � � � � j� and t ∈ �i + 1� � � � � j�, where vt ∈
�yt� xt�. By (3), we have also TkSl�vs� vt� = 0 for all t �= s ∈ �i+ 1� � � � � j�. It
remains to show that TkSl�ys� xs� = 0 for all s ∈ �i+ 1� � � � � j� ∩Remv�Tk�.
But Sl�ys� xs� = c−1s xsys − ysxs = λc−1s zs−1 ∈ Tk. So from [3, Theorem 3.2],
T is a left Gröbner basis of RT . On the other hand, if t ∈ �T then T ytxt =
T c−1t xtyt − λc−1t zt−1 = 0, and if t ∈ �T then Txtyt = T ctytxt + λzt−1 = 0.
So by [3, Remark 3.13] T is a two-sided Gröbner basis of �T �.
Using the notations of [2, Sect. 3], the following lemma is easy to prove:

Lemma 1.10. (1) Let E be a monoideal of �	p�+� generated by a min-
imal set �
1� � � � �
k� such that Supp�
i� ∩ Supp�
j� = � for i �= j. Then
dim�E� = p− k.

(2) Let E = B + 	p, with B =  rk=1Bk be a disjoint union of subsets
of 	p. Consider Ek = Bk +	p for all k = 1� � � � � r, and suppose that E has
a set of generators of disjoint support (as in (1)). Then

dim�E� = p�1− r� +
r∑
k=1

dim�Ei��

Let εi = exp�yi� and ε′i = exp�xi� for every i = 1� � � � � n (see [2, Sect. 1]).

Proposition 1.11. Let T be an admissible set of R�C���n �k�. Then

GK dim
(
R
�C���
n �k�
�T �

)
= 2n− length�T ��

Proof. Using Lemma 1.9 and [2, Theorem 3.7; 3, Theorem 4.10] we
have

GK dim�R�C���n �k�/�T �� = dim�exp��T ����
So it suffices to compute dim�exp��T ���. Let T be a connected admissible
set with i = min�ind�T ��� j = max�ind�T ��. By Lemma 1.9, exp��T �� is
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generated by the elements εi + ε′i� εk if k ∈ �T , and ε
′
l if l ∈ �T , where

k� l = i + 1� � � � � j. Apply Lemma 1.10(1) to get dim�exp��T ��� = 2n −
length�T �. If T is not connected, consider T = T1 ∪ · · · ∪ Tr the connected
decomposition of T . Then, by Lemma 1.9,

exp�T � =
r⊎
k=1

exp�Tk�

and exp��T �� has a set of generators of disjoint support. So by Lemma
1.10(2) we have

dim�exp��T ��� = 2n�1− r� +
r∑
k=1

dim�exp��T ���

= 2n�1− r� +
r∑
k=1
�2n− length�Tk��

= 2n− length�T ��

2. THE �-ACTION AND THE �-PRIME IDEALS

Let k be an infinite field. We will define a rational action of an alge-
braic k-torus on R�C���n �k�, which will be shown to satisfy [13, 4.1]. Thus
[13, Theorem 6.6, Corollary 6.9] apply to the algebra R�C���n �k�. As in [8],
we will show that the �-prime ideals are precisely the ideals generated by
admissible sets. We need to establish a k-algebra isomorphism between a
localization of a factor algebra R�C���n �k�/�T �, for a fixed admissible set T ,
and a localization of a quantum space attached to T .

Remark 2.1. Let G denote a group acting on R�C���n �k� as k-algebra
automorphisms. Assume that yi� xi, i = 1� � � � � n are G-eigenvectors. If
h ∈ G then, by (3), the action of h has one of the following forms


h�yi = ηiyi and h�xi = η−1i xi� if u �= 0

or
h�yi = ηiyi and h�xi = η−1i θxi� if u = 0;

(7)

where ηi is the h-eigenvalue of yi, i = 1� � � � � n, and θ is the common h-
eigenvalue of z1� � � � � zn. In conclusion, the group G can be replaced by a
subgroup of the algebraic torus �k×�n or of the torus �k×�n × k×.

In what follows � will denote the torus �k×�n or �k×�n+1, depending on
the value of u.

Definition 2.2. We define the following rational action of � on
R
�C���
n �k�:
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(1) If u �= 0, then � = �k×�n and for any h = �h1 � � � � hn� ∈ � we
take

h�yi = hiyi
h�xi = h−1i xi�

(2) If u = 0, then � = �k×�n+1 and for any h = �h1� � � � � hn� hn+1� ∈
� we take

h�yi = hiyi
h�xi = h−1i hn+1xi�

Remark 2.3. The actions given in Definition 2.2 satisfy the hypothesis
of [13, 4.1(c)]. Let us show this claim; recall that each cid is not a root
of unity. In the case u �= 0 we have d = 1, so for any j ∈ �1� � � � � n� the
restriction to Rj−1 and Rj/2 of the action of the following elements of �

hj = �λj1� � � � � λjj−1� cj� 1� � � � � 1��
gj = �λ−1j1 c1� � � � � λ−1jj−1cj−1� cj� 1� � � � � 1�

gives the automorphisms αj� βj , respectively. If u = 0, then for any j ∈
�1� � � � � n� we take

hj = �λj1� � � � � λjj−1� cjd� 1� � � � � 1� d��
gj = �λ−1j1 c1� � � � � λ−1jj−1cj−1� cj� 1� � � � � d−1��

It is clear that αj� βj are the restriction of hj� gj , respectively. Hence both
actions on R�C���n �k� satisfy [13, 4.1]. Notice that if d = 1 and u = 0, then
we can use the torus �k×�n instead of �k×�n+1 with the obvious action. But
if d �= 1, we have to enlarge the size of the acting torus in order to “place”
the parameter d. The action defined in [13, 5.4] for the quantum Euclidean
space �q��k2×n� does not satisfy [13, 4.1(c)]; see the following example for
n = 2.

Example 2.4. Let R�C���2 �k� = �q��k2×2� with q not a root of unity. If
we suppose that � = �k×�2 and the �-action satisfies [13, 4.1(c)], then there
exists h = �h1� h2� ∈ � such that the restriction of h to k�y1� x1� coincides
with the k-algebra automorphism α2. Thus

α2�y1� = q−1y1 = h�y1 = h1y1
α2�x1� = q−1x1 = h�x1 = h−11 x1�

this means that q2 = 1, in spite of the assumption that q is not a root of
unity.
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In the rest of this section the algebra R�C���n �k� will be denoted by R. By
Remark 2.3 and [13, Proposition 4.2], each �-prime ideal of R is completely
prime and there exist at most 22n.
Recall that R satisfies the Nullstellensatz, so, by [13, Corollary 6.9], R

satisfies the Dixmier–Moeglin Equivalence. The primitive ideals of R are
precisely those maximal within their �-strata.
Our next goal is to describe the �-prime ideals in terms of admissible

sets. We need to control the Gelfand–Kirillov dimension of certain local-
izations of R.

Proposition 2.5. Let W be any subset of �1� � � � � n�. Consider the multi-
plicative subset � of R generated by yk� k ∈ W . Then � is a right Ore set and
the Gelfand–Kirillov dimension of R�−1 equals 2n.

Proof. Compare with [8, Proposition 2.1]. By [9, Lemma 1.4; 18,
Lemma 4.1], � is a right Ore set of R and so GKdim�R� ≤ GKdim�R�−1�.
So we will prove the converse inequality. Consider the k-algebra S gen-
erated by y1� x1� � � � � yn� xn satisfying the relations (3) and new variables
;k� k ∈ W , with the following additional relations

;i;j = λ−1ji ;j;i� xi;j = λ−1ji d;jxi �j > i�
;ixj = λ−1ji cixj;i� yi;j = λji;jyi �j > i�
;iyj = λjiyj;i �j > i�
;iyj = yi;i = 1

(8)

;kxk = ckxk;k + λd−1
k−1∑
l=1
�dλ�k−1−l�cld − 1�y1x1;2

k + dk−3λk−1z0;2
k�

There is a surjective homomorphism of algebras S → R�−1 sending yi to
yi� xi to xi, and ;k to y−1k . Then GKdim�R�−1� ≤ Gkdim�S�. We claim
that GKdim�S� = 2n. Order the variables

;k1 < · · · < ;km < y1 < x1 < · · · yn < xn�
where W = �k1� � � � � km�. Let ≤w be the weighted lexicographical ordering
on 	2n+m defined by the vector

w = �1� � � � � 1︸ ︷︷ ︸
�m�

� 1� 2� 1� 4� � � � � 1� 2n� ��

By [7, Proposition 3.2], S can be endowed with an �	2n+m�≤w�-filtration
such that the 	2n+m-graded algebra G�S� is semi-commutative, namely, it
is generated by finitely many homogeneous elements

;k1� � � � � ;km� y1� x1� � � � � yn� xn�
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in addition yk;k = 0 for every k ∈ W . Therefore G�S� is a factor of the
coordinate algebra of an 2n+m-dimensional quantum affine space by the
ideal generated by the elements yk;k� k ∈ W . By [2, Theorem 4.4.7; 3,
Theorem 4.10], it is clear that GKdim�G�S�� = 2n + m − m, and by [7,
Corollary 2.12] we have GKdim�S� = GKdim�G�S�� = 2n.

Fix an admissible set T = T1 ∪ T2 ∪ · · · ∪ Tr with ik = min�ind�Tk��,
jk = max�ind�Tk��. For a prime ideal P of R we denote by ht�P� the height
of P . Let us now compute the height of an ideal generated by the admissible
set T .

Proposition 2.6. Let T be an admissible set of R. Then

ht��T �� = length�T � = 2n−GK dim
(
R

�T �
)
�

Proof. Let us first prove the proposition for a connected admissible set
T . Consider j = max�ind�T �� and i = min�ind�T ��; we use induction on
j. If j = i = 1 then the possible admissible sets are �z1� if z0 �= 0 or
�z1� x1�� �z1� y1� and �z1� y1� x1� if z0 = 0. Using Corollary 1.6 and the
definition of the length in conjunction with [21, Theorem 4.1.11] we get
the result in this case. Suppose that the proposition holds for all connected
admissible T ′ such that max�ind�T ′�� < j. We can decompose T as a dis-
joint union of two sets

T =


T ′ ∪ �zj� yj�� if j ∈ �T � j /∈ Remv�T �
T ′ ∪ �zj� xj�� if j ∈ �T � j /∈ Remv�T �
T ′ ∪ �zj� yj� xj�� if j ∈ Remv�T �,

where T ′ is an admissible set of R. So we have a chain of prime ideals

�0���T ′���T ′� vj� = T� vj ∈ �yj� xj�
or

�0���T ′���T ′� yj���T ′� yj� xj� = T�
By Theorem 1.8 we know that T is generated by a polynormal sequence.
So using [21, Theorem 4.1.11] the chains above are maximal. Therefore
ht��T �� = ht��T ′�� + ε, where ε ∈ �1� 2�. Now, the result is clear by induc-
tion hypothesis. Let T be an admissible set and T1 ∪ · · · ∪ Tr its connected
decomposition. We show the proposition in this case by induction on r.
For r = 1 the proposition has been already proved. Suppose that r > 1, so
T = T ′ ∪ Tr where T ′ = T1 ∪ · · · ∪ Tr−1. We denote ir = min�ind�Tr��. So,
by Proposition 1.5, we have a chain of prime ideals

�0� ⊆ �T ′���T ′� zir �� · · ·��T ′� Tr� = �T ��
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This chain is maximal because �T � is a polynormal ideal. The number of
prime ideals between �T ′� zir � and �T � is exactly the number of the variables
yl� xl� l ∈ ind�Tr�. So we have ht��T �� = ht��T ′�� + length�Tr�; hence by
induction hypothesis and the definition of the length we have ht��T �� =
length�T �. The second equality follows from Proposition 1.11.

Let us denote by �T the multiplicative set of R generated by yj� j /∈ �T ;
by Proposition 2.5 this is a right Ore set of R. Let QT be a submatrix of
the matrix Qn defined by deleting the rows and the columns corresponding
to the variables xi� yi ∈ T and xik� k = 1� � � � � r. If z0 = 0 and x1 /∈ T we
will not delete the row and the column corresponding to the variable x1.
Consider AT the quantum space associated to the matrix QT , considered as
a subalgebra of the quantum space A� = kQn�Y1�X1� � � � � Yn�Xn� attached
to R. The multiplicative set �T of AT generated by all the Yk’s is a right
Ore set, so consider BT = AT�−1

T . We will denote by ā the image of a ∈ R
in R

�T � . Consider the k-algebra homomorphism =T ! R
�T � "�−1

T → BT given by

=T �ȳk� = Yk (for all k)

=T �x̄k� = Xk (if k− 1 ∈ ind�T �� k ≥ 2)

=T �x̄k� = Xk + �1− ckd�−1λZk−1Y−1
k (if 2 ≤ k and k� k− 1 /∈ ind�T �)

=T �x̄1� = X1 + �1− c1d�−1Z0Y
−1
1

=T �x̄k� = �1− ckd�−1λZk−1Y−1
k (if k ∈ ind�T � and k− 1 /∈ ind�T �),

where Z0 = d−1z0 = u�Zk = �ckd − 1�YkXk. It is clear that �T ∩ �T � = �
so, by [6, Proposition 3.6.15], R�−1

T /�T ��−1
T

∼= �R/�T �� "�−1
T . Composing

=T with this last isomorphism we get a new map which we also denote by
=T . A similar algebra homomorphism was given in [27, Sect. 3.2] in the
case of quantized Weyl algebras.

Proposition 2.7. The mapping

=T !
R�−1

T

�T ��−1
T

→ BT

is a k-algebra isomorphism.

Proof. It is clear that =T is surjective, and �T � ⊆ ker�=T �. So
GK dim�BT � ≤ GK dim�R�−1

T /�T ��−1
T �. We claim that GK dim�R�−1

T /
�T ��−1

T � ≤ GK dim�BT �. From [18, Lemma 3.16], we have GK dim�R�−1
T /

�T ��−1
T � ≤ GK dim�R�−1

T � − ht��T ��. Using Proposition 2.5 and
Proposition 2.6 we have GK dim�R�−1

T /�T ��−1
T � ≤ 2n − length�T �.

We know that GK dim�AT � = 2n − length�T � = GK dim�BT �. So
GK dim�R�−1

T /�T ��−1
T � ≤ GK dim�BT �. Since �T � is a completely prime

ideal, Theorem 1.8, it follows from [18, Proposition 3.15] that =T is a
k-algebra isomorphism.
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Consider the algebraic torus � and its action R as in Definition 2.2. For
any subset X ⊆ �1� � � � � n� = 	n, we denote by �X the torus

�X =
{ ��hi�i∈X∪�n+1��hi ∈ k×�� if � = �k×�n+1
��hi�i∈X �hi ∈ k×�� if � = �k×�n.

Let T be an admissible set of R; we denote by In�T � the set of indices of the
variables that appear in AT � In�T � ⊆ 	n. Define the following action of the
torus �In�T � = �T on AT . If � = �k×�n+1, then for any �hi�i∈In�T �∪�n+1� ∈
�T ,

�hi�i∈In�T � ∪ �n+1��Yl = hlYl
�hi�i∈In�T � ∪ �n+1��Xk = h−1k hn+1Xk�

If � = �k×�n, then for any �hi�i∈In�T � ∈ �T ,

�hi�i∈In�T ��Yl = hlYl
�hi�i∈In�T ��Xk = h−1k Xk�

Consider the canonically extended action of �T to the localization BT =
AT�

−1. For each h ∈ �T , we have the following composite map

R

�T � "�
−1
T

=T−→ BT
h−→ BT

=−1
T−→ R

�T � "�
−1
T �

where h denotes the extension of h to BT .

Definition 2.8. We define the action of the torus �T on R
�T � "�−1

T as
follows. Given h ∈ �T , define

h�x = �=−1
T h=T ��x�

for every x ∈ R
�T � "�−1

T .

The following lemma is clear.

Lemma 2.9. Consider �T as a factor group of the torus � . The action of
�T induced on R/�T � by that of � coincides with the restriction of the action
defined in Definition 2.8.

Proposition 2.10. There is a bijection ζ between � − Spec�R� and

n�R�, the set of all the admissible sets of R, defined by

ζ ! � − Spec�R�−→
n�R�
J �−→ J ∩ ℘n�

With the inverse map

ζ−1 ! 
n�R�−→� − Spec�R�
T �−→�T ��
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Proof. To show that ζ and ζ−1 are well defined, we use Theorem 1.8,
Remark 2.3, and [13, Proposition 4.2]. Clearly ζζ−1 = id; let us show that
ζ−1ζ = id. Consider J ∈ � − Spec�R� such that J ∩ ℘n = T and suppose
that �T �� J. Let "�T = 	n\�T = �j1� � � � � jr��BT is an iterated Ore exten-
sion of the form

BT = k"Q�Y±1
j1
� � � � � Y±1

jr
��Xi1� βi1� · · · �Xit � βit ��

where k"Q�Y±1
j1
� � � � � Y±1

jr
� is the McConnell–Pettit algebra associated to a

suitable matrix "Q. To complete the proof we use the same arguments as
in the proof of [8, Proposition 2.5] with the following element h ∈ �T . Fix
l ∈ �1� � � � � t − 1�; if � = �k×�n+1, then we take

hi =




λ−1iljkcjk� i = jk < il
λjkild

−1� i = jk > il
λ−1ilikcik � i = ik < il
ci� i = il
d−1� i = n+ 1
1� otherwise.

If � = �k×�n, then we take

hi =




λ−1iljkcjk� i = jk < il
λjkild

−1� i = jk > il
λ−1ilikcik � i = ik < il
ci� i = il
1� otherwise.

Corollary 2.11. The number of �-prime ideals is

1
2

[
�2 +

√
2�n + �2 −

√
2�n

]
�u �= 0�

or
1

2
√
2

[
�2 +

√
2�n+1 − �2 −

√
2�n+1

]
�u = 0��

Proof. Similar to that [8, Corollary 2.6; 27, Proposition 3.1.16].

3. THE �-STRATIFICATION

In this section, we work out the �-stratification (1) of Spec�R�C���n �k��.
First, we give a simpler description of each �-stratum. Let T be an admis-
sible set of R�C���n �k� and let us denote

SpecT
(
R
�C���
n �k�) = {

P ∈ Spec�R�C���n �k���P ∩ ℘n = T
}
�
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Lemma 3.1. Let J be an �-prime ideal of R�C���n �k� and let T be the
admissible set such that J = �T �. Then

SpecT �R�C���n �k�� = SpecJ�R�C���n �k���
Proof. Analogous to [8, Lemma 3.1], using Proposition 2.10.

Proposition 3.2. The �-stratification of Spec�R�C���n �k�� is given by

Spec�R�C���n �k�� = ⊎
T admissible

SpecT �R�C���n �k���(9)

Proof. This is a consequence of Proposition 2.10 and Lemma 3.1.

The k-algebra obtained by localizing BT at all Xk that appear in AT is
the McConnell–Pettit k-algebra P�QT �. We will denote R�C���n �k� by R. As
in [8] consider �T the composite map

R→ R�−1
T

�T ��−1
T

=T→ BT ↪→ P�QT ��

Remark 3.3 Let J be an �-prime ideal of R and J ∩ ℘n = T . Let �T
denote the inverse image in R�−1

T /�T ��−1
T of the multiplicative set of BT

generated by all the Xk’s. This is a right Ore set and the corresponding
localization RT satisfies that RT ∼= P�QT �. Clearly RT ⊆ RJ , where J = �T �
and RJ = �R/J��−1J ��J is the set of all non-zero homogeneous elements
with respect to a certain �n-grading (see [13, Theorem 6.6]). In the general
case one cannot expect RT = RJ . The following is a counterexample: take
n = 2� R�C���2 �k� = �q��k2×2�� T = �z2�; then the homogeneous element
ȳ1 + ȳ2 of degree �1� 0� 0� ∈ �3 is not invertible in RT .

Theorem 3.4. Let T be an admissible set. Then �T induces a homeo-
morphism between Spec�P�QT �� and SpecT �R� defined by

�−1T ! Spec�P�QT ��→ SpecT �R�
� �→�−1T ����

Proof. Notice that �−1T ��� is prime because every prime ideal in R or
P�QT � is completely prime. So it suffices to show that �−1T ��� ∈ SpecT �R�
for all � ∈ Spec�P�QT ��. Put �−1T ��� ∩℘n = T ′; it is clear that T ⊆ T ′. We
show the other inclusion by contradiction. So suppose that there exists k ∈
ind�T ′� and k /∈ ind�T �. Hence, modulo �T �, we have z̄k �= 0. So =T �z̄k� =
�ckd − 1�YkXk ∈ � , which is a contradiction with � ∈ Spec�P�QT ��. Now,
if ind�T � = ind�T ′� then there exists xk ∈ T ′ such that =T �x̄k� = Xk ∈ � ,
also a contradiction. We need to show the injectivity. So let � and � ′ be
two elements of Spec�P�QT �� such that �−1T ��� = �−1T �� ′�. It is clear that



204 gómez-torrecillas and el kaoutit

�−1T ��� ∩ �T = �−1T �� ′� ∩ �T = �. Apply =T to �−1T ����−1
T /�T ��−1

T =
�−1T �� ′��−1

T /�T ��−1
T to get � = � ′. For the surjectivity we take P ∈

SpecT �R�, and we put � = =T �P�−1
T /�T ��−1

T �; so � ∩ �T = �. Sup-
pose that there exists an indeterminate Xk of P�QT � such that Xk ∈ � .
Therefore if =T �x̄k� = Xk then xk ∈ P with k /∈ �T ; this is a contradic-
tion with P ∈ SpecT �R�. If =T �x̄k� = Xk + �1 − ckd�−1λZk−1Y−1

k , then
=−1
T �Xk� = −�1 − ckd�−1ȳ−1k z̄k. So k /∈ ind�T � and zk ∈ P; this is also a

contradiction with P ∈ SpecT �R�. We have shown that the extension of �
to P�QT � is a prime ideal, which is the inverse image of P by �−1T .

Corollary 3.5. Let T be an admissible set. Then SpecT �R� is homeo-
morphic to Spec�Z�P�QT ���, where Z�P�QT �� is the center of P�QT �.
Proof. By [12, Corollary 1.5(b)], the contraction � �→ � ∩ Z�P�QT ��

gives a homeomorphism between Spec�P�QT �� and Spec�Z�P�QT ���. The
corollary is consequence of Theorem 3.4.

Let � be a prime ideal of Z�P�QT ��; we denote by �e its extension to
P�QT �. By max�Z�P�QT ��� we will denote the set of maximal ideals of
Z�P�QT ��. Now we give the analogue of [8, Theorem 3.10].

Theorem 3.6. Let

�� = ��T� ��� T is an admissible set, � ∈ Spec�Z�P�QT ����
and

� = ��T� ��� T is an admissible set, � ∈ max�Z�P�QT �����
If the parameters cid� i = 1� � � � � n are not roots of unity, then the map
�T� �� �→ �−1T ��e� defines a bijection between �� and the prime spectrum
Spec�R�C���n �k�� whose restriction to � is a bijection onto the primitive
spectrum Prim�R�C���n �k��.
Proof. The bijection between �� and Spec�R�C���n �k�� follows from

Theorem 3.4, Corollary 3.5, and the stratification (9). The bijection
between � and Prim�R�C���n �k�� follows from [12, Corollary 1.5(c)], taking
into account that R�C���n �k� and P�QT � are Jacobson algebras.

Remark 3.7. From Theorem 3.6 we deduce that the determination of
the prime and primitive spectra of R�C���n �k� depends on the computation of
the basis of the k-algebras Z�P�QT �� where T runs the set of all admissible
sets. Some assumptions on the matrix Qn allow such a determination by
using [12]. Let us see what happens in case R�C���n �k� is one of the following
k-algebras: �q���k2×n��A�q���

n �k�, and �q��k2×n�.
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(1) Consider R�C���n �k� = �q���k2×n� where q is not a root of unity.
Discussing the quantum linear system attached to an admissible set T (see
Definition 4.3), it was shown, in [8, Corollary 3.9], that Z�P�QT �� ∼= k��k�,
where k = ocomp�T � is the number of connected components of odd
length in the connected decomposition of T . An effective computation
of the primitive ideals in the algebraically closed case was given in [8,
Corollary 3.12].

(2) The second example is R�C���n �k� = A�q� ��
n �k�, which was studied

by Goodearl [9] with n = 1, after by Rigal [27, Proposition 3.2.3] and, inde-
pendently, by Akhazavidegan and Jordan [1, Proposition 4.12] for any n.
In this case the McConnell–Pettit algebra P�QT �, where T�℘n, is simple.
See [1, Proposition 4.9; 27, Proposition 2.3.8] for a characterization of this
simplicity in terms of the matrix QT . Then Z�P�QT �� = k for all T�℘n
(see Proposition 4.1.) By Corollary 3.5, this means that SpecT �A�q� ��

n �k�� =
��T �� for any T�℘n. In the following section we study the case when
T = ℘n and we give the primitive ideals in the algebraically closed case.

(3) The third example is R�C���n �k� = �q��k2×n� with q not a root
of unity. In Section 4 we will show, by solving the quantum linear system
attached to T , that Z�P�QT �� ∼= k��k�, where k is computed from T by
easy combinatorial arguments (see Corollary 4.8). For the primitive ideals
we give, in the algebraically closed case, an effective method to compute
them (see Corollary 4.10).

4. APPLICATION TO A
�q� ��
n �k� AND �q��k2×n�

Let R�C���n �k� = A�q� ��
n �k�� C = �q1� � � � � qn� 1� 1� 1�, so z0 = 1. As in [27],

we denote by Bn the subgroup of k× generated by λij and qi for �i� j� ∈
�1� � � � � n�2 and i < j� �B0 = �1��. By [27, Proposition 2.3.8] we have

Proposition 4.1. Let T be an admissible set of A�q� ��
n �k� such that length

�T � < 2n− 1. If Bn is a free group of rank 1
2n�n+ 1�, then P�QT � is a simple

k-algebra.

Observe that if length�T � = 2n− 1 then

T = ℘n = �z1� y2� x2� z2� � � � � yn� xn� zn��
We have =℘n�ȳ1� = Y1 and =℘n�x̄1� = �1 − q1�−1Y−1

1 which implies
that Z�P�Q℘n�� = k�Y±1

1 �. Let us denote by �℘n the set of the ideals of

A
�q� ��
n �k� containing strictly �℘n� that are the inverse images by �℘n of the

non-zero prime ideals of k�Y±1
1 �. By Corollary 3.5, we have

Spec℘n�A
�q� ��
n �k�� = ��℘n�� ∪�℘n�(10)
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Corollary 4.2. If Bn is free of rank 1
2n�n+ 1�, then

Spec�A�q� ��
n �k�� =

( ⊎
T admissible

��T ��
)
∪�℘n

and

Prim�A�q� ��
n �k�� =

( ⊎
T �=℘n�T admissible

��T ��
)
∪�℘n�

In particular A�q� ��
n �k� is a primitive k-algebra. If k is algebraically closed, then

Spec�A�q� ��
n �k�� =

( ⊎
T admissible

��T ��
)
∪ ��℘n� x1 − α��

and

Prim�A�q� ��
n �k�� =

( ⊎
T �=℘n�T admissible

��T ��
)
∪ ��℘n� x1 − α���

where α ∈ k×.

Proof. In the general case this is a consequence of Theorem 3.6 and
Proposition 4.1 in conjunction with (9) and (10). If k is algebraically closed,
let α ∈ k×. So

�−1℘n��Y1 − α�� = �℘n� x1 − α−1�1− q1�−1��

thus �℘n = ��℘n� x1 − α−1�1− q1�−1��α ∈ k×�. Therefore

Spec℘n�A
�q� ��
n �k�� = ��℘n���℘n� x1 − α−1�1− q1�−1���

The k-algebra �q��k2×n� is obtained as R�C���n �k� with

C = �1� � � � � 1� q−2� q� 0�� λji = q−1� 1 ≤ i < j ≤ n�

From now on, �q��k2×n� will be denoted by R. The defining relations for R
are

yjyi= q−1yiyj� yjxi = q−1xiyj �j > i�
xjxi= qxixj� xjyi = qyixj �j > i�

xiyi= yixi + �1− q2�
i−1∑
l=1
ql−iylxl�

(11)
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The normal elements are zi = q−2xiyi − yixi� i = 1� � � � � n� z0 = 0, and

zjyi = yizj� zjxi = xizj �i ≤ j�
zjyi = q2yizj� zjxi = q−2xizj �i > j�
zjzi = zizj �all i� j�
xiyi = yixi + qzi−1 �i = 1� � � � � n��
zi = �q−2 − 1�yixi + q−1zi−1 �i = 1� � � � � n�� z0 = 0�

Finally the matrix Qn is

Y1 X1 Y2 X2 · · · Yn Xn

Y1
X1
Y2
X2
���
Yn
Xn




1 1 q q−1 · · · q q−1

1 1 q q−1 · · · q q−1

q−1 q−1 1 1 · · · q q−1

q q 1 1 · · · q q−1
���

���
���

���
� � �

���
���

q−1 q−1 q−1 q−1 · · · 1 1
q q q q · · · 1 1



�

Let T be an admissible set of Rn = R and T = T1 ∪ · · · ∪ Tr� ik =
min�ind�Tk��� jk = max�ind�T ��� k = 1� � � � � r its connected decomposi-
tion. We denote by AnT the quantum space attached to Rn/�T � with the
associated matrix QT = �qkij �1≤i�j≤t , where kij ∈ �0� 1 − 1�. If 1 ≤ l ≤ t
then the symbol Vl will denote a variable Xl for l ∈ �ik + 1� � � � � jk�\�T , a
variable Yl for l ∈ �ik + 1� � � � � jk�\�T � k = 1� � � � � r, and the absence of a
variable when l ∈ Remv�T �. Let us denote �n

T = �kij�1≤i�j≤t ∈Mt×t���.
Definition 4.3. Let T be an admissible set of �q��k2×n� and consider

the associated matrix �n
T = �kij�1≤i�j≤t . The quantum linear system associ-

ated to T is the linear system of equations over the integers �n
Tm = 0,

where m ∈ �t .

We denote by Null��n
T � the torsion free abelian group �m ∈ �t ��n

Tm = 0�.
Order the variables Y1 < X1 < · · · < Yn < Xn and consider this order-
ing inherited by the subset of variables that appear in AnT . Let us denote
by Cn�T � the number of ordered pairs �Wi�Wj� satisfying the following
conditions:

(a) each Wk represents either the variable Xk or Yk of A
n
T

(b) no variable appears in two different pairs,
(c) Wi < Wj are consecutive and i < j.

This Cn�T � is the number of consecutive disjoint submatrices of the form( 0 ε
−ε 0

)
of the tridiagonal of �n

T , where ε ∈ �1�−1�. For example, if n = 3
and T = �x1� z1� ∪ �z3� then A3

T = kQT �Y1� Y2�X2� Y3� hence C3�T � = 2;
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the couples are �Y1� Y2�� �X2� Y3�. If n = 4� T = �x1� z1� y2� z2� ∪ �z4� then
A4
T = kQT �Y1�X2� Y3�X3� Y4� and the couples are �Y1�X2�� �X3� Y4�, thus

C4�T � = 2.

Remark 4.4. (1) Let T be an admissible set such that Remv�T � = �,
and T = T1 ∪ T2 ∪ · · · ∪ Tr the connected decomposition of T with ik =
min�ind�Tk��� jk = max�ind�Tk��� k = 1� � � � � r. Suppose that jr = n− 1, so
AnT = AmT �Yir � Vir+1� � � � � Vn−2� Vn−1� Yn�Xn��m = ir − 1. Then

Cn�T � =
{
Cn−1�T � + 1 if n− ir − 1 is odd
Cn−1�T � if n− ir − 1 is even.

If we put T ′ = Rn−2 ∩ T then Cn�T � = Cn−2�T ′� + 1.
(2) Let T be an admissible set with j = max�ind�T �� ≤ m− 1�m < n.

So AnT = Am−1T �Ym�Xm� � � � � Yn�Xn�; hence Cn�T � = Cm�T � + �n−m�.
For an integer z we write �z� = p when z is equal to 2p or 2p+ 1.

Lemma 4.5. Let T be an admissible set such that Remv�T � = � and
consider T = T1 ∪ T2 ∪ · · · ∪ Tr the connected decomposition of T with ik =
min�ind�Tk��� jk = max�ind�Tk��� k = 1� � � � � r.

(1) Suppose that jr < n− 1 and put

T ′ =
{
T1 ∪ · · · ∪ Tr ∪ �zn−1�� if jr < n− 2
T1 ∪ · · · ∪ Tr−1 ∪ �Tr ∪ �zn−2� xn−1� zn−1��� if jr = n− 2.

Then Cn�T � = Cn−1�T ′� + 1.
(2) Suppose that jr = n� r > 1 and put T ′ = T1 ∪ · · · ∪ Tr−1. Then

Cn�T � = Cm�T ′� + �n− ir� + 1 where m = ir − 1.

Proof. (1) If jr < n− 2 then

AnT ′ = An−3T �Yn−2�Xn−2� Yn−1� Yn�Xn�
AnT = An−3T �Yn−2�Xn−2� Yn−1�Xn−1� Yn�Xn��

This implies that Cn�T ′� = Cn−2�T � + 1 and Cn�T � = Cn−2�T � + 2
whence Cn�T � = Cn�T ′� + 1. Apply the Remark 4.4(1) to T ′ to get
Cn�T � = Cn−1�T ′� + 1.
If jr = n− 2 then

AnT ′ = An−3T �Vn−2� Yn−1� Yn�Xn�
AnT = An−3T �Vn−2� Yn−1�Xn−1� Yn�Xn��

Here we distinguish two cases. The first case is that n − ir − 1 is even; by
Remark 4.4(1) (with n− 1) applied to T , we have Cn−1�T � = Cn−2�T � + 1.
Clearly Cn�T � = Cn−2�T � + 2, whence Cn�T � = Cn−1�T � + 1. Check that
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Cn�T ′� = Cn−1�T �. Hence Cn�T � = Cn�T ′� + 1. Applying Remark 4.4(1)
to T ′, we get Cn�T � = Cn−1�T ′� + 1. The second case is that n − ir − 1 is
odd, so Cn�T � = Cn−2�T � + 1� Cn�T ′� = Cn−2�T � + 1 and thus, Cn�T � =
Cn�T ′� = Cn−1�T ′� + 1 by Remark 4.4(1) applied to T ′.

(2) If jr = n, then
AnT = AmT �Yir � Vir+1� � � � � Vn�� m = ir − 1�

So if n− ir is even then Cn�T � = Cm�T ′� + �p+ 1� with n− ir = 2p. The
same is true if n− ir = 2p+ 1.

Lemma 4.6. Let A ∈ Mm×m���� v ∈ Mm×1���� vt ∈ M1×m��� be the
transpose of v and ε� ε′ ∈ �1�−1�. Then

rank


 A ε′v εv
−ε′vt 0 ε
−εvt −ε 0


 = rankA+ 2

and

rank



A v −v v
−vt 0 0 1
vt 0 0 1
−vt −1 −1 0


 = rank

(
A v
−vt 0

)
+ 2�

Proof. Compute the ranks by using the minors and suitable row and
column elementary operations.

Proposition 4.7. Let T be an admissible set of R and �n
T ∈Mt×t��� the

associated matrix. Then rank�n
T = 2 × Cn�T �.

Proof. We use induction on n. The cases n = 1� 2 are easy. Suppose
that the result holds for all admissible sets in Rm�m < n. If there is i ∈
Remv�T �, then let T ′ be the admissible subset of ℘n\�yi� xi� obtained by
removing yi� xi from T . Notice that �n

T = �n−1
T ′ so Cn�T � = Cn−1�T ′�. The

result in this case follows by the induction hypothesis. Suppose now that
Remv�T � = � and let T = T1 ∪ T2 ∪ · · · ∪ Tr be a connected decomposition
with ik = min�ind�Tk��� jk = max�ind�Tk��� k = 1� � � � � r. We will consider
the different possible cases. The notation v stands for a column vector for
all its entries equal to 1, and vt is its transpose.

Case 1. If jr < n− 1 then

�n
T =



�n−2
T v −v v −v
−vt 0 0 1 −1
vt 0 0 1 −1
−vt −1 −1 0 0
vt 1 1 0 0


 �
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By Lemma 4.6 we have

rank�n
T = rank

(
�n−2
T v
−vt 0

)
+ 2�(12)

Put

T ′ =
{
T ∪ �zn−1�� if jr < n− 2
T ∪ �zn−2� xn−1� zn−1�� if jr = n− 2,

and consider T ′ as an admissible set of Rn−1. We have

�n−1
T ′ =

(
�n−2
T v
−vt 0

)
�

By the induction hypothesis we have rank�n−1
T ′ = 2 × Cn−1�T ′�. Use

Lemma 4.5(1) and (12) to get rank�n
T = 2 × Cn�T �.

Case 2. If jr = n− 1 then

�n
T =



�n−2
T ′ εv v −v
εvt 0 1 −1
−vt −1 0 0
vt 1 0 0


 �

where ε ∈ �1�−1� and T ′ = T ∩ Rn−2. So Lemma 4.6 implies that

rank�n
T = rank�n−2

T ′ + 2�(13)

By the induction hypothesis we have rank�n−2
T ′ = 2 × Cn−2�T ′�. Then

rank�n
T = 2 × Cn�T � by Remark 4.4(1) and (13).

Case 3. If jr = n put T ′ = T1 ∪ · · · ∪ Tr−1�m = ir − 1. Then

�n
T =




�m
T ′ v εir+1v · · · εn−1v εnv

−vt 0 εir+1 · · · εn−1 εn
−εir+1vt −εir+1 0 · · · εn−1 εn

���
���

���
� � �

���
���

−εn−1vt −εn−1 −εn−1 · · · 0 εn
−εnvt −εn −εn · · · −εn 0



�

where εk ∈ �1�−1�� k = ir + 1� � � � � n. Apply Lemma 4.6 several times to
get

rank�n
T =



rank

(
�m
T ′ v

−vt 0

)
+ �n− ir� if �n− ir� is even

rank�m
T ′ + �n− ir + 1� if �n− ir� is odd.
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So we have

rank�n
T =




rank



�m−1
T ′ v −v v
−vt 0 0 1
vt 0 0 1
−vt −1 −1 0


+ �n− ir� if �n− ir� is even

rank


�m−1

T ′ v −v
−vt 0 0
vt 0 0


+ �n− ir + 1� if �n− ir� is odd.

Apply Lemma 4.6 again to get

rank�n
T = rank

(
�m−1
T ′ v
−vt 0

)
+ 2�p+ 1��(14)

where p = �n− ir�. Put

T ′′ =


T ′ ∪ �zm� if jr−1 < m− 1

T1 ∪ · · · ∪ Tr−2 ∪ �Tr−1 ∪ �zm−1� xm� zm�� if jr−1 = m− 1.

Considered as an admissible set of Rm, the matrix associated to T ′′ is of
the form

�m
T ′′ =

(
�m−1
T ′′ v
−vt 0

)
�

Hence by the induction hypothesis we have rank�m
T ′′ = 2 × Cm�T ′′�. If we

apply Lemma 4.5(1) to T ′′ with n = m+ 1, then Cm+1�T ′� = Cm�T ′′� + 1;
hence

rank�m
T ′′ = 2�Cm+1�T ′� − 1��(15)

By Lemma 4.5(2) we have Cn�T � = Cm�T ′� + �p+ 1�, and by Remark 4.4(2)
we have Cm+1�T ′� = Cm�T ′� + 1, because jr−1 < m. This implies that
Cn�T � = Cm+1�T ′� − 1 + �p + 1�. Combining this last equality with (14)
and (15) we get rank�n

T = 2 × Cn�T �.
Corollary 4.8. Let T be an admissible set of R and �n

T ∈ Mt×t��� the
associated matrix. Then the rank of the free abelian group Null��n

T � isNn�T � =
t − 2 × Cn�T �.
Proof. This is a consequence of Proposition 4.7.

Let T be an admissible set of R and �n
T ∈Mt×t��� and let

�Uα = Uα11 · · ·Uαtt �
 = �α1� � � � � αt� ∈ �t�
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be the k-basis of P�QT �, where the Ul’s denote the variables in AnT . Let
�mT1 � � � � �mTk�

be the basis of Null��n
T �. By Corollary 4.8, we have k = Nn�T �. Using [12,

1.3] we get

Z�P�QT �� = k��UmT1 �±1� � � � � �UmTk �±1��
This is a Laurent polynomial ring in the variables �UmT1 �±1� � � � � �UmTk �±1;
thus it is canonically isomorphic to the group algebra k��Nn�T ��.
Corollary 4.9. Consider �q��k2×n� where q is not a root of unity. Let

�� = ��T� ���T is an admissible set� � ∈ Spec�k��Nn�T ����
and

� = ��T� ���T is an admissible set� � ∈ max�k��Nn�T �����
Then the map �T� �� �→ �−1T ��e� defines a bijection between �� and
Spec��q��k2×n�� whose restriction to � is a bijection onto Prim��q��k2×n��.
Proof. Apply Theorem 3.6 and Corollary 4.8.

From now on, we suppose that k is algebraically closed. Let T be an admis-
sible set and let �mT1 � � � � �mTk�� k = Nn�T �, be a basis of Null��T �. The
maximal ideals of Z�P�QT �� are of the form

���� = �UmT1 − λ1� � � � � UmTk − λk��
where � = �λ1� � � � � λk� ∈ �k×�k. By Corollary 4.9, the primitive ideals of
�q��k2×n� are of the form �−1T �����e�, when T ranges over the set of all
admissible sets. We shall exhibit a procedure to compute them from the
solutions of the quantum systems defined in Definition 4.3.
For m = �m1� � � � �mt� ∈ �t we denote

m+ = 1
2
�m1 + �m1�� � � � �mt + �mt ��

and

m− = 1
2
�m1 − �m1�� � � � �mt − �mt ���

where �m� is the absolute value of m ∈ �. Then the inverse image of ���� in
AT is

�UmT
+

1 − λ1U−mT−1 � � � � � UmT
+
k − λkU−mT−k ��(16)
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For each s = 1� � � � � k, let YmTs �λs� denote an element of �q��k2×n� such that

=T �YmTs �λs� + �T �� = UmT
+
s − λsU−mT−s �

Then

�−1T �����e� = �T�YmT1
�λ1�� � � � � YmTk

�λk���

This gives a description of Prim��q��k2×n��.
Corollary 4.10. The primitive ideals of �q��k2×n�, when q is not a root

of unity, are the maximal elements of each stratum SpecT ��q��k2×n��, where
T is an admissible set. If k is algebraically closed, then they are of the form

�T�YmT1
�λ1�� � � � � YmTk

�λk���

where k = Nn�T � and � = �λ1� � � � � λk� ∈ �k×�k.

Example 4.11. In this example we compute the prime and primitive
spectra of �q��k2×2�, where q ∈ k× is not a root of unity and k is algebraically
closed. Each of the 14 strata can be explicitly described. As an illustration,
we compute here two of them. First, consider the stratum corresponding
to � and �z1� y1� x1�. We know that A� = kQ2

�Y1�X1� Y2�X2�; solving
the attached quantum linear system, we get the basis of Null���� which
is ��−1� 1� 0� 0�� �0� 0� 1� 1��. Thus Z�P�Q2�� = k��Y−1

1 X1�±1� �Y2X2�±1�,
hence the maximal ideals corresponding to the �-stratum are �z2 − γ� x1 −
αy1�, where α� γ ∈ k×. Let us denote by � the set of the prime ideals of
�q��k2×2� that are the inverse images by �� of the non-zero prime but not
maximal ideals of k��Y−1

1 X1�±1� �Y2X2�±1�. So
Spec���q��k2×2�� = ��0�� ∪ �I�I ∈ �� ∪ ��z2 − γ� x1 − αy1���

Analogously, for T = �z1� y1� x1�, we get
SpecT ��q��k2×2�� = ��y1� x1�� ∪ �J�J ∈ �� ∪ ��y1� x1� y2 − γ� x2 − α���

where � is the set of the ideals of �q��k2×2� strictly containing �y1� x1�
that are the inverse images by �T of the non-zero prime but not maximal
ideals of Z�P�QT �� = k�y±12 � x

±1
2 � and α� γ ∈ k×. For any other T , the

algebra Z�P�QT �� is one-dimensional, and the computations are straight-
forward. The lattice of prime ideals of �q��k2×2� is drawn in Fig. 1. The
primitive ideal generated by a set A is denoted by ��A��, while prime but
not primitive ideals are denoted by �A�. A line connecting two prime ideal
means inclusion. When both ideals belong to the same stratum, we use a
wavy line.
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Following [23, Example 5], the coordinate ring of quantum Euclidean
space �q��k2×n+1�, when q has a square root in k, is the k-algebra generated
by 2n+ 1 variables ω� y1� x1� � � � � yn� xn satisfying the following relations

yjyi=q−1yiyj� yjxi=q−1xiyj �j>i�
xjxi=qxixj� xjyi=qyixj �j>i�
yiω=q−1ωyi� xiω=qωxi �all i�(17)

xiyi = yixi + �1− q2�
i−1∑
l=1
ql−iylxl + q1−i�q−1/2 − q1/2�ω2�

This k-algebra is an iterated skew polynomial ring

�q��k2×n+1� = k�ω��y1� α1��x1� β1� δ1� · · · �yn� αn��xn� βn� δn��

where αi� βi are algebra automorphisms and δi are left βi-derivations,
deduced from the relations (17). Observe that βiδi = q−2δiβi for all
i ≥ 1. Consider R�C���n+1 �k� with C = �1� � � � � 1� q−2� q� 0�� λij = q−1 for
1 ≤ i < j ≤ n + 1. We have R�C���n+1 �k� = �q��k2×�n+1�� and, by [23,
Example 5], there is an epimorphism

φ ! �q��k2×�n+1�� −→ �q��k2×n+1�

sending y1 �→ q1/2�1 + q�−1ω�x1 �→ ω� yi �→ yi−1� xi �→ xi−1� �i ≥ 2�, and
ker�φ� = �y1 − q1/2�1+ q�−1x1�. Denote by

Spec0��q��k2×�n+1��� = �P ∈ Spec��q��k2×�n+1���� ker�φ� ⊆ P��

Clearly, Spec��q��k2×n+1�� is homeomorphic to Spec0��q��k2×�n+1���.
Example 4.12. Here we apply the foregoing homeomorphism to com-

pute the prime spectrum of �q��k3� when q has a square root in k and it
is not a root of unity. Let β ∈ k× and denote by ηβ the automorphism of
�q��k2×2� sending y1 �→ βy1� y2 �→ y2 and xi �→ xi� i = 1� 2. Consider the
epimorphism

φβ ! �q��k2×2� −→ �q��k3��

sending y2 �→ βy1� x2 �→ x1� y1 �→ q1/2�1 + q�−1ω, and x1 �→ ω. It is clear
that ker�φβηβ� = �x1 − β−1q−1/2�1 + q�y1�. Now fix α ∈ k× and put β =
α−1q−1/2�1+ q� so ker�φβηβ� = �x1 − αy1�. Using Fig. 1 we get the lattice
of prime ideals of �q��k3�; see Fig. 2. There, � is the set of the prime ideals
of �q��k3� which are the image under φβηβ of elements of �� α� γ ∈ k×, and
ž1 = �q−2 − 1�βy1x1 + q−2�q−1/2 − q1/2�ω2.
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