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1. Introduction

In the series of papers [6, 7, 18, 24, 25], a notion called a twisted tensor product
algebra and their twisted bimodules were studied from several point of views (e.g.
noncommutative differential geometry, C∗-algebra, Hopf algebra, etc.). Roughly
speaking, this is a deformation of the tensor product algebra, in the sense that
we substitute the usual flip map by another one (called the twisting map) which
we require to be compatible with the multiplication and the unit of both factor
algebras. To each algebra, one can obviously associate a monad (or triple [8]) on
the category of vector spaces. In this way, twisting maps between two algebras are
in 1-1 correspondence with distributive laws, in the sense of Beck [1], between the
associated monads. The resulting monad from a distributive law leads in fact to
the twisted tensor product algebra.

The notion of wreath, or extended distributive law, in a given bicategory is a
formal generalizations of distributive law, and was introduced by Lack and Street
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in [17] (see also [22]). The notion of cowreath is in some sense dual to that of
wreath. For instance, consider Bim the bicategory of bimodules (unital rings, unital
bimodules, bilinear maps) and (C : A) a comonad in Bim (i.e. C is an A-coring,
see Subsec. 1.3). Attached to (C : A) there is a category R(C:A) called the right
Eilenberg–Moore category of (C : A), see Sec. 2. It turns out that this category
is the Hom-category of the 0-cell (C : A) in the right Eilenberg–Moore bicategory
REM(Bim) of the bicategory Bim, explicitly given in [3] and generally introduced
in [17]. Thus, R(C:A) inherits from REM(Bim) a structure of monoidal category. In
this way, right cowreath is then defined to be a comonoid in the monoidal category
R(C:A), see Definition 3.1. Let (A : T ) be a monad in Bim, that is, A and T are two
unital rings and there is a ring extension ι : A→ T . Then one can dually construct
the monoidal category R(A:T ), and thus define a right wreath as monoid in this
category, see Definition 5.2.

The purpose of this paper is two-fold. The first aim is to introduce and study
comodules over cowreath defined over a given coring. If this coring arises from
an entwining structure [4], we then give a procedure of constructing examples of
cowreaths with noncommutative base ring. The second aim is to place the con-
structions of twisted product algebras and twisted bimodules into the frameworks
of wreaths and their bimodules defined over a ring extension. We also extend the
results of [7] to the case of noncommutative ring extension. It is noteworthy that
these two aims are as follows interrelated. We make the statements and proofs for
the case of cowreaths over coring, then use freely these results in their dual form
for the case of wreaths over ring extension.

We shall proceed as follows. In the current section, we present the basic proper-
ties of (co)monads, lifted and continuous functors, which we will use in the sequel.
In Sec. 2, we recall the definition of the category R(C:A) for a given coring (C : A).
Next, we show the useful result of Proposition 2.4 which says that the category
R(C:A) is monoidally isomorphic to the category of continuous (−⊗A C)-lifted func-
tors (see Subsec. 1.2 for definition). If C = A ⊗K C where (A,C)a is an entwining
structure over a commutative ring K, then we show using Proposition 2.4 that the
functor A⊗K −⊗KA : R(C:K) → R(C:A) is an opmonoidal functor. Thus, the image
A ⊗K M ⊗K A of any right C-cowreath M is a right C-cowreath. In Sec. 3, we use
Proposition 2.4 in order to give in terms of tensor product over the base ring A,
a simplest and equivalent definition of right C-cowreath. In particular, we give a
proof of the fact that an object in R(C:A) is right cowreath (i.e. comonoid) if and
only if its associated (− ⊗A C)-lifted functor admits a comonad structure on the
category of right C-comodules, Proposition 3.2. Another characterization of right
C-cowreath in terms of cowreath product as well as right (or left) comodules over
a given right C-cowreath (M,m) are discussed in Sec. 4 (here (M,m) is an object
of R(C:A)). We show that (M,m) is a right cowreath if and only if C ⊗A M admits
a compatible structure of A-coring (is this coring which we refer to as a cowreath
product of C by M), Proposition 4.1. Here Proposition 2.4 was again the key in
providing a definition of right (M,m)-comodule in terms of tensor product over A,
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Proposition 4.3. In Sec. 5, we will give without proofs results analogs to those stated
in previous sections for wreaths over ring extension. This will be used in Sec. 6 to
extend the main results of [7] to the noncommutative case, Propositions 6.1 and 6.2.

Notations and basic notions. Given any Hom-set category C , the notation X ∈
C means that X is an object of C . The identity morphism of X will be denoted by
X itself. The set of all morphisms f : X → X ′ in C is denoted by HomC (X, X ′).
The identity functor of C is denoted by 1C . A natural transformation between two
functors F, G : C → B, is denoted by β− : F → G. If H : B → A and J : D → C

are other functors, then βJ(−) (or βJ) denotes the natural transformation defined
at each object Z ∈ D by βJ(Z) : FJ(Z) → GJ(Z), while Hβ− (or Hβ) denotes
the natural transformation defined at each object X ∈ C by H(βX) : HF(X) →
HG(X).

1.1. Monads and comonads

Recall from [8] that a comonad (or cotriple) on a category C is a functor C : C → C

with two natural transformations Θ : C → C2 (comultiplication) and ϑ : C → 1C

(counit) such that ΘC ◦ Θ = CΘ ◦ Θ and ϑC ◦ Θ = Cϑ ◦ Θ = C. The objects of the
category of C-comodules (or C-coalgebras) C C are pairs (X, dX) where X ∈ C and
dX : X → C(X) is a morphism in C such that ΘX ◦dX = C(dX)◦dX and ϑX ◦dX =
X . A morphism in C C is a morphism f : X → X ′ in C such that dX′ ◦f = C(f)◦dX .
Any adjunction S : D � C : T with S is left adjoint to T (notation S � T ) induces
a structure of comonad (ST, SηT , ε), where η : 1D → TS and ε : ST → 1C are,
respectively, the unit and counit of this adjunction. In this situation, we say that
S � T cogenerates the comonad (ST, SηT , ε). Associated to a comonad C there is
an universal cogenerator. That is, an adjunction SC : C C � C : T C with SC � T C,
where SC is the forgetful functor and T C sends any object Y ∈ C to the comodule
T C(Y ) = (C(Y ),ΘY ) and any morphism g to T C(g) = C(g). The universal property
[8, Theorem 2.2] asserts that, for any other cogenerator S : D � C : T of (C,Θ, ϑ),
there exists a unique functor L : D → C C such that SCL = S and Lη = ηC

L, where
ηC is the unit of the adjunction SC � T C. The last two equalities imply LT = T C.
The functor L is refereed to as factorization functor (or comparison functor), and
sends any object D ∈ D to the comodule L(D) = (S(D), SηD) and any morphism
h to L(h) = S(h). The comparison functor is not in general an equivalence of
categories, see [14, Theorem 2.7] for more details.

The notion of monad is dual to that of comonad. Explicitly, a monad (or triple)
on C is a three-tuple (A, µ, η), where A : C → C is a functor and µ : A2 → A,
η : 1C → A are natural transformations satisfying the associativity and unitary
properties. The category CA of A-modules (or A-algebras) is dually defined, and
there is a universal generator TA : C � CA : SA attached to (A, µ, η), where SA

denotes the forgetful functor. In contrast with comonads, here we have an adjunc-
tion of the form TA � SA, i.e. TA is left adjoint functor to SA. Analogously there is
a universal property as well as a notion of comparison functor.



February 11, 2010 15:8 WSPC/171-JAA S021949881000380X

138 L. El Kaoutit

1.2. Continuous and lifted functors

Let C and D be two additive categories with cokernels and arbitrary direct sums.
Recall that an additive functor F : C → D is said to be continuous provided
that F is right exact and preserves direct sums. Thus F commutes with inductive
limits. Assume further that C has a subgenerator U , that is, every object of C

is a sub-object of an U -generated one. Then the proof of [9, Lemma 5.1] can be
adapted to this setting in order to show that natural transformations between
two continuous functors form a set (see also [10, Proposition 2.6]). Henceforth,
continuous endo-functors of the category C and their natural transformations form
a Hom-set category (or Set-category) which we denote by Funct(C ). This situation
can be applied to the category of comodules C C whenever C is a Grothendieck
category and the underlying functor C : C → C is continuous, see [10, Lemma 2.5].

Let us recall from [16] (see also [27]) the notion of lifted functors. Given a
comonad (C,Θ, ϑ) on category C , a functor F : C → C is said to be C-lifted if there
exists a functor F̄ : C C → C C rendering commutative the following diagram

C C
F̄ ��

SC

��

C C

SC

��
C

F �� C .

In this way, we say that F̄ is a C-lifted functor of F. A C-lifted functor of F when
exists is not necessarily unique, see Remark 2.7. In fact the lifting Theorem (dual
version of [16, Lemma 1]) asserts that there is an 1-1 correspondence between a
C-lifted functors F̄ of F and natural transformations E F : FC → CF compatible in
the obvious way with the counit and the comultiplication of C. This correspondence
is given as follows. Given a C-lifted functor F̄ : C C → C C of F, we define for every
object X ∈ C a morphism

E F
X : FC(X)

dFC(X)−−−−→ CFC(X) CFϑX−−−→ CF(X),

where F̄(C(X),ΘX) = (FC(X), dFC(X)) ∈ C C is the image by F̄ of the comodule
(C(X),ΘX). This leads to a natural transformation E F

− : FC → CF which is easily
shown to be compatible with Θ and ϑ. Conversely, if a compatible natural trans-
formation E F : FC → CF is given, then a C-lifted functor F̄ : C C → C C is defined
by sending (X, dX) → F̄(X, dX) = (F(X),E F ◦ F(dX)) and acting by F on the mor-
phisms of C C. In this way, the composition of C-lifted functor is again a C-lifted
functor. Explicitly, if F̄i : C C → C C are C-lifted functors of Fi, i = 1, 2, with natu-
ral transformations E Fi : FiC → CFi, i = 1, 2. Then F̄1F̄2 : C C → C C is a C-lifted
functor of F1F2 with natural transformation

E F1F2 : F1F2C
F1E F2−−−−→ F1CF2

E
F1
F2−−→ CF1F2.
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Given a natural transformation σ : F → G where F,G : C → C are C-lifted.
In general, it is not clear that σ can be lifted to a natural transformation F̄ → Ḡ.
However, if we assume that

FC
σC ��

E F

��

GC

E G

��
CF

Cσ �� CG

(1.1)

is a commutative diagram, then clearly σ induces a natural transformation σ̄ : F̄ →
Ḡ such that SCσ̄ = σSC .

The following lemma whose proof is omitted shows that the property of being
continuous can be transferred to a lifted functors.

Lemma 1.1. Let C be a Grothendieck category and (C,Θ, ϑ) a comonad on C

whose underlying functor C : C → C is continuous. Then any C-lifted functor
F̄ : C C → C C of a continuous functor F : C → C , is also continuous.

Given a comonad Ξ : C → C on category C , we denote by SΞ � TΞ its universal
cogenerator, i.e. the universal adjunction SΞ : C Ξ � C : TΞ. The unit of this
adjunction is denoted by dΞ− : 1CΞ → TΞSΞ. The following lemma is a companion
of [17, Proposition 3.1].

Lemma 1.2. Let (C,Θ, ϑ) be a comonad on a category C , and ϑ : SCT C → 1C

the counit of its universal cogenerator SC � T C. Let F : C → C be a functor which
has a C-lifted functor F̄ : C C → C C. Assume that (F̄,∇, ω) is a comonad on C C,

and consider the composed comonad (SCF̄T C, SCF̄dC
F̄T C ◦ SC∇T C , ϑ ◦ SCωT C). Then

there is a unique functor K : (C C)F̄ → C SCF̄T C

such that SSCF̄T C

K = SCSF̄ and
K (T F̄dC

SF̄ ◦ dF̄) = dSCF̄T C

K . Moreover, K is an isomorphism of categories.

Proof. Since the following composition of adjunctions

(C C)F̄
SF̄

��
C C

Sc
��

T F̄

�� C
T C

��

cogenerates the comonad SCF̄T C, the first statement of the lemma is a direct appli-
cation of the dual version of [8, Theorem 2.2]. For the second one, we can easily
show that the inverse functor of K is F : C SCF̄T C → (C C)F̄ defined on objects by

F (Y, dSCF̄T C

Y ) = ((Yξ, d
C
Yξ

), dF̄
(Yξ,dC

Yξ
) = FϑY ◦ dSCF̄T C

Y ),

where (Yξ, d
C
Yξ

) is the C-comodule induced by the comonad morphism ξ = SCωT C :
SCF̄T C → SCT C = C, and acts by identity on morphisms.

A lifted functors with respect to a given monad (A, µ, η) on a category C , are
similarly defined. The lifting Theorem in this case [16, Lemma 1], says that there
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is an 1-1 correspondence between an A-lifted functors F̄ of F : C → C and natural
transformations I F : AF → FA compatible in the obvious way with µ and η.

1.3. Corings and comodules

We work over a commutative ground ring with 1 denoted by K. All rings are
assumed to be associative K-algebras. Modules are unital modules, and bimodules
are left and right unital modules and are assumed to be central K-modules. Given A
and B two rings, the category of (A,B)-bimodules is denoted as usual by AModB.
The K-module of morphisms in this category will be denoted by HomA−B(−,−).
The symbol −⊗A− between bimodules and bilinear maps denotes the tensor prod-
uct over A. Let A be a ring, an A-coring [23] is a three-tuple (C,∆, ε) (denoted also
by (C : A)) consisting of an A-bimodule C and two A-bilinear maps

∆ : C → C ⊗A C and ε : C → A,

known as the comultiplication and the counit of C, which satisfy

(C ⊗A ∆) ◦ ∆ = (∆ ⊗A C) ◦ ∆, (C ⊗A ε) ◦ ∆ = C = (ε⊗A C) ◦ ∆.

It is clear that any A-coring C induces a comonad on the categories of both right
and left A-modules. Conversely, if (C,Θ, ϑ) is a comonad, say on the category of
right A-modules ModA, such that C is a continuous functor, then C(A) admits a
structure of an A-coring whose induced comonad is naturally isomorphic to C, see
[10, Proposition 3.5].

A right C-comodule is a pair (M,ρM ) with M a right A-module and ρM :
M → M ⊗A C a right A-linear map (called right C-coaction) satisfying two equal-
ities: (ρM ⊗A C) ◦ ρM = (M ⊗A ∆) ◦ ρM and (M ⊗A ε) ◦ ρM = M . A mor-
phism of right C-comodules f : (M,ρM ) → (M ′, ρM ′) is a right A-linear map
f : M → M ′ which is compatible with coactions: ρM ′ ◦ f = (f ⊗A C) ◦ ρM

(f is right C-colinear). The K-module of all colinear maps will be denoted by
HomC(M,M ′). We denote by ComodC the category of all right C-comodules, and
by UC : ComodC

�� ModA : − ⊗A C�� the universal cogenerator of the comonad
− ⊗A C : ModA → ModA. Left C-comodules are symmetrically defined, we use the
Greek letter λ− to denote their coactions. If more than one coring are handled, we
then use the notations ρC−, ρD− and λC−, λD− to distinguish between C-coactions and
D-coactions.

An A-bilinear map φ : D → C is a morphism of A-corings if it satisfies εC ◦ φ =
εD and (φ ⊗A φ) ◦ ∆D = ∆C ◦ φ. Given a morphism of A-corings φ : D → C, one
can associated to it the so-called induction functor (−)φ : ComodD → ComodC

sending a comodule (X, ρD
X) to (X, ρC

X = (X ⊗A φ) ◦ ρD
X) and acting by identity on

morphisms, see [13] and [5].
The category of (right) C-comodules is in general not an abelian category, it

has cokernels and arbitrary direct sums which can be already computed in the
category of A-modules. However, if AC is a flat module, then ComodC becomes a
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Grothendieck category, see [11, 5]. Let D be a B-coring, a (C,D)-bicomodule is
a three-tuple (M,ρD

M , λC
M ) consisting of an (A,B)-bimodule M and A-B-bilinear

maps ρD
M : M → M ⊗B D, λC

M : M → C ⊗A M such that (M,ρD
M ) is right

D-comodule and (M,λC
M ) is left C-comodule with compatibility condition: (C ⊗A

ρD
M ) ◦ λC

M = (λC
M ⊗B D) ◦ ρD

M . A morphism of bicomodules is a left and right
colinear map (say bicolinear map). We use the notation HomC−D(M,M ′) for the

K-module of all bicolinear maps. The category of all (C,D)-bicomodule is denoted
by CComodD. Obviously any ring A is a coring over itself, with comultiplication
the isomorphism A ∼= A⊗AA and counit the identity on A. In this way, an (A,D)-
bicomodule is just a right D-comodule (M,ρM ) whose underlying module M is
an (A,B)-bimodule and whose coaction ρM is an A-B-bilinear map. The category
of (A,D)-bicomodules is denoted by AComodD. For more details on comodules,
definitions and basic properties of bicomodules and the cotensor product, the reader
is referred to monograph [5].

Throughout all sections, the symbol −⊗− stands for −⊗A− the tensor product
over a fixed base ring A.

2. Eilenberg–Moore Monoidal Category Associated to a Coring,
and Lifted Functors

In this section, we give a complete and detailed proof of the fact that the right
Eilenberg–Moore monoidal category associated to a given coring C is monoidally
equivalent to certain monoidal category of (−⊗ C)-lifted functors, Proposition 2.4.
If C arises from some an entwining structure, we then establish using this proposi-
tion an opmonoidal functor from the right Eilenberg–Moore category of the factor
coalgebra to the right Eilenberg–Moore category of C, Lemma 2.8.

For a coring (C : A) with comultiplication ∆ and counit ε, we consider as in [3]
(see [17] for general notions), the right Eilenberg–Moore additive category R(C : A)

defined by the following data:

Objects: Are pairs (M,m) consisting of an A-bimodule M and A-bilinear map
m : C ⊗M →M ⊗ C (the twisting map) such that

(M ⊗ ∆) ◦ m = (m ⊗ C) ◦ (C ⊗ m) ◦ (∆ ⊗M), (2.1)

(M ⊗ ε) ◦ m = ε⊗M, (2.2)

where in the second equality M was identified with A⊗M and with M⊗A

via the obvious isomorphisms.
Morphisms: Given any object (M,m) one can easily check that C ⊗ M is a

C-bicomodule with left C-coaction λC⊗M = ∆ ⊗ M and right C-coaction
ρC⊗M = (C ⊗ m) ◦ (∆ ⊗ M). By [3, Proposition 2.2], the K-modules of
morphisms in R(C : A) are then defined (in unreduced form) by

HomR(C : A)((M,m), (M ′,m′)) := HomC−C(C ⊗M, C ⊗M ′).
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That is, a morphism ϕ : (M,m) → (M ′,m′) in R(C : A) is an A-bilinear map ϕ :
C ⊗M → C ⊗M ′ which satisfies

(∆ ⊗M ′) ◦ ϕ = (C ⊗ ϕ) ◦ (∆ ⊗M), (2.3)

(C ⊗ m′) ◦ (∆ ⊗M ′) ◦ ϕ = (ϕ⊗ C) ◦ (C ⊗ m) ◦ (∆ ⊗M). (2.4)

The category R(C : A) is in fact a multiplicative additive category (i.e. an additive
monoidal category). It multiplication is defined as follows. Given two objects (M,m)
and (M ′,m′) of R(C : A), we define a new object of R(C : A) by

(M,m)
r⊗

(C : A)
(M ′,m′) := (M ⊗M ′, (M ⊗ m′) ◦ (m ⊗M ′)).

If ϕ : (M,m) → (M ′,m′) and ψ : (N, n) → (N ′, n′) are morphisms in R(C : A), then
their multiplication is defined by the composition

(2.5)

Equivalently ϕ
r⊗

(C : A)
ψ = (C⊗M ′⊗ ε⊗N ′) ◦ (ϕ⊗ ψ) ◦ (C⊗m⊗N) ◦ (∆⊗M ⊗N).

The identity object for this multiplication is proportioned by the pair (A,C) where
the identity of C was identified with the isomorphism C ⊗ A ∼= A⊗ C.

There is, up to a monoidal isomorphism of categories, an alternative description
of the category R(C:A) which uses the notion of lifted functors. This was mentioned
in [17, p. 256] without any indication on the proof. We will give in our case a com-
plete and detailed proof. We start by applying the lifting Theorem (see Subsec. 1.2)
to the comonad − ⊗ C : ModA → ModA. As consequence, we obtain the following
two lemmas.

Lemma 2.1. Let (C : A) be any coring and M an A-bimodule. There is an 1-1
correspondence between

(i) C-bicomodule structures on C ⊗ M, with underlying left C-coaction λC⊗M =
∆ ⊗M ;

(ii) A-bilinear maps m : C ⊗ M → M ⊗ C such that (M,m) is an object of the
category R(C : A);

(iii) (−⊗ C)-Lifted functor (− ⊗M) : ComodC → ComodC of the functor −⊗M :
ModA → ModA.
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The image of (U, ρU ) ∈ ComodC is given by

(−⊗M)(U, ρU ) = (U ⊗M, (U ⊗ m) ◦ (ρU ⊗M)) ∈ ComodC.

Conversely, if (−⊗M) is a (−⊗C)-lifted functor, then the twisting map m is given
by m = (ε⊗ M ⊗ C) ◦ ρC⊗M , where ρC⊗M is the C-coaction of the right comodule
(−⊗M)(C, ∆).

Lemma 2.2. Let M and M ′ be two A-bimodules satisfying the equivalent condi-
tions of Lemma 2.1. Then

(a) For every right module U ∈ ModA and every object (V, ρV ) ∈ AComodC, we
have

(− ⊗M)(U ⊗ V, U ⊗ ρV ) = (U ⊗ V ⊗M, U ⊗ ρV ⊗M ),

where ρV ⊗M is the C-coaction of the comodule (−⊗M)(V, ρV ).
(b) If Γ− : (−⊗M) → (−⊗M ′) is a natural transformation between two lifted

functors, then

Γ(U⊗V, U⊗ρV ) = U ⊗ Γ(V, ρV ),

for every U ∈ ModA and every (V, ρV ) ∈ AComodC.

Proof. Use the free representation of right A-modules.

The following completes Lemma 2.1.

Lemma 2.3. Let (C : A) be a coring. Assume a continuous functor F : ModA →
ModA is given. Then there is an 1-1 correspondence between

(i) (−⊗ C)-lifted functors F̄ : ComodC → ComodC of F;
(ii) A-bilinear maps m : C ⊗ F(A) → F(A) ⊗ C such that (F(A),m) is an object of

the category R(C : A);
(iii) (− ⊗ C)-lifted functor (−⊗ F(A)) : ComodC → ComodC of the functor − ⊗

F(A) : ModA → ModA.

Moreover, the canonical natural isomorphism F ∼= −⊗ F(A) induces a natural iso-
morphism F̄ ∼= (−⊗ F(A)) between two corresponding (−⊗ C)-lifted functors.

Proof. By Watts’s Theorem [26] each continuous functor F : ModA → ModA is
naturally isomorphic to the tensor product functor − ⊗ F(A), where F(A) is in a
natural way an A-bimodule. Let us denote by Υ : F → − ⊗ F(A) this canonical
isomorphism. The stated correspondence is given as follows, wherein the properties
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of Υ stated in [10, Lemma 3.4] were implicitly used. To each twisting map m :
C ⊗ F(A) → F(A) ⊗ C it corresponds a compatible natural transformation

F(X ⊗ C)

E F
X ���������������������

ΥX⊗C �� X ⊗ C ⊗ F(A)
X⊗m �� X ⊗ F(A) ⊗ C

Υ−1
X ⊗C

��
F(X) ⊗ C

which via the lifting Theorem (see Subsec. 1.2) leads to a (− ⊗ C)-lifted func tor
F̄ : ComodC → ComodC of F. Conversely, assume a (− ⊗ C)-lifted functor F̄ :
ComodC → ComodC of F is given and let E F : F ◦ (− ⊗ C) → F(−) ⊗ C be its
corresponding compatible natural transformation. We define a twisting map by

m : C ⊗ F(A)
Υ−1

C �� F(C) ∼= F(A⊗ C)
E F

A �� F(A) ⊗ C.

This establishes the equivalence (i) ⇔ (ii), and finishes the proof of the first state-
ment since (ii) ⇔ (iii) was shown in Lemma 2.1.

Consider a twisting map m as in (ii). It is clear that the corresponding natural
transformation (via the lifting Theorem and Lemma 2.1) of the (−⊗C)-lifted functor
(− ⊗ F(A)) is given by −⊗ m. As above we set E F

− := (Υ−1
− ⊗ C) ◦ (−⊗ m) ◦Υ−⊗C.

Hence we can show using [10, Lemma 3.4(b)], that the following diagram

F(X ⊗ C)
ΥX⊗C ��

E F
X

��

X ⊗ C ⊗ F(A)

X⊗m

��
F(X) ⊗ C

ΥX⊗C �� X ⊗ F(A) ⊗ C

is commutative for every right A-module X . Thus the condition of Eq. (1.1) for the
natural isomorphism Υ is fulfilled. Therefore, F̄ ∼= (− ⊗ F(A) via Υ.

Applying the arguments of the preamble of Subsec. 1.2 to the category of right
comodules ComodC over an A-coring C, we can thus define the category of contin-
uous endo-functor Funct(ComodC) (here the right C-comodule (C,∆C) is clearly a
subgenerator of the category ComodC). Now, we can consider the category of lifted
continuous functors with respect to the comonad − ⊗ C : ModA → ModA which
we denote by FunctC(ModA). The objects of FunctC(ModA) are then (−⊗ C)-lifted
functors F̄ : ComodC → ComodC of a continuous functors F : ModA → ModA,
and morphisms are natural transformations. By Lemma 1.1, FunctC(ModA) is a
full subcategory of the category Funct(ComodC). On the other hand, as we have
seen a composition of two (− ⊗ C)-lifted functors F̄ ◦ Ḡ is clearly a (− ⊗ C)-lifted
functor of the composition F ◦ G. Since the identity functor 1ComodC

belongs to
FunctC(ModA), we then conclude that FunctC(ModA) inherits the monoidal struc-
ture of the monoidal category Funct(ComodC).
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In this way, we can also consider the full subcategory LFunctC(ModA) of
FunctC(ModA), defined by the class of objects of the form X̄ := −⊗ X : ComodC →
ComodC, for some A-bimodule X . By Lemma 2.3, we know that each object of
the category FunctC(ModA) is isomorphic to an object of the full subcategory
LFunctC(ModA).

The category LFunctC(ModA) clearly inherits the monoidal structure of lifted
continuous functors. We express its multiplication in the opposite way. That is, for
two objects X̄ and Ȳ in LFunctC(ModA), we define

X̄ • Ȳ := X ⊗ Y ,

which is in fact the (−⊗ C)-lifted composed functor (− ⊗ Y ) ◦ (− ⊗ X). The mul-
tiplication of morphisms in LFunctC(ModA) is given by Godement’s product

Φ • Ψ := X ⊗ Y
Y Φ �� X ′ ⊗ Y

Ψ
X̄′ �� X ′ ⊗ Y ′,

for every pair of natural transformations Φ : X̄ → X̄ ′ and Ψ : Ȳ → Ȳ ′. The
following Proposition, which is a companion of Lemma 2.1, can be deduced from
[17, Sec. 2.1], see also [10, Proposition 2.6]. We give an elementary proof in our
case.

Proposition 2.4. Let (C : A) be a coring, and consider the above monoidal cate-
gories R(C: A) and LFunctC(ModA). There is a monoidal isomorphism of categories:

for every comodule (U, ρU ) ∈ ComodC. The inverse functor is given by

LFunctC(ModA)
G �� R(C:A)[

X̄ : ComodC → ComodC

]
�� (X, x = (ε⊗ X ⊗ C) ◦ ρC⊗X)

[
Φ : X̄ → X̄ ′ ] ��

[
Φ(C, ∆) : C ⊗ X → C ⊗ X ′] .

Proof. By Lemma 2.1, the functors F and G are well-defined on objects. Let
us show that they are also well-defined on morphisms. We start with a morphism
ϕ : C⊗X → C⊗X ′ in the category R(C: A). We need to show that Φ− = F (ϕ)− is
right C-colinear at each right C-comodule. So take a right C-comodule (U, ρU ), we
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have

ρU⊗X′ ◦ Φ(U,ρU ) = (U ⊗ x′) ◦ (ρU ⊗ X ′) ◦ (U ⊗ ε⊗ X ′) ◦ (U ⊗ ϕ) ◦ (ρU ⊗ X)

= (U ⊗ x′) ◦ (U ⊗ C ⊗ ε⊗ X ′) ◦ (ρU ⊗ C ⊗ X ′)

◦ (U ⊗ ϕ) ◦ (ρU ⊗ X)

= (U ⊗ x′) ◦ (U ⊗ C ⊗ ε⊗ X ′) ◦ (U ⊗ C ⊗ ϕ)

◦ (ρU ⊗ C ⊗ X) ◦ (ρU ⊗ X)

= (U ⊗ x′) ◦ (U ⊗ C ⊗ ε⊗ X ′) ◦ (U ⊗ C ⊗ ϕ)

◦ (U ⊗ ∆ ⊗ X) ◦ (ρU ⊗ X)
(2.3)
= (U ⊗ x′) ◦ (U ⊗ C ⊗ ε⊗ X ′) ◦ (U ⊗ ∆ ⊗ X ′)

◦ (U ⊗ ϕ) ◦ (ρU ⊗ X)

= (U ⊗ x′) ◦ (U ⊗ ϕ) ◦ (ρU ⊗ X).

A similar computations lead to the equality (Φ(U,ρU )⊗C)◦ρU⊗C = (U⊗x′)◦(U⊗ϕ)◦
(ρU ⊗X). Thus Φ(U,ρU ) is right C-colinear, for every right C-comodule (U, ρU ). An
easy verification shows that Φ− : X̄ → X̄ ′ is natural. Conversely, let Φ− : X̄ → X̄ ′

be a morphism in the category LFunctC(ModA). We claim that G (Φ) = Φ(C, ∆) :
C ⊗ X → C ⊗ X ′ is a morphism of C-bicomodules. The map Φ(C, ∆) is A-bilinear,
because ∆ is A-bilinear and Φ− is natural. By definition Φ(C, ∆) : C⊗X → C⊗X ′

is right C-colinear. Since Φ− is natural, we have

(∆ ⊗ X ′) ◦ Φ(C, ∆) = Φ(C⊗C, C⊗∆) ◦ (∆ ⊗ X).

Using Lemma 2.2(b), we get

(∆ ⊗ X ′) ◦ Φ(C, ∆) = (C ⊗ Φ(C, ∆)) ◦ (∆ ⊗ X).

Thus G (Φ) is left C-colinear, and this proves the claim. Next, we show that F and
G are mutually inverse functors. To this end, let (X, x) be an object in R(C:A), then

G ◦ F (X, x) = G (X̄)

= (X, (ε⊗ X ⊗ C) ◦ ρC⊗X)

= (X, (ε⊗ X ⊗ C) ◦ (C ⊗ x) ◦ (∆ ⊗ X))

= (X, x ◦ (ε⊗ C ⊗ X) ◦ (∆ ⊗ X))

= (X, x).

For every morphism ϕ : (X, x) → (X ′, x′), we have

G ◦ F (ϕ) = F (ϕ)(C, ∆)

= (C ⊗ ε⊗ X ′) ◦ (C ⊗ ϕ) ◦ (∆ ⊗ X)
(2.3)
= (C ⊗ ε⊗ X ′) ◦ (∆ ⊗ X ′) ◦ ϕ = ϕ.

Therefore, G ◦ F = 1R(C: A) . Conversely, for every object X̄ in LFunctC(ModA),
we have F ◦ G (X̄) = F (X, x), where x = (ε ⊗ X ⊗ C) ◦ ρC⊗X . Let (U, ρU )
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be any right C-comodule, since X̄(ρU ) = ρU ⊗ X is right C-colinear, we have
ρU⊗C⊗X ◦ (ρU ⊗ X) = (ρU ⊗ X ⊗ C) ◦ ρU⊗X . Applying Lemma 2.2(a) to this
equality, we get

(U ⊗ ρC⊗X) ◦ (ρU ⊗ X) = (ρU ⊗ X ⊗ C) ◦ ρU⊗X ,

which implies that

(U ⊗ x) ◦ (ρU ⊗ X) = (U ⊗ ε⊗ X ⊗ C) ◦ (U ⊗ ρC⊗X) ◦ (ρU ⊗ X)

= (U ⊗ ε⊗ X ⊗ C) ◦ (ρU ⊗ X ⊗ C) ◦ ρU⊗X

= ρU⊗X .

This means that F ◦G (X̄)(U, ρU ) = X̄(U, ρU ), for every right C-comodule (U, ρU ).
Since it is clear that F ◦ G (X̄)(f) = X̄(f), for every right C-colinear map f , we
get F ◦ G = 1LFunctC(ModA). Therefore, F and G are mutually inverse. Finally, the
functor F is monoidal, since we have

F

(
(X, x)

r⊗
(C : A)

(X ′, x′)
)

= F (X, x) • F (X ′, x′), and

F (A,C) ∼= Ā,

for every pair of objects (X, x) and (X ′, x) in R(C: A).

Example 2.5. Let (C : A) be any coring. Define a map

c : C ⊗ C �� C ⊗ C (c⊗ c′ 	−→ c(1) ⊗ c(2)ε(c′) + ε(c)c′(1) ⊗ c′(2) − c⊗ c′),

where we have used Sweedler’s notation for the comultiplication ∆(c) = c(1) ⊗ x(2),
c ∈ C (summation understood). Then (C, c) is an object of R(C : A). By definition
c is an A-bilinear map. It is clear that (C ⊗ ε) ◦ c = ε ⊗ C. Now, for every pair
(c, c′) ∈ C × C, we have

(c ⊗ C) ◦ (C ⊗ c) ◦ (∆ ⊗ C)(c⊗ c′)

= (c ⊗ C) ◦ (C ⊗ c)(c(1) ⊗ c(2) ⊗ c′)

= (c ⊗ C)(c(1) ⊗ (c(2) ⊗ c(3)ε(c′) + ε(c(2))c′(1) ⊗ c′(2) − c(2) ⊗ c′))

= (c ⊗ C)(c(1) ⊗ c(2) ⊗ c(3)ε(c′) + c⊗ c′(1) ⊗ c′(2) − c(1) ⊗ c(2) ⊗ c′).

Since we know that c ◦ ∆ = ∆, we have

(c ⊗ C) ◦ (C ⊗ c) ◦ (∆ ⊗ C)(c⊗ c′)

= c(1) ⊗ c(2) ⊗ c(3)ε(c′) + ε(c)c′(1) ⊗ c′(2) ⊗ c′(3) − c⊗ c′(1) ⊗ c′(2)
= (C ⊗ ∆) ◦ c(c⊗ c′).

Therefore, c satisfies equalities (2.1) and (2.2), and so (C, c) is an object of R(C : A)

(this is dual to [21, Proposition 1.7]). The lifted functor associated to (C, c) sends
any right C-comodule (U, ρU ) to the right C-comodule (U ⊗ C, ρU⊗C), where

ρU⊗C(u ⊗ c) = u(0) ⊗ u(1) ⊗ u(2)ε(c) + u⊗ c(1) ⊗ c(2) − u(0) ⊗ u(1) ⊗ c,

and ρU (u) = u(0) ⊗ u(1), u ∈ U (summation understood).
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Example 2.6. Let (D : A) be another coring and φ : D → C a morphism of
A-corings. Consider the map

d : C ⊗ D �� D ⊗ C (c⊗ d 	−→ ε(c)d(1) ⊗ φ(d(2))).

It is clear that d is A-bilinear, and that (D⊗ ε) ◦ d = ε⊗D. Furthermore, for every
pair of elements (c, d) ∈ C × D, we have

(d ⊗ C) ◦ (C ⊗ d) ◦ (∆ ⊗ D)(c⊗ d) = (d ⊗ C) ◦ (C ⊗ d)(c(1) ⊗ c(2) ⊗ d)

= (d ⊗ C)(c(1) ⊗ ε(c(2))d(1) ⊗ φ(d(2)))

= ε(c)d(1) ⊗ φ(d(2)) ⊗ φ(d(3))

= (D ⊗ ∆) ◦ d(c⊗ d).

That is, d satisfies equalities (2.1) and (2.2), and hence (D, d) is an object of R(C : A).
The lifted functor associated to (D, d) is nothing but the tensor product by the right
C-comodule (D, (D ⊗ φ) ◦ ∆D), which is the image of (D,∆D) by the induction
functor (−)φ. This in fact comes from a more general setting. Namely, if we have
any (A′, A)-coring morphism (φ, ϕ) : (C′ : A′) → (C : A) in the sense of [13]. That
is, ϕ : A′ → A is a morphism of rings and φ : C′ → C is by scalar restriction an
A′-bilinear map satisfying εC ◦ φ = ϕ ◦ εC′ and ∆C ◦ φ = ωA′,A ◦ (φ ⊗A′ φ) ◦ ∆C′ ,
where ωA′,A is the obvious map. Then one can prove that (A ⊗A′ C′ ⊗A′ A,m)
is an object of R(C : A), wherein m : C ⊗A′ C′ ⊗A′ A → A ⊗A′ C′ ⊗A′ C sends
c ⊗A′ c′ ⊗A′ a 	→ ε(c) ⊗A′ c′(1) ⊗A′ φ(c′(2))a, for every element a ∈ A, c ∈ C, and
c′ ∈ C′.

Remark 2.7. Let φ : C → C be any endomorphism of A-corings, we then get
an object (C, d) ∈ R(C : A) as in Example 2.6. On the other hand, we can consider
the object (C, c) ∈ R(C : A) constructed in Example 2.5. These two different objects
clearly induce two different (− ⊗ C)-lifted functors of the same functor − ⊗ C :
ModA → ModA.

Recall from [4] that an entwining structure over K is a data (A,C)a consisting of
K-algebra A with multiplication µ and unit 1, K-coalgebra C with comultiplication
∆ and counit ε, and a K-module map a : C ⊗K A→ A⊗K C satisfying

a ◦ (C ⊗K µ) = (µ⊗K C) ◦ (A⊗K a) ◦ (a ⊗K A), (2.6)

a ◦ (C ⊗K 1) = 1 ⊗K C; (2.7)

(A⊗K ∆) ◦ a = (a ⊗K C) ◦ (C ⊗K a) ◦ (∆ ⊗K A), (2.8)

(A⊗K ε) ◦ a = ε⊗K A. (2.9)

By [2, Proposition 2.2] the corresponding A-coring is the A-bimodule C = A⊗K C

with obvious left A-action, and the right A-action is given by (a′⊗K c).a = a′a(c⊗K

a), for every a, a′ ∈ A, c ∈ C. The comultiplication map is ∆C = A ⊗K ∆, and
the counit is εC = A⊗K ε. For instance, assume a K-bialgebra H is given together
with a right H-comodule algebra A and right H-module coalgebra C. That is, the
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right H-coaction ρA : A → A ⊗K H, a 	→ a(0) ⊗K a(1) (summation understood), is
a morphism of K-algebras, while the right action � : C ⊗K H → C is a morphism
of K-coalgebras. It is clear that the map a : C ⊗K A → A ⊗K C sending c⊗K a 	→
a(0) ⊗K (c � a(1)), for every c ∈ C and a ∈ A, satisfies all equalities (2.6)–(2.9). Thus
(A,C)a is an entwining structure over K.

Let (A,C)a be an entwining structure over K and consider as above the associ-
ated A-coring C = A⊗K C. We have a canonical morphism of corings, in the sense
of Example 2.6, (C : K) → (C : A) which sends c 	→ 1 ⊗K c and K → A is the
unit of A. In this way, we can construct two functors connecting right comodules
over C and C. Thus to each right C-comodule (X, ρC

X), we can associate a right
C-comodule (X ⊗K A, ρ

C
X⊗KA = (X ⊗K a) ◦ (ρC

X ⊗K A)). Conversely, to each right

C-comodule (Y, ρC
Y ), we associate a right C-comodule (Y, (ιY ⊗K C) ◦ ρC

Y ), where
ιY : Y ⊗ A ∼= Y is the obvious natural isomorphism. We have in fact an adjunction
−⊗K A : ComodC

�� ComodC : O�� with −⊗K A � O.
Given any entwining structure (A,C)a over K, one can immediately check that

(A, a) is an object of R(C: K). Furthermore, we have the following lemma.

Lemma 2.8. Let (A,C)a be an entwining structure over K and C = A ⊗K C its
associated A-coring. The functor A ⊗K − ⊗K A : R(C: K) → R(C : A), defined over
objects by

(N, n) → (A⊗K N ⊗K A, (A⊗K N ⊗K a) ◦ (A⊗K n ⊗K A))

(up to natural isomorphisms), and over morphisms by f → A ⊗K f ⊗K A (up to
natural isomorphisms), is an opmonoidal functor.

Proof. Let us denote by F : R(C: K) → R(C:A) the stated functor. Consider (N, n)
an object of R(C: K), so we have a diagram

ComodC
N̄ ��

−⊗KA

��

UC

����������������
ComodC

UC
����������������

−⊗KA

��

ModK

−⊗KN ��

−⊗KA

��

ModK

−⊗KA

��

ComodC

O

��

UC

����������������
�� ComodC

O

��

UC
����������������

ModA −⊗(A⊗KN⊗KA)
��

U

��

ModA

U

��

where the verticals pairwise arrows represent a canonical adjunction. Set ¯F(N) :=
(− ⊗K A) N̄O : ComodC → ComodC the functor defined by the dot arrow which
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completes the bottom square in the above diagram. The functors involving this
diagram satisfy a natural isomorphism (− ⊗K N ⊗K A)U ∼= − ⊗ F(N) : ModA →
ModA and the following equalities UC (− ⊗K A) = (− ⊗K A)UC , UC O = U UC.
Using these, we obtain an isomorphism UC F(N) ∼= (−⊗F(N))UC. Thus F(N) is
(up to natural isomorphism) a (−⊗C)-lifted functor of −⊗F(N) : ModA → ModA.
These in fact define a functor

LFunctC(ModK)
F̄ �� LFunctC(ModA)

N̄ �� F̄(N̄) = F(N) = (−⊗K A) N̄O
[
Φ : N̄ → N̄ ′] ��

[
(−⊗K A)ΦO : F(N) → F(N ′)

]
.

One can easily check that F = G C ◦ F̄ ◦ FC , where G C and FC are the functors
defined in Proposition 2.4, respectively, for (C : A) and (C : K). Henceforth, it
suffices to show that F̄ is an opmonoidal functor. So, let N̄ and N̄ ′ be two objects
in the category LFunctC(ModK), we have

F̄(N̄ • N̄ ′) = F̄(N ⊗ N ′) = (−⊗K A)N ⊗ N ′ O, and

F̄(N̄) • F̄(N̄ ′) = ((−⊗K A) N̄ ′ O) ((− ⊗K A) N̄ O).

Define the natural transformation F̄2
N̄, N̄ ′ : F̄(N ⊗ N ′) → F̄(N̄) • F̄(N̄ ′) by putting

F̄2
N̄, N̄ ′ = (− ⊗K A) N̄ ′ηN̄ O, where η− : 1ComodC

→ O(− ⊗K A) is the unit of
the adjunction (− ⊗K A) � O. On the other hand, the counit of this adjunction
θ : (−⊗KA)O → 1ComodC

, gives a natural morphism F̄0 : F̄(1ModK
) = F̄(1ComodC ) =

(−⊗KA)O → 1ComodC
. We need to show the associativity and the unitary properties

of F̄2 and F̄0. Let N̄ ′′ be another object of LFunctC(ModK), so we have

[F̄(N̄) • F̄2
N̄ ′,N̄ ′′ ] ◦ F̄2

N̄,N̄ ′•N̄ ′′

=
[
F̄2

N̄ ′,N̄ ′′

]
F̄(N̄)

◦ F̄2
N̄,N̄ ′•N̄ ′′

= [F̄2
N̄ ′,N̄ ′′ ]F̄(N̄) ◦ F̄2

N̄,N ′⊗N ′′

= [(−⊗K A)N̄ ′′ηN̄ ′O](−⊗KA)N̄O ◦ (− ⊗K A)N ′ ⊗ N ′′ηN̄O

= (−⊗K A)N̄ ′′[ηN̄ ′O(−⊗KA) ◦ N̄ ′η]N̄O

= (−⊗K A)N̄ ′′[O(− ⊗K A)N̄ ′η ◦ ηN̄ ′ ]N̄O, by naturality of η

= (−⊗K A)N̄ ′′[O(− ⊗K A)N̄ ′ηN̄O ◦ ηN̄ ′N̄O]

= ((−⊗K A)N̄ ′′O(− ⊗K A)N̄ ′ηN̄O) ◦ (− ⊗K A)N̄ ′′ηN̄ ′N̄O
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= (F̄(N̄ ′′)F̄2
N̄,N̄ ′) ◦ F̄2

N̄•N̄ ′,N̄ ′′

= (F̄2
N̄,N̄ ′ • F̄(N̄ ′′)) ◦ F̄2

N̄•N̄ ′,N̄ ′′ ,

which gives the associativity property. Finally, the unitary property is obtained by
comparing the following two computations:

(F̄(N̄) • θ) ◦ F̄2
N̄,1ModK

= θF̄(N̄) ◦ (−⊗K A)ηN̄O

= θ(−⊗KA) N̄ O ◦ (− ⊗K A)ηN̄O
= [θ(−⊗KA) ◦ (−⊗K A)η]N̄ O = (−⊗K A) N̄ O = F̄(N̄)

and

(θ • F̄(N̄)) ◦ F̄2
1ModK

, N̄
= (− ⊗K A) N̄ O θ ◦ [(− ⊗K A)N̄ηO]

= (− ⊗K A)N̄ [Oθ ◦ ηO]

= (− ⊗K A)N̄O = F̄(N̄).

Remark 2.9. Note that Lemma 2.8 is in fact a special case of more general
statement. Precisely, we can state the following: Let (C,Θ, ϑ) and (A, µ, η) be,
respectively, a comonad and monad on a category C . Assume that a : AC → CA is
a distributive law (i.e. entwining structure) between A and C, that is, a is a nat-
ural transformation which is compatible with both structures of A and C, see [1].
Denote by (C̄, Θ̄, ϑ̄) the comonad structure of the A-lifted functor C̄ : CA → CA

attached to a, see Subsec. 1.2. Then, for every C-lifted functor F̄ : C C → C C of
a functor F : C → C it corresponds a C̄-lifted functor TAFSA : (CA)C̄ → (CA)C̄

of the functor TAFSA : CA → CA, which is defined by TAFSA = AF̄O, where
A : C C �� (CA)C̄ : O�� is the canonical adjunction.

The functor O : (CA)C̄ → C C sends any C̄-comodule ((Y, lY ), dC̄
(Y,lY )) to

the C-comodule (SA(Y, lY ), SAdC̄
(Y,lY )), and acts by identity on morphisms (here

SA : CA → C is the forgetfull functor of Subsec. 1.1). While A sends any comodule
(X, dC

X) ∈ C C to ((A(X), µX), dC̄
(A(X), µX ) = aX ◦ A(dC

X)) ∈ (CA)C̄ and any mor-

phism f ∈ C C to A(f). The comonad structure (C̄, Θ̄, ϑ̄) is well-defined, since both
natural transformations Θ and ϑ satisfy the condition of Eq. (1.1). Thus, Θ̄ and ϑ̄
are defined such that SAΘ̄ = ΘSA

and SAϑ̄ = ϑSA
.

Remark 2.10. Reversing the twisting maps, one can construct, for any coring
(C : A), another monoidal category denoted by L(C:A). The objects of L(C:A) are
pairs (l, L) consisting of an A-bimodule L and A-bilinear map l : L ⊗ C → C ⊗ L
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compatible with the comultiplication and the counit, i.e. satisfying the equalities

(ε⊗ L) ◦ l = L⊗ ε, (2.10)

(∆ ⊗ L) ◦ l = (C ⊗ l) ◦ (l ⊗ C) ◦ (L⊗ ∆). (2.11)

Here the C-bicomodule structure of L ⊗ C is given by ρL⊗C = L ⊗ ∆ and λL⊗C =
(l ⊗ C) ◦ (L⊗ ∆). The K-modules of morphisms in this category are defined by

HomL(C: A)((l, L), (l′, L′)) := HomC−C(L⊗ C, L′ ⊗ C).

The multiplications of this monoidal category are defined as follows: Given
γ: (l, L) → (l′, L′) and σ : (k,K) → (k′,K ′) two morphisms in L(C: A), the mul-
tiplication of objects is defined by

(l, L)
l⊗

(C : A)
(k,K) = ((l ⊗ K) ◦ (L ⊗ k), L⊗ K),

and that of morphisms is given by

γ
l⊗

(C : A)
σ = (L′ ⊗ ε⊗ K ′ ⊗ C) ◦ (γ ⊗ K ′ ⊗ C) ◦ (L ⊗ k′ ⊗ C)

◦ (L⊗ σ ⊗ C) ◦ (L ⊗ K ⊗ ∆). (2.12)

The left version of Proposition 2.4 is expressed as follows.

Proposition 2.11. There is a monoidal isomorphism between L(C:A) and the cat-
egory of (C ⊗ −)-lifted functors LFunctC(AMod) whose objects are (C ⊗ −)-lifted
functors L̄ : CComod → CComod of L ⊗ − : AMod → AMod, for some A-bimodule
L, and morphisms are natural transformations.

3. Cowreath Over Corings and Examples

In this section we recall, in terms of the tensor product over the base ring A, the
definition of cowreath over a given coring (C : A). If our coring arises from entwining
structure (A,C)a, then we prove in Proposition 3.5 a procedure to construct a new
cowreath over the coring A⊗ C from a given cowreath over the coalgebra C.

Definition 3.1. Let (C : A) be a coring. A cowreath over (C : A) (or C-cowreath)
is a comonoid in the additive monoidal category R(C : A) defined in Sec. 2. A wreath
over C (or C-wreath) is a monoid in R(C : A). Notice, that here in fact we are defining
a right wreath and a right cowreath. The left notions are defined in the monoidal
category L(C :A) of Remark 2.10.

The following Proposition can be deduced from [17, Sec. 3]. For sake of com-
pleteness, we include a detailed proof.
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Proposition 3.2. Let (C : A) be a coring, and (M,m) an object of the category
R(C : A). The following statements are equivalent

(i) (M,m) is a C-cowreath.
(ii) There are C-bicolinear maps ξ : C ⊗ M → C and δ : C ⊗ M → C ⊗ M ⊗ M

satisfying the following equalities:

(ξ ⊗M) ◦ δ = C ⊗M, (3.1)

(M ⊗ ξ) ◦ (m ⊗M) ◦ δ = m, (3.2)

(M ⊗ δ) ◦ (m ⊗M) ◦ δ = (m ⊗M ⊗M) ◦ (δ ⊗M) ◦ δ. (3.3)

(iii) The (− ⊗ C)-lifted functor M̄ : ComodC → ComodC of the functor − ⊗ M :
ModA → ModA has a structure of comonad.

Proof. (i) ⇒ (iii) Is a consequence of Proposition 2.4.
(iii) ⇒ (ii) Assume that (M̄,Θ, ϑ) is a comonad on ComodC, and put δ = Θ(C,∆) :
C⊗M → C⊗M ⊗M , ξ = ϑ(C, ∆) : C⊗M → C. Since Θ and ϑ are natural, δ and ξ
are morphisms of C-bicomodules. We claim that the maps δ and ξ satisfy equalities
(3.1)–(3.3). By Eq. (2.1), m is a morphism of right C-comodules, so we have M̄2(m)◦
Θ(C⊗M, ρC⊗M ) = Θ(M⊗C, M⊗∆) ◦ M̄(m), where ρC⊗M = (C ⊗ m) ◦ (∆ ⊗M). Using
Lemma 2.2(b), we obtain M̄2(m)◦Θ(C⊗M, ρC⊗M ) = (M⊗Θ(C,∆))i̧rcM̄ (m). Applying
the coassociativity of Θ evaluated at the right C-comodule (C,∆), we deduce that

(m ⊗M ⊗M) ◦ (Θ(C,∆) ⊗M) ◦ Θ(C,∆) = (M ⊗ Θ(C, ∆)) ◦ (m ⊗M) ◦ Θ(C,∆),

which means equality (3.3) for δ = Θ(C, ∆). Now, the right counitary property
M̄ϑ ◦Θ = M̄ evaluated at the right C-comodule (C, ∆) clearly gives equality (3.1).
Finally, using again that m is right C-colinear, we get

m ◦ ϑM̄(C, ∆) ◦ Θ(C, ∆) = m

= ϑ(M⊗C, M⊗∆) ◦ M̄(m) ◦ Θ(C, ∆)

= (M ⊗ ϑ(C, ∆)) ◦ (m ⊗M) ◦ Θ(C,∆),

where Lemma 2.2(b) was used in the third equality. This gives equality (3.2) for
the above δ and ξ, and finishes the proof of the claim.
(ii) ⇒ (i) Using the definition of the multiplication − r⊗

(C : A)
− given in Eq. (2.5), we

get that (M,m) is a comonoid in R(C : A) if and only if there exist ξ : C ⊗ M → C

and δ : C⊗M → C⊗M⊗M morphisms in R(C: A) satisfying the following equalities

(C ⊗M ⊗ ε) ◦ (C ⊗M ⊗ ξ) ◦ (C ⊗ m ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ = C ⊗M, (3.4)

(C ⊗ ε⊗M) ◦ (C ⊗ ξ ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ = C ⊗M, (3.5)

(C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗ m ⊗M ⊗M)

◦ (C ⊗ δ ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ
= (C ⊗M ⊗ ε⊗M ⊗M) ◦ (C ⊗M ⊗ δ)

◦ (C ⊗ m ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ. (3.6)
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By hypothesis, we then need to show that equalities (3.1)–(3.3) imply (3.4)–(3.6).
To this end, we have

(C ⊗M ⊗ ε) ◦ (C ⊗M ⊗ ξ) ◦ (C ⊗ m ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ
(2.3)
= (C ⊗M ⊗ ε) ◦ (C ⊗M ⊗ ξ) ◦ (C ⊗ m ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)

= (C ⊗M ⊗ ε) ◦ (C ⊗ ((M ⊗ ξ) ◦ (m ⊗M) ◦ δ)) ◦ (∆ ⊗M)

(3.2)
= (C ⊗M ⊗ ε) ◦ (C ⊗ m) ◦ (∆ ⊗M)

(2.2)
= (C ⊗ ε⊗M) ◦ (∆ ⊗M) = C ⊗M,

which gives equality (3.4). Equality (3.5) is obtained as follows:

(C ⊗ ε⊗M) ◦ (C ⊗ ξ ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ
(2.3)
= (C ⊗ ε⊗M) ◦ (C ⊗ ξ ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)

= (C ⊗ ε⊗M) ◦ (C ⊗ ((ξ ⊗M) ◦ δ)) ◦ (∆ ⊗M)

(3.1)
= (C ⊗ ε⊗M) ◦ (∆ ⊗M) = C ⊗M.

Finally, the coassociativity, that is, equality (3.6) is derived from the following
computation:

(C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗ m ⊗M ⊗M) ◦ (C ⊗ δ ⊗M)

◦ (∆ ⊗M ⊗M) ◦ δ
(2.3)
= (C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗ m ⊗M ⊗M)

◦ (C ⊗ δ ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)

= (C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗ ((m ⊗M ⊗M)

◦(δ ⊗M) ◦ δ)) ◦ (∆ ⊗M)
(3.3)
= (C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗M ⊗ δ) ◦ (C ⊗ m ⊗M)

◦ (C ⊗ δ) ◦ (∆ ⊗M)
(2.3)
= (C ⊗M ⊗M ⊗ ε⊗M) ◦ (C ⊗M ⊗ m ⊗M) ◦ (C ⊗M ⊗ δ) ◦ (C ⊗ m ⊗M)

◦ (∆ ⊗M ⊗M) ◦ δ
= (C ⊗M ⊗ ((M ⊗ ε) ◦ m) ⊗M) ◦ (C ⊗M ⊗ δ) ◦ (C ⊗ m ⊗M)

◦ (∆ ⊗M ⊗M) ◦ δ
(2.2)
= (C ⊗M ⊗ ε⊗M ⊗M) ◦ (C ⊗M ⊗ δ) ◦ (C ⊗ m ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ.

Example 3.3. Of course any A-coring C can be seen as a cowreath over the trivial
coring (A : A).

Let C and D be two K-coalgebras. It is clear that (D, τ) belongs to R(C: K),
where τ : C ⊗K D → D ⊗K C is the usual flip. Consider the maps ξ = C ⊗K

εD : C ⊗K D → C and δ = C ⊗K ∆D : C ⊗K D → C ⊗K D ⊗K D. One can
easily prove that those maps define in fact a morphism ξ : (D, τ) → (K, C) and
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δ : (D, τ) → (D, τ)
r⊗

(C: K)
(D, τ) in the monoidal category R(C: K). Moreover, ξ

and δ satisfy Eqs. (3.1)–(3.3) with (C : A) = (C : K). Therefore, (D, τ) is in our
terminology a C-cowreath.

Example 3.4. Let (C : A) and (D : A) be two corings. Assume that there is an
A-bilinear map d : C ⊗ D → D ⊗ C satisfying

(D ⊗ εC) ◦ d = εC ⊗ D, (3.7)

(D ⊗ ∆C) ◦ d = (d ⊗ C) ◦ (C ⊗ d) ◦ (∆C ⊗ D), (3.8)

(εD ⊗ C) ◦ d = C ⊗ εD, (3.9)

(∆D ⊗ C) ◦ d = (D ⊗ d) ◦ (d ⊗ D) ◦ (C ⊗ ∆D). (3.10)

Equations (3.7) and (3.8) say that (D, d) is an object of the monoidal category
R(C:A). While Eqs. (3.9) and (3.10) say that (d,C) is an object of the monoidal
category L(D:A) of Remark 2.10. One can check that (D, d) is a right C-cowreath
with structure maps C ⊗ εD and C ⊗ ∆D, and similarly (d,C) is a left D-cowreath
with structure maps εC ⊗ D and ∆C ⊗ D.

The following proposition gives, using entwining structures, a method to con-
struct from the commutative case a cowreath with a noncommutative base ring.

Proposition 3.5. Let (A,C)a be an entwining structure over K with twisting map
a : C ⊗K A → A ⊗K C. Consider its associated coring (A ⊗K C : A). If (N, n) is a
C-cowreath, then

(A⊗K N ⊗K A, (A⊗K N ⊗K a) ◦ (A⊗K n ⊗K A))

is an (A⊗K C)-cowreath.

Proof. Is consequence of Lemma 2.8.

Example 3.6. Let C and D be two K-coalgebras. As in Example 3.3, we consider
(D, τ) the obvious C-cowreath, where τ is the flip map. Assume now that we are
given an entwining structure (A,C)a, and let C = A ⊗K C be its associated A-
coring. Then, by Proposition 3.5, (A⊗K D⊗K A, (A⊗K N ⊗K a) ◦A⊗K τ ⊗K A) is
a C-cowreath.

Example 3.7. Let H be a K-bialgebra and C a left H-comodule coalgebra [19,
p. 26]. That is, C is a left H-comodule with coaction λ : C → H⊗KC which satisfies
the following equalities:

(H ⊗K εC) ◦ λ = 1H · εC ,

(H ⊗K ∆C) ◦ λ = (µ⊗K C ⊗K C) ◦ (H ⊗K τ ⊗K C) ◦ (λ⊗K λ) ◦ ∆C ,
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where τ is the usual flip, and µ is the multiplication map of H . Considering the
K-linear map

h := (µ⊗K C) ◦ (H ⊗K τ) ◦ (λ ⊗K H) : C ⊗K H → H ⊗K C,

we can directly show that (H, h) is actually an object of the category R(C: K).
Moreover, we have that (H, h) is a C-cowreath with structure maps δ := C ⊗K

∆H and ξ := C ⊗K εH . An alternative proof of this fact can be deduced from
Proposition 4.1 and [19, Proposition 1.6.18] which says that C⊗KH is a K-coalgebra
with structure maps:

∆′ = (C ⊗K µ⊗K C ⊗K H) ◦ (C ⊗K H ⊗K τ ⊗K H)

◦ (C ⊗K λ⊗K H ⊗K H) ◦ (∆C ⊗K ∆H),

ε′ = εC ⊗K εH .

Now, assume that we are given an entwining structure (A,C)a. Then, by
Proposition 3.5

(A⊗K H ⊗K A, (A⊗K H ⊗K a) ◦ (A⊗K h ⊗K A))

is a C-cowreath, where C = A ⊗K C is the canonical A-coring induced by the
entwining a.

Example 3.8. Entwining structures give also an example of a wreath over coalge-
bras. Explicitly, given any entwining structure (A,C)a over K with a : C ⊗K A →
A ⊗K C. As we have already observe, (A, a) is an object of the monoidal category
R(C: K). Taking η = C⊗K1 : C → C⊗KA and µ = C⊗Kµ : C⊗KA⊗KA→ C⊗KA.
One can easily check that η and µ are in fact morphisms of C-bicomodules. That
is, η : (K, C) → (A, a) and µ : (A, a)

r⊗
(C: K)

(A, a) → (A, a) are morphisms in R(C: K).

Moreover, η and µ endow (A, a) with a structure of monoid in the monoidal cat-
egory R(C: K). Thus, (A, a) is in our terminology a right C-wreath. Conversely, let
(A, µ, 1A) be a K-algebra such that (A, a) is a right C-wreath for some K-coalgebra
C with multiplication and unit, respectively, C ⊗K µ and C ⊗K 1A. Then (A,C)a is
an entwining structure over K. Namely, since C⊗K µ and C⊗K 1A are C-bicolinear
maps, we have

(C ⊗K a) ◦ (∆ ⊗K A) ◦ (C ⊗K µ) = (C ⊗K µ⊗K C) ◦ (C ⊗K A⊗K a)

◦ (C ⊗K a ⊗K A) ◦ (∆ ⊗K A⊗K A),

(C ⊗K a) ◦ (∆ ⊗K A) ◦ (C ⊗K 1A) = (C ⊗K 1A ⊗K C) ◦ ∆.

These equalities clearly imply (2.6) and (2.7). An example of the above situation
is the following one. Let G be any group and A = ⊕x∈GAx any G-graded algebra.
There is an entwining structure (A,K[G])a, where K[G] is the usual coalgebra of
grouplike elements, and a : K[G]⊗KA→ A⊗K K[G] sends x⊗K ay 	→ ay ⊗K xy, for
every homogeneous element ay ∈ Ay and x, y ∈ G. By previous arguments, every
G-graded algebra A = ⊕x∈GAx is then a right K[G]-wreath.
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4. Cowreath Products and Comodules Over Cowreath

In this section, we first give a detailed proof of the fact that an object (M,m) ∈
R(C:A) is a cowreath if and only if the A-bimodule C ⊗ M admits a compatible
structure of A-coring (this coring is known as the cowreath product of C by M).
We then show that the category of (A,C ⊗ M)-bicomodules is isomorphic via a
comparison functor to the category of right M̄ -comodule, where M̄ is viewed as a
comonad on the category of (A,C)-bicomodules. We also give a simplest and equiv-
alent definitions of the objects and morphisms of the category of (right) comodules
over a given cowreath.

The following proposition gives, using cowreath product introduced in [17], an
elementary characterization of cowreath. We include a detailed proof in our case.

Proposition 4.1. Let (C : A) be any coring and M an A-bimodule. The following
statements are equivalent

(i) C⊗M is an A-coring with a left C-colinear comultiplication ∆′, and there exists
a morphism of A-corings which is a left C-colinear map ξ : C ⊗ M → C, such
that

(ξ ⊗ ε⊗M) ◦ ∆′ = C ⊗M. (4.1)

(ii) There exists an A-bilinear map m : C⊗M →M ⊗C such that (M,m) ∈ R(C: A)

and admits a structure of C-cowreath.

If one of the above condition is satisfied, then we refer to C ⊗M as the cowreath
product of C by M .

Proof. (ii) ⇒ (i) Let us denote by ξ : C ⊗ M → C and δ : C ⊗ M →
C ⊗ M ⊗ M the C-bicolinear structure maps of the cowreath (M,m). By Propo-
sition 3.2, the functor M̄ : ComodC → ComodC has a comonad structure. Since
UC : ComodC

�� ModA : (− ⊗ C)�� is an adjunction with UC � (−⊗C), we deduce
from [15, Theorem 4.2] (or the dual of [8, Proposition 2.3]), that UCM̄(− ⊗ C) :
ModA → ModA is a comonad with continuous underlying functor. Therefore,
(UCM̄(−⊗ C))(A) ∼= C⊗M admits by [10, Lemma 2.1] a structure of an A-coring
with the following comultiplication and counit

∆′ = (C ⊗ m ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M), ε′ = ε ◦ ξ. (4.2)

Let us show that ξ is morphism of corings. By definition ξ is an A-bilinear map
compatible with both counits ε and ε′. The compatibility of ξ with comultiplications
∆ and ∆′ is deduced as follows:

(ξ ⊗ ξ) ◦ ∆′ = (ξ ⊗ ξ) ◦ (C ⊗ m ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)

= (C ⊗ ξ) ◦ (ξ ⊗ C ⊗M) ◦ (C ⊗ m ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)
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(2.3)
= (C ⊗ ξ) ◦ (ξ ⊗ C ⊗M) ◦ (C ⊗ m ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ

(2.4)
= (C ⊗ ξ) ◦ (∆ ⊗M) ◦ (ξ ⊗M) ◦ δ (3.1)

= (C ⊗ ξ) ◦ (∆ ⊗M)
(2.3)
= ∆ ◦ ξ.

Equation (4.1) follows from the following computation:

(ξ ⊗ ε⊗M) ◦ ∆′ = (ξ ⊗ ε⊗M) ◦ (C ⊗ m ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)

= (ξ ⊗M) ◦ (C ⊗M ⊗ ε⊗M) ◦ (C ⊗ m ⊗M) ◦ (C ⊗ δ)

◦ (∆ ⊗M)

= (ξ ⊗M) ◦ (C ⊗ ε⊗M ⊗M) ◦ (C ⊗ δ) ◦ (∆ ⊗M)
(2.3)
= (ξ ⊗M) ◦ (C ⊗ ε⊗M ⊗M) ◦ (∆ ⊗M ⊗M) ◦ δ
= (ξ ⊗M) ◦ δ (3.1)

= C ⊗M.

(i) ⇒ (ii) Set ρC
C⊗M = (C ⊗ M ⊗ ξ) ◦ ∆′, where ∆′ and ξ are the stated maps.

An easy verification shows that (C ⊗M,ρC
C⊗M ,∆ ⊗M) is a C-bicomodule. Hence

(M, (ε ⊗ M ⊗ C) ◦ ρC
C⊗M ) ∈ R(C:A) by Lemma 2.1. Now, using Eq. (4.1), one can

check that ξ and δ = (C ⊗M ⊗ ε⊗M) ◦ ∆′ are a C-bicolinear maps which satisfy
equalities (3.1)–(3.3) with respect to the twisting map m = (ε ⊗ M ⊗ C) ◦ ρC

C⊗M .
Thus, (M,m) is actually a right C-cowreath.

Our next aim is to establish an isomorphism of categories between the cat-
egory of M̄ -comodule, where the functor M̄ : AComodC → AComodC is viewed
as a comonad with the same structure of Proposition 3.2(iii), and the category
AComodC⊗M of (A,C ⊗M)-bicomodules, where C⊗M is the cowearth product of
C by M .

Let (M,m) be a right C-cowreath, and consider its associated comonad
M̄ : ComodC → ComodC. It is easily checked that M̄ induces also a comonad
on the category AComodC with the same comultiplication and counit. We
denote this comonad also by M̄ : AComodC → AComodC. Let us denote by
(− ⊗ C) : AModA

��
AComodC : AUC�� the universal cogenerator of the comonad

− ⊗ C : AModA → AModA. Clearly, we have AUC M̄ = (− ⊗ M) AUC. That is,
M̄ : AComodC → AComodC still is a lifted functor of the functor −⊗M : AModA →
AModA. On the other hand, the composed comonad AUC M̄ (− ⊗ C) coincides by
Proposition 4.1 with the comonad (−⊗ C⊗M) : AModA → AModA. Therefore, we
can apply Lemma 1.2 by taking for C the category of bimodules AModA, for C the
comonad (−⊗ C), and for F the functor (− ⊗M). So, we have a functor

(AComodC)M̄ K ��
AComodC⊗M

((X, ρC
X), dM̄

(X, ρC
X )

) �� (X, ρC⊗M
X = (ρC

X ⊗M) ◦ dM̄
(X, ρC

X )
)

f �� f

(4.3)
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such that the following diagram is commutative

(AComodC)M̄

SM̄

��

K ��
AComodC⊗M

AUC⊗M

��
AComodC

T M̄

��

AUC ��
AModA.−⊗C

��

−⊗C⊗M

��

(4.4)

That is, (− ⊗ C ⊗M) = K ◦ T M̄ ◦ (− ⊗ C), and AUC⊗M ◦ K = AUC ◦ SM̄ . The
inverse of K is defined by:

AComodC⊗M
K −1

�� (AComodC)M̄

(Y, ρC⊗M
Y ) �� ((Yξ, ρ

C
Yξ

), , dM̄
(Yξ, ρC

Yξ
)
= (Y ⊗ ε⊗M) ◦ ρC⊗M

Y )

f �� f,

(4.5)

where (Yξ, ρ
C
Yξ

) is the image of (Y, ρC⊗M
Y ) under the induction functor (−)ξ :

AComodC⊗M → AComodC associated to the morphism of A-corings ξ : C⊗M → C

of Proposition 4.1. In conclusion we have shown the following.

Corollary 4.2. Let (C : A) be a coring and M an A-bimodule. Assume that there
is a cowearth product of C by M, Proposition 4.1. Then the functor K defined in
Eq. (4.3) establishes an isomorphism of categories (AComodC)M̄ and AComodC⊗M .

Fix a coring (C : A), and let (M,m) be a C-cowreath with structure maps
ξ : C ⊗ M → C and δ : C ⊗M → C ⊗ M ⊗M . Since (M,m) is a comonoid in the
monoidal category R(C : A), it is natural to ask for the category of (right) (M,m)-
comodules. Thus, an object (X, x) of R(C : A) is said to be a right (M,m)-comodule

if there exists a morphism �(X,x) : (X, x) → (X, x)
r⊗

(C : A)
(M,m) in R(C : A) which

satisfies (
(X, x)

r⊗
(C : A)

ξ

)
◦ �(X,x) = (X, x),

(
(X, x)

r⊗
(C : A)

δ

)
◦ �(X,x) =

(
�(X,x)

r⊗
(C : A)

(M,m)
)
◦ �(X,x).

(4.6)

Proposition 4.3. Let (M,m) be a C-cowreath with structure maps ξ : C⊗M → C

and δ : C⊗M → C⊗M ⊗M, and consider its associated comonad M̄ : ComodC →
ComodC ∈ LFunctC(ModA).

(a) Consider (X, x) an object of R(C : A). The following conditions are equivalent

(i) (X, x) is right (M,m)-comodule;
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(ii) There is a C-bicolinear map �(X,x) : C ⊗ X → C ⊗ X ⊗ M which satisfy
the following equalities:

(X ⊗ ξ) ◦ (x ⊗M) ◦ �(X,x) = x, (4.7)

(X ⊗ δ) ◦ (x ⊗M) ◦ �(X,x) = (x ⊗M ⊗M) ◦ (�(X,x) ⊗M) ◦ �(X,x). (4.8)

(iii) The (− ⊗ C)-lifted functor X̄ : ComodC → ComodC is a right M̄-
comodule, where M̄ is viewed as a comonoid in the strict monoidal category
LFunctC(ModA).

(b) Given two right (M,m)-comodules (X, x) and (X ′, x′), a morphism f : (X, x) →
(X ′, x′) in R(C : A) is a morphism of right (M,m)-comodules if and only if

�(X′,x′) ◦ f = (f ⊗M) ◦ �(X,x).

Proof. (a) The proof of Proposition 3.2 can be adapted to this item, taking into
account the equalities of Eq. (4.6).
(b) The map f is a morphism of right (M,m)-comodules if and only if

�(X,x) ◦ f =
(

f
r⊗

(C : A)
(M,m)

)
◦ �(X′,x′)

= (C ⊗ X ′ ⊗ ε⊗M) ◦ (C ⊗ x′ ⊗M) ◦ (C ⊗ f ⊗M)

◦ (∆ ⊗ X ⊗M) ◦ �(X′,x′)

(2.2)
= (C ⊗ ε⊗ X ′ ⊗M) ◦ (C ⊗ f ⊗M) ◦ (∆ ⊗ X ⊗M) ◦ �(X′,x′)

= (C ⊗ ε⊗ X ′ ⊗M) ◦ (((C ⊗ f) ◦ (∆ ⊗ X)) ⊗M) ◦ �(X′,x′)

(2.3)
= (C ⊗ ε⊗ X ′ ⊗M) ◦ (∆ ⊗ X ′ ⊗M) ◦ (f ⊗M) ◦ �(X′,x′)

= (f ⊗M) ◦ �(X′,x′).

Clearly (M,m) is right (M,m)-comodule with coaction �(M,m) = δ. For any
object (X, x) ∈ R(C:A), we have (X ⊗ M, (X ⊗ m) ◦ (x ⊗ M)) is right (M,m)-
comodule with coaction

�(X⊗M, (X⊗m)◦(x⊗M)) = (C⊗X⊗ε⊗M⊗M)◦(C⊗X⊗δ)◦(C⊗x⊗M)◦(∆⊗X⊗M).

The description of objects and morphisms in the category of left (M,m)-
comodules is given by the following proposition.

Proposition 4.4. Let (M,m), ξ, δ and M̄ as in Proposition 4.3.

(a) Consider (X, x) an object of R(C : A). The following conditions are equivalent

(i) (X, x) is left (M,m)-comodule;
(ii) There is a C-bicolinear map λ(X,x) : C ⊗ X → C ⊗M ⊗ X such that

(ξ ⊗ X) ◦ λ(X,x) = C ⊗ X,

(m ⊗M ⊗ X) ◦ (δ ⊗ X) ◦ λ(X,x) = (M ⊗ λ(X, x)) ◦ (m ⊗ X) ◦ λ(X,x).
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(iii) The (− ⊗ C)-lifted functor X̄ : ComodC → ComodC is a left M̄ -
comodule, where M̄ is viewed as a comonoid in the strict monoidal category
LFunctC(ModA).

(b) Given two left (M,m)-comodules (X, x) and (X ′, x′), a morphism f : (X, x) →
(X ′, x′) in R(C : A) is a morphism of left (M,m)-comodules if and only if

(m ⊗ X ′) ◦ λ(X′,x′) ◦ f = (M ⊗ f) ◦ (m ⊗ X) ◦ λ(X,x).

Remark 4.5. Using the monoidal isomorphism established in Proposition 2.4, we
can easily prove that the category of right (M,m)-comodule over a right C-cowreath
(M,m) is isomorphic to the category of right M̄ -comodule over the comonoid M̄ :
ComodC → ComodC of Proposition 3.2(iii). The same argument applies to the
category of left (M,m)-comodules.

5. The Dual Notions: Wreath Over Ring Extension

In this section, we give without proofs the “dual” version of the most results stated
in previous sections. Notice that the notion “dual” is not at all perfect since there
are several duals in the present context. This is due probably to the fact that any
bicategory admits three kind of dualization: by reversing 1-cells, by reversing 2-cells,
or by reversing both of them.

The notion of coring is dual to that of ring. That is, given any ground base
ring A, consider its category of A-bimodules AModA as monoidal category with
multiplication the tensor product over A. An A-coring is then a comonoid in the
monoidal category AModA, while an A-ring is a monoid in AModA. In this way, an
A-ring is just an unital ring extension ι : A→ T (i.e. unital morphism of rings).

Throughout this section, we fix a ring extension ι : A→ T , which we express by
(A : T ). The multiplication of T will be denoted by µ (or µT ) and its unit by 1 (or
1T ). Associated to (A : T ) and as in Sec. 2, there is an additive monoidal category
R(A:T ), defined by the following data

Objects: Are pairs (P, p) consisting of an A-bimodule P and an A-bilinear map
p : T ⊗ P → P ⊗ T satisfying

(P ⊗ µ) ◦ (p ⊗ T ) ◦ (T ⊗ p) = p ◦ (µ⊗ P ), (5.1)

p ◦ (1 ⊗ P ) = P ⊗ 1. (5.2)

Given any object (P, p) and any left T -module X with action lX : T ⊗X → X .
Then one can easily check that P ⊗ X inherits a structure of left T -module
given by the action lP⊗X = (P ⊗ lX) ◦ (p⊗ T ). Of course if X is assumed to be
a T -bimodule, then P ⊗ X becomes also a T -bimodule. In this way, for each
object (P, p), the A-bimodule P ⊗T will be always considered as a T -bimodule.
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Morphisms: For any two objects (P, p) and (P ′, p′), the K-module of mor-
phisms is defined by

HomR(A: T )((P, p), (P ′, p′)) := HomT−T (P ⊗ T, P ′ ⊗ T ).

The category R(A: T ) is monoidal with the multiplication of objects is given by

(P, p)
r⊗

(A: T )
(P ′, p′) = (P ⊗ P ′, (P ⊗ p′) ◦ (p ⊗ P )).

Now, for any pair of morphisms α : (P, p) → (Q, q) and β : (P ′, p′) → (Q′, q′), the

morphism α
r⊗

(A: T )
β is defined by the following composition

or equivalently, α
r⊗

(A: T )
β = (Q⊗Q′⊗µ)◦(Q⊗q′⊗T )◦(α⊗β)◦(P⊗1⊗P ′⊗T ). The

identity object of this multiplication is proportioned by the pair (A, T⊗A ∼= A⊗T ).

Lemma 5.1. Let (P, p) and (Q, q) be two objects of the category R(A:T ), and f :
P → Q an A-bilinear map. The following conditions are equivalent

(a) f ⊗ T : (P, p) → (Q, q) is a morphism in R(A:T );
(b) f satisfies the equality q ◦ (T ⊗ f) = (f ⊗ T ) ◦ p.

Proof. Straightforward.

Let (A : T ) be any ring extension and P an A-bimodule. One can easily check
that there is an 1-1 correspondence between

(i) T -bimodule structures on P ⊗T with underlying right T -action rP⊗T = P ⊗µ;
(ii) A-bilinear maps p : T⊗P → P⊗T such that (P, p) is an object of the category

R(A:T );
(iii) (T ⊗ −)-Lifted functor P̄ : T Mod → T Mod of the functor P ⊗ − : AMod →

AMod.

The image by P̄ of left T -module (X, lX) is given by the left module P̄ (X, lX) =
(P ⊗ X, (P ⊗ lX) ◦ (p ⊗ X)). Conversely, if P̄ is a (T ⊗ −)-lifted functor, then
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the twisting map is given by p = lP⊗T ◦ (T ⊗ P ⊗ 1), where lP⊗T is the left T -
action of the module P̄ (T, µ). As in the case of corings, we consider the category
of lifted continuous functors LFunctT (AMod) whose objects are of the form P̄ :=
(P ⊗ −) : T Mod → T Mod for someA-bimodule P . There is a monoidal isomorphism
of categories given by the following mutually inverse functors:

for every left module (U, lU ) ∈ T Mod. The inverse functor of F ′ is

LFunctT (AMod)
G ′

�� R(A: T )[
Q̄ : T Mod → T Mod

]
�� (Q, q = lQ⊗T ◦ (T ⊗ Q⊗ 1))

[
Φ : Q̄→ Q̄′] ��

[
Φ(T, µ) : Q⊗ T → Q′ ⊗ T

]
.

Definition 5.2. Let (A : T ) be a ring extension, and consider its associated
monoidal category R(A:T ). A wreath over T (or T -wreath) is a monoid in the
monoidal category R(A:T ), and cowreath (or T -cowreath) is a comonoid in R(A:T ).

Remark 5.3. As in the case of corings, in Definition 5.2 we are in fact defining a
right wreath and right cowreath. The left versions of those definitions are given in
the left monoidal category L(A:T ) whose objects are pairs (u, U) consisting of an
A-bimodule U and A-bilinear map u : U ⊗ T → T ⊗ U satisfying the equalities

u ◦ (U ⊗ 1T ) = 1T ⊗ U, (5.3)

u ◦ (U ⊗ µ) = (µ⊗ U) ◦ (T ⊗ u) ◦ (u ⊗ T ). (5.4)

The K-modules of morphisms are

HomL(A: T )((u, U), (u′, U ′)) := HomT−T (T ⊗ U, T ⊗ U ′),

where T ⊗ U and T ⊗ U ′ are T -bimodules with right T -action given, respectively,
by rT⊗U = (µ⊗ U) ◦ (T ⊗ u) and rT⊗U ′ = (µ⊗ U ′) ◦ (T ⊗ u′). The multiplications
in this monoidal category are given as follows: Given α : (u, U) → (v, V ) and
β : (u′, U ′) → (v′, V ′) two morphisms in L(A:T ). The multiplication of objects is
defined by

(u, U)
l⊗

(A: T )
(u′, U ′) = ((u ⊗ U ′) ◦ (U ⊗ u′), U ⊗ U ′),
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and that of morphisms is given by

α
l⊗

(A: T )
β = (µ⊗V ⊗V ′)◦(T ⊗α⊗V ′)◦(T ⊗ u⊗V ′)◦(T ⊗U⊗β)◦(T ⊗U⊗ 1⊗U ′).

This monoidal category is monoidally isomorphic to the category of (−⊗ T )-lifted
functor Ū : ModT → ModT of the functor − ⊗ U : ModA → ModA, for some
A-bimodule U .

The dual version of Proposition 3.2 is the following proposition.

Proposition 5.4. Let (A : T ) be a ring extension, and (R, r) an object of the
category R(A: T ). The following statements are equivalent

(i) (R, r) is a T -wreath.
(ii) There are T -bilinear maps η : T → R ⊗ T and µ : R ⊗ R ⊗ T → R ⊗ T

satisfying

µ ◦ (R ⊗ η) = R ⊗ T, (5.5)

µ ◦ (R⊗ r) ◦ (η ⊗ R) = r, (5.6)

µ ◦ (R⊗ r) ◦ (µ ⊗ R) = µ ◦ (R⊗ µ) ◦ (R⊗ R⊗ r). (5.7)

(iii) The (T ⊗−)-lifted functor R̄ : T Mod → T Mod of the functor R⊗− : AMod →
AMod has a structure of monad.

The wreath product is described in the following proposition (i.e. the dual of
Proposition 4.1).

Proposition 5.5. Let (A : T ) be any ring extension and R an A-bimodule. The
following statements are equivalent

(i) R⊗ T is an A-ring with a right T -linear multiplication µ′, there exists a mor-
phism of A-rings η : T → R ⊗ T which is a right T -linear map such that

µ′ ◦ (R⊗ 1 ⊗ η) = R⊗ T.

(ii) There exists an A-linear map r : T ⊗ R → R ⊗ T such that (R, r) ∈ R(A: T )

and admits a structure of T -wreath.

If one of the above condition is satisfied, then we refer to R ⊗ T as the wreath
product of R by T .

Notice, that if η : T → R ⊗ T and µ : R ⊗ R ⊗ T → R ⊗ T are the structure
maps of the T -wreath (R, r), then the multiplication and the unit of the wreath
product R⊗ T are given by

µ′ = (R⊗ µ) ◦ (µ ⊗ T ) ◦ (R⊗ r ⊗ T ), η′ = η ◦ 1.

As in the case of cowreath, we have the following corollary.

Corollary 5.6. Let T be an A-ring and R an A-bimodule. Assume that there is
a wreath product of R by T, Proposition 5.5. Then there is an isomorphism of
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categories (T ModA)R̄
∼= R⊗T ModA, where the first one is the category of R̄-module

when R̄ is viewed as a monad on the category of bimodules T ModA.

The objects and morphisms in the category of right modules over a given wreath
are expressed as follows.

Proposition 5.7. Let (R, r) be a T -wreath with structure maps η : T → R ⊗ T

and µ : R⊗ R⊗ T → R⊗ T .

(a) Consider (Y, y) an object of R(A: T ). The following conditions are equivalent

(i) (Y, y) is right (R, r)-module;
(ii) There is a T -bilinear map r(Y, y) : Y ⊗ R⊗ T → Y ⊗ T such that

r(Y, y) ◦ (Y ⊗ η) = Y ⊗ T, (5.8)

r(Y, y) ◦ (Y ⊗ µ) ◦ (Y ⊗ R⊗ r) = r(Y, y), ◦(Y ⊗ r) ◦ (r(Y, y) ⊗ R). (5.9)

(iii) The (T ⊗ −)-lifted functor Ȳ : T Mod → T Mod is a right R̄-module, where
R̄ : T Mod → T Mod is viewed as a monoid in the monoidal category
LFunctT (AMod).

(b) Given two right (R, r)-modules (Y, y) and (Y ′, y′), a morphism g : (Y, y) →
(Y ′, y′) in R(A: T ) is a morphism of right (R, r)-modules if and only if

r(Y ′, y′) ◦ (Y ′ ⊗ r) ◦ (g ⊗ R) = g ◦ r(Y, y) ◦ (Y ⊗ r). (5.10)

Analogously we describe the objects and morphisms in the category of left
modules over a wreath.

Proposition 5.8. Let (R, r), η : T → R ⊗ T and µ : R ⊗ R ⊗ T → R ⊗ T as in
Proposition 5.7.

(a) Consider (Y, y) an object of R(A: T ). The following conditions are equivalent

(i) (Y, y) is left (R, r)-module;
(ii) There is a T -bilinear map l(Y,y) : R⊗ Y ⊗ T → Y ⊗ T such that

l(Y, y) ◦ (R⊗ y) ◦ (η ⊗ Y ) = y, (5.11)

l(Y, y) ◦ (R⊗ y) ◦ (µ ⊗ Y ) = l(Y, y) ◦ (R ⊗ l(Y, y)) ◦ (R⊗ R⊗ y). (5.12)

(iii) The (T ⊗ −)-lifted functor Ȳ : T Mod → T Mod is a left R̄-module, where
R̄ : T Mod → T Mod is viewed as a monoid in the monoidal category
LFunctT (AMod).

(b) Given two left (R, r)-modules (Y, y) and (Y ′, y′), a morphism g : (Y, y) →
(Y ′, y′) in R(A: T ) is a morphism of left (R, r)-modules if and only if

l(Y ′, y′) ◦ (R ⊗ g) = g ◦ l(Y, y). (5.13)
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Let (R, r) be a T -wreath and (Y, y) an object of R(A:T ). Assume that (Y, y) is a
right (R, r)-module and a left (R, r)-module with actions maps l(Y, y) : R⊗Y ⊗T →
Y ⊗ T and r(Y, y) : Y ⊗R⊗ T → Y ⊗ T . Then one can easily check that (Y, y) is an
(R, r)-bimodule if and only if

l(Y, y) ◦ (R⊗ Y ⊗ µ) ◦ (R⊗ r(Y, y) ⊗ T ) ◦ (R ⊗ Y ⊗ R⊗ 1 ⊗ T )

= r(Y, y) ◦ (Y ⊗ R⊗ µ) ◦ (Y ⊗ r ⊗ T ) ◦ (l(Y, y) ⊗ R⊗ T ) ◦ (R ⊗ Y ⊗ 1 ⊗ R⊗ T ).

(5.14)

6. Examples: Twisted Modules Over Twisted Algebras

In this section, we review Čap et al. [7, Sec. 3] constructions of what they call
a twisted modules over a twisted tensor algebra, and extend their results to the
noncommutative case. Precisely, we use the notion of modules over a wreath to re-
formulate the problem of constructing twisted modules, and give an analog solution
in the noncommutative case.

6.1. Twisted tensor product algebras are wreath products

Let T and R be two A-rings with multiplications and units µT , 1T and µR, 1R.
Assume that there is an A-bilinear map r : T ⊗ R→ R⊗ T satisfying

r ◦ (1T ⊗ R) = R⊗ 1T , (6.1)

r ◦ (µT ⊗ R) = (R⊗ µT ) ◦ (r ⊗ T ) ◦ (T ⊗ r), (6.2)

r ◦ (T ⊗ 1R) = 1R ⊗ T, (6.3)

r ◦ (T ⊗ µR) = (µR ⊗ T ) ◦ (R⊗ r) ◦ (r ⊗ R). (6.4)

Equations (6.1) and (6.2) say that (R, r) is an object of the category R(A: T ), while
Eqs. (6.3) and (6.4) say that (r, T ) is an object of the category L(A: R). Taking the
maps η := 1R ⊗ T : T → R ⊗ T and µ := µR ⊗ T : R ⊗ R ⊗ T → R ⊗ T , we
can easily check, using associativity and unitary properties of µR and 1R, that η

and µ satisfy Eqs. (5.5)–(5.7) of Proposition 5.4(ii). Equations (6.3) and (6.4) show
that both η and µ are T -bilinear maps. That is, (R, r) is a T -wreath with structure
maps η and µ. The wreath product R⊗T is by Proposition 5.5 an A-ring extension
of T with multiplication and unit

µ′ = (µR ⊗ µT ) ◦ (R ⊗ r ⊗ T ), 1R⊗T = 1R ⊗ 1T .

Of course (r, T ) ∈ L(A: R) can be also considered as an R-wreath with structure
maps R⊗ 1T and R⊗ µT . This in fact will lead to the same wreath product R⊗ T ,
but in this case an A-ring extension of R.

In the commutative case (i.e. A = K), these algebras were refereed to in the
literature as twisted tensor product algebras, and were intensively studied by several
Mathematicians, see [24, 25, 7, 6, 18] and references therein.
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6.2. Example: Ore extensions are wreath products

([6, Example 2.11])

In this subsection, we prove that the classical Ore extension [12, 20] constructed by
using left skew derivations are in fact a wreath product (Proposition 5.5) defined
over a commutative polynomials rings with one variable. To this end, consider such
polynomials ring T = K[x], and let B be any ring (i.e. K-algebra). Let ∂ be a left
σ-derivation of B, where σ is an endomorphism of rings of B. That is, ∂ is a K-linear
map obeying the rule ∂(bb′) = ∂(b)b′ + σ(b)∂(b′), for every b, b′ ∈ B. We define by
induction the following map b : T ⊗K B → B ⊗K T ,

b(1 ⊗K b) = b⊗K 1

b(x ⊗K b) = σ(b) ⊗K x + ∂(b) ⊗K 1,

and if b(xn ⊗K b) =
∑

1≤i≤n bi ⊗K xi, for some n ≥ 1, then

b(xn+1 ⊗K b) =
n∑

i=1

(σ(bi) ⊗K xi+1 + ∂(bi) ⊗K xi).

Following the proof of [12, Proposition 1.10], consider the K-linear endomorphisms
ring E = EndK(B[t]) of a commutative polynomial ring over B. Clearly the ring B
is identified with its image in E by using left multiplications. The maps σ and ∂

are extended to E as follows: σ(bti) = σ(b)ti and ∂(bti) = ∂(b)ti, for all b ∈ B and
i = 0, 1, . . . . Denote by Y the element of E defined by Y (f) = σ(f)t+ ∂(f), for all
f ∈ B[t], and construct a map

B ⊗K K[x] τ �� EndK(B[t])

b⊗K xn � �� bY n.

τ is in fact injective since the left B-submodule generated by the set {Y n}n=0,1,...

is a free module. By the associativity of E, we have τ ◦b◦ (µ⊗KB) = τ ◦ (B⊗K µ)◦
(b⊗KT )◦(T ⊗K b). Whence b◦(µ⊗KB) = (B⊗Kµ)◦(b⊗KT )◦(T⊗K b), thus (b, B)
is an object of the category R(K: T ). Using again the injectivity of the map τ , we
can prove that (b, B) is a T -wreath with structure maps η : T → B ⊗K T sending
xn 	→ 1 ⊗K xn and µ : B ⊗K B ⊗K T → B ⊗K T sending b⊗K b

′ ⊗K xn 	→ bb′ ⊗K xn.
In this way, the wreath product of B by T associated to b, is a K-algebra with
underlying K-module B ⊗K K[x] and multiplication

(b ⊗K xn)(b′ ⊗K xm) =
n∑

i=1

bbi′ ⊗K xi+m,

where b(xn ⊗K b′) =
∑

1≤i≤n bi′ ⊗K xi. This algebra is in fact an extension of B
via the map − ⊗K 1 : B → B ⊗K K[x]. Now, given any ring extension φ : B → S

assume that there exists an element Z ∈ S such that Zb = σ(b)Z + ∂(b), for all
b ∈ B. This condition leads to construct a ring extension φ̄ : B ⊗K K[x] → S

sending b ⊗K xn 	→ bZn. It is clear now that φ = φ̄ ◦ (− ⊗K 1). In conclusion the
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K-algebra B ⊗K K[x] satisfies the universal condition of Ore extension, and thus
B ⊗K K[x] = B[Y ;σ; ∂]. Notice that B ⊗K K[x] is isomorphic to the subalgebra∑

i=0,1,...BY
i of E.

Here in fact we have constructed a wreath with a commutative base ring. An
example of wreath with noncommutative base ring can be constructed as above
using an iterated Ore extensions over a noncommutative ring A. That is, one can
prove that certain iterated Ore extension of type A[x1;σ1; ∂1][x2;σ2; ∂2] is a wreath
with base ring A.

6.3. Čap et al. construction of twisted modules

The problem concerned in [7, Sec. 3] can be rephrased in the noncommutative
setting as follows. Let A be a noncommutative base ring. Assume that T , R and
r : T ⊗ R → R ⊗ T are given as in Subsec. 6.1. Given a (T,A)-bimodule X and
(R,A)-bimodule Y , can we make X⊗Y into a left (R⊗r T )-module in a way which
is compatible with the inclusion of R, i.e. such that (r⊗ 1T ).(x⊗ y) = (rx)⊗ y, for
every r ∈ R, x ∈ X , and y ∈ Y ? Here R⊗r T := R⊗ T denotes the wreath product
of Subsec. 6.1. The left action which the authors of [7] proposed is the following
one

lX⊗Y : R⊗ T ⊗ X ⊗ Y
R⊗x⊗Y �� R⊗ X ⊗ T ⊗ Y

lX⊗lY �� X ⊗ Y

where lX : T ⊗ X → X and lY : R ⊗ Y → Y are, respectively, the A-bilinear
left action map of X and Y , and x : T ⊗ X → X ⊗ T is some A-bilinear map.
A sufficient condition which x should satisfies in order to answer positively to the
above question using the map lX⊗Y , was given in the commutative case in [7, 3.6
and 3.7] and says the following: x is said to be a left module twisting map if and
only if

x ◦ (1T ⊗ X) = X ⊗ 1R, (6.5)

x ◦ (µT ⊗ X) = (X ⊗ µT ) ◦ (x ⊗ T ) ◦ (T ⊗ x), (6.6)

x ◦ (T ⊗ lX) = (lX ⊗ T ) ◦ (R⊗ x) ◦ (r ⊗ X). (6.7)

The main result [7, Theorem 3.8] says: If x is a left module twisting map, then lX⊗Y

gives the answer to the above question. A reciprocate implication was also given
in that Theorem: If X is projective and for one left faithful module Y the map
lX⊗Y defines a left action which compatible with the inclusion of R, then x is a left
module twisting map.

Let us traduce the previous constructions in our context. First of all, it is obvious
that Eqs. (6.5) and (6.6) say that (X, x) is actually an object of the category R(A: T ).
Take the A-bilinear map l(X, x) = lX ⊗T : R⊗X⊗T → X⊗T . It is easily seen that
this map satisfies Eqs. (5.11) and (5.12) of Proposition 5.8(ii). By Lemma 5.1, l(X, x)

is a T -bilinear map if and only if Eq. (6.7) is fulfilled. Therefore, x is a left module
twisting map if and only if (X, x) is a left (R, r)-module with action l(X, x) = lX ⊗T .
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Thus what Čap et al. were constructing is just an induced left module over the
wreath (R, r). Next, we formulate the noncommutative version of [7, Theorem 3.8].

Proposition 6.1. Let (R, r) be the T -wreath of Subsec. 6.1 and X an (R,A)-
bimodule with left R-action lX . Assume that (X, x) is also a left (R, r)-module with
action l(X, x) : R⊗ X ⊗ T → X ⊗ T and that

l(X, x) ◦ (R⊗ X ⊗ 1T ) = (X ⊗ 1T ) ◦ lX .

Then, for every (T,A)-bimodule Y, the A-bilinear map

R⊗ T ⊗ X ⊗ Y
R⊗x⊗T ��

lX⊗Y

����������������������� R⊗ X ⊗ T ⊗ Y
l(X, x)⊗Y

�� X ⊗ T ⊗ Y

X⊗lY

��
X ⊗ Y

define a left (R⊗r T )-action which is compatible with the inclusion of R.
Conversely, if X ⊗ µT preserves equalizers, − ⊗ T is a faithful functor, and

lX⊗T := (lX ⊗ µT ) ◦ (R ⊗ x ⊗ T ) define a left (R ⊗r T )-action on X ⊗ T which is
compatible with the inclusion of R, for some A-bilinear map x : T ⊗ X → X ⊗ T .
Then (X, x) is a left (R, r)-module with action l(X, x) = lX ⊗ T . In particular x is a
left module twisting map (i.e. satisfies (6.5)–(6.7)).

Proof. By definition the map l(X, x) is unital and associative, that is, it satisfies
Eqs. (5.11) and (5.12) in Proposition 5.8(ii). The left action lX⊗Y is unital since
lY and l(X, x) they are so. The associativity of lY and l(X, x) lead to that of lX⊗Y ,
taking into the account that the structure maps of the wreath (R, r) are 1R ⊗ T

and µR ⊗ T . The proof of the reciprocate implication is left to the reader.

The right version of Proposition 6.1 is expressed in the monoidal category
L(A:R) using the R-wreath (r, T ) of Subsec. 6.1. If we combine both versions, then
we get a criterion on (R ⊗r T )-bimodules of the form X ⊗ Y as in [7, Proposi-
tion 3.13].

Proposition 6.2. Let (R, r) and (r, T ), respectively, the T -wreath and R-wreath of
Subsec. 6.1. Consider X an R-bimodule, and V a T -bimodule with actions lX , rX
and lV , rV . Assume that (X, x) is also a left (R, r)-module and that (v, V ) is a right
(r, T )-module with actions, respectively, l(X,x) and r(v,V ), and consider the maps

lX⊗V = (X ⊗ lV ) ◦ (l(X, x) ⊗ V ) ◦ (R ⊗ x ⊗ V ),

rX⊗V = (rX ⊗ V ) ◦ (X ⊗ r(v,V )) ◦ (X ⊗ v ⊗ T ).

If X ⊗ V is an (R ⊗r T )-bimodule with action lX⊗V and rX⊗V , then we have

(X ⊗ lV ) ◦ (x ⊗ V ) ◦ (T ⊗ rX ⊗ V ) ◦ (T ⊗ X ⊗ v)

= (rX ⊗ V ) ◦ (X ⊗ v) ◦ (X ⊗ lV ⊗ R) ◦ (x ⊗ V ⊗ R). (6.8)
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This (R⊗rT )-biaction on X⊗V is left compatible with the inclusion of R and right
compatible with the inclusion of T whenever l(X, x) and r(v,V ) satisfy the equalities

l(X, x) ◦ (R ⊗ X ⊗ 1T ) = (X ⊗ 1T ) ◦ lX , r(v,V ) ◦ (1R ⊗ X ⊗ T ) = (1R ⊗ V ) ◦ rY .

Conversely, if we take l(X, x) = lX⊗T, r(v,V ) = R⊗ rV , and assume that Eq. (6.8)
is satisfied, then X ⊗ V is an (R⊗r T )-bimodule.

Proof. Analog to that of [7, Proposition 3.13], taking into account
Eq. (5.14).
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[4] T. Brzeziński and S. Majid, Coalgebra bundles, Commun. Math. Phys. 191 (1998)
467–492.
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[21] C. Menini and D. Ştefan, Descent theory and Amitsur cohomology of triples, J. Alge-

bra 266 (2003) 261–304.
[22] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972) 149–168.
[23] M. E. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Trans.

Amer. Math. Soc. 213 (1975) 391–406.
[24] D. Tambara, The coendomorphism bialgebra of an algebra, J. Fac. Sci. Univ. Tokyo

Sect. IA, Math. 37 (1990) 425–456.
[25] A. Van Daele and S. Van Keer, The Yang-Baxter and pentagon equation, Compositio

Math. 91 (1994) 201–221.
[26] C. E. Watts, Intrinsic characterization of some additive functors, Proc. Amer. Math.

Soc. 11 (1960) 5–8.
[27] R. Wisbauer, Algebras versus coalgebras, Appl. Categor. Struct. 16(1–2) (2008)

255–295.


	1 Introduction
	1.1 Monads and comonads
	1.2 Continuous and lifted functors
	1.3 Corings and comodules

	2 Eilenberg--Moore Monoidal Category Associated to a Coring, and Lifted Functors
	3 Cowreath Over Corings and Examples
	4 Cowreath Products and Comodules Over Cowreath
	5 The Dual Notions: Wreath Over Ring Extension
	6 Examples: Twisted Modules Over Twisted Algebras
	6.1 Twisted tensor product algebras are wreath products
	6.2 Example: Ore extensions are wreath products([6, Example 2.11])
	6.3 Cap et al. construction of twisted modules




