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The main purpose of this paper is to give a rigorous proof of the construction of coen-
domorphism left bialgebroids as well as an explicit description of their structure maps.
We also compute some concrete examples of these objects by means of their generators
and relations.
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0. Introduction

In recent decades the notion of Hopf algebroid, both in the commutative and
noncommutative case, appeared as an important tool in different branches of
pure mathematics: algebraic topology, abstract algebraic geometry (Tannaka–Krein
duality), Poisson geometry, Lie groupoids and Lie algebroids, see for instance
[2, 5–7, 9].
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While commutative Hopf algebroids can be directly defined as presheaves of
groupoids in affine schemes, the definition of noncommutative Hopf algebroid
behaves in much more complicated way. In categorical terms [10, 11], a left Hopf
algebroid can be thought as a ring extension of the enveloping ring of the base
algebra, whose category of left modules is a right closed monoidal category and the
canonical forgetful functor to the category of bimodules (over the base algebra) is
strict monoidal and preserves right inner hom-functors. It is worth mentioning that
in practice the most difficult task in checking these properties is to verify this last
condition. Dropping it from the definition one obtains the notion of left bialgebroid.

There certainly exists a strong motivation in these areas for studying the struc-
ture of Hopf algebroids, but there is one basic problem especially concerning the
noncommutative ones which turns out to be of much more fundamental nature.
Namely, the lack of examples of left Hopf algebroids or at least left bialgebroids
that can be defined by means of generators and relations. Moreover, from the non-
commutative algebraic geometry point of view, the construction of this kind of left
bialgebroids certainly is the most desirable.

The main aim of this paper is to establish in a rigorous way the construction of
the coendomorphism left bialgebroids and give concrete examples by means of their
generators and relations, hoping by this to fulfill the lack of examples in the theory
of bialgebroids. Specifically, we start with an extension of k-algebras R → A (k is
any commutative ground ring with 1) and assume that RA is a finitely generated
and projective left module. We then consider the monoidal functor − ×R A from
the category of (R ⊗k Ro)-bimodules to the category of R-bimodules, where −×R−
is Sweedler–Takeuchi’s product [12, 14] and Ro denotes the opposite algebra of R.
Since − ×R A has a left adjoint and can be lifted to a functor from the category
of (R ⊗k Ro)-rings to the category of R-rings, using a classical monoidal result,
we know that there is a left adjoint functor of this lifting which we denoted by
Lm. In Sec. 1 we give an explicit description of the functor Lm and prove that
the image Lm(A) of A, admits a structure of left bialgebroid such that A becomes
a left comodule R-ring. It is worth noting that the possibility of this construction
was first observed by Tambara in [15, Remark 1.7] where no proof was provided.
Several concrete examples of coendomorphism left bialgebroids including some new
coendomorphism bialgebras, are also given in Sec. 2.

Basic notions and notations. We work over a ground commutative ring with
one denoted by k. All rings under consideration are k-algebras, and morphisms of
rings are morphisms of k-algebras. Modules are assumed to be unital modules and
bimodules are assumed to be central k-bimodules. For every ring R, we will denote
by RMod, ModR and RModR the categories of left, right and two-sided modules
over R respectively. The tensor product over R, is denoted as usual by − ⊗R −.
The identity morphism of a right, left module or bimodule M is denoted by the
object itself M .
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For two bimodules RPS and RQS over rings R and S, we will consider the
k-modules of R-linear maps HomR−(P, Q) as an S-bimodule with actions:

sf : p �→ f(ps) and fs′ : p �→ f(p)s′, for every f ∈ HomR−(P, Q),

s, s′ ∈ S and p ∈ P.

Similarly, Hom−S(P, Q) is considered as an R-bimodule with actions:

rg : p �→ rg(p) and gr′ : p �→ g(r′p), for every g ∈ Hom−S(P, Q),

r, r′ ∈ R and p ∈ P.

Under these considerations, the left dual ∗X = HomR−(X, R) of a given R-bimodule
X , is an R-bimodule, as well as its right dual X∗ = Hom−R(X, R). The sub k-
module of R-invariant elements of X is denoted by:

XR := {x ∈ X | rx = xr, ∀ r ∈ R} ∼= HomR−R(R, X). (1)

This in fact defines a functor from R-bimodules to the category of modules over
the center algebra.

For a fixed ring R, we denote by R-Rings the category of R-rings. This is the
comma category over R in the category of all k-algebras. That is, objects are mor-
phisms of rings R → A and morphisms are commutative triangles of k-algebra maps.
Obviously, this category is identified with the category of monoids of the monoidal
category of bimodules RModR. Dually, one can define R-corings [13]. Explicitly, an
R-coring is a comonoid in RModR, which is by definition a three-tuple (C, ∆, ε)
consisting of an R-bimodule C and two R-bilinear maps ∆ : C → C ⊗R C (comul-
tiplication), ε : C → R (counit) satisfying the usual coassociativity and counitary
constraints.

For more information on corings and theirs comodules, the reader is referred
to [4]. For the notions of bialgebroids and their basic properties, the reader is
referred to [1].

1. The Construction of Coendomorphism Bialgebroids

The construction of the coendomorphism bialgebroids is performed in this section.
We proceed as follows. Let A be an R-ring and assume that RA is finitely generated
and projective. We first show that the monoidal functor − ×R A : ReModRe →
RModR has a left adjoint functor, where Re = R ⊗k Ro is the enveloping ring
and − ×R − is the Sweedler–Takeuchi product [12, 14]. This allows us to apply
a classical result in monoidal categories theory (stated here as Theorem 1.4), in
order to construct a functor Lm : R-Rings → Re-Rings which is left adjoint to
− ×R A : Re-Rings → R-Rings. We then prove that the image of A under this
functor, i.e. Lm(A) admits a structure of left R-bialgebroid such that A becomes
a left Lm(A)-comodule.
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1.1. An adjunction between Re-bimodules and R-bimodules

The unadorned symbol ⊗ stands for the tensor product over the commutative
ground ring k. Let R be a ring. For any r ∈ R, we denote by ro the same element
regarded as an element in the opposite ring Ro. Let Re := R ⊗ Ro be the envelop-
ing ring of R. Given an Re-bimodule M , the underlying k-module M admits several
structures of R-bimodule. Among them, we will select the following two ones. The
first structure is that of the opposite bimodule 1⊗RoM1⊗Ro which we denote by
Mo. That is, the R-biaction on Mo is given by

rmo = m(1 ⊗ ro), mos = (1 ⊗ so)m, mo ∈ Mo, r, s ∈ R. (2)

Notice, that this construction defines in fact a functor (−)o : ReModRe → RModR.
The second structure is defined by the left Re-module ReM . That is, the R-bimodule
M l = R⊗RMM l = R⊗R⊗RoM whose R-biaction is defined by

rml = (r ⊗ 1o)m, mls = (1 ⊗ so)m, ml ∈ M l, r, s ∈ R. (3)

This also defines a functor, namely, the right Re-action forgetful functor (−)l :
ReModRe → RModR. One easily observes that there is a commutative diagram:

ReModRe

(−)l

��

(−)o

��

RModR

(−)R

��
RModR

(−)R

�� ModR,

(4)

where (−)R is the left R-action forgetful functor.
Another Re-bimodule derived from M , which will be used in the sequel, is M †.

The underlying k-module of M † is M and an element m ∈ M is denoted by m†

when it is viewed in M †. The Re-biaction on M † is given by

(p ⊗ qo)m†(r ⊗ so) = (p ⊗ ro)m(q ⊗ so), m† ∈ M †,

p, r ∈ R, qo, so ∈ Ro. (5)

Here also we have a functor (−)† : ReModRe → ReModRe which has the following
properties:

Re(M †)†Re = ReMRe and HomRe−Re(M †, U †) = HomRe−Re(M, U), (6)

for every pair of Re-bimodules U and M . Furthermore, there is a commutative
diagram

ReModRe

(−)o

��

(−)†

��

RModR

ReModRe
(−)Re

�� ModRe ,

(7)

whereas before (−)Re denotes the left Re-action forgetful functor. It is clear that the
left module ReM † induces the already existing R-bimodule structure of R⊗1oMR⊗1o .
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Now, let N be another R-bimodule, and consider the tensor product Mo ⊗R N .
The additive k-submodule of invariant elements

(Mo ⊗R N)R =

{∑
i

mo
i ⊗R ni

∣∣∣∣∣
∑

i

rmo
i ⊗R ni =

∑
i

mo
i ⊗R nir, for all r ∈ R

}

admits a structure of an R-bimodule given by the actions:

r ⇀

(∑
i

mo
i ⊗R ni

)
=
∑

i

((r ⊗ 1o)mi)o ⊗R ni, (8)

(∑
i

mo
i ⊗R ni

)
↼ s =

∑
i

(mi(s ⊗ 1o))o ⊗R ni, (9)

for every set of elements
∑

i mo
i ⊗R ni ∈ Mo ⊗R N and r, s ∈ R.

In this way, to each R-bimodule N one associates two functors:

((−)o ⊗R N)R : ReModRe ��
RModR,

(− ⊗ ∗N)† : RModR
��
ReModRe ,

where, for each R-bimodule X , we consider X ⊗ ∗N as an Re-bimodule with the
following actions:

(p ⊗ qo)

(∑
i

xi ⊗ ϕi

)
(r ⊗ so) =

∑
i

(pxiq) ⊗ (sϕir),

for every element
∑

i xi ⊗ ϕi ∈ X ⊗ ∗N , p, q, r, s ∈ R. These functors are related as
follows.

Lemma 1.1. Let N be an R-bimodule such that RN is finitely generated and pro-
jective module with left dual basis {(ej,

∗ej)}1≤j≤m ⊂ N × ∗N . There is a natural
isomorphism

HomR−R(X, (Mo ⊗R N)R) �� HomRe−Re((X ⊗ ∗N)†, M)

σ � �� [(x ⊗ ϕ)† �−→ ((Mo ⊗R ϕ) ◦ σ(x))]
x �−→

∑
j

α((x ⊗ ∗ej)†)o ⊗R ej


 α���

for every R-bimodule X and Re-bimodule M . Equivalently, the functor (− ⊗ ∗N)†

is left adjoint to the functor ((−)o ⊗R N)R.

Proof. By the isomorphism (Mo ⊗R N)R ∼= Hom−Re(R, Mo ⊗R N) of k-modules,
the right-hand object inherits a structure of left Re-module coming from the
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actions ⇀, ↼ defined in (8) and (9). This left Re-action is explicitly given by the
formula:

((p ⊗ qo)α)(1) = p ⇀ α(1) ↼ q,

for every p, q ∈ R, and α ∈ Hom−Re(R, Mo ⊗R N). Since RN is finitely generated
and projective, we have a k-linear isomorphism

f : Hom−Re(R, Mo ⊗R N)
∼=−→ Hom−Re(∗N, M †),

(α �−→ [ϕ �→ (Mo ⊗R ϕ) ◦ α(1)]),

with inverse map f−1(σ)(1) =
∑

j σ(∗ej)o ⊗R ej , for every σ ∈ Hom−Re(∗N, M †)
(recall that the underlying right Re-module of the Re-bimodule M † is Mo, see
diagram (7)). One can show that f is left Re-linear, where Hom−Re(∗N, M †) is a
left Re-module by the Re-bimodule structure of M †. We then obtain the following
chain of natural isomorphisms

HomRe−(X, (Mo ⊗R N)R)
∼= �� HomRe−(X, Hom−Re(R, Mo ⊗R N))

∼=
��

HomRe−(X, Hom−Re(∗N, M †))

∼=
��

HomR−R(X, (Mo ⊗R N)R)
∼= ������������ HomRe−Re((X ⊗ ∗N), M †),

where the second right vertical isomorphism is the usual Tensor–Hom adjunction.
Since by (6) the functor (−)† is self-adjoint, the right-hand term in the second row
is isomorphic to the k-module HomRe−Re((X ⊗ ∗N)†, M) so that we get the desired
natural isomorphism.

1.2. The bifunctor (− ×R −) on Re-bimodules

For the convenience of the reader who is not familiar with the notion of ×R-
bialgebras [10, 14], we give in this subsection a detailed definition of these objects.
The most difficult part is the specification of the bifunctor −×R− and their domain
and co-domain categories. Here we substitute Mac Lane’s functors

∫
x
,
∫ y (end,

coend) by the tensor product −⊗R− and the “invariants” (−)R functors of Eq. (1),
which we believe is much closer to the usual notation in bimodules theory.

As we have seen in Sec. 1.1, there is a bifunctor

−×R − := ((−)o ⊗R −)R : ReModRe × RModR −→ RModR.

This is Sweedler–Takeuchi’s product of bimodules [12, 14], which can be also defined
using the notion of ends (limits) and coends (colimits), see [8, pp. 222 and 226].
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Given an Re-bimodule M and an R-bimodule N , an element
∑

i mo
i ⊗R ni

which belongs to M ×R N will be denoted by
∑

i mi ×R ni. Thus, for every r ∈ R

and m ×R n ∈ M ×R N , we have

(m(1 ⊗ ro)) ×R n = m ×R nr and ((1 ⊗ ro)m) ×R n = m ×R rn. (10)

With this notation the left Re-action on M ×R N defined in (8) and (9) can be
written as follows:

(r ⊗ so)

(∑
i

mi ×R ni

)
=
∑

i

(r ⊗ 1o)mi(s ⊗ 1o) ×R ni, (11)

for every elements
∑

i mi ×R ni ∈ M ×R N and r, s ∈ R.
Next, we want to restrict the bifunctor (− ×R −) to the product category of

Re-bimodules ReModRe ×ReModRe . As one can realize there are many ways to do it.
That is, if N is an Re-bimodule, then there are several structures of R-bimodules
on N over which one can construct M ×R N . Here we define M ×R N by using the
R-bimodule R⊗1oNR⊗1o .

In this way, M ×R N admits a structure of Re-bimodule: Using the above left
Re-action (11), we obtain an Re-biaction

(r ⊗ so)

(∑
i

mi ×R ni

)
(p ⊗ qo)

=
∑

i

((r ⊗ 1o)mi(s ⊗ 1o)) ×R ((1 ⊗ po)ni(1 ⊗ qo)), (12)

for every elements
∑

i mi ×R ni ∈ M ×R N and r, s, p, q ∈ R. Hence the Re-biaction
on (M ×R N)† is given by the formula:

(r ⊗ so)

(∑
i

mi ×R ni

)
†(p ⊗ qo)

=

(∑
i

((r ⊗ 1o)mi(p ⊗ 1o)) ×R ((1 ⊗ so)ni(1 ⊗ qo))

)†
. (13)

From now on, the restriction of the bifunctor (−×R −) to ReModRe × ReModRe

will be understood as the following compositions of functors:

ReModRe × ReModRe

((−)o⊗
R

R⊗1o (−)R⊗1o )R

��

−×R−

���������������������������

ReModRe

(−)†
��
ReModRe
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and this will be our definition for ×R-product of Re-bimodules. Therefore, for two
bimodules ReMRe and ReNRe , we set

M ×R N := [(M ⊗R N)R]†,

where RMR = 1⊗RoM1⊗Ro and RNR = R⊗1oNR⊗1o . Thus, (10) reads as

(m(1 ⊗ ro)) ×R n = m ×R n(r ⊗ 1o) and

((1 ⊗ ro)m) ×R n = m ×R (r ⊗ 1o)n
(14)

and (13) as

(p ⊗ qo)(m ×R n)(r ⊗ so) = ((p ⊗ 1o)m(r ⊗ 1o)) ×R ((1 ⊗ qo)n(1 ⊗ so)), (15)

for every r, s, p, q ∈ R and m ×R n ∈ M ×R N .
On the other hand, since we have Mo

R = M l
R for every Re-bimodule M , there is

a canonical natural transformation (which is injective)

ΘM,N : M ×R N �� M l ⊗R N l. (16)

Now, given another Re-bimodule W , there are three Re-bimodules under con-
sideration. Namely, M ×R (N ×R U), (M ×R N) ×R U , and M ×R N ×R W . The
later is constructed as follows: First we consider the underlying left Re-module of
N , that is, N l = ReN which we consider obviously as an R-bimodule, see diagram
(4). Secondly, we construct the k-module Mo ⊗R N l ⊗R W using the left R-module
R⊗1oW . This is an Re-bimodule with actions

(r ⊗ to)

(∑
i

mo
i ⊗R nl

i ⊗R wi

)
(p ⊗ qo)

=
∑

i

rmo
i ⊗R (ni(p ⊗ qo))l ⊗R wi(t ⊗ 1o), (17)

for every elements
∑

i mo
i ⊗R nl

i ⊗R wi ∈ Mo ⊗R N l ⊗R W and p, q, r, t ∈ R.
Lastly, M ×R N ×R W is defined to be the Re-invariant submodule with respect

to the Re-biaction (17), that is,

M ×R N ×R W = (Mo ⊗R N l ⊗R W )Re

=

{∑
i

mo
i ⊗R nl

i ⊗R wi

∣∣∣∣∣
∑

i

rmo
i ⊗R nl

i ⊗R w(s ⊗ 1o)

=
∑

i

mo
i ⊗R (ni(r ⊗ so))l ⊗R w, for all r, s ∈ R

}
.

The k-module M ×R N ×R W admits a structure of an Re-bimodule given by

(r ⊗ so)

(∑
i

mi ×R ni ×R wi

)
(p ⊗ qo)

=
∑

i

((r ⊗ 1o)mi(p ⊗ 1o)) ×R ni ×R ((1 ⊗ so)wi(1 ⊗ qo)),

for every elements
∑

i mi ×R ni ×R wi ∈ M ×R N ×R W and r, s, p, q ∈ R.
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The bifunctor −×R − is not associative. However, they are natural Re-bilinear
maps

αl : (M ×R N) ×R W

→ M ×R N ×R W,


∑

i


∑

j

mij ×R nij


×R wi �→

∑
i,j

mij ×R nij ×R wi


,

αr : M ×R (N ×R W )

→ M ×R N ×R W,


∑

i

mi ×R


∑

j

nij ×R wij


 �→

∑
i,j

mi ×R nij ×R wij


.

The following lemma will be used in the sequel.

Lemma 1.2. Let N be an R-bimodule such that RN is finitely generated and pro-
jective with left dual basis {(ej,

∗ej)}1≤j≤m ⊂ N × ∗N . Consider the bimodule
ReNRe = (N ⊗ ∗N)†. Then there is a well-defined map

N −→ (N ×R N ) ×R N,


n �−→

∑
i,j

((n ⊗ ∗ej)† ×R (ej ⊗ ∗ei)†) ×R ei


.

Proof. Straightforward.

Another useful natural transformation of Re-bimodules is given as follows, see
[10, p. 206]: For every Re-bimodules M, M ′, N, N ′, we have an Re-bilinear map:

(M ×R M ′) ⊗Re (N ×R N ′) τ �� (M ⊗Re N) ×R (M ′ ⊗Re N ′),

(∑
i

mi ×R m′
i

)
⊗Re


∑

j

nj ×R n′
j


 � ��

∑
i,j

(mi ⊗Re nj) ×R (m′
i ⊗Re n′

j).

(18)

In this way, given two Re-rings S and T , then S ×R T is also an Re-ring.
It is clear that the k-linear endomorphisms ring Endk(R) is an Re-ring via the

map � : Re → Endk(R) which sends p⊗ qo to [r �→ prq]. Given a pair of bimodules
RoMRo and RNR, there are two bilinear maps, see [14, §2]

θr : M ×R Endk(R) �� M, θl : Endk(R) ×R N �� N,∑
i

mi ×R fi � ��
∑

i

fi(1)omi,
∑

j

gj ×R nj � ��
∑

j

gj(1)nj .

If M and N are two Re-bimodules, then θr and θl are defined using the underlying
bimodules 1⊗RoM1⊗Ro and R⊗1oNR⊗1o , and both maps are Re-bilinear. Thus,

θr

(∑
i

mi ×R fi

)
= (1 ⊗ fi(1)o)mi and θl


∑

j

gj ×R nj


= (gj(1) ⊗ 1o)nj .
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Recall from [14, §4, Definition 4.5] (see also [3, 10]) the definition of ×R-
bialgebra. A ×R-coalgebra is an Re-bimodule C together with two Re-bilinear maps
∆ : C → C ×R C (comultiplication) and ε : C → Endk(R) (counit) such that the
diagrams

C ×R C
∆×RC �� (C ×R C) ×R C

αl

�������������������

C

∆

����������������

∆
���������������� C ×R C ×R C

C ×R C
C×R∆ �� C ×R (C ×R C)

αr

�������������������

C ×R C

ε×RC

��

C
∆�� ∆ �� C ×R C

C×Rε

��
Endk(R) ×R C

θl �� C C ×R Endk(R)
θr��

are commutative. A ×R-coalgebra C is said to be a ×R-bialgebra provided that
comultiplication and counit are morphisms of Re-rings.

The underlying R-coring structure is given by

C �� C ×R C
ΘC,C �� Cl ⊗R Cl, C

ε(−)(1R) �� R,

where Θ−,− is the natural transformation of (16).

1.3. The ×R-bialgebra Lm(A)

Let A be an R-ring. Using the bifunctor of Sec. 1.2, we get a functor − ×R A :
ReModRe → RModR. Now, for every pair of Re-bimodules M and N , we have well-
defined and R-bilinear maps:

(M ×R A) ⊗R (N ×R A)
Φ2

(M,N) �� (M ⊗Re N) ×R A, R
Φ0

�� Re ×R A,

(m ×R a) ⊗R (n ×R a′) � �� (m ⊗Re n) ×R aa′, r
� �� (r ⊗ 1o) ×R 1A,

(19)

where Φ2
(−,−) is obviously a natural transformation. Thus we can state:

Lemma 1.3. Let A be an R-ring. Then −×RA : ReModRe → RModR is a monoidal
functor with structure maps Φ2

(−,−) and Φ0 of Eq. (19).

Proof. These are routine verifications.

From now on, we assume that our R-ring A is finitely generated and projec-
tive as left R-module. We fix a left dual basis {(ej ,

∗ej)}1≤j≤n ⊂ A × ∗A. By
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Lemma 1.1,

R := −×R A : ReModRe −→ RModR

is a right adjoint to the functor

L := (− ⊗ ∗A)† : RModR −→ ReModRe .

The unit and counit of this adjunction are explicitly given as follows. For any R-
bimodule X and any Re-bimodule U , the unit at the object X is given by

X
ηX �� RL (X) = (X ⊗ ∗A)† ×R A,

x � ��
∑

j

(x ⊗ ∗ej)† ×R ej,
(20)

while the counit at U is given by

L R(U) = ((U ×R A) ⊗ ∗A)†
ξU �� U,

((u ×R a) ⊗ ϕ)† � �� (1 ⊗ ϕ(a)o)u.
(21)

The functor L : RModR → ReModRe is a comonoidal functor whose structures
maps, using (20) and (21), are given by

((X ⊗R Y ) ⊗ ∗A)†
Ψ2

(X,Y ) �� (X ⊗ ∗A)† ⊗Re (Y ⊗ ∗A)†, (R ⊗ ∗A)† Ψ0
�� Re

((x ⊗R y) ⊗ ϕ)† � ��
∑

i

(x ⊗ ejϕ)† ⊗Re (y ⊗ ∗ej)†, (r ⊗ ϕ)† � �� r ⊗ ϕ(1A)o,

for every pair of R-bimodules X and Y .
The following is a classical result in the theory of monoidal categories (see for

instance [15, Remark 1.5]). We will freely use it in the construction performed in
the sequel.

Theorem 1.4. Let (B,⊗B,1B) and (C,⊗C,1C) be monoidal categories. Let L 	 R

be an adjunction where R : C → B is a monoidal functor with structure morphisms
Φ2

(−,−) and Φ0. Then R induces a functor Rm : Cm → Bm between the associated
categories of monoids.

Assume that C has inductive limits and that the tensor product preserves them.
Then Rm has a left adjoint Lm : Bm → Cm.

By Theorem 1.4 and Lemma 1.3, the adjunction L 	 R of (20) and (21) restricts
to the categories of ring extension. That is, we have an adjunction

Lm : R-Rings �� Re-Rings : Rm.�� (22)

For a given R-ring C, i.e. a k-algebra map R → C, the Re-ring Lm(C) is defined,
by the quotient algebra

Lm(C) = TRe(L (C))/IL (C), (23)
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where TRe(L (C)) =
⊕

n∈N
L (C)⊗Re

n

is the tensor algebra of the Re-bimodule
L (C) = (C ⊗ ∗A)† and where IL (C) is the two-sided ideal generated by the set{∑

i

((c ⊗ eiϕ)† ⊗Re (c′ ⊗ ∗ei)†) − (cc′ ⊗ ϕ)†;

1R ⊗ ϕ(1A)o − (1C ⊗ ϕ)†
}

c,c′∈C,ϕ∈∗A

. (24)

We denote by πC : TRe(L (C)) → Lm(C) the canonical projection. From now
on, given a homogeneous element (c ⊗ ϕ)† ∈ TRe(C) of degree one, we denote by
πC(c ⊗ ϕ) its image in the Re-ring Lm(C). Thus, throughout this section we will
drop the symbol dag in the upper indices, and consider C ⊗ ∗A as an Re-bimodule
with its dag biaction, see (5).

The unit and counit of the adjunction (22), can be written as follows:

C
ηm

C �� RmLm(C) = Lm(C) ×R A,

c � ��
∑

j

πC(c ⊗ ∗ej) ×R ej,
(25)

LmRm(B) = ((B ×R A) ⊗ ∗A)
ξm

B �� B,

πLm(B)((b ×R a) ⊗ ϕ) � �� (1 ⊗ ϕ(a)o)b,
(26)

for every R-ring C and Re-ring B. Notice that ξm
B is defined by the universal

property of the tensor algebra.
Next, we proceed to show that Lm(A) is an ×R-bialgebra. The structure of an

Re-ring, is given by the following composition of algebra maps

Re
ι0 �� TRe(L (A))

πA �� Lm(A),

where ιn denotes the canonical Re-bilinear injection in degree n ≥ 0.

Lemma 1.5. Let A be an R-ring which is finitely generated and projective as left
R-module with dual basis {(∗ei, ei)}i. The following maps

δ : A −→ (Lm(A) ×R Lm(A)) ×R A,
a �−→

∑
j,i

(πA(a ⊗ ∗ej) ×R πA(ej ⊗ ∗ei)) ×R ei


,

ω : A −→ Endk(R) ×R A,
a �−→

∑
j

∗ej(a•) ×R ej


, where [∗ej(a•) : r �→ ∗ej(ar)],

are morphisms of R-rings.
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Proof. We only prove that δ is a morphism of R-rings. Similar arguments are used
to show that ω is also a morphism of R-rings. The map δ is in fact the composition
of the following two maps

δ : A �� (L (A) ×R L (A)) ×R A
(πA◦ι1×RπA◦ι1)×RA �� (Lm(A) ×R Lm(A)) ×R A,

where the first one is defined via Lemma 1.2. Thus δ is a well-defined map. Now,
let us show that δ is a morphism of R-rings. The unit is preserved by δ, since we
have

δ(1A) =
∑
j,i

(πA(1A ⊗ ∗ej) ×R πA(ej ⊗ ∗ei)) ×R ei,

(πA(1A ⊗ ∗ej) = πA(1R ⊗ ∗ej(1A)o))

=
∑
j,i

(πA(1R ⊗ ∗ej(1A)o) ×R πA(ej ⊗ ∗ei)) ×R ei

=
∑
j,i

(((1 ⊗ ∗ej(1A)o).πA(1Re)) ×R πA(ej ⊗ ∗ei)) ×R ei

=
∑
j,i

(πA(1Re) ×R (∗ej(1A).πA(ej ⊗ ∗ei))) ×R ei

=
∑
j,i

(πA(1Re) ×R πA(∗ej(1A)ej ⊗ ∗ei)) ×R ei

=
∑

i

(πA(1Re) ×R πA(1A ⊗ ∗ei)) ×R ei

=
∑

i

(πA(1Re) ×R ((1R ⊗ ∗ei(1A)o)πA(1Re)) ×R ei

(15)
=
∑

i

[
(1R ⊗ ∗ei(1A)o) (πA(1Re) ×R πA(1Re))

]
×R ei

(10)
=
∑

i

(πA(1Re) ×R πA(1Re)) ×R
∗ei(1A)ei

= (πA(1Re) ×R πA(1Re)) ×R 1A.

For any a, a′ ∈ A, we have

δ(aa′) =
∑
j,i

[πA(aa′ ⊗ ∗ej) ×R πA(ej ⊗ ∗ei)] ×R ei

=
∑
j,i,k

[πA((a ⊗ ek
∗ej) ⊗Re (a′ ⊗ ∗ek)) ×R πA(ej ⊗ ∗ei)] ×R ei

=
∑

j,i,k,l

[πA((a ⊗ ∗el
∗ej(elek)) ⊗Re (a′ ⊗ ∗ek)) ×R πA(ej ⊗ ∗ei)] ×R ei
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=
∑

j,i,k,l

[(πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek))∗ej(elek)) ×R πA(ej ⊗ ∗ei)] ×R ei

=
∑

j,i,k,l

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R ((∗ej(elek) ⊗ 1o
R)πA(ej ⊗ ∗ei))]×R ei

=
∑

j,i,k,l

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R πA(∗ej(elek)ej ⊗ ∗ei)] ×R ei

=
∑
i,k,l

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R πA(elek ⊗ ∗ei)] ×R ei

=
∑

i,k,l,m

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R πA((el ⊗ em
∗ei)

⊗Re (ek ⊗ ∗em))] ×R ei

=
∑

i,k,l,m,n

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R πA((el ⊗ ∗en
∗ei(enem))

⊗Re (ek ⊗ ∗em))] ×R ei

=
∑

i,k,l,m,n

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek)) ×R ((1 ⊗ ∗ei(enem)o)πA((el ⊗ ∗en)

⊗Re (ek ⊗ ∗em)))] ×R ei

(15)
=

∑
i,k,l,m,n

[(1 ⊗ ∗ei(enem)o)[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek))

×R πA((el ⊗ ∗en) ⊗Re (ek ⊗ ∗em))]] ×R ei

=
∑

i,k,l,m,n

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek))

×R πA((el ⊗ ∗en) ⊗Re (ek ⊗ ∗em))] ×R
∗ei(enem)ei

=
∑

k,l,m,n

[πA((a ⊗ ∗el) ⊗Re (a′ ⊗ ∗ek))

×R πA((el ⊗ ∗en) ⊗Re (ek ⊗ ∗em))] ×R enem

=
∑

k,l,m,n

[(πA(a ⊗ ∗el) ×R πA(el ⊗ ∗en))(πA(a′ ⊗ ∗ek)

×R πA(ek ⊗ ∗em))] ×R enem

=


∑

l,n

(πA(a ⊗ ∗el) ×R πA(el ⊗ ∗en)) ×R en




×

∑

k,m

(πA(a′ ⊗ ∗ek) ×R πA(ek ⊗ ∗em)) ×R em




= δ(a)δ(a′)
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and hence δ(aa′) = δ(a)δ(a′), which shows that δ is multiplicative. A similar com-
putation shows that δ satisfies

δ(r1A) = (πA(r1Re) ×R πA(1Re)) ×R 1A

= r1Lm(A)×RLm(A) ×R 1A, for every r ∈ R,

which means that the diagram

R ��

		������������� A

δ


													

(Lm ×R Lm) ×R A

is commutative, and this finishes the proof.

Part of the following proposition was first observed by Tambara in [15, Remark
1.7] with no proof. Note that, from a categorical point of view, one can expect
that this is rather a trivial result. However, this is far from being a direct or
immediate verification, since the handled categories as we have seen have a very
complicated monoidal structure which is due to the fact that we are dealing with
multi-modules over R rather than fixed bimodules and that the product ×R is not
associative.

Proposition 1.6. Let A be an R-ring which is finitely generated and projective as
a left R-module with dual basis {(∗ei, ei)}i. Then Lm(A) is a ×R-bialgebra with
structure maps

Lm(A) ∆ �� Lm(A) ×R Lm(A), Lm(A) ε �� Endk(R),

πA(a ⊗ ϕ) � ��
∑

j

πA(a ⊗ ∗ej) ×R πA(ej ⊗ ϕ), πA(a ⊗ ϕ) � �� [r �→ ϕ(ar)].

Proof. Both ∆ and ε are defined via the adjunction Lm 	 Rm of Eqs. (25) and
(26). In fact, we have

∆ = ξm
Lm(A)×RLm(A) ◦ Lm(δ),

where δ is the morphism of R-rings defined in Lemma 1.5, and ξm
− is the counit

of the adjunction Lm 	 Rm. Therefore, it is immediate that ∆ is a morphism of
Re-rings. To show that ∆ is coassociative it suffices to check that the following
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diagram is commutative

A

ηm
A

���������

		���������

Rm(Lm(A))
Rm(∆) ��

Rm(∆)

��

Rm(Lm(A) ×R Lm(A))

Rm(∆×RLm(A))

��
Rm(Lm(A) ×R Lm(A))

Rm(Lm(A)×R∆)

��

Rm((Lm(A) ×R Lm(A)) ×R Lm(A))

Rm(αl)

��
Rm(Lm(A) ×R (Lm(A) ×R Lm(A)))

Rm(αr) �� Rm(Lm(A) ×R Lm(A) ×R Lm(A))

and this follows from routine computations.
We also have ε = ξm

Endk(R) ◦ Lm(ω), where ω : A → Endk(R) ×R A is the
morphism of R-rings defined in Lemma 1.5. Hence ε is clearly a morphism of Re-
rings. Furthermore, it satisfies the following equality

θl ◦ (ε ×R Lm(A)) ◦ ∆ = Lm(A) = θr ◦ (Lm(A) ×R ε) ◦ ∆,

which is the counitarity property.

Next we provide the relation between the R-ring structure of A and the ×R-
bialgebra structure of Lm(A).

Corollary 1.7. Let A be an R-ring such that RA is finitely generated and projective
and Lm(A) the associated ×R-bialgebra defined in Proposition 1.6. Then A is a left
×R-Lm(A)-comodule R-ring, that is, A admits a left ×R-Lm(A)-coaction λA : A →
Lm(A) ×R A which is also a morphism of R-rings.

Proof. The unit of the adjunction given in (22) at A

ηm
A : A −→ Lm(A) ×R A,

(
a �−→

∑
i

πA(a ⊗ ∗ei) ×R ei

)

is by definition a morphism of R-rings. Let us check that it is a left Lm(A)-coaction.
It remains to show that the following diagrams are commutative
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A
ηm

A ��

ηm
A

��

Lm(A) ×R A

∆×RA

��
Lm(A) ×R A

Lm(A)×R ηm
A

��

(Lm(A) ×R Lm(A)) ×R A

αl

��
Lm(A) ×R (Lm(A) ×R A)

αr

�� Lm(A) ×R Lm(A) ×R A,

A
ηm

A �� Lm(A) ×R A

ε×RA

��
A Endk(R) ×R A .

θl

��

For every element a ∈ A, we have

αl(∆ ×R A)ηm
A (a) =

∑
i,j

αl((πA(a ⊗ ∗ei) ×R πA(ei ⊗∗ ej)) ×R ej)

=
∑
i,j

πA(a ⊗ ∗ei) ×R πA(ei ⊗∗ ej) ×R ej

=
∑
i,j

αr(πA(a ⊗∗ ej) ×R (πA(ej ⊗ ∗ei) ×R ei))

= αr(Lm(A) ×R ηm
A )

(∑
i

πA(a ⊗∗ ei) ×R ei

)

= αr(Lm(A) ×R ηm
A )ηm

A (a)

and also we have

θl(ε ×R A)ηm
A (a) = θl(ε ×R A)

(∑
i

πA(a ⊗∗ ei) ×R ei

)

=
∑

i

θl(∗ei(a•) ×R ei)

=
∑

i

∗ei(a)ei = a.

This proves the commutativity of the above diagrams and establishes the corollary.
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The ×R-bialgebra Lm(A) constructed in Proposition 1.6 is refereed to as coen-
domorphism left R-bialgebroid since, by [3, Theorem 3.1], Lm(A) is in fact a (left)
bialgebroid whose structure of Re-ring is the map

πA ◦ ι0 : Re −→ Lm(A),

and its structure of R-coring is given as follows. The underlying R-bimodule is
Lm(A)l = ReLm(A), the comultiplication and counit are given by

∆ : Lm(A)l −→ Lm(A)l ⊗R Lm(A)l,(
πA(a ⊗ ϕ) �−→

∑
i

πA(a ⊗ ∗ei) ⊗R πA(ei ⊗ ϕ)

)
, (27)

ε : Lm(A)l −→ R, (πA(a ⊗ ϕ) �−→ ϕ(a)). (28)

Remark 1.8. As one can realize the coendomorphism right bialgebroids are con-
structed by taking a k-algebra extension R → A where AR is finitely generated and
projective right module.

On the other hand, one may wish to have structures of left Hopf algebroids that
can be extracted from coendomorphism left bialgebroids, as was done for some
localizations of coendomorphisms bialgebras which give rise to new Hopf algebras.
Perhaps in this general case one can use also the theory of noncommutative local-
ization at some multiplicative set of grouplike elements. However, we believe that
this is not an easy task which deserves a separate project.

2. Examples of Coendomorphism Bialgebroids

In this section we give some concrete examples of coendomorphism bialgebroids, by
specifying their generators and relations.

Example 2.1 (Quaternion coendomorphism bialgebra). Assume that R = k

is a field with characteristic not equal to 2. Let A be the Hamilton quaternion k-
algebra associated to the pair (−1,−1). That is, A = k⊕ ki⊕ kj⊕ kij with relation
i2 = −1 = j2 and ij = −ji. Then one can prove, using Proposition 1.6, that Lm(A)
is a k-bialgebra, which is generated as a k-algebra by elements {xk, yk, zk, uk}1≤k≤3

subject to the relations

1 + x2
k = y2

k + z2
k + u2

k, for all k = 1, 2, 3,

x1x2 + x2x1 = y2y1 + y1y2 + u2u1 + u1u2 + z2z1 + z1z2,

u3 = x1u2 − y1z2 + z1y2 + u1x2,

x1y1 = −y1x1 + z1u1 − u1z1, u2x1 = −x2u1 − y2z1 − z2y1,

u1y1 = y1u1 + z1x1 + x1z1, u2z1 = −x2y1 − y2x1 − z2u1 + y3,

z1y1 = y1z1 − x1u1 − u1x1, u2y1 = x2z1 + y2u1 + z2x1 + z3,
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Coendomorphism Left Bialgebroids

x3 = x1x2 − y1y2 − z1z2 − u1u2, x2y2 = −y2x2 + z2u2 − u2z2,

y3 = x1y2 + y1x2 − z1u2 + u1z2, x2z2 = −y2u2 − z2x2 + u2y2,

z3 = x1z2 + y1u2 + z1x2 − u1y2, x2u2 = −y2z2 − z2y2 − u2x2.

The k-coalgebra structure is given as follows:

∆(xk) = xk ⊗ 1 + yk ⊗ x1 + uk ⊗ x2 + zk ⊗ x3,

ε(xk) = 0, k = 1, 2, 3,

∆(yk) = yk ⊗ y1 + uk ⊗ y2 + zk ⊗ y3, k = 1, 2, 3,

ε(yk) = 0, k = 2, 3, ε(y1) = 1,

∆(zk) = yk ⊗ z1 + uk ⊗ z2 + zk ⊗ z3, k = 1, 2, 3,

ε(zk) = 0, k = 1, 2, ε(z3) = 1,

∆(uk) = yk ⊗ u1 + uk ⊗ u2 + zk ⊗ u3, k = 1, 2, 3,

ε(uk) = 0, k = 1, 3, ε(u2) = 1.

Moreover A is a left Lm(A)-comodule algebra with coaction λ : A → Lm(A) ⊗ A

defined by

λ(1A) = 1L (A) ⊗ 1A,

λ(i) = x1 ⊗ 1 + y1 ⊗ i + u1 ⊗ j + z1 ⊗ ij,

λ(j) = x2 ⊗ 1 + y2 ⊗ i + u2 ⊗ j + z2 ⊗ ij.

Of course, we have λ(ij) = λ(i)λ(j) = x3 ⊗ 1 + y3 ⊗ i + u3 ⊗ j + z3 ⊗ ij.

Example 2.2. Assume that A = Rn, the obvious R-ring attached to the free
R-module of rank n. One can easily check, using (23) and Proposition 1.6, that
Lm(A) is a left R-bialgebroid generated as a ring by the image of Re and a set of
Re-invariant elements {xij}1≤i,j≤n with relations

x2
ii = xii, for all i = 1, 2, . . . , n,

xjixki = 0, for all j �= k and i, j, k = 1, 2, . . . , n,

n∑
i=1

xij = 1, for all j = 1, 2, . . . , n.

Its structure of R-coring is given by the following comultiplication and counit

∆(xij) =
n∑

k=1

xik ⊗R xkj , for all i, j = 1, 2, . . . , n;

ε(xij) = δij , (Kronecker delta) for all i, j = 1, 2, . . . , n.
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Let us denote by {ei}1≤i≤n the canonical basis of RA. Then A is a left Lm(A)-
comodule ring via the coaction λ : A → Lm(A) ⊗R A defined by

λ(ei) =
n∑

j=1

xij ⊗R ej, ∀ i = 1, · · · , n.

Example 2.3. Let A = R ⊕ Rt be the trivial generalized R-ring i.e. the R-ring
which is free as left R-module with basis 1 = (1, 0) and t = (0, t) such that t2 =
0. Using (23) and Proposition 1.6, we can easily check that Lm(A) is a left R-
bialgebroid generated by the image of Re and two Re-invariant elements {x, y}
subject to the relations xy + yx = 0, x2 = 0. The comultiplication and counit of its
underlying R-coring are given by

∆(x) = x ⊗R 1 + y ⊗R x, ε(x) = 0,

∆(y) = y ⊗R y, ε(y) = 1.

A is a left Lm(A)-comodule ring with coaction λ : A → Lm(A) ⊗R A defined by

λ(1A) = 1Lm(A) ⊗R 1A, λ(t) = x ⊗R 1A + y ⊗R t.

Example 2.4. Let A be the trivial crossed product of R by the cyclic group Gn of
order n. We know that RA is the left free module with basis Gn. It is easily checked,
using (23) and Proposition 1.6, that if n = 2, then Lm(A) is an R-bialgebroid
generated as an Re-ring by two Re-invariant elements x, y subject to the relations
xy + yx = 0 and 1 = x2 + y2. The comultiplication and counit of the underlying
R-coring structure are given by

∆(x) = x ⊗R 1 + y ⊗R x, ∆(y) = y ⊗R y, ε(x) = 0, ε(y) = 1.

For n > 2, we can prove that Lm(A) is an Re-ring generated by the Re-invariant
elements x(k,l) with (k, l) ∈ (Zn\{0}) × Zn subject to the following relations:

x(k,l) =
n−1∑
s=0

x(t,l−s)x(k−t,s), ∀(k, l) ∈ (Zn\{0, 1})× Zn, ∀ t ∈ Zn\{0} with t < k,

x(1,l) =
n−1∑
s=0

x(n−t,l−s)x(n−t′,s), ∀ l ∈ Zn, ∀ t, t′ ∈ Zn\{0}, with t + t′ = n − 1

and

1 =
n−1∑
s=0

x(t,n−s)x(t′,s), ∀ t, t′ ∈ Zn\{0}, with t + t′ = 0,

where the ring Zn is endowed with the canonical ordering 0 < 1 < · · · < n− 1. The
comultiplication and counit of its underlying R-coring structure are given by

∆(x(k,l)) =
n−1∑
s=0

x(k,s) ⊗R x(s,l), ε(x(k,l)) = δk,l, ∀(k, l) ∈ (Zn\{0})× Zn.
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The left comodule ring structure of A is given by the following coaction. Consider
{gk}0≤k≤n−1 the basis of the free module RA, where g denotes the generating
element of Gn which we identify with its image in A by using the canonical injection.
The coaction is then given by λ : A → Lm(A) ⊗R A sending

λ(1A) = 1Lm(A) ⊗R 1A, λ(gk) =
n−1∑
l=0

x(k,l) ⊗R gl, ∀ k ∈ (Zn\{0}).
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