Journal of Algebra 244, 186-216 (2001)
doi:10.1006/jabr.2001.8897, available online at http://www.idealibrary.com on Inigl®

Prime and Primitive Ideals of a Class of
Iterated Skew Polynomial Rings

J. Gomez-Torrecillas

Departamento de Algebra, Facultad de Ciencias, Universidad de Granada,
E18071 Granada, Spain

and

L. EL Kaoutit

Département de Mathématiques, Université Abdelmalek Essaadi, Faculté des Sciences
de Tétouan, B.P. 2121, Tétouan, Morocco

Communicated by Michel Broué

Received December 5, 2000

INTRODUCTION

Hodges and Levasseur described the primitive spectra of quantized coor-
dinate rings of SL; [14], and then of SL, [15]. These results established a
close connection between primitive ideals, torus action, and Poisson geom-
etry. The proofs relied on explicit computations involving generators and
relations.

Subsequently, Joseph generalized the Hodges-Levasseur program to
semisimple algebraic quantum groups [17]. Hodges et al. then expanded
Joseph’s work to include certain multiparameter deformations [16]. These
papers rely less on concrete calculations and more on deeper, more
conceptual, techniques.

It is a natural and important question, then, as to how the preceding
theory might apply to other algebras, particularly other algebras arising in
the study of quantum groups.

Goodearl and Letzter established parallel results for certain iterated skew
polynomial rings [13], with application to quantum Weyl algebras and to
some quantum coordinate rings.
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There have also been several papers (including [22-26]) by S. Q. Oh and
collaborators that further the above program for certain other quantum
coordinate rings.

The present paper fits into the above framework by, first, extending the
work of Oh on primitive spectra [22, 26] to the prime spectra of the iterated
Ore extensions introduced in [23], and second, providing a more detailed
version of the Goodearl-Letzter study for these cases [13].

Goodearl and Letzter’s general framework is to consider some group #
acting as automorphisms on a ring R which give the set #-Spec(R) consist-
ing of all #-prime ideals of R. The #-stratification of the prime spectrum
Spec(R) is then defined as

(M Spec(R)= &  Spec;(R),
jE#-Spec(R)

where each stratum Spec;(R) consists of those prime ideals P of R such
that (M, A(P) = J.

In the case that # is a torus of rank r acting rationally on a noetherian
algebra R over an infinite field k (see [13] for details), the strata Spec,(R)
corresponding to completely prime #-invariant ideals J of R are described
in [13, Theorem 6.6] as follows.

(a) For each completely prime #-invariant ideal J of R, there exists an
Ore set €; in the algebra R/J such that the localization map R — R/J —
R; = (R/J)[%;"] induces a homeomorphism of Spec;(R) onto Spec(R)).

(b) Contraction and extension induce mutually inverse homeomor-
phisms between Spec(R;) and Spec(Z(R;)), where Z(R;) is the centre
of RJ.

(¢) Z(R;) is a commutative Laurent polynomial ring over an extension
of k, in r or fewer indeterminates.

The foregoing description of the #-strata applies to iterated Ore exten-
sions of k under suitable conditions [13, Sect. 4]. For some quantized
coordinate rings, the aforementioned general stratification of the prime
spectrum can be worked out in detail. This non-trivial research has been
done for the coordinate algebras of quantum symplectic spaces @‘q(é’)pkzx")

in [8]. These algebras belong to the class of algebras Rfic’ A)(lk) introduced
in [23], which also includes the coordinate rings @q(okzxn) of quantum

euclidean spaces and the quantum Weyl algebras A&“’A)(k).
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The aim of this note is to give a detailed description of the prime spectra of
the k-algebras R A)(]k) (see Definition 1.1), where C = (cy, ..., ¢,, d, A, u)
is an element of (k*)"*? x k,such thatd = 1ifu # 0and A = (Aij)s Ajj = 1is
a multiplicatively anti-symmetric matrix with entries in k*.

We first define a rational action of the torus # = (k*)", where r = n if
u#0andr =n+1if u =0, on the k-algebra R A)(]k) for an infinite base
field k, and we show that [13, Theorem 6.6] applies to R A)(11«) for any
#-prime ideal. The algebra RE,C’ A)(]k) is filtered with a finite-dimensional
filtration with semi-commutative associated graded algebra, (see, e.g., [4,
Section 3; 5]) which implies, by [19, Theorem 3.8], that R\ ™ (k) satisfies
the Nullstellensatz over an arbitrary field k, so [13, Corollary 6.9] applies

((GY)
to R, (Kk).

In a second step we give a more explicit description of the # -stratification

of the spectra of RS,C’ A)(]k) in the following aspects.

(1) We prove that the #-prime ideals are just the ideals generated
by the admissible sets in the sense of [22]. More explicitly, consider the
finite subset g, of R A)(11«) as defined later in (6). The map J — J N g,
gives a bijection between the #-prime ideals of RE,C’ A)(]k) and the admissible
subsets of g, (Proposition 2.10).

(2) For each #-prime ideal J, let T = J N g, the corresponding
admissible set. We give explicitly a McConnell-Pettit k-algebra P(Qr),
which is strictly contained in Rj, such that the Jth stratum is described as

spec; (RS V() = {P € Spec(RY" V()| PN, = T},

and it is homeomorphic to the spectrum of P(Q) (Theorem 3.4).

(3) By using [12], we obtain that each stratum is homeomorphic to
the spectrum of the centre Z(P(Q7)) of P (Qr) for a suitable admissible set
T. In the particular case R A)(ll‘s) = @‘q(okzx”), we give an explicit method
to compute the number of indeterminates in the Laurent polynomial ring
Z(P(Qy)) over k, for any admissible set 7' (Corollary 4.8).

The first obstacle is to prove the nice properties of the ideals gener-
ated by the admissible sets as in [22]. Using well known results from [11],
we prove that each admissible set 7" generates a polynormal prime ideal
(T). We compute the Gelfand—Kirillov dimension of the factor algebras
R;C’A)(k)/ (T) by using Grobner-Basis techniques; see [3]. An explicit
homomorphism ®; connecting RE,C’ » (k) and the McConnell-Pettit alge-
bra P(Qy) is given. Such a mapping was used by Rigal in the case of
quantum Weyl algebras [27] (see also [26] for a similar morphism in the
quantum euclidean case).
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FIG. 1. The prime spectrum of @, (0k*?) (kis algebraically closed, a, y € k).

Our methods allow us to give an effective description (modulo Commu-
tative Algebra) of Spec(@‘q(okzx”)) for each given n (Corollary 4.9). This is
possible because each prime ideal in the stratum SpecT(@’q(olkZX")) is rec-
ognized as the inverse image under the algebra homomorphism ®;. In the
algebraically closed case, we give an effective method to compute the primi-
tive ideals of @q(olkzx"). As an illustration, we compute Spec(@q(okzxz)) and
Prim(@q(okzxz)) (see Fig. 1). Using the epimorphism defined in [23, Exam-
ple 5], we determine the prime spectrum of @q(o]kz”l) (g has a square root
in k), and we compute Spec(@’q(oﬂé)) as an example (see Fig. 2).

W, 3 - @, 21)) {w, w1, 21)) w, 1,21 — )
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“‘\|/
(Zl\ /

FIG. 2. The prime spectrum of @, (ok’) (k is algebraically closed, a, y € k).
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1. DEFINITION AND BASIC PROPERTIES

Throughout this note we will consider different quantum spaces, so
we will use some convenient notation. Let A = (A;) be a p x p matrix
with entries in k such that A; = 1 and A;; = )\ﬁl. Consider the k-algebra
ky[#, ..., 1,] generated by £, ..., 1, subject to the relations 1,1; = A;t;t;.
This is called the coordinate algebra of the p-dimensional quantum affine
space associated to A and it is the iterated Ore extension

(2) kA[tla ceey tp] Zk[tl][IZ;O-ZJ'”[tp;o-p]a
where 0;(¢;) = A;t; for every 1 < j < i < p. This k-algebra is a noethe-
rian domain, and its skew field of fractions is denoted by ky (¢, ..., 7))

A useful intermediate algebra is the McConnell-Pettit algebra P(A) =
ky[£, ..., 5] (see [20]).

DerINITION 1.1, Let k be a field and let n be a strictly positive
integer. Let C = (¢y, ¢, ...,y d, A, u) be an element of (k*)"*? x k
with d = 1 if u # 0. Consider a multiplicatively anti-symmetric matrix
A = (Xj)1<icjen With entries in k* such that A; = 1 for all i =
1, ..., n. Define R A)(lk) to be the finitely generated k-algebra with
generators y;, Xq, ..., V,, X,, satisfying the following relations

YiYi=A;iYi¥js yix; = /\ﬁldxiyj (>1)

3) xXixp=Nje d 7 xx g, Xy = /\ﬁlci}h‘xj (>1)
i-1
Xy =cyixi + A (A T (e d — Dyx, 4+ (dA) T u (i > 1).
=1

This algebra was defined by Oh in [23]. By [23, p. 39], RY (k) is an
iterated Ore extension
RyCR c-- <Rk =R,,
where Ry = kand Ry = Ry [ Xy, Bi» 8], Rijo = Ry—1[yk» ] forall k > 1,
and «;, B; are algebra automorphisms defined by

a;(y;) = Ay, a;(x;) = )\j_ildxia i<j
4 Bi(y) = )\ﬁlcz‘)’i, Bi(x)) = A ld7\x;, i<
Bi(y:) = ¢y,

and each §; is a left B;-derivation defined by

i—1
8;(y) = /\Z(Ad)i_l_l(cld —Dyx; + (Ad)i—lu, i>1
=1
§(R;i.1) =0, i=1, and  8,(y) =u.

By Y% we denote the set {ay, By, 6, ..., a,, B,, 6, foreachk =1,...,n.
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This class of algebras includes the quantum Weyl algebras Aﬁ;’”‘)(k)(c =
(q,1,1,1) with q = (¢;)7_,), the coordinate rings of quantum symplectic
spaces @,(spk”")(C = (¢°,...,4% 1,4,0), A;; = ¢), and the coordinate
rings of quantum Euclidean spaces @q(okzx”)(C =(,...,1,97%,q,0),
Ai=q ).

Following [23, p. 39], we have

LEMMA 1.2. Set z; =dx;y; — y;x; fori=1,...,n, and zy = du. Then

] . .
Z;yi = CYiZj, zix;=c¢; x;z; (i<])
1 . .
ijizd inj, ijl-zdxl-zj (l>])
iji = ZiZj (all l,])

XY =YX+ Aziy
z;i=(c;d — 1) yx; +drz;_4

(i=2,....n), x1y = ciyx +d 'z

(i=2,...,n),21 = (Cld— 1)y1x1 + z;.

Observe that 8;(y;) = Az;_; for all i > 1.
The quantum space attached to R A)(]1«) isky [Y1, Xy, ..,
Q, is the matrix defined by

Y,, X, ], where

)
Y, X, Y, X, e Y, X,
Y; 1 ¢ ! A;ll ey ! ’\;11 Apicy !
X, ¢ 1 Aoyd Mled Aad™" Aled
Y, Ajy Ad 1 C Ay Apc
X I Nler Ay ld! &) 1 Apd™ Ay ed
: : B : 7:1 - : : 1
Yn /\nl Anl d An2 )\nZ d T 1 ¢y
Xy \Mje Aac'd™t Ao Ao td7to Cy 1

Notice that Y u = duY, and X,u = d~'uX,.

Remark 1.3. We have 6,8; = c;dB;8; for all i > 1. So if ¢;d is not a root
of unity for every i =1, ..., n, then [10, Theorem 2.3] each prime ideal of

“n (k) is completely prime.

In order to classify the prime and the primitive ideals of R A)(11«) we
will suppose that for each i =1, ..., n the scalar ¢;d is not a root of unity.
Denote by g, the following subset of R:
{20 Vis X1s oo o5 Zus Yo» Xn}s if z, =0,
(6) ®n =
if not.

{Zl’ 225 Y25 X255 Zys Vs xn}a
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DEFINITION 1.4 [22]. A subset T of g, is said to be admissible if it sat-
isfies the conditions:

(1) yyorx;eT s z;andz,_; €T, foralli>2
2) x;ory,eT sz eT,if z=0.

For an admissible set 7', let us denote by ind(7) = {i € {1,...,n}|z; €
T}. Anindex i € ind(T) is said to be removable if T contains x; and y;; the
set of removable indices is denoted by Remv(T'). If we denote .7 = {i €
{1,...,n}|y, € T} and Fp = {j € {1,...,n}|x; € T}, then Remv(T) = J
if and only if 7 N ¥ = . We say that T is connected if for any i, j €
ind(T) such that i < k < j, then k£ € ind(T'). A connected component of
T is a connected admissible subset U of T such that for all connected
admissible subsets V' of T with U C V' then U = V. Each admissible set T
decomposes uniquely as T = T, U T, U --- U T,, where T; are the connected
components of 7. This decomposition is called a connected decomposition of
T. Put i, = min(ind(7})), j, = max(ind(7})); we will always suppose that
Jio1 <ix—1,k=2,...,r. An example of such decomposition is to put n =
3 and take T = {x, z;} U{z3} in R;C’A)(k) with zy = 0; so {x, z;}, {z3}
are the connected components of 7.

If T is a connected admissible set we define the length of 7', denoted by
length(T), as

length(7T') = card(ind(7")) + card(Remv(T)),

where card(ind(7T))(resp. card(Remv(7))) is the cardinal of ind(7)(resp.
the cardinal of Remv(7")). The length of a not necessarily connected admis-
sible set T is

length(7T) = Y length(7}),
k=1
where T =T, UT,U---UT, is the connected decomposition of 7.

Our next aim is to prove that (T') is a prime ideal for every admissible
set T

PROPOSITION 1.5. For k > 2, let Q be an (ay, By )-stable prime ideal of
Ry_; such that z;,_; ¢ Q. Then the ideals P = QR; + z; R, and QR, are
prime extensions of Q to R,.

Proof. By [11, Theorem 10.3(ii)], applied to Q in the iterations
Ry, and Ry, we have OR; is a prime extension of Q. We apply
[11, Theorem 10.3(iv)] to get the proposition. Consider frac(Ry»/ORy,) =
Ay, the Goldie quotient ring of Ry ,/OR;,. We need to show
that the extension of &, denoted also by &, to Ay, is an inner
By-derivation, where B, is the extension of B, to Ay ,. It is sufficient
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to show this for the extension of §; to the skew Laurent polynomial ring
Fipp = (Ri_/OIYE, o] Put uy = (1 — ¢,d)"'A3 1y € Fyjp, where
Zx_y is the image of z;_; in Fy,. Then &, (yx) = uryr — Yy and
S = =B N8y = wyi' — ¢ 'y¢ ' ug. Therefore § is an
inner B-derivation of Fy ,, hence &;(a) = uya — B(a)uy, forall a € Ay .
So, by [9, Lemma 1.4], we have the following isomorphisms of k-algebras

Ry -1~ ~

QT[C"/Z] = Ay plXis Bis 8k] = Agpplxr — ug, Bils

k

where Cy, = (Ry)2/ORy2)\{0}. Now, by [11, Theorem 10.3(iv)], the
inverse image of the prime ideal (x;, — u;) in R; is a prime extension of
OR; . Check that x; — u = —¢, (1 - ckd)*lzkyljl, where z; is the image
of z; in R, /OR,. So the inverse image of (z,y, Y in R, is exactly the ideal
P=0R, + zR;. 1

COROLLARY 1.6. The ideal (z;) is prime for all i > 2. If zy # 0, then (z;)
is a prime ideal too.

Proof. 1t is clear that (z;) NR; = z;R; = R;z; is }_},,-stable ideal for
all i > 1. So it suffices to show that R;z; is a prime ideal of R;. But
this follows from Proposition 1.5 with Q = 0 in R;_; and i > 2. For the
case zy # 0 and i = 1 consider F, = Ky{"'] and the element v, = (1 —
cld)*luyfl € F,. We denote by 6;, B; the extensions of &, B; to Fj,
respectively. So 8;(y;) = vy, — c,yv; and 8;(y;') = —¢;'d " uy;?; thus
Bl(yl_]) = vlyl_1 — cl_lyl_lvl. Therefore 8, is an inner B;-derivation of F,
and so Fy[x;, By, 61] = Fy[x; — vy, B1]- By the equality x; —v; = —(1 —
ad) ¢ zlyfl, the inverse image of the prime ideal (zlyfl) in R; is the
prime ideal z;R,. 1

PROPOSITION 1.7. Let I be a 3”7, -stable prime ideal of R; for j <n —2,
and T be a connected admissible set of R, such that i = min(ind(7)) > j+ 1.
Then J = IR, + (T) is a prime ideal of R,,.

Proof. Let k denote max(ind(7)); we use induction on k. If k = j + 2,
then i = k, and T = {z}. As z;;; ¢ IR, by Proposition 1.5, we have
that IR;,, + z;,oR;,, is a prime } 7 ;-stable ideal of R;,,. Then J =
(IRj1» +zj,R;1)R, is a prime extension of IR, + z;,,R;,,. Now sup-
pose that the proposition is true for any connected admissible set 77, with
max(ind(7")) < k. Let " =T N R;_;, so T" is a connected admissible set
of R;_; and

T’U{yk,zk}, ifkejT7k¢§£T
T = T/U{xk,Zk}, ikaSET,kgéjT
T"U{yes xp, 2}, if k € Remv(T).
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Put J,_ = IR,_; + T'R;_;. So by induction hypothesis J,_;R,, is a prime
ideal of R,. Recall that in each iteration every prime ideal is completely
prime; hence J,_; is a ) _j-stable prime ideal of R;_;. We claim that J is a
prime extension to R,, of the prime ideal J;,_;. To show this we will consider
the three cases listed below

(1) T =T U{y,z} then, by the isomorphism
R Rk 1
TRy
the ideal J, = J;,_ Ry + Ry is a prime ideal of R;. Check that J, =
IR 4+ TRy, which is >} ;-stable. Thus J = J; R, is a prime extension of
Jk—l to Rn‘

(2) The case T = T’ U {xy, z;} is similar to the first one by taking
']k = Jk—le —+ kak‘

(3) If T =T U{y,xy, z;}, then consider J, = J,_ R, + v Ry +
kak and ]k/2 = kale/z + ykRk/Z‘ It iS clear that Jk = Jk/ZRk =+ kak
(observe that z;_; € J;_;) and J;, is a prime extension of J;_; to Ry s,
which is B-stable. Therefore J; , R, is a prime ideal of R, and we have
the following algebra isomorphism:

Ry Rk/2

TepRe — Tip

Hence J; is a prime ideal of Rg and J, = IR, + TR,. This is a )} ;-

stable ideal, so J,R, = J is a prime extension of J;, to R,. Thus J is a
prime extension of J,_; to R,. 1

[Yk5 o ][ Xk, Brls

—[xxs Bkl

A polynormal sequence {a, ..., a,} in a ring R is a sequence of elements
of R such that a; is normal in R, and each a; is normal modulo the ideal
(aj,...,a,_1) for all k > 2. An ideal I of R generated by a polynormal
sequence is called a polynormal ideal.

THEOREM 1.8. Let T be an admissible set of R A)(]1<s). Then (T) is a
polynormal prime ideal.

Proof. Clearly, T is a polynormal sequence. We prove that T is prime by
induction on the number of connected components of 7. If T is a connected
admissible set with min(ind(7")) > 1, then (T is prime by Proposition 1.7.
Otherwise it is easy to see that (7) is a prime extension of (7 N R|)R;.
Letnow T=T\UT,---UT,, r> 1, ik = min(ind(Tk)) = max(ind(Tk))

k=1,...,r. Consider [ = (T} U T,_1)R; | as an ideal of R; ; by
1nduct10n hypothe51s IR, is a prime 1deal of R As in each Ore 1terat10n
Ry Rijp, k =1, ..., n, every prime ideal is completely prime, we have I is a

prime ideal of R; . Check that (T') = IR, + T,R,,; applying Proposition 1.7
we have (T) is a prime ideal of R,,. |
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Now we need to compute the Gelfand—Kirillov dimension of the factor
algebra of R A)(]1<s) by an ideal generated by an admissible set. As R A)(lk)
is a PBW k-algebra with respect to the graded lexicographical order <gegey;
we can use [2, Sect. 3; 3, Sect. 4].

LeEMMA 1.9. Let T be an admissible set of R A)(]l«). Then T is a two-
sided Grobner basis.

Proof. In this proof we use the notation of [2,3]. Let T=T, U---UT,
be a connected decomposition of an admissible set 7. It is clear that
TS!(u,v) = 0 for any u € T, and v € T, with s # ¢t € {1,...,r}. Fix
k € {1,...,r} and consider T}, i = min(ind(7})), j = max(ind(7})). By
Lemma 1.2, z, is a semi-commuting element for every s = 1,...,n. So
TeSl(z,,v,) = 0 for every s € {i,...,jyand t € {i +1,...,j}, where v, €
{y:> x,}. By (3), we have also 7«S!(v;,v,) =0forallt #se {i+1,...,j} It
remains to show that 7«S!(y,, x,) =0 forall s € {i + 1, ..., j} N Remv(T}).
But S'(y,, x,) = ¢; 1%,y — ¥xy, = A¢; 'z, € Ty. So from [3, Theorem 3.2],
T is a left Grobner basis of RT. On the other hand, if ¢ € .%; then Ty,x, =
Teolx,y, — A, 'z, =0, and if t € .9 then 7%y, = Tc,yx, + Az, = O.
So by [3, Remark 3.13] T is a two-sided Grobner basis of (7). 1

Using the notations of [2, Sect. 3], the following lemma is easy to prove:

LemmA 1.10. (1) Let E be a monoideal of (NP, +) generated by a min-
imal set {', ..., &} such that Supp(e’) N Supp(e/) = & for i # j. Then
dim(E) = p — k.

(2) Let E =B+ N?, with B =) _,B, be a disjoint union of subsets
of NP, Consider E;, = B;, +N? forall k =1, ...,r, and suppose that E has
a set of generators of disjoint support (as in (1)). Then

dim(E)=p(1—r)+ zr: dim(E;).

k=1
Let €; = exp(y;) and €; = exp(x;) for every i =1, ..., n (see [2, Sect. 1]).
PrOPOSITION 1.11. Let T be an admissible set of RE,C’ A)(Ilg). Then
(G, A)
Ry k
GK dim(T()> = 2n — length(T).

Proof. Using Lemma 1.9 and [2, Theorem 3.7; 3, Theorem 4.10] we
have

GK dim(R\" M (k)/(T)) = dim(exp(({T))).

So it suffices to compute dim(exp((7))). Let T be a connected admissible
set with i = min(ind(7)), j = max(ind(7")). By Lemma 1.9, exp({T)) is
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generated by the elements €, + €}, ¢, if kK € J7, and ¢, if | € £, where
k,l=i+1,...,j. Apply Lemma 1.10(1) to get dim(exp({T})) = 2n —
length(T). If T is not connected, consider 7' = T, U - - - U T, the connected
decomposition of 7. Then, by Lemma 1.9,

exp(T) = |4 exp(Ty)
k=1

and exp({T)) has a set of generators of disjoint support. So by Lemma
1.10(2) we have

dim(exp((T))) =2n(1 —r) + )_ dim(exp({7T)))
k=1

=2n(l—r)+ Xr:(Zn — length(7}))
k=1

1 = 2n — length(T).

2. THE #-ACTION AND THE %-PRIME IDEALS

Let k be an infinite field. We will define a rational action of an alge-
braic ktorus on R\ A)(]k), which will be shown to satisfy [13, 4.1]. Thus
[13, Theorem 6.6, Corollary 6.9] apply to the algebra R\ ™ (k). As in [8],
we will show that the #-prime ideals are precisely the ideals generated by
admissible sets. We need to establish a k-algebra isomorphism between a
localization of a factor algebra R&C’A)(k)/(T), for a fixed admissible set T,
and a localization of a quantum space attached to 7.

Remark 2.1. Let G denote a group acting on Rﬁ,c’ A)(lk) as k-algebra
automorphisms. Assume that y;, x;, i = 1,...,n are G-eigenvectors. If
h € G then, by (3), the action of A has one of the following forms

hy;=my, and  hx;=m;'x;, ifu#0
() or
h.y; =m,y; and h.x; = nl-_lﬂx,-, if u=20;
where 7); is the h-eigenvalue of y;,, i = 1,...,n, and 0 is the common h-

eigenvalue of z, ..., z,. In conclusion, the group G can be replaced by a
subgroup of the algebraic torus (k*)" or of the torus (k)" x k*.

In what follows # will denote the torus (k*)" or (k*)**!, depending on
the value of wu.

DEFINITION 2.2. We define the following rational action of # on
RN (k):
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(1) If u #0, then # = (k*)" and for any h = (hy..., h,) € # we
take

h.y; = h;y
h.xi = hi_lx,-.

(2) If u=0, then # = (k*)"*! and for any h = (hy, ..., h,, h,1) €
# we take

h.y; = h;y,
hox; = h; ' hy, o x.

Remark 2.3. The actions given in Definition 2.2 satisfy the hypothesis
of [13, 4.1(c)]. Let us show this claim; recall that each c¢;d is not a root
of unity. In the case u # 0 we have d = 1, so for any j € {1, ..., n} the
restriction to R;_; and R;, of the action of the following elements of #

hjz(Ajl,...,/\ Cj,l,...,l),

ji-1>
I = (A7 A 1 1
g =( Ch A e L, )

gives the automorphisms «;, B;, respectively. If u = 0, then for any j €
{1, ..., n} we take

hj = (/\jla ""Ajj—h de, 1, ...,1,d),
g =\l A e e 1, d ).

It is clear that «;, B; are the restriction of hi, g/, respectively. Hence both

actions on R\ A)(11«) satisfy [13, 4.1]. Notice that if d =1 and u = 0, then
we can use the torus (k*)" instead of (k*)"*! with the obvious action. But
if d # 1, we have to enlarge the size of the acting torus in order to “place”
the parameter d. The action defined in [13, 5.4] for the quantum Euclidean
space @q(okz”‘) does not satisty [13, 4.1(c)]; see the following example for
n=2.

EXAMPLE 2.4. Let Rgc’ A)(]1«) = @‘q(okzxz) with ¢ not a root of unity. If

we suppose that # = (k*)? and the #-action satisfies [13, 4.1(c)], then there
exists & = (hy, h,) € # such that the restriction of 4 to ky;, x;] coincides
with the k-algebra automorphism «,. Thus

ay(y)) =q 'yy = hy, = hyy,
ay(x))=q 'x; = hx, = h1_lx1;

this means that g = 1, in spite of the assumption that ¢ is not a root of
unity.
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In the rest of this section the algebra Rff’ A)(k) will be denoted by R. By
Remark 2.3 and [13, Proposition 4.2], each #-prime ideal of R is completely
prime and there exist at most 22",

Recall that R satisfies the Nullstellensatz, so, by [13, Corollary 6.9], R
satisfies the Dixmier—-Moeglin Equivalence. The primitive ideals of R are
precisely those maximal within their #-strata.

Our next goal is to describe the #-prime ideals in terms of admissible
sets. We need to control the Gelfand—Kirillov dimension of certain local-
izations of R.

PROPOSITION 2.5. Let W be any subset of {1, ..., n}. Consider the multi-
plicative subset % of R generated by y,, k € W. Then % is a right Ore set and
the Gelfand-Kirillov dimension of RY ™" equals 2n.

Proof. Compare with [8, Proposition 2.1]. By [9, Lemma 1.4; 18,
Lemma 4.1], % is a right Ore set of R and so GKdim(R) < GKdim(R% ™).
So we will prove the converse inequality. Consider the k-algebra S gen-
erated by yj, xq, ..., V,, x,, satisfying the relations (3) and new variables
Q, k € W, with the following additional relations

(8) Oix; = )\ﬁlciijn Yil; = Ay, (J>10)
Qiyj = /\jiiji (Jj>1)
Qiyj =y =1

k—1
Qexp = e Qe + Ad ™1 Y (AN (e d — 1)y x, QF + dF 3 Ak 12,02,
=1

There is a surjective homomorphism of algebras § — R%~! sending y, to
Vi, X; to x;, and Q, to y,'. Then GKdim(R% ') < Gkdim(S). We claim
that GKdim(S$) = 2n. Order the variables

le <-~-<ka<y1<xl<-~-y,,<x,,,

where W = {k,, ..., k,,}. Let <, be the weighted lexicographical ordering
on N2+ defined by the vector

w=(,...,1,1,2,1,4,...,1,2n,).
— —
(m)

By [7, Proposition 3.2], S can be endowed with an (N?"+" < )-filtration
such that the N?"*"_graded algebra G(S) is semi-commutative, namely, it
is generated by finitely many homogeneous elements

le,---,ka’yl’xl’ <o Yo Xpo
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in addition y,Q; = 0 for every k € W. Therefore G(S) is a factor of the
coordinate algebra of an 2n + m-dimensional quantum affine space by the
ideal generated by the elements y, €,k € W. By [2, Theorem 4.4.7; 3,
Theorem 4.10], it is clear that GKdim(G(S)) = 2n + m — m, and by [7,
Corollary 2.12] we have GKdim(S) = GKdim(G(S)) = 2n. 1

Fix an admissible set T = T, U T, U --- U T, with i, = min(ind(7})),
jx = max(ind(7})). For a prime ideal P of R we denote by ht(P) the height
of P. Let us now compute the height of an ideal generated by the admissible
set T.

PROPOSITION 2.6. Let T be an admissible set of R. Then

ht((T)) = length(T) = 2n — GK dim(%).

Proof. Let us first prove the proposition for a connected admissible set
T. Consider j = max(ind(7")) and i = min(ind(7")); we use induction on
j. If j =i =1 then the possible admissible sets are {z;} if z; # 0 or
{z1, x1},{z1, »} and {z;, y;, x;} if z; = 0. Using Corollary 1.6 and the
definition of the length in conjunction with [21, Theorem 4.1.11] we get
the result in this case. Suppose that the proposition holds for all connected
admissible 7" such that max(ind(7")) < j. We can decompose T as a dis-
joint union of two sets

T'U{z;,y;}, if j € Fr,j ¢ Remv(T)
T={TU{z,x}, if j € £y, j ¢ Remv(T)
T'U{z;, y;, xj}, if j € Remv(T),

where 77 is an admissible set of R. So we have a chain of prime ideals
(0)SA(T") /T, Uj) =T v; € {y]': xj}

or
(OYATYAT, y) AT, yjo xj) = T

By Theorem 1.8 we know that T is generated by a polynormal sequence.
So using [21, Theorem 4.1.11] the chains above are maximal. Therefore
ht((T)) = ht((T")) + €, where € € {1, 2}. Now, the result is clear by induc-
tion hypothesis. Let 7" be an admissible set and 77 U --- U T, its connected
decomposition. We show the proposition in this case by induction on r.
For r = 1 the proposition has been already proved. Suppose that r > 1, so
T=TUT,where T" =T, U---UT,_;. We denote i, = min(ind(7,)). So,
by Proposition 1.5, we have a chain of prime ideals
(0) S (TYAT", 2} (T, T,) = (T).

= =
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This chain is maximal because (7') is a polynormal ideal. The number of
prime ideals between (7, z; ) and (T) is exactly the number of the variables
¥, X, 1 € ind(T,). So we have ht((T)) = ht({T")) + length(7,); hence by
induction hypothesis and the definition of the length we have ht((T)) =
length(7'). The second equality follows from Proposition 1.11. 1

Let us denote by % the multiplicative set of R generated by y;, j ¢ J7;
by Proposition 2.5 this is a right Ore set of R. Let Q7 be a submatrix of
the matrix Q,, defined by deleting the rows and the columns corresponding
to the variables x;,y; € T and x; ,k =1,...,r. If zy =0 and x; ¢ T we
will not delete the row and the column corresponding to the variable x;.
Consider A the quantum space associated to the matrix Qr, considered as
a subalgebra of the quantum space Ay = ky [Y;, X3, ..., Y, X, ] attached
to R. The multiplicative set Y of Ar generated by all the Y, ’s is a right
Ore set, so consider By = ATY . We will denote by a the image of a € R
in < . Consider the k-algebra homomorphism ¥ : yT — Br given by

Vi (y) =Y, (forall k)

Vr(x) =X, (fk—1€ind(T),k>2)

V(%) = X+ (1= ed)'AZ,_ Y, ' (if2 < k and k, k — 1 ¢ ind(T))
V(%) =X, + (1 —cd) ' Zy Y,

V(%) = (1 — cd)'AZ Y, ' (if k € ind(T) and k — 1 ¢ ind(T)),
where Zy =d'zy = u, Z; = (¢,d — 1)Y, X,.. It is clear that %, N (T) = &
so, by [6, Proposition 3.6.15], R?}W(T)y;l = (R/(T))?;l. Composing
W with this last isomorphism we get a new map which we also denote by

W,. A similar algebra homomorphism was given in [27, Sect. 3.2] in the
case of quantized Weyl algebras.

PROPOSITION 2.7.  The mapping
RY7!
Tl

(1YYr
is a k-algebra isomorphism.

Proof. 1t is clear that W, is surjective, and (T) < ker(¥;). So
GK dim(B;) < GKdim(R%;'/(T)%;"). We claim that GK dim(R%;"/
(TY%;") < GK dim(By). From [18, Lemma 3.16], we have GK dim(R%,"'/
(TYy;') < GKdim(R%;') — ht((T)). Using Proposition 2.5 and
Proposition 2.6 we have GKdim(R%;'/(T)%;') < 2n — length(T).
We know that GKdim(A;) = 2n — length(T) = GKdim(B;). So
GK dim(R%;"'/(T)%7") < GK dim(By). Since (T) is a completely prime
ideal, Theorem 1.8, it follows from [18, Proposition 3.15] that ¥y is a
k-algebra isomorphism. |
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Consider the algebraic torus # and its action R as in Definition 2.2. For

any subset X € {1,...,n} =N, we denote by #y the torus
= { {(h)iexugnen|h; € K}, if # = (k)"
{(hiex|hi € K}, if # = (k*)".

Let T be an admissible set of R; we denote by I,,(T') the set of indices of the
variables that appear in A;; 1,(T) € N,,. Define the following action of the
torus %IH(T) = %T on AT' If # = (kx)nJrl, then for any (hi)iel,,(T)u{n+1} €
Hr,

(hdier,ryuins1y- Y1 = I Y)
(hiier, (1)U gni1y- Xk = By X
If # = (k*)", then for any (h;);c; (1) € #7,
(h)ier,(r)- Y1 = Y,
(hiicr oy Xy = h' X,

Consider the canonically extended action of #; to the localization By =
A7rY~L For each h € #, we have the following composite map
_ 4, v !
—yTl—T>BT—h>BT—T><%

(T)

where £ denotes the extension of /4 to By.

— 1
Yr >

DEFINITION 2.8. We define the action of the torus #; on %?}1 as

follows. Given h € #r, define
hax = (V7 hWp)(x)
for every x € %@;1.
The following lemma is clear.

LEMMA 2.9. Consider # 1 as a factor group of the torus . The action of
1 induced on R/(T) by that of % coincides with the restriction of the action
defined in Definition 2.8.

PROPOSITION 2.10. There is a bijection { between # — Spec(R) and
s, (R), the set of all the admissible sets of R, defined by

{ % — Spec(R) — 34,(R)
J —J N g,
With the inverse map

b o4, (R) — # — Spec(R)
T — (T).
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Proof. To show that { and {~' are well defined, we use Theorem 1.8,
Remark 2.3, and [13, Proposition 4.2]. Clearly {{~! = id; let us show that
{~1¢ = id. Consider J € # — Spec(R) such that J N g, = T and suppose
that (T) CJ. Let ¥ = N \Fr = {j;, ..., j,}; By is an iterated Ore exten-
sion of the form

Br ZkQ[Yj]il’ ) YJ%I][XiI’ Bil]"'[Xit’ Bi,]’

where lkg[Y]T], s Yf] is the McConnell-Pettit algebra associated to a
suitable matrix Q. To complete the proof we use the same arguments as
in the proof of [8, Proposition 2.5] with the following element /4 € #;. Fix
le{l,...,t =1} if # = (kK*)*"!, then we take

-1

/\iljkcjk’ L=Jk <l
-1 . .
Aji,d, i=j, >
-1 . . .
hy = { X G =1l <Yy
¢, i=1i
d-t, i=n+1
1, otherwise.
= en we take
If # = (k)" th tak
—1 . . .
Ailjkcjk’ L=Jk <l
-1 . . .
/\jkild , i=ji >
= =1 . . .
h; Aii Cips I=1i, <
Ci, i= il
1, otherwise.

COROLLARY 2.11. The number of #-prime ideals is

1
E[(Z FV2) (2 fz)"] (u # 0)
or 1
— |2+ V2)" — (2 - V2)y! u=0).
TGV ==V w=0)
Proof.  Similar to that [8, Corollary 2.6; 27, Proposition 3.1.16]. 1

3. THE #-STRATIFICATION

In this section, we work out the #-stratification (1) of Spec(Rﬁ,C’ A)(]14{)).
First, we give a simpler description of each #-stratum. Let 7" be an admis-
sible set of Rﬁc’ A)(lk) and let us denote

SpecT(Rﬁ,C’ A)(]k)) ={Pe Spec(Rﬁ,C’ A)(]1())|P Ng,=T}.
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LeMMA 3.1. Let J be an 7#-prime ideal of R A)(]]«) and let T be the

admissible set such that J = (T). Then
C, A G A
Spec,(Ri" ™ (k) = Spec, (R (k).
Proof.  Analogous to [8, Lemma 3.1], using Proposition 2.10. 1
PROPOSITION 3.2.  The #-stratification of Spec(RﬁC’ A)(k)) is given by

) spec(Ry VM) = 1 Specy (R V(k)).
T admissible

Proof. This is a consequence of Proposition 2.10 and Lemma 3.1. 1§

The k-algebra obtained by localizing By at all X that appear in Ay is
the McConnell-Pettit k-algebra P(Q). We will denote R A)(114{) by R. As
in [8] consider @ the composite map

Ry w,
(T;%;‘l Y B, s P(Q)).
T

Remark 3.3 Let J be an #-prime ideal of R and J N g, = T. Let %7
denote the inverse image in R%;'/(T)%;" of the multiplicative set of By
generated by all the X’s. This is a right Ore set and the corresponding
localization Ry satisfies that Ry = P(Qy). Clearly Ry € R;, where J = (T)
and R; = (R/J )%J_l;%] is the set of all non-zero homogeneous elements
with respect to a certain Z"-grading (see [13, Theorem 6.6]). In the general
case one cannot expect Ry = R;. The following is a counterexample: take
n=2, R(zc’ A)(]k) = @‘q(okzxz), T = {z,}; then the homogeneous element

31 + 7, of degree (1,0,0) € Z° is not invertible in R.

THEOREM 3.4. Let T be an admissible set. Then ®; induces a homeo-
morphism between Spec(P(Q7)) and Spec,(R) defined by

@7 : Spec(P(Qr)) — Specy(R)
P > d2H ().

Proof Notice that ®7'(2) is prime because every prime ideal in R or
P(Q7) is completely prime. So it suffices to show that ®7'(2) € Spec,(R)
for all 2 € Spec(P(Q7r)). Put (I)}](?ﬂ) Ng, =T';itisclear that T € T'. We
show the other inclusion by contradiction. So suppose that there exists k €
ind(7”) and k ¢ ind(T"). Hence, modulo (T), we have z;, # 0. So ¥(z;,) =
(cxd — 1)Y, X € 9, which is a contradiction with % € Spec(P(Q7)). Now,
if ind(T") = ind(7") then there exists x;, € T’ such that V(X)) = X; € 2,
also a contradiction. We need to show the injectivity. So let % and %’ be
two elements of Spec(P(Qy)) such that ®;'(2) = d7!(2). It is clear that
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71 (P) N Yy = ©TN@) N Yy = @. Apply ¥y to dT(P)Y7 (T)Y7' =
<I>;1(9/»/)%1/(T)°g;1 to get » = &. For the surjectivity we take P €
Spec,(R), and we put 2 = W (PY: /(T)Y7:'); so 2N Yy = &. Sup-
pose that there exists an indeterminate X, of P(Qr) such that X, € 2.
Therefore if ¥ (x,) = X, then x, € P with k ¢ .9;; this is a contradic-
tion with P € Spec(R). If W (%) = Xy + (1 — ¢xd)"'AZ,_ Y, ', then
V(X)) = —(1 — ¢,d)"'9,'2,. So k ¢ ind(T) and z, € P; this is also a
contradiction with P € Spec,(R). We have shown that the extension of %
to P(Qy) is a prime ideal, which is the inverse image of P by ®7'. 1

COROLLARY 3.5. Let T be an admissible set. Then Spec(R) is homeo-
morphic to Spec(Z(P(Qr))), where Z(P(Qr)) is the center of P(Qr).

Proof. By [12, Corollary 1.5(b)], the contraction & — 2 N Z(P(Qr))
gives a homeomorphism between Spec(P(Q7r)) and Spec(Z(P(Qr))). The
corollary is consequence of Theorem 3.4.

Let p be a prime ideal of Z(P(Q7)); we denote by p¢ its extension to
P(Q7). By max(Z(P(Q7))) we will denote the set of maximal ideals of
Z(P(Q7r)). Now we give the analogue of [8, Theorem 3.10].

THEOREM 3.6. Let
FP ={(T, p)| T is an admissible set, p € Spec(Z(P(Qr)))}
and
P ={(T, p)| T is an admissible set, p € max(Z(P(Q7)))}.

If the parameters c;d,i = 1,...,n are not roots of unity, then the map
(T, p) > D' (p°) defines a bijection between F% and the prime spectrum
Spec(R,lC’ )(k)) whose restriction to P is a bijection onto the primitive
spectrum Prim(RElC’ A) (k)).

Proof. The bijection between ¥% and Spec(Rg,C’ A)(]1‘{)) follows from
Theorem 3.4, Corollary 3.5, and the stratification (9). The bijection
between % and Prim(Rﬁ,C’ A)(11«)) follows from [12, Corollary 1.5(c)], taking
into account that R\ A)(]k) and P(Qy) are Jacobson algebras.

Remark 3.7. From Theorem 3.6 we deduce that the determination of
the prime and primitive spectra of RElc’ A)(]k) depends on the computation of
the basis of the k-algebras Z(P(Q;)) where T runs the set of all admissible
sets. Some assumptions on the matrix Q, allow such a determination by
using [12]. Let us see what happens in case RN (k) is one of the following
k-algebras: @q(ép]kzx"), Al A)(]k), and @q(okzxn).
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(1) Consider R A)(]k) = @q(épkzx") where ¢ is not a root of unity.
Discussing the quantum linear system attached to an admissible set T (see
Definition 4.3), it was shown, in [8, Corollary 3.9], that Z(P(Q7)) = KZ],
where k = ocomp(7T) is the number of connected components of odd
length in the connected decomposition of 7. An effective computation
of the primitive ideals in the algebraically closed case was given in [8,
Corollary 3.12].

(2) The second example is R A)(]k) =AY A)(]k), which was studied
by Goodearl [9] with n = 1, after by Rigal [27, Proposition 3.2.3] and, inde-
pendently, by Akhazavidegan and Jordan [1, Proposition 4.12] for any n.
In this case the McConnell-Pettit algebra P(Q;), where TCg,, is simple.
See [1, Proposition 4.9; 27, Proposition 2.3.8] for a characterization of this
simplicity in terms of the matrix Q;. Then Z(P(Qy)) = k for all TCgp,
(see Proposition 4.1.) By Corollary 3.5, this means that SpecT(AElq’ A) (k) =
{(T)} for any TCg,. In the following section we study the case when
T = p,, and we give the primitive ideals in the algebraically closed case.

(3) The third example is RC A)(lk) = @’q(okzx”) with ¢ not a root
of unity. In Section 4 we will show, by solving the quantum linear system
attached to T, that Z(P(Q7)) = KZ*], where k is computed from T by
easy combinatorial arguments (see Corollary 4.8). For the primitive ideals
we give, in the algebraically closed case, an effective method to compute
them (see Corollary 4.10).

4. APPLICATION TO A" (k) AND 6, (ok**")

Let ROVk) = AYMK), C=(q1,...,q, 1,1,1),50 zp = 1. As in [27],
we denote by I, the subgroup of k* generated by A;; and g; for (i, ) €
{1,...,n}*and i < j, (I'y = (1)). By [27, Proposition 2.3.8] we have

PROPOSITION 4.1.  Let T be an admissible set of ALN (k) such that length
(T) <2n—1.1f T, is a free group of rank %n(n + 1), then P(Q7) is a simple
k-algebra.

Observe that if length(7") = 2n — 1 then
T=gp,= {Zlﬁ Y25 X25 225 e o5 Yns Xps Zn}'
We have W, () = Y, and W, (%) = (1 —¢q;)"'Y;"' which implies
that Z(P(Qy, )) = K Y']. Let us denote by By, the set of the ideals of

AW A)(]k) containing strictly (g,) that are the inverse images by @, of the
non-zero prime ideals of i{ Y:*']. By Corollary 3.5, we have

(10) Specg, (AN (®) = {{9,)} U B -
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COROLLARY 4.2. If T, is free of rank %n(n + 1), then

Spec(A VW) = (1 (1)) Uy,

T admissible

and

P4 = (W)U,

T#§2,,T admissible

In particular qu’ A)(lk) is a primitive k-algebra. If kis algebraically closed, then

Spec<A2“’A><k>)=( N {<T>})u{<son,x1—a>}

T admissible

and

Prim(ASJ"A)(k)):( N {<T>})u{<ga,,,x1—a>},

T#§,,T admissible
where o € k™.

Proof. In the general case this is a consequence of Theorem 3.6 and
Proposition 4.1 in conjunction with (9) and (10). If k is algebraically closed,
let & € k*. So

¢551((Y1 —a)) = (ppx1—a ' (1—q)7"),

thus B, = {{p,, ¥; —a~'(1 - q;)7")|a € k*}. Therefore

Specg, (A1 (10) = {(9,) S (9, 11 — @' (1= q1) )}

The k-algebra @, (0k**") is obtained as Ry~ (k) with
C=(17""17q_27q’0)’ )‘ji:q_], 1<i<j=zn

From now on, @‘q(okz”‘) will be denoted by R. The defining relations for R
are

yivi=q vy,  yxi=q'xy (>0

XiX;i=qx;Xj, XiVi = q)iX; (j>1)

(11)

i—1
xyi=yxi+ (1 =) Y g yx,.
=1
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The normal elements are z; = g~ >x;y; — y;ix;, i =1,...,n,z, =0, and
zjy; = yizzja Zjx; = xizzj (i<))
Z;yi = q7Yiz;, Zjx; =4q “X;z; (i>17)
z;z; = z;Z; (all 4, j)
Xy = YiXi +qz;i (i=1,...,n),

zi=(q7 = Dyxi+q 'z (i=1,...,n), 2y =0.
Finally the matrix Q,, is

i, X Y, X, Y, X,

Y, 41 1 q q'! a q!

X1 1 q g qa q!

2 ¢ ¢ 1 1 q q

X g q 1 1 q q'

Y, \a' ' ' ¢' - 1 1

X, \qg g g q - 1 1
Let T be an admissible set of R, = Rand T =T, U---UT,, i, =
min(ind(7})), j, = max(ind(T)),k = 1,...,r its connected decomposi-

tion. We denote by A% the quantum space attached to R,/(T) with the
associated matrix Qr = (qkff)lg,jst, where k; € {0,1 -1} If1 </ <1t
then the symbol V; will denote a variable X, for [l € {i, +1,..., i }\Ir, a
variable Y, for I € {iy + 1, ..., ji }\¥r,k =1,...,r, and the absence of a
variable when / € Remv(7'). Let us denote M7 = (k;;)1<; j<, € My (Z).

DErFINITION 4.3. Let T be an admissible set of @’q(olkzx”) and consider
the associated matrix M7 = (k;j)i<; j<,- The quantum linear system associ-
ated to T is the linear system of equations over the integers /7 m = 0,
where m € 7"

We denote by Null(./%) the torsion free abelian group {m € Z'|.#%m = 0}.
Order the variables Y| < X; < .-+ < Y, < X,, and consider this order-
ing inherited by the subset of variables that appear in A%. Let us denote
by C,(T) the number of ordered pairs (W, W;) satisfying the following
conditions:

(a) each W, represents either the variable X; or Y; of A%
(b) no variable appears in two different pairs,
(c) W, < W, are consecutive and i < j.

This C,(T) is the number of consecutive disjoint submatrices of the form

(_0 ¢} of the tridiagonal of ., where € € {1, —1}. For example, if n = 3

and T = {x;, z;} U{z;} then A3 = ko, [Y1, Y3, X5, Y3] hence C5(T) = 2;
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the couples are (Y, Y5), (X, Y3). If n =4, T = {xy, 21, 2, 22} U {z,} then
A% = ko, [Y1, X5, Y3, X3, Y,] and the couples are (Y3, X;), (X3, Yy), thus
C(T) =2.

Remark 44. (1) Let T be an admissible set such that Remv(7') = J,
and T =T, UT,U.--UT, the connected decomposition of T with i} =
min(ind(7})), jr = max(ind(7})), k =1, ..., r. Suppose that j, =n—1, so
AITZ* = A;'}[Yi,’ I/i,+17 ceey I/n_z, I/n—l’ Yn, Xn], m = ir - 1 Then

_[C(T)+1  ifn—i,—1isodd
Cu(T) = { C, (T) if n—1i, —1is even.

Ifweput 7" =R,_,NT then C,(T)=C,_»,(T")+ 1.
(2) Let T be an admissible set with j = max(ind(T)) <m—1, m < n.
So A} = A} 'Y, X,,,, ..., Y,, X,]; hence C,(T) = C,,(T) + (n — m).
For an integer z we write [z] = p when z is equal to 2p or 2p + 1.

LEMMA 4.5. Let T be an admissible set such that Remv(T) = & and
consider T =T, UT, U ---UT, the connected decomposition of T with i), =
min(ind(7})), j, = max(ind(7})), k=1,...,r.

(1) Suppose that j. < n—1 and put

T/_{T1U"'UT,«U{Z"_1}, ifj,<n—2
nu---UT,_, U (Tr U {Zn727 Xn—1> anl})’ ifjr =n-—2

Then Co(T) = C,_((T') + 1.

(2) Suppose that j. = n,r > 1 and put T" = T, U---UT,_;. Then
C(T)=C,(T)+[n—i]+1where m=i, —1.

Proof. (1) If j, <n—2 then
Sl“’ = A’%_3[Yn—27 X2, Y1, Yy, X,
Ar% = A};"73[Yn—2’ Xn—27 Yn—la Xn—la Yna Xn]'

This implies that C,(T') = C,_»,(T)+ 1 and C(T) = C,»(T) +2
whence C,(T) = C,(T’) + 1. Apply the Remark 4.4(1) to T’ to get
C(T) = C,y(T) + 1.

If j, = n— 2 then

A’;.., = A}%_:S[I/n,z, Ynfls Yns Xn]
A;{ = A’;73[I/n—27 Yn—l’ Xn—1’ Yn’ Xn]

Here we distinguish two cases. The first case is that n — i, — 1 is even; by
Remark 4.4(1) (with n — 1) applied to T, we have C,_{(T) = C,_»(T) + 1.
Clearly C,(T) = C,_»(T) + 2, whence C,(T) = C,_;(T) + 1. Check that
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C,(T") = C,_(T). Hence C,(T) = C,(T") + 1. Applying Remark 4.4(1)
to T, we get C,(T) = C,_(T") + 1. The second case is that n — i, — 1 is
odd, so Cn(T) = Cn—Z(T) +1, Cn(T,) = Cn—Z(T) + 1 and thus, Cn(T) =
C,(T")=C,_(T")+ 1 by Remark 4.4(1) applied to 7.

(2) Ifj.=n, then

A= ARY,  Viys o V] m=i— 1.

So if n — i, is even then C,(T) = C,(T') + (p + 1) with n — i, = 2p. The
same is true if n — i, =2p + 1.

LEMMA 4.6. Let A € M,,,,,(Z),v € M,,,1(Z),v' € My,,,(Z) be the
transpose of v and €, € € {1, —1}. Then

A €v ev
rank | —€'v* 0 € | =rankA+2

—evt —€ 0
and
A v O —v v
- 0 0 1 A v
rank 40 0 1 :rank(_v[ 0)+2'
' -1 -1 0

Proof. Compute the ranks by using the minors and suitable row and
column elementary operations. 1

PROPOSITION 4.7.  Let T be an admissible set of R and MY € M, ,(Z) the
associated matrix. Then rank My =2 x C,(T).

Proof. We use induction on n. The cases n = 1,2 are easy. Suppose
that the result holds for all admissible sets in R,,, m < n. If there is i
Remv(T), then let T’ be the admissible subset of g,\{y;, x;} obtained by
removing y;, x; from T. Notice that 4% = %" so C,(T) = C,_(T"). The
result in this case follows by the induction hypothesis. Suppose now that
Remv(T)=Q andlet T =T,UT,U---UT, be a connected decomposition
with i, = min(ind(7})), j, = max(ind(7})), k =1, ..., r. We will consider
the different possible cases. The notation v stands for a column vector for
all its entries equal to 1, and v is its transpose.

Case 1. If j, <n—1 then

MEEE v —v

v —v
- 0 0 1 -1
=1 v 0 0 1 -1
' -1 -1 0 0
vt 1 1 0 O
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By Lemma 4.6 we have

n—2
(12) rank J(} = rank (/%—Tv’ 8) +2.
Put
T — TU{Zn—l}a if jr <n-12
T\ TU{z,_2, X1, 21} if j,=n-2,

and consider 7" as an admissible set of R,_;. We have
_ M
Mt = < T 0).
By the induction hypothesis we have rank.}' = 2 x C,_(T’). Use

Lemma 4.5(1) and (12) to get rank /; = 2 x C,(T).
Case 2. 1If j, =n—1 then

M ev v —v
a | et 0 1 -1
= v —10 o]

V' 1 0 0

where € € {1, -1} and 7" =T N R,,_,. So Lemma 4.6 implies that
(13) rank (. = rank 5, 4 2.

By the induction hypothesis we have rank /%’}72 = 2 x C,_»(T"). Then
rank 47 = 2 x C,(T) by Remark 4.4(1) and (13).

Case3. lfj,=npwtT =T\U---UT,_;,m=1i.—1. Then

M7, v €41V 0 €,V €4V
—! 0 €41 " €1 €
o _Ei,+1vt —€ 41 0 o €1 €&
T : : : - : N
—anlvt —€p—1 —€p—1 0 €
—e, v —€, —-€, - —¢, 0

where €, € {1, -1}, k =i, +1,...,n Apply Lemma 4.6 several times to
get

e rank < o 8) +(n—1i) if (n—1i,) is even
ran =

rank A7, + (n — i, + 1) if (n — i) is odd.
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So we have
a0ty —v v
- 0 0 1 . . oy
rank o o o 117 (n—i,) if (n—1i,)iseven
- -1 -1 0
rank A} =

My —w
rank | —v' 0 O |+(n—-i+1) if(n—i)isodd
v 0 0

Apply Lemma 4.6 again to get

=ty
(14) rank /(% = rank ( —Tv’ 0) +2(p+1),
where p =[n —i,]. Put
{T’U{zm} ifj,; <m—1
T// —
TYU-- - UT, ,U(T,_ U{zp1s Xpp> 2p}) i j_y=m—1.

Considered as an admissible set of R,,, the matrix associated to 7" is of

the form
-1
m _ (M v
TH _Ut O .

Hence by the induction hypothesis we have rank /7, =2 x C,,(T"). If we
apply Lemma 4.5(1) to T” with n = m + 1, then C,, . (T") = C,(T") + 1;
hence

(15) rank M7, = 2(C, 1 (T") — 1).

By Lemma 4.5(2) we have C,(T) = C,,(T") 4+ (p + 1), and by Remark 4.4(2)
we have C,,(T") = C,(T') + 1, because j,_; < m. This implies that
C(T) =C,1(T") =1+ (p+1). Combining this last equality with (14)
and (15) we get rank 4} =2 x C,(T). 1

COROLLARY 4.8. Let T be an admissible set of R and M’} € M, (Z) the
associated matrix. Then the rank of the free abelian group Null(/l’y) is N,,(T) =
t—2x C,(T).

Proof. This is a consequence of Proposition 4.7. 1

Let T be an admissible set of R and /% € M,,,(Z) and let

{U*=U" U'a = (e, ..., ) € Z'}
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be the k-basis of P(Q7), where the U,’s denote the variables in A7%. Let
{m?, ..., m,{}

be the basis of Null(./7}). By Corollary 4.8, we have k = N, (T'). Using [12,
1.3] we get

Z(P(Qr)) = K(U™ )=, ..., (U™ )*!],

This is a Laurent polynomial ring in the variables (U™ )*!, ... (U™ )*!;
thus it is canonically isomorphic to the group algebra k7" "(T)].

COROLLARY 4.9. Consider @q(okzxn) where q is not a root of unity. Let
Fp = {(T,p)|T is an admissible set, p € Spec(Z"D])}
and
P = {(T, p)|T is an admissible set,p € max(k[ZN”(T)])}.

Then the map (T,p) — ®7'(v°) defines a bijection between F% and
Spec(@’q(olkzxn)) whose restriction to % is a bijection onto Prim(@’q(okzxn)).

Proof.  Apply Theorem 3.6 and Corollary 4.8. 1

From now on, we suppose that kis algebraically closed. Let 7 be an admis-
sible set and let {m!,...,m}},k = N,(T), be a basis of Null(.#(;). The
maximal ideals of Z(P(Qy)) are of the form

pN) = (U™ — A, ..., U™ —\,),

where X = (A, ..., A¢) € (K°)*. By Corollary 4.9, the primitive ideals of
@q(okz”’) are of the form ®7'(p(N\)°), when T ranges over the set of all
admissible sets. We shall exhibit a procedure to compute them from the
solutions of the quantum systems defined in Definition 4.3.

Form = (my,...,m,) € Z' we denote
L1
= 2y o )
and
_ 1
m :E(m1_|m1|7"'7mt_|mt|)7

where |m| is the absolute value of m € Z. Then the inverse image of p(\) in
Aris

(16) (om o U U,



IDEALS OF SKEW POLYNOMIAL RINGS 213
Foreachs=1,...,k, let Y,r(A,) denote an element of @‘q(olkzx") such that
V(Y (A) +(T)) = U™ — A U™ .

Then
7' (BN)) = (T, Y (M), - s Y (M)
This gives a description of Prim(@‘q(okzx")).

COROLLARY 4.10.  The primitive ideals of @q(ok2x”), when q is not a root
of unity, are the maximal elements of each stratum SpecT(@q(DkZX”)), where
T is an admissible set. If kis algebraically closed, then they are of the form

(T, leT()‘l)’ SR Ym,{()‘k»’
where k = N,(T) and N = (A, ..., Ay) € (K)K.

ExampPLE 4.11. In this example we compute the prime and primitive
spectra of @‘q(oﬂgzxz), where g € k* is not a root of unity and kis algebraically
closed. Each of the 14 strata can be explicitly described. As an illustration,
we compute here two of them. First, consider the stratum corresponding
to & and {z, y;, x1}. We know that Ay = ko [Y7, X;, Y2, X,]; solving
the attached quantum linear system, we get the basis of Null(/) which
is {(_1’ 17 O’ O)s (07 O’ 1’ 1)} Thus Z(P(QZ)) = k[(Ylel)ila (YZXZ):H]:
hence the maximal ideals corresponding to the J-stratum are (z, — vy, x; —
ay,), where @, y € k*. Let us denote by .7 the set of the prime ideals of
@‘q(olkzxz) that are the inverse images by @ of the non-zero prime but not

maximal ideals of K{(Y; ' X;)%!, (Y, X,)*!]. So

Specg (9, (0k”?)) = {{0)} U{I|T € T} U {(z; — v, x1 —ay)}.

Analogously, for T = {z;, y;, x;}, we get

Specr(@q(okzxz)) ={(,x) U € FEU{{y1, X1, o — ¥, X, — @) },

where ¥ is the set of the ideals of @q(okZXZ) strictly containing (y;, x)
that are the inverse images by ®; of the non-zero prime but not maximal
ideals of Z(P(Q7)) = Ky5',x5!] and @,y € k*. For any other T, the
algebra Z(P(Q7)) is one-dimensional, and the computations are straight-
forward. The lattice of prime ideals of @’q(okzxz) is drawn in Fig. 1. The
primitive ideal generated by a set A is denoted by ((A)), while prime but
not primitive ideals are denoted by (A4). A line connecting two prime ideal
means inclusion. When both ideals belong to the same stratum, we use a
wavy line.
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Following [23, Example 5], the coordinate ring of quantum Euclidean
space @’q(olkzx”“), when ¢ has a square root in k is the k-algebra generated
by 2n + 1 variables w, y;, X1, ..., y,, X,, satisfying the following relations

yjyi:q_lyiyja iji:q_lxiyj (j>1)
XjXi=gXXj, XiVi=qYiX; (j>1)

(17) :
yiw=q" oy, Xiw=qwX; (all 7)

i—1
xyi=yxi+ (=) Y gy, + ¢ (g7 — ¢’

=1
This k-algebra is an iterated skew polynomial ring

@q(oﬂéxn+l) = ]k[w][yb al][xb Bb 61] e [ym an][xm Bm 6n]7

where «;, B; are algebra automorphisms and §; are left B;-derivations,
deduced from the relations (17). Observe that 8,8, = ¢~28,8; for all

i > 1. Consider Rii’lA)(]k) with C = (1,...,1,472%,4,0),A; = ¢! for
1 <i<j<n+1 We have Rﬁ,i’lA)(k) = 0,(0k*"*D) and, by [23,
Example 5], there is an epimorphism

b : @q(DkZX(n+1)) — @q(Dkan+1)

sending y; — ¢"?(14+ ¢)'w,x; > ®,y, = Y1, % — x;_1, (i = 2), and
ker(¢) = (y; — ¢"*(1+ q)~'x,). Denote by

Spec, (@, (0k*"D)) = {P e Spec(@,(ok*"*1)))| ker(¢) S P}.
Clearly, Spec(@,(ok*"*")) is homeomorphic to Spec, (@, (ol ")),

ExaMPLE 4.12. Here we apply the foregoing homeomorphism to com-
pute the prime spectrum of @‘q(oﬂé) when ¢ has a square root in k and it
is not a root of unity. Let 8 € k* and denote by 1, the automorphism of
@‘q(olkzxz) sending y; — By, , — », and x; — x;,i = 1,2. Consider the
epimorphism

bp: O, (0k7?) —> 0,(0k),

sending y, - By, X, = X1, ¥ = ¢/*(1 4+ q) o, and x; — w. It is clear
that ker(¢pgmg) = (x; — B¢~ "*(1 + q)y;). Now fix & € k* and put B =
a~'q7*(1+ q) so ker(pgmg) = (x; — ay;). Using Fig. 1 we get the lattice
of prime ideals of @q(oﬂé); see Fig. 2. There, & is the set of the prime ideals
of @q(oﬂé) which are the image under ¢zn of elements of 7, «, y € k*, and

21 =(q 2 = D)Byix; + q2(qg7* — ")
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