
November 6, 2012 7:17 WSPC/S0129-167X 133-IJM 1250109

International Journal of Mathematics
Vol. 23, No. 10 (2012) 1250109 (36 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129167X12501091

CATEGORIES OF COMODULES
AND CHAIN COMPLEXES OF MODULES

A. ARDIZZONI

Department of Mathematics “Giuseppe Peano”
University of Turin

Via Carlo Alberto 10, I-10123 Torino, Italy
alessandro.ardizzoni@unito.it

www.unito.it/persone/alessandro.ardizzoni

L. EL KAOUTIT
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the generalized faithfully flat descent for small additive categories, or rings with enough
orthogonal idempotents.
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1. Introduction

1.1. Methodology and motivation overviews

The starting point of this paper is a result due to Pareigis [25, Theorem 18] which
asserts that the category of unbounded complexes of vector spaces is monoidally
equivalent to the category of left comodules over a certain Hopf algebra which
is neither commutative nor cocommutative. Later on, in [29, Theorem 4.4], Tam-
bara associated to every finite-dimensional algebra A over a field k, a bialgebra
L (A) (termed coendomorphism bialgebra) such that the category of left comodules
L (A)Comod is monoidally equivalent to the category Ch+(k) of chain complexes of
k-vector spaces. The Hopf algebra considered by Pareigis is recovered by choosing
A = k ⊕ kt with t2 = 0, i.e. the trivial extension of k, and localizing the bial-
gebra L (A) using a multiplicative set generated by a single grouplike element.
The equivalence of categories established by Tambara relies on the use of a vari-
ant of the equivalence between simplicial k-vector spaces and chain complexes of
k-vector spaces, provided by the normalization functor, due to Dold and Kan, see
[11, Theorem 1.9, Corollary 1.12] or [18, Theorem 2.4]. The functor that provides
such equivalence is given, in some sense, by tensoring chain complexes with the
augmented cochain complex Q• constructed using the Amitsur cosimplicial vector
space attached to the k-algebra A. Note that Q• is the universal differential graded
k-algebra of A, given by Q0 = k, Q1 = A and Qn = K ⊗A · · · ⊗A K, (n− 1)-times
for n ≥ 2, where K is the kernel of the multiplication of A. The construction of this
functor will be clarified in Sec. 3, see also the forthcoming paragraphs. A different
approach to Pareigis’s result, using Tannaka reconstruction for several-objects coal-
gebras, was also given by McCrudden in [24, Examples 6.6, 6.9], where the same
coendomorphism bialgebra L (A) was constructed for a commutative base ring k

instate of a field.
A monoidal equivalence between categories of chain complexes of (left) modules

and left comodules over bialgebroids, allows one freely to transfer at least the model
structure of chain complexes, as was described in [21, Sec. 2.3], to left comodules
over bialgebroids. This in fact suggests that the categories of comodules over certain
bialgebroids could be endowed within a (monoidal) model structure. This indeed is
our main motivation for further investigating the relationship between categories
of chain complexes of modules and left comodules over bialgebroids.

Let R be an algebra over a commutative ring k. The purpose of this paper is to
investigate the relationship between the category of left comodules over certain left
R-bialgebroids, termed coendomorphism bialgebroids coming from the ×R-bialgebra
defined in [1] (see also [29, Remark 1.7]), and the category of chain complexes of left
R-modules. Tambara’s results, and in particular Pareigis’s one, are then immediate
consequences of the general theory developed here. It is noteworthy that our meth-
ods can be seen as new and more conceptual even for the case of vector spaces.
Indeed, we will see why concretely the trivial extension of rings, already consid-
ered by Pareigis, induces the above equivalence of categories. Our approach makes
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use of the “noncommutative” Tannakian categories theory following the spirit of
[10, 4, 20], as well as of the generalized faithfully flat descent for rings with enough
orthogonal idempotents stated in [14]. We mean that all (left) bialgebroids aris-
ing here come in fact from the noncommutative version of Tannaka reconstruction
process which in our approach involves rings with enough orthogonal idempotents.

In the setting of noncommutative Tannakian categories, one basically starts
with a small k-linear monoidal category (A,⊗,1) and a faithful monoidal functora

from A to the category of R-bimodules, ω : A → RModR (the fiber functor), valued
in the category add(RR) of finitely generated and projective left R-modules (i.e.
locally free sheaves of finite rank). There are several objects under consideration:

Σ(ω) =
⊕
p∈A

ω(p), ∨Σ(ω) =
⊕
p∈A

∗ω(p), G (A) =
⊕

p,p′∈A
HomAo (p, p′) .

Here the second is the right R-module direct sum of the left duals while the third
is Gabriel’s ring with enough orthogonal idempotents, introduced in [16], attached
to the opposite category Ao of A. Using the canonical actions, we consider L(ω) :=
Σ(ω)⊗G (A)

∨Σ(ω) as an Re-bimodule, where Re := R⊗kR
o denotes the enveloping

ring. A well-known argument in small additive categories says that the object L(ω)
solves the following universal problems in R-bimodules

Nat(ω,−⊗R ω) ∼= HomR−R (L(ω), −) ,

Nat(ω ⊗R ω,−⊗R (ω ⊗R ω)) ∼= HomR−R (L(ω) ⊗Re L(ω), −) ,

where the R-bimodule structures of L(ω) have been chosen properly. It is indeed
this solution which allows us to construct a left R-bialgebroid (or a Hopf bialgebroid
if desired). Of course there is an obvious (monoidal) functor connecting left unital
G (A)-modules and left L(ω)-comodule, namely

Σ(ω) ⊗G (A) − : G (A)Mod −→ L(ω)Comod.

In the case when each of the left R-modules ω(p) is endowed with a structure of
left C-comodule for some R-coring C (or certain left R-bialgebroid), there is a map
of R-corings, known as a canonical map,

canG (A) : L(ω) −→ C

defined by using the left C-coaction of the ω(p)’s. This homomorphism of corings
is not in general bijective, see [14] for more discussions. The associated coinduction
functor of the canonical map leads to the following composition of functors

G (A)Mod
Σ(ω)⊗G (A)− �� L(ω)Comod

(−)canG (A) ��
CComod.

Indeed this is a conceptual framework that allows us to compare certain categories
of k-linear functors with the categories of comodules over some corings (or left

aOur setting requires an isomorphism only at the level of unit. That is, R ∼= ω(1), while ω(−⊗−) →
ω(−) ⊗R ω(−) is not necessarily a natural isomorphism.
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bialgebroids). For instance, take R = k to be a field and A a finite-dimensional
k-algebra. Consider the associated cochain complex Q• mentioned above and the
monoidal k-linear category k(N) generated by the natural number N. There is a
fiber functor χ : k(N) → Modk defined by χ(n) = Qn on objects and sending the
morphism n �→ n+ 1 to the differential ∂ : Qn → Qn+1, for every n ∈ N. Using the
previous arguments and notations, we then arrive to the following composition

Ch+(k) ∼=
O �� G (k(N))Mod

Q⊗G (k(N))−�� L(χ)Comod
(−)canG (k(N))�� L (A)Comod (1.1)

where O is the canonical equivalence between chain complexes of k-vector spaces
and left unital G (k(N))-modules. This in fact is exactly the functor used by Tambara
in the proof of [29, Theorem 4.4]. However, the above process of constructing this
functor, is actually entirely different from the one presented in [29]. The detailed
construction of the functors involved in (1.1), as well as conditions on the extension
R → A under which this composition gives a monoidal equivalence form a part of
the main aim of this paper.

1.2. A brief description of the main results

Let k be a commutative base ring with 1. Fix a morphism of k-algebras R → A.
Assume that RA is finitely generated and projective left R-module with a finite dual
basis {ei,

∗ei}i. We consider the monoidal functor − ×R A : ReModRe → RModR,
where (−×R−) is the Sweedler–Takeuchi’s product [27, 28], see Sec. 1.3. We obtain
that the restriction of this functor to the category of Re-rings (i.e. the category of
monoids in ReModRe) admits a left adjoint which we denoted by L : R-Rings →
Re-Rings. Then L (A) the image of A by the functor L , admits a structure of left
R-bialgebroid (termed a coendomorphism bialgebroid) such that A is a left L (A)-
comodule ring, see Proposition 2.1 and Corollary 2.2. Explicitly, the underlying
k-module L (A) is given by the following quotient of the tensor Re-ring of A⊗k

∗A:

L (A) :=

TRe(A⊗ ∗A)
〈∑i(a⊗ eiϕ) ⊗Re (a′ ⊗ ∗ei) − (aa′ ⊗ ϕ), (1 ⊗ ϕ) − 1 ⊗ ϕ(1)o〉{a,a′∈A,ϕ∈∗A}

.

(1.2)

On the other hand, we consider the augmented cochain complex of the universal
differential graded ring:

Q• : R 1 �� A
∂ �� K

∂2 �� K ⊗A K
∂3 �� K ⊗A K ⊗A K �� · · · · · · (1.3)

where K denotes the kernel of A ⊗R A → A, the multiplication of A. We check
that this is in fact a cochain complex of left L (A)-comodules whose components
are finitely generated and projective left R-modules. This leads to a fiber functor
χ : k(N) → RModR defined in the obvious way, as well as to a canonical map
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canB : Q ⊗B
∨Q → L (A), where B = k(N) ⊕ k(N) (direct sum of copies of k)

is the ring with enough orthogonal idempotents attached to the small category
k(N). Using the fiber functor χ, we first endow Q ⊗B

∨Q with a structure of left
R-bialgebroid, and then show that canB is an isomorphism of left R-bialgebroids.
This means, in the sense of [14], that Q is actually a Galois object in the category
of left comodules. In this way we arrive to our first main result stated below as
Theorem 3.3:

Theorem A. Let R → A be a k-algebra map with A finitely generated and projec-
tive as left R-module. Consider the associated left R-bialgebroid L (A) (see Eq. (1.2)
above) and the cochain complex Q• of Eq. (1.3) with its canonical right unital B-
action and left L (A)-coaction, where B = k(N) ⊕ k(N). Then the following state-
ments are equivalent

(1) The right R-module 1⊗kRoL (A) is flat and the functor Q ⊗B − : BMod →
L (A)Comod is an equivalence of monoidal categories;

(2) QB is a faithfully flat unital module.

Obviously, the category of left unital B-module BMod is isomorphic to the
category of chain complexes of k-modules. Thus, Theorem A allows one freely to
transfer the monoidal model structure described in [21, Sec. 2.3] for chain com-
plexes of k-modules, to the categories of left comodules over coendomorphism
bialgebroids.

Clearly the unit map k → R can be extended to a morphism of rings with
the same set of orthogonal idempotents: B = k(N) ⊕ k(N) → R(N) ⊕ R(N) = C. By
[12], this enables us to consider the usual adjunction between the scalars-restriction
functor and the tensor product functor and, in particular, to define a canonical
map canC with codomain a suitable quotient of L (A). Thus one can try to extend
Theorem A to left unital C-modules. In this way we arrive to our second main
theorem which is stated below as Theorem 3.9.

Theorem B. Let R → A be a k-algebra map with A finitely generated and pro-
jective as left R-module. Consider L (A) the associated left R-bialgebroid (see
Eq. (1.2) above) and J the coideal of L (A) generated by the set of elements
{1L (A)(r ⊗ 1o − 1 ⊗ ro)}r∈R; denote by L (A) = L (A)/J the corresponding quo-
tient R-coring. Consider the cochain complex Q• of Eq. (1.3) with its structures of
right unital C-module and left L (A)-comodule. Then the following statements are
equivalent

(1) The right R-module 1⊗kRoL (A) is flat and the functor Q ⊗C − : CMod →
L (A)

Comod is an equivalence of categories;
(2) QC is a faithfully flat unital module.
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The problem of obtaining an equivalence of categories as above, is then closely
linked to the faithfully flat condition on the right unital moduleQ. This is in fact not
at all easy to check. Our third main result, which is a combination of Theorem 3.10
and Proposition 3.13, gives certain homological conditions under which Q becomes
flat (or faithfully flat).

Theorem C. The notations and assumptions are that of Theorem B. Assume fur-
ther that AR is finitely generated and projective, and the cochain complex Q• is exact
and splits, in the sense that, for every m ≥ 1, Qm = ∂Qm−1 ⊕Qm = Ker(∂)⊕Qm

as right R-modules, for some right R-module Qm. Then QC is a flat module. In
particular, QC is faithfully flat in either one of the following cases.

(1) A = R⊕Rt, (t2 = 0), the trivial extension of R.
(2) k is a field and R is a division k-algebra.

As a consequence of Theorems B and C, we get that for every k-algebra R,

there is a left R-bialgebroid L such that the category of chain complexes of left
R-modules is equivalent to the category of left comodules over an epimorphic image
of L . In particular, if R is commutative, then this equivalence is in fact a monoidal
equivalence.

1.3. Basic notions and notations

Given any Hom-set category C, the notation X ∈ C means that X is an object of C.
The identity morphism of X will be denoted by X itself. The set of all morphisms
f : X → X ′ in C is denoted by HomC(X,X ′). The identity functor of C is denoted
by idC . We denote the dual (or opposite) category of C by Co. The class of all natural
transformations between two functors F and G is denoted by Nat(F,G).

We work over a ground commutative ring with 1 denoted by k. Up to Sec. 3, all
rings under consideration are k-algebras, and morphisms of rings are morphisms of
k-algebras. Modules are assumed to be unital modules and bimodules are assumed
to be central k-bimodules. For every ring R, these categories are denoted by RMod

(left modules), ModR (right modules) and RModR (bimodules) respectively. The
tensor product over R, is denoted as usual by − ⊗R −. The unadorned symbol ⊗
stands for ⊗k the tensor product over k.

We denote by Ch(R) the category of chain complexes of left R-modules. That
is, complexes of left modules of the form:

(M•, d•) : · · · �� Mn
dn �� · · · �� M2

d2 �� M1
d1 �� M0

d0 �� M−1
�� · · · �� M−n

d−n �� · · · .
Let Ch+(R) denote the full subcategory of Ch(R) consisting of positive chain com-
plexes, i.e. complexes of the form:

(M•, d•) : · · · �� Mn
dn �� · · · �� M2

d2 �� M1
d1 �� M0.
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From now on, chain complex of left R-modules will stands for an object of the
category Ch+(R). When R is commutative (i.e. commutative k-algebra), we will
considered this category in a standard way as a monoidal category with unit object
the chain complex R[0]•, where R[0]0 = R, and R[0]n = 0, for n > 0.

Given an R-bimodule X , its k-submodule of R-invariant elements is denoted by

XR := {x ∈ X |xr = rx, ∀ r ∈ R}.

This in fact defines a functor (−)R : RModR → ModZ(R), where Z(R) is the
centre of R. As usual, we use the symbols HomR−(−,−), Hom−R(−,−) and
HomR−R(−,−) to denote the Hom-functor of left R-linear maps, right R-linear
maps and R-bilinear maps, respectively.

For two bimodules RPS and RQS over rings R and S, we will consider the
k-modules of R-linear maps HomR−(P,Q) as an S-bimodule with actions:

sf : p �→ f(ps), and fs′ : p �→ f(p)s′, for every

f ∈ HomR−(P,Q), s, s′ ∈ S, and p ∈ P.

Similarly, Hom−S(P,Q) is considered as an R-bimodule with actions:

rg : p �→ rg(p), and gr′ : p �→ g(r′p), for every

g ∈ Hom−S(P,Q), r, r′ ∈ R, and p ∈ P.

Under these considerations, the left dual ∗X = HomR−(X,R) of an R-bimodule X ,
is an R-bimodule, as well as its right dual X∗ = Hom−R(X,R).

Let R be a ring, for any r ∈ R, we denote by ro the same element regarded as
an element in the opposite ring Ro. Let Re := R ⊗ Ro be the enveloping ring of
R. Next, we recall the Sweedler–Takeuchi’s [27, 28] product on the category of Re-
bimodules, usually denoted by −×R−. So, given an Re-bimodule M , the underlying
k-module M admits several structures of R-bimodule. Among them, we will select
in the forthcoming step the following two ones. The first structure is that of the
opposite bimodule 1⊗RoM1⊗Ro which we denote by Mo. That is, the R-biaction on
Mo is given by

rmo = (m(1 ⊗ ro)o), mos = ((1 ⊗ so)m)o, mo ∈Mo, r, s ∈ R. (1.4)

The second structure is defined by the left Re-module ReM . That is, the R-bimodule
M l = R⊗1oMR whose R-biaction is defined by

rml = ((r ⊗ 1o)m)l, mls = ((1 ⊗ so)m)l, ml ∈M l, r, s ∈ R. (1.5)

Now, given M and N two Re-bimodules, we set

M ×R N := (M ⊗R N)R,
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where RMR = Mo and RNR = R⊗1oNR⊗1o . The elements of M ×R N are denoted
by
∑

i mi ×R ni, for mi ∈ M and ni ∈ N . Henceforth, using these notations and
given an element m×R n ∈M ×R N , we have the following equalities

(m(1 ⊗ ro)) ×R n = m×R n(r ⊗ 1o), and

((1 ⊗ ro)m) ×R n = m×R (r ⊗ 1o)n,
(1.6)

for every r, s ∈ R. The k-module M ×R N is actually an Re-bimodule with actions:

(p⊗ qo).(m×R n).(r ⊗ so)

:= ((p⊗ 1o)m(r ⊗ 1o)) ×R ((1 ⊗ qo)n(1 ⊗ so)), (1.7)

for every r, s, p, q ∈ R and m×R n ∈M ×R N .
On the other hand, since we have Mo

R = M l
R for every Re-bimodule M , there is

a canonical natural transformation (injective at least as k-linear map)

ΘM,N : M ×R N �� M l ⊗R N l. (1.8)

With this product, the Re-bimodule S×R T is an Re-ring whenever S and T are.
The multiplication of S ×R T is defined componentwise, and the identity element
is given by 1S ×R 1T .

An R-ring S is a monoid in the monoidal category of R-bimodules, equivalently,
a k-algebra map R → S. Dually, an R-coring is a comonoid in RModR, which is
by definition a three-tuple (C,∆, ε) consisting of R-bimodule C and two R-bilinear
maps ∆ : C → C ⊗R C (comultiplication), ε : C → R (counit) satisfying the usual
coassociativity and counitary constraints. In contrast with coalgebras, corings admit
several convolution rings. For instance, the right convolution of an R-coring C, is
the right dual R-bimodule C∗ whose multiplication is defined by

σ · σ′ = σ ◦ (σ′ ⊗R C) ◦ ∆,

for all σ, σ′ ∈ C∗, and its unit is the counit ε of C. A morphism of R-corings is an
R-bilinear map φ : C → C′ such that ∆′ ◦φ = (φ⊗R φ) ◦∆ and ε′ ◦φ = ε. A left C-
comodule is pair (N,λN ) consisting of left R-module N and left R-linear map λN :
N → C⊗RN (coaction) compatible in the canonical way with comultiplication and
counit. A morphism of left C-comodules is a left R-linear map which is compatible
with coactions. We denote by CComod the category of left C-comodules. Right
comodules are similarly defined. Given any morphism of R-corings φ : C → C′ one
can define, in the obvious way, a functor (−)φ : CComod → C′Comod refereed to as
the coinduction functor.

For more information on comodules as well as the definitions of bicomodules
and cotensor product over corings, the reader is referred to [7]. For the notions of
bialgebroids and their basic properties, the reader is referred to [3].

We will also consider here rings with enough orthogonal idempotents. These are
central k-modules B with internal multiplication which admit a decomposition of
k-modules B =

⊕
p∈P B1p =

⊕
p∈P 1pB, where {1p}p∈P � B is a set of orthogonal
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idempotents. Module over a ring with enough orthogonal idempotents stands for
k-central and unital module. Recall that M is a left unital B-module provided that
M has an associative left B-action which satisfies M =

⊕
p∈P 1pM . We denote by

BMod the category of left unital B-modules.

2. Coendomorphism and Comatrices Bialgebroids

2.1. Coendomorphism bialgebroid and ×R-comodules

In this subsection we recall from [1] the construction of coendomorphism bialge-
broids attached to any finitely generated and projective extension of rings. We
also recall from [26] the monoidal structure of the category of comodules over the
underlying coring of a given left bialgebroid.

A ×R-coalgebra is an Re-bimodule C together with two Re-bilinear maps ∆ :
C → C ×R C (comultiplication) and ε : C → Endk(R) (counit) which satisfy the
coassociativity and counitary properties in the sense of [28, Sec. 4, Definition 4.5],
see also [6, 26]. A ×R-coalgebra C is said to be an ×R-bialgebra provided that
comultiplication and counit are morphisms of Re-rings.

A left ×R-C-comodule, is a pair (X,λX) consisting of an R-bimodule X and
an R-bilinear map λX : X → C ×R X satisfying, in some sense, the coassociativ-
ity and counitary axioms. Morphism between left ×R-C-comodules are R-bilinear
maps compatible in the obvious way with the left ×R-C-coactions. This leads to the
definition of the category of left ×R-C-comodules. When C is a ×R-bialgebra, this
category becomes a monoidal category [26, Proposition 5.6], and the forgetful func-
tor to the category of R-bimodules is a monoidal functor. There is a strong relation
which will be clarified in the sequel, between the category of left ×R-comodules over
an ×R-bialgebra and the category of left comodules over the underlying R-coring
whose structure maps are

C �� C ×R C
ΘC,C �� Cl ⊗R Cl, C

ε(−)(1R) �� R,

where Θ−,− is the natural transformation of Eq. (1.8).
Let A be an R-ring, that is, a k-algebra map R → A, and denote by ∗A =

Homk (A, k) the dual of the k-module Ak. We consider the tensor product A⊗ ∗A
as an Re-bimodule in the following way

(r ⊗ so) · (a⊗ ϕ) · (p⊗ qo) = (rap) ⊗ (qϕs),

p, q, r, s ∈ R, and a,∈ A,ϕ ∈ ∗A,
(2.1)

where A and ∗A are considered as R-bimodules in the usual way.
Assume that RA is finitely generated and projective module and fix a left dual

basis {ei,
∗ei}1≤i≤n. Define the Re-ring L (A) by the quotient algebra

L (A) = TRe(A⊗ ∗A)/I (2.2)
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where TRe(A⊗ ∗A) =
⊕

n∈N
(A⊗ ∗A)

⊗
Re

n

is the tensor Re-ring of the Re-bimodule
A⊗ ∗A and where I is the two-sided ideal generated by the set{∑

i

((a⊗ eiϕ) ⊗Re (a′ ⊗ ∗ei)) − (aa′ ⊗ ϕ); 1R ⊗ ϕ(1A)o − (1A ⊗ ϕ)

}
a,a′∈A,ϕ∈∗A

.

(2.3)

We denote by

πA : TRe(A⊗ ∗A) → L (A) (2.4)

the canonical projection. From now on, given a homogeneous elements (a ⊗ ϕ) ∈
TRe(A ⊗ ∗A) of degree one, we denote by πA(a ⊗ ϕ) its image in L (A). Next,
we recall the structure of ×R-bialgebra of the object L (A), which is denoted by
aR(A,A) in [29, Remark 1.7]. The underlying structure of an Re-ring, is given by
the following composition of algebra maps

Re
ι0 �� TRe(L (A))

πA �� L (A),

where ιm denotes the canonical Re-bilinear injection in degree m ≥ 0.

Proposition 2.1. Let A be an R-ring which is finitely generated and projective
as left R-module with dual basis {(∗ei, ei)}i. Then L (A) is a ×R-bialgebra with
structure maps

L (A) ∆ �� L (A) ×R L (A),

πA(a⊗ ϕ) � ��
∑

j

πA(a⊗ ∗ej) ×R πA(ej ⊗ ϕ),

L (A) ε �� Endk(R),

πA(a⊗ ϕ) � �� [r �→ ϕ(ar)].

Proof. This is [1, Proposition 1.3.6].

The relation between the R-ring structure of A and the ×R-bialgebra structure
of L (A), is expressed as follows.

Corollary 2.2. Let A be an R-ring such that RA is finitely generated and projective
and L (A) the associated ×R -bialgebra defined in Proposition 2.1. Then A is a left
×R-L (A)-comodule R-ring, that is, A admits a left ×R-L (A)-coaction

λA : A −→ L (A) ×R A,

a �−→
∑

j

πA(a⊗ ∗ej) ×R ej


which is also a morphism of R-rings.

Proof. This is [1, Corollary 1.3.7].
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The ×R-bialgebra L (A) defined in Proposition 2.1 is refereed to as coendomor-
phism R-bialgebroid since by [6, Theorem 3.1], L (A) is in fact a (left) bialgebroid
whose structure of Re-ring is the map

πA ◦ ι0 : Re −→ L (A),

and its structure of R-coring is given as follows. The underlying R-bimodule is
L (A)l = ReL (A), the comultiplication and counit are given by

∆ : L (A)l −→ L (A)l ⊗R L (A)l,(
πA(a⊗ ϕ) �−→

∑
i

πA(a⊗ ∗ei) ⊗R πA(ei ⊗ ϕ)

)
, (2.5)

ε : L (A)l −→ R, (πA(a⊗ ϕ) �−→ ϕ(a)). (2.6)

Here is an example of coendomorphism bialgebroid which will be used in the
sequel. For more examples of this object, the reader is referred to [1, Sec. 2].

Example 2.3. Let A = R ⊕ Rt be the trivial generalized R-ring, i.e. the R-ring
which is free as left R-module with basis 1 = (1, 0) and t = (0, t) such that t2 = 0.
Using (2.2) and Proposition 2.1, we can easily check that L (A) is an R-bialgebroid
generated by the image of Re and two Re-invariant elements {x, y} subject to the
relations xy + yx = 0, x2 = 0. The comultiplication and counit of it underlying
R-coring are given by

∆(x) = x⊗R 1 + y ⊗R x, ε(x) = 0,

∆(y) = y ⊗R y, ε(y) = 1.

The ring A is a left L (A)-comodule ring with coaction: λ : A → L (A) ⊗R A

sending

λ(1A) = 1L (A) ⊗R 1A, λ(t) = x⊗R 1A + y ⊗R t,

extended by R-linearity to the whole set of elements of A.

In [26] it was shown that the category of left ×R-comodules over an ×R-
bialgebra is a monoidal category such that the forgetful functor to the category of
R-bimodules is a monoidal functor. What we will need in the sequel is a monoidal
structure on the category of left L (A)-comodules where L (A) is viewed as an R-
coring with structure maps (2.5) and (2.6). The following lemma is a consequence
of [26, Proposition 5.6], see also [3, 3.6].

Lemma 2.4. Let L be any left R-bialgebroid. Then the category of left ×R-
L -comodule is isomorphic to the category of left L l-comodules over the under-
lying R-coring L l. In particular, the category of left L l-comodules inherits a
monoidal structure with unit object (R,R → L l) and the left forgetful functor
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U : L lComod → RMod factors throughout a monoidal functor into the category of
R-bimodules. Thus, we have a commutative diagram

L lComod
U ��

���
�

�
�

� RMod

RModR

�����������

where the dashed arrow is a monoidal functor.

Summing up, given two left L l-comodules (X,λX) and (Y, λY ), using
Lemma 2.4, we can consider (X⊗R Y, λX⊗RY ) as a left L l-comodule with coaction

λX⊗RY : X ⊗R Y → L l ⊗R X ⊗R Y,x⊗R y �−→
∑

(x),(y)

(x(−1)y(−1))l ⊗R (x(0) ⊗R y(0))

, (2.7)

where we have considered X as R-bimodule with the right R-action given by the
action

xr =
∑
(x)

ε
(
x(−1)(r ⊗ 1o)

)
x(0), for every r ∈ R and x ∈ X. (2.8)

2.2. The complex of left L -comodules Q•

Keep the assumptions and notations of Sec. 2.1, that is, we are considering an
R-ring A over a fixed k-algebra R. Let us denote by

K = Ker(A⊗R A
µ �� A )

the kernel of the multiplication µ of A with canonical derivation

A
∂ �� K

a � �� (∂a = 1 ⊗R a− a⊗R 1).

The associated cochain complex is denoted by

Q• : R
∂0=1 �� A

∂1=∂ �� K
∂2 �� K ⊗A K

∂3 �� K ⊗A K ⊗A K �� · · · ,
where ∂n : Qn → Qn+1 sends a0∂a1⊗A · · ·⊗A ∂an−1 to ∂a0⊗A ∂a1⊗A · · ·⊗A ∂an−1,
n ≥ 2.

The following lemma, which will play a key role in Sec. 3.3, characterizes a split
ring extension R → A (in ModR) in terms of the cochain complex Q•.

Lemma 2.5. Let A be any R-ring. Then the following conditions are equivalent.

(i) The unit u : R → A is a split monomorphism in ModR.
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(ii) The cochain complex Q• is exact and splits, in the sense that, for every m ≥ 1,
there is a right R-module Qm such that Qm = ∂Qm−1 ⊕Qm = Ker(∂) ⊕ Qm,

as right R-modules.

Proof. (ii) ⇒ (i). It is trivial.
(i) ⇒ (ii). Let us denote by uc : A → A the cokernel of u : R → A in RModR.
Put Ω0 := R, Ω1 := A, and Ωn := A⊗R A⊗R · · · ⊗R A, (n− 1)-fold A, for n ≥ 2.
Consider now the following split exact sequence of right R-modules

0 ��
A

⊗Rn γn �� A⊗R A
⊗Rn ��

A
⊗Rn+1 �� 0,

where γn = u ⊗R A
⊗Rn

, for n ≥ 1. In view of this, we have a split exact cochain
complex of right R-modules

Ω• : Ω0
d0 �� Ω1

d1 �� Ω2
d2 �� Ω3

�� · · · ,

with differential d0 = u, d1 = γ1 ◦ uc, dn = γn ◦ (uc ⊗R A
⊗Rn−1

), for n ≥ 2. Since
Ω2 is the cokernel of the map A⊗R u, and the later split by µ the multiplication of
A, we obtain the following split exact sequence of R-bimodules

0 �� A
A⊗Ru �� A⊗R A

A⊗Ruc

�� Ω2
�� 0.

This gives the split exact sequence

0 �� Ω2
�� A⊗R A

µ �� A �� 0.

Thus we have an R-bilinear isomorphism ω2 : Ω2 → Q2 = K. Henceforth, there is
an unique A-bimodule structure on Ω2 which renders ω2 an A-bilinear isomorphism,
namely

a · (x⊗R y) · b = ax⊗R yb− axy ⊗R b, for every a, x, y, b ∈ A,

wherein the notation uc(z) = z, for every z ∈ A, has been used. Define iteratively
ωn : Ωn → Qn, for all n ≥ 3, as the composition

Ωn = Ωn−1 ⊗R A ∼= Ωn−1 ⊗A (A⊗R A )

= Ωn−1 ⊗A Ω2
ωn−1⊗Aω2 �� Qn−1 ⊗A K = K⊗An−1 = Qn.

By construction, ω• : (Ω•, d• → (Q•, ∂•) is a morphism of complexes ofR-bimodules.
We leave to the reader to check that ω• is in fact an isomorphism of cochain com-
plexes. Now, since (Ω•, d•) is split exact in right R-modules, then so is (Q•, ∂•).

Remark 2.6. In the case of finitely generated and projective extension of rings,
the left version of condition (i) in Lemma 2.5 implies that RA is in fact faithfully
flat module (see, for example [5, Chap. I, Proposition 9, p. 51]). In this case, one can
easily show that Q• ⊗R A is homotopically trivial which by [17, Théorème 2.4.1]
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gives condition (ii). In this way, Lemma 2.5 can be seen as a generalization of
[2, Propositions 6.1, 6.2].

The convolution product on the left dual chain complex of Q• is given as follows:
For every ϕ ∈ ∗Qn and ψ ∈ ∗Qm with n,m ≥ 1, we have a left R-linear map

ϕ  ψ : Qn+m
�� R,

x⊗A ∂(a) ⊗A y
� �� ϕ(xψ(ay)) − ϕ(xaψ(y)),

(2.9)

where x ∈ Qn, y ∈ Qm and a ∈ A. The convolution product with zero degree
element is just the left and right R-actions of ∗Qn, for every n ≥ 1, namely

r  ϕ : Qn
�� R,

x � �� ϕ(xr),

ϕ  s : Qn
�� R,

x � �� ϕ(x)s,

(2.10)

for every elements r, s ∈ R and ϕ ∈ ∗Qn.

Remark 2.7. The convolution product defined in (2.9) and (2.10) derives from
the structure of comonoid of the cochain complex Q• viewed as an object in the
monoidal category of cochain complexes of R-bimodules. Precisely, the identity
map A ⊗R · · · ⊗R A = A⊗Rn = A⊗Rp ⊗R A⊗Rq, for p + q = n, rereads as a map
Qn → Qp ⊗R Qq sending x ⊗A ∂a ⊗A y �→ x ⊗R ay − xa ⊗R y, for every x ∈ Qp,
a ∈ A and y ∈ Qq. Thus Q =

⊕
n≥0Qn has a structure of differential R-coring

in the sense of [9, pp. 6, 7]. Since each Qn is finitely generated and projective
left R-module (see Lemma 2.8 below, of course under the same assumption for
the left module RA), the comultiplication of Q is transferred to the graded left
dual ∨Q =

⊕
n≥0

∗Qn which gives a multiplication defined explicitly by (2.9) and
(2.10). A comonoidal structure on Q• could also be obtained by transferring some
comonoidal structure of the Amitsur cosimplicial object of R-bimodules induced by
A (see [2]), using for this the normalization functor and it structure of comonoidal
functor obtained from Eilenberg–Zilber Theorem, see [23, Theorem 8.1, Exercise 4,
p. 244] (of course in their dual form). It seems that Tambara’s approach [29] runs
in this direction. Anyway this approach uses a slightly variant of the category
of cosimplicial groups endowed with some monoidal structure which is not the
usual one. Since our methods run in a different way, we will not make use of the
normalization process here.

In all what follows, we will fix a (left) finitely generated and projective extension
R → A with dual basis {ei,

∗ei}1≤i≤n. We will denote by L := L (A) the corre-
sponding left R-bialgebroid coming from Proposition 2.1, and by π the projection
πA defined in (2.4).

Using this dual basis, one can check that RQ2 = RK is finitely generated and
projective module whose dual basis is given by the set {(ei∂ej ,

∗ei 
∗ej)}i,j . More-

over, we have the following.

Lemma 2.8. Each Qn, n ≥ 0, is finitely generated and projective as left R-module.
Furthermore, if {(ωn,α,

∗ωn,α)}α is a dual basis for Qn with n ≥ 1, then {(ωn,α ⊗A
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∂ωm,β,
∗ωn,α 

∗ωm,β)}α,β is a dual basis for Qn+m, while {(ωn,α ⊗A ωm,β,
∗ωn,α 

∂∗ωm,β)}α,β is a dual basis for Qn+m−1 when m ≥ 2.

Proof. Straightforward.

The cochain complex Q• is actually a complex of left L -comodules.

Proposition 2.9. The cochain complex Q• is a complex of left L -comodules. For
n = 0, the coaction is given by (R → L , r �→ π(r ⊗ 1o)) and, for n ≥ 1, by
λn : Qn → L ⊗R Qn sending

a0∂a1 ⊗A · · · ⊗A ∂an−1
� ��

∑
i0,i1,...,in−1

π(a0 ⊗ ∗ei0) · · ·

π(an−1 ⊗ ∗ein−1) ⊗R (ei0∂ei1 ⊗A · · · ⊗A ∂ein−1). (2.11)

Proof. The statement is trivial for n = 0. For n ≥ 1, the coassociativity of λn is
deduced using Lemma 2.8 which assert that {(ei0∂ei1 ⊗A · · · ⊗A ∂ein−1 ,

∗ei0  · · · 
∗ein−1}i0,i1,···,in−1 is a dual basis for Qn. Here each ∗ei0  · · ·  ∗ein−1 is the n-fold
convolution product defined in (2.9). The rest of the proof uses the fact that each
coaction λn, n ≥ 1, satisfies the equality

λn(∂b1 ⊗A · · · ⊗A ∂bn−1)

=
∑

i1,...,in−1

π(b1 ⊗ ∗ei1) · · · π(bn−1 ⊗ ∗ein−1) ⊗R (∂ei1 ⊗A · · · ⊗A ∂ein−1).

(2.12)

The following lemma will be used in the sequel.

Lemma 2.10. Given two elements un = a0∂a1 ⊗A · · · ⊗A ∂an−1 ∈ Qn and um =
b0∂b1 ⊗A · · · ⊗A ∂bm−1 ∈ Qm with n,m ≥ 1. Then

λn+m−1(un ⊗A um) =
∑

i0,...,in−1,j0,...,jm−1

⊗(π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1)π(b0 ⊗ ∗ej0) · · ·π(bm−1 ⊗ ∗ejm−1))

⊗R(ei0∂ei1 ⊗A · · · ⊗A ∂ein−1 ⊗A ej0∂ej1 ⊗A · · · ⊗A ∂ejm−1).

Furthermore, for every u ∈ Qn, n ≥ 1 and v ∈ Qm, m ≥ 1, we have

λn+m−1(u ⊗A v) =
∑

u(−1)v(−1) ⊗R (u(0) ⊗A v(0)),

and

λn+m(u⊗A ∂v) =
∑

u(−1)v(−1) ⊗R (u(0) ⊗A ∂v(0)),

where Sweedler’s notation for coactions is used.
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Proof. The proof of the first claim is based upon the observation that the coaction
of any Qk = K ⊗A · · · ⊗A K ((k − 1)-times), with k ≥ 2, is induced from that of
A ⊗R · · · ⊗R A (k-times). The later is a left L -comodule, by Corollary 2.2 and
Lemma 2.4, using the coactions described in (2.7). The last statement is deduced
from the first one by left R-linearity.

2.3. The infinite comatrix bialgebroid induced by Q•

Let Q• be the cochain complex of L -comodules considered in Proposition 2.9. In
this subsection we will construct a left bialgebroid associated to Q• and a canonical
map from this left bialgebroid to L . First we recall from [13, 14] the notion of
infinite comatrix coring and the canonical map. A different approach to this notion
can be found in [30, 8, 19]. We should mention here that this object coincides with
the one already constructed in the context of Tannaka–Krein duality over fields or
commutative rings, see [10, 4, 22, 20], see also [24]. However, the description given
in [14] in terms of tensor product over a ring with enough orthogonal idempotents,
seems easier to handle from a computational point of view.

Let A be a small full sub-category of an additive category. Following [16,
p. 346], we can associate to A the ring with enough orthogonal idempotents
S =

⊕
p,p′∈A HomAo(p, p′), where Ao is the opposite category of A. The category

of left unital S-module is denoted by SMod.
Let us denote by add(RR) the full sub-category of RMod consisting of all finitely

generated and projective left R-modules. Let χ : A → add(RR) be a faithful functor,
refereed to as fiber functor. We denote by pχ the image of p ∈ A under χ or by
p itself if no confusion arises. Consider the left R-module direct sum of the p’s:
Σ =

⊕
p∈A p (i.e. Σ =

⊕
p∈A pχ) and the right R-module direct sum of their duals:

∨Σ =
⊕

p∈A
∗p. It is clear that ∨Σ is a left unital S-module while Σ is a right unital

S-module. In this way Σ becomes an (R,S)-bimodule and ∨Σ an (S,R)-bimodule.
Then Σ⊗S

∨Σ is now an R-bimodule whose elements are described as a finite sum
of diagonal ones, i.e. of the form ιp(up)⊗S ι∗p(ϕp) where (up, ϕp) ∈ pχ × (∗pχ) and
ι− are the canonical injections in ∨Σ and Σ. From now on, we will write up ⊗S ϕp

instead of ιp(up) ⊗S ι∗p(ϕp) to denote a generic element of Σ ⊗S
∨Σ.

This bimodule admits a structure of an R-coring given by the following
comultiplication

∆ : Σ ⊗S
∨Σ �� (Σ ⊗S

∨Σ) ⊗R (Σ ⊗S
∨Σ),

up ⊗S ϕp
� �� ∑

i up ⊗S
∗up,i ⊗R up,i ⊗S ϕp,

(2.13)

where, for a fixed p ∈ A, the finite set {(up,i,
∗up,i)}i ⊂ p × ∗p is a left dual

basis of the left R-module p. The counit is just the evaluating map. Note that this
comultiplication is independent from the chosen bases. With this structure Σ⊗S

∨Σ
is refereed to as the infinite comatrix coring associated to the small category A and
the fiber functor χ. On the other hand, each of the left R-modules pχ is actually a
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left (Σ ⊗S
∨Σ)-comodule whose coaction, using the above notation, is given by

λ̃p : p −→ Σ ⊗S
∨Σ ⊗R p,

(
u �−→

∑
i

u⊗S
∗up,i ⊗R up,i

)
. (2.14)

Another description of the infinite comatrices is given in [14, Proposition 5.2]
which establishes an isomorphism of R-bimodules

Σ ⊗B
∨Σ ∼=

⊕
p∈A p ⊗Tp

∗p〈
ut ⊗Tq ϕ− u⊗Tp tϕ

〉
{u∈p,ϕ∈∗q,t∈Tq,p}

, (2.15)

where Tp := EndAo(p) and Tp,q := HomAo (p, q), for every objects p, q in A.
Now, let C be an R-coring and let Q be a small full sub-category of the category

of comodules CComod whose underlying left R-modules are finitely generated and
projective. Denote by λq the coaction of q ∈ Q. Then one can directly apply the
above constructions, by putting χ(q) = U(q), where U : CComod → RMod is the left
forgetful functor. In this case, the left C-coaction of Σ =

⊕
q∈Q q is right S-linear,

while the right C-coaction of ∨Σ is left S-linear. Moreover, there is a canonical
morphism of R-corings defined by

canS : Σ ⊗S
∨Σ �� C,

uq ⊗S ϕq
� �� (C ⊗R ϕq) ◦ λq(uq).

(2.16)

Here S is the induced ring from the category Q, that is,

S =
⊕

q,p∈Q
HomC (q, p). (2.17)

However, the construction of the infinite comatrix coring, as well as the canonical
map can, can be also performed for any sub-ring of S with the same set of orthogonal
idempotents (i.e. the q’s identities).

Let us consider the k-linear category k(N) whose objects are the natural numbers
N, and homomorphisms sets are defined by

Homk(N) (n, m) =


0 if m /∈ {n, n+ 1},
k.1n if n = m,

k.n+1
n if m = n+ 1,

where the last two terms are free k-modules of rank one. The induced ring with
enough orthogonal idempotents is the free k-module B = k(N) ⊕ k(N) generated
by the set {hn, vn}n∈N, where hn and vn corresponds to 1n and jn+1

n respectively,
subject to the following relations:

hnhm = δn,mhn, ∀m,n ∈ N (Kronecker delta),

vnvm = vmvn = 0, ∀m,n ∈ N,

vnhn+1 = vn = hnvn, ∀m,n ∈ N.

(2.18)
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In other words B is the ring of (N × N)-matrices over k of the form

k k 0 0

0 k k 0

0 0 k k

...
. . . . . . . . .

k k

. . . . . . . . .


(2.19)

consisting of matrices with only possibly two nonzero entries in each row: (i, i) and
(i, i + 1). It is clear that the category of unital left B-modules is isomorphic to
the category Ch+(k) of chain complexes of k-modules. Precisely, this isomorphism
functor O sends every chain complex (V•, ∂V ) to its associated differential graded
k-module O(V•) =

⊕
n≥0 Vn with the following left B-action

hn.

∑
n≥0

vi

 = vn, and vn.

∑
n≥0

vi

 = ∂V (vn+1)

and acts in the obvious way on morphisms of chain complexes. The inverse functor
is clear.

By Proposition 2.9, we have a faithful functor χ : k(N) → L Comod sending n→
Qn, whose composition with the left forgetful functor gives rise to a fiber functor
χ : k(N) → add(RR). Therefore, we can apply the above process to construct an
infinite comatrix R-coring Q ⊗B

∨Q where Q =
⊕

n∈N
Qn and ∨Q =

⊕
n∈N

∗Qn

are given by the cochain complex of Sec. 2.2.
Since each of the Qn’s has a structure of R-bimodule for which the differential

∂• is R-bilinear, we deduce that Q⊗B
∨Q is an Re-bimodule with actions

(r ⊗ so) · (un ⊗B ϕn) · (p⊗ qo) = (runp) ⊗B (sϕnp), (2.20)

for every p, q, r, s ∈ R and un ∈ Qn and ϕn ∈ ∗Qn. In view of this Re-biaction, the
infinite comatrix R-coring has Re(Q⊗B

∨Q) as its underlying R-bimodule.
Next we will construct an Re-ring structure on the Re-bimodule (Q ⊗B

∨Q).
Part of this construction needs the following general lemma which can be found,
under a slightly different form, in [10, 4, 20]. We adopt the following general
notations: For any small k-linear category C, we denote by Functf (C, add(RR))
the category of k-linear faithful functors valued in add(RR), i.e. of fiber func-
tors on C. For any object χ : C → add(RR), we denote by L(χ) the associ-
ated infinite comatrix R-coring defined by the isomorphism of (2.15). Lastly, we
consider Σ : Functf (C, add(RR)) → ModS(C) the canonical functor to the cate-
gory of right unital S(C)-modules (recall that S(C) is the induced ring of Co).
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That is,

Σ(χ) :=
⊕
c∈C

cχ, Σ(γ) :=
⊕
c∈C

γc (2.21)

for every fiber functor χ and natural transformation γ between fiber functors.

Lemma 2.11. Let A be a small k-linear category and let χ1, χ2 : A → RModR be
functors with images in add(RR). Define (χ1 ⊗R χ2) : A×A → RModR by setting

(χ1 ⊗R χ2)(p, q) = χ1(p) ⊗R χ2(q), for p, q ∈ A.
Then

(i) There is a left Re-linear isomorphism L(χ1 ⊗R χ2) ∼= L(χ1) ⊗Re L(χ2).
(ii) For every R-bimodule M, there is a natural isomorphism

Nat((χ1 ⊗R χ2), M ⊗R (χ1 ⊗R χ2)) �� HomR−R (L(χ1) ⊗Re L(χ2), M)

σ � ��
[
(u⊗S ϕ) ⊗Re (v ⊗S ψ) �→∑

imiϕ(piψ(qi))
]
,

where we set σ(p,q)(u ⊗R v) =
∑

imi ⊗R pi ⊗R qi ∈ M ⊗R p ⊗R q, for every
u ∈ p, ϕ ∈ ∗p, v ∈ q, ψ ∈ ∗q and (p, q) ∈ A×A.

Proof. Straightforward.

Let us come back to our situation. We are considering the functor

χ : k(N) −→ L Comod, sending n �−→ Qn. (2.22)

On the one hand, we already observed that the composition of χ with the left for-
getful functor gives rise to a fiber functor k(N) → add(RR). On the other hand,
we can consider also the fiber functor χ : k(N) → RModR obtained by compos-
ing the functor χ : k(N) → L Comod with the functor L Comod → RModR stated
in Lemma 2.4. Therefore, it is clear from Lemma 2.11, that there is a bijective
correspondence between multiplications on L(χ) = (Q ⊗B

∨Q) and natural trans-
formations (χ ⊗R χ) → L(χ) ⊗R (χ ⊗R χ). One of those natural transformations
can be constructed using the left L(χ)-coaction on the Qn’s, as defined in (2.14).
Thus we have the following statement.

Lemma 2.12. Let Q• be the cochain complex of Sec. 2.2, and (Q ⊗B
∨Q) the

associated R-coring. Then there is a natural transformation (χ ⊗R χ) → L(χ) ⊗R

(χ⊗R χ) given by: λ̃n,m : Qn ⊗R Qm → (Q⊗B
∨Q) ⊗R (Qn ⊗R Qm)

un ⊗R um

�−→
∑
α,β

[(un ⊗A um) ⊗B (∗ωn,α  ∂
∗ωm,β) + (un ⊗A ∂um) ⊗B (∗ωn,α 

∗ωm,β)]

⊗R(ωn,α ⊗R ωmβ)
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for every n,m ≥ 1, and by λ̃0,n = λ̃n,0 : Qn → (Q ⊗B
∨Q) ⊗R Qn, sending

un �−→ ∑
α(un ⊗B

∗ωn,α) ⊗R ωn,α, where {(ωn,α,
∗ωn,α)} is a dual basis for RQn,

n ≥ 1.

Proof. This is a routine computation using definitions and dual bases notions.

The following lemma will be used in the sequel.

Lemma 2.13. Let {(ωn,α,
∗ωn,α)}α be a dual basis for RQn with n > 0. Then, for

every element un ∈ Qn, um ∈ Qm, and ϕn ∈ ∗Qn, ϕm ∈ ∗Qm, we have∑
α,β

[(un ⊗A ∂um) ⊗B (∗ωn,α 
∗ωm,β)] ×R [(ωn,α ⊗A ωm,β) ⊗B (ϕn  ∂ϕm)] = 0

and∑
α,β

[(un ⊗A um) ⊗B (∗ωn,α  ∂
∗ωm,β)] ×R [(ωn,α ⊗A ∂ωm,β) ⊗B (ϕn  ϕm)] = 0

as elements in the Re-bimodule (Q⊗B
∨Q) ×R (Q⊗B

∨Q).

Proof. Straightforward.

We then arrive to the Re-ring structure of (Q⊗B
∨Q).

Proposition 2.14. There is a structure of Re-ring on D := (Q ⊗B
∨Q) given by

the extension of rings Re → D sending r ⊗ so �→ (r ⊗B s) (i.e. ι0(r) ⊗B ι0(s), ι0
is the canonical injection), where the multiplication of D is defined by the following
rules: for every pair of generic elements (un ⊗B ϕn) and (um ⊗B ϕm) of D with
n,m > 0, we set

(un ⊗B ϕn) · (um ⊗B ϕm) = ((un ⊗A ∂um) ⊗B (ϕn  ϕm))

+ ((un ⊗A um) ⊗B (ϕn  ∂ϕm))

and

(un ⊗B ϕn) · (r ⊗B s) = (unr ⊗B sϕn),

(r ⊗B s) · (un ⊗B ϕn) = (run ⊗B ϕns), ∀ r, s ∈ R.

Proof. Using Lemmas 2.8 and 2.13, one can show that each of the maps λ̃n,m given
in Lemma 2.12 is coassociative with respect to the comultiplication of Q ⊗B

∨Q.
Hence, its image by the natural isomorphism of Lemma 2.11 leads to the stated
associative multiplication. The unitary property is clear.

Remark 2.15. As we have seen, the construction of an Re-ring structure on D

is not an immediate task. Part of this difficulty is clearly due to the fact that the
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natural transformations which lead to the multiplications on D are not easy to
construct. The other part is probably due to the fact that, although the category
k(N) is a monoidal category, the fiber functor χ : k(N) → RModR given by the
complexQ• is not strong monoidal since the local “comultiplication” mapsQn+m →
Qn⊗RQm,m,n ≥ 1, see Remark 2.7, do not necessarily form a natural isomorphism.
Thus χ does not satisfy the usual condition of a fiber functor, namely, being a strict
monoidal functor. Of course, this has prevented us from directly using general
results already existing in the literature, for example [20].

Proposition 2.16. Set D := Re(Q ⊗B
∨Q)Re , where Q• is the cochain complex

defined in Sec. 2.2. Then D has a structure of left R-bialgebroid.

Proof. Is a routine computation which uses Lemmas 2.13 and 2.8, as well as
Proposition 2.14.

2.4. The isomorphism between comatrices

and coendomorphisms bialgebroids

Now, we come back to the canonical map. As mentioned in the preamble of Sec. 2.3,
there is a canonical map given explicitly by (2.16). Thus, using the L -coactions of
Proposition 2.9, we have a morphism of R-corings canB : D l −→ L l sending

(un ⊗B ϕn) �−→
∑

i0,i1,...,in−1

π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1)ϕn

(ei0∂ei1 ⊗A · · · ⊗A ∂ein−1), (2.23)

where un = a0∂a1⊗A · · ·⊗A∂an−1 ∈ Qn, and canB(r⊗B s) = π(r⊗so), for r, s ∈ R.
Our next goal is to show that canB is an isomorphism of left R-bialgebroids. To

this end, we will need the following proposition.

Proposition 2.17. For every n ≥ 1, un = a0∂a1 ⊗A · · · ⊗A ∂an−1 ∈ Qn and
ϕn ∈ ∗Qn, we have the following equality

(un ⊗B ϕn) =
∑

i0,i1,...,in−1
[(a0 ⊗B

∗ei0) · (a1 ⊗B
∗ei1) · · · (an−1 ⊗B

∗ein−1)]ϕn

(ei0∂ei1 ⊗A · · · ⊗A ∂ein−1)

viewed as elements in the left Re-module D l. In particular, D is generated, as an
Re-ring, by the image of Re and the set of elements {(ei ⊗B

∗ej)}i,j (recall that
{(ei,

∗ei)}i is a dual basis of RA).

Proof. It follows by induction, using the dual basis of the Qn’s given in Lemma 2.8.

Theorem 2.18. The canonical map canB : D → L of (2.23) is an isomorphism
of left R-bialgebroids.
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Proof. First we will show that canB is a multiplicative map. By Proposition 2.17
this is equivalent to show that

canB(a⊗B ϕ) canB(un ⊗B ϕn) = canB((a⊗B ϕ)(un ⊗B ϕn)), (2.24)

for every a ∈ A, ϕ ∈ ∗A, un ∈ Qn, ϕn ∈ ∗Qn with n ≥ 1. Equality (2.24), is
proved by direct computation. Since canB preserves the unit, we deduce that canB

is a morphism of Re-rings. The inverse of canB is constructed as follows. It is clear
that the map ζ : (A ⊗ ∗A) → D sending a ⊗ ϕ �→ a ⊗B ϕ is an Re-bilinear map.
Therefore, it is canonically extended to the tensor algebra ζ : TRe((A⊗ ∗A)) → D ,

as D is an Re-ring. Now, for every a, b ∈ A and ϕ ∈ ∗A, one shows that

ζ

(∑
i

(a⊗ eiϕ) ⊗Re (b⊗ ∗ei)

)
= ζ(ab⊗ ϕ),

where {(ei,
∗ei)}i is the dual basis of RA. This means that ζ factors throughout

the canonical projection π : TRe((A⊗ ∗A)) → L , and so we have an algebra map
ζ : L → D . Given a ∈ A and ϕ ∈ ∗A, we have

canB ◦ ζ(π(a⊗ ϕ)) = canB(a⊗B ϕ) =
∑

i

π(a⊗B
∗ei)ϕ(ei)

= π

(∑
i

a⊗ ∗eiϕ(ei)

)
= π(a⊗ ϕ).

This implies that canB ◦ ζ = idL . Now, take un ∈ Qn, n ≥ 1, of the form un =
a0∂a1 ⊗A · · · ⊗A ∂an−1 and ϕn ∈ ∗Qn. Then, by Proposition 2.17, we have

ζ ◦ canB(un ⊗B ϕn) = un ⊗B ϕn,

and this shows that ζ ◦ canB = idD .

Corollary 2.19. Let (L l)∗ be the right convolution ring of the R-coring L l. Then
there is an isomorphism of rings (L l)∗ ∼= End(QB).

Proof. We know that each hn
∨Q = ∗Qn is a finitely generated and projective right

R-module, where the hi’s are defined in (2.18). The same property holds true for
each right R-module of the form ei1,in

∨Q, where ei1,in = hi1 + · · · +hin . This means
that the unital bimodule B

∨QR satisfies the second condition of [12, Proposition 5.1]
for each idempotent which belongs to the set of local units of B. Therefore we have,
as in the proof of [12, Proposition 5.1], that the functor −⊗B

∨Q is left adjoint to
−⊗R Q. Hence

Hom−R (D , R) = Hom−R (Q⊗B
∨Q, R) ∼= Hom−B (Q, Q).

Now, we conclude by Theorem 2.18.
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3. Categories of Comodules and Chain Complexes of Modules

This section contains our main results, namely Theorems 3.3, 3.9 and 3.10. As a
consequence of these results, we obtain that the category of chain complexes of left
R-modules is always equivalent to the category of left comodules over a quotient
R-coring of the left R-bialgebroids L (A) constructed in Example 2.3. When R

is commutative, this quotient inherits a left R-bialgebroid structure from L (A),
and the stated equivalence is actually a monoidal equivalence. This will clarify the
equivalence of categories already constructed by Pareigis and Tambara, [25, 29].

3.1. Monoidal equivalence between chain complexes of k-modules

and left L -comodules

In this subsection we will use the isomorphism of bialgebroids stated in Theo-
rem 2.18 to show that the following are equivalent: (1) QB is faithfully flat, (2) the
underlying module R⊗1oL of L is flat and the functor Q⊗B− : BMod → L Comod

is a monoidal equivalence of categories. This is our first main result, and stated
below as Theorem 3.3.

Remark 3.1. Let B = k(N) ⊕ k(N) be the ring with enough orthogonal idempotents
associated to the small k-linear category k(N) considered in Sec. 2.3, see (2.19). We
have already observed in Sec. 2.3 that the category of unital left B-modules BMod

is in a canonical way isomorphic to the category Ch+(k) of chain complexes of k-
modules. Therefore, BMod inherits a structure of monoidal category. Recall that B
is generated as a free k-module by the set of elements {hn, vn}n∈N with {hn}n∈N as
a set of orthogonal idempotents given by (2.18). The multiplication of two object
X,Y ∈ BMod, is then given by

X � Y =
⊕
n∈N

 ⊕
i+j=n

hiX ⊗ hjX

.
That is, hn(X � Y ) =

⊕
i+j=n hiX ⊗ hjY , for every n ∈ N, and for every k ≥ 1,

l ≥ 1 with k + l = m, we have

vm−1(hkx⊗ hly) = vk−1x⊗ hly + (−1)khkx⊗ vl−1y,

(i.e. the Leibniz rule), and

vm−1(h0x⊗ hmy) = h0x⊗ vm−1y, vn(hnx⊗ h0y) = vn−1x⊗ h0y

for every x ∈ X , y ∈ Y and m,n ≥ 1. The multiplication of B-linear maps is
obvious. The unit object is the left unital B-module k[0] whose underlying k-module
is k, and whose B-action is given by

hnk[0] =

{
0 if n �= 0

k if n = 0.
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We know that the cochain complex Q• of Sec. 2.2 induces an L -comodule
Q =

⊕
n∈N

Qn whose coaction is easily seen to be right B-linear. Thus, Q⊗B − :
BMod → L Comod, acting in the obvious way, is a well-defined functor. This functor
is in fact monoidal.

Lemma 3.2. Consider the monoidal categories BMod and L Comod, with structure,
respectively, given in Remark 3.1 and Lemma 2.4. Then Q⊗B− : BMod → L Comod

is a monoidal functor, with structure

Γ2
X,Y : (Q⊗B X) ⊗R (Q⊗B Y ) −→ Q⊗B (X � Y ),

explicitly given by

Γ2
X,Y ((un ⊗B hnx) ⊗R (um ⊗B hmy))

=

{
(un ⊗A um) ⊗B (hnx⊗ vm−1y) + (un ⊗A ∂um) ⊗B (hnx⊗ hmy), n,m ≥ 1,

unum ⊗B (hnx⊗ hmy), n = 0 or m = 0,

for every un ∈ Qn, um ∈ Qm, x ∈ X and y ∈ Y, and Γ0 : R → Q ⊗B k[0] sending
r �→ r ⊗B h01.

Proof. The fact that Γ2
X,Y is a well-defined map comes from the observation that

the right R-action of Q⊗B X as left L -comodule is given by the right R-action of
Q viewed as left L -comodule. That is, the one given by the rule (2.8). Now, it is
easily seen that the right R-action of Q given by (2.8) is exactly the right R-action
of Q we started with (i.e. that which comes from the inclusion RKR ⊂ A⊗R A). A
direct computation, using Lemma 2.10, shows that Γ2

X,Y is left L -colinear, for each
X,Y . We leave to the reader the proof of the associativity and unitary properties
of the pair (Γ2

−,−,Γ
0).

Our first main result is the following.

Theorem 3.3. Let R be an algebra over a commutative ground ring k, and A an
R-ring which is finitely generated and projective as left R-module. Consider the
associated left R-bialgebroid given in Proposition 2.1 and let B = k(N) ⊕ k(N) be the
ring with enough orthogonal idempotents of (2.19). Consider the cochain complex
Q• of Sec. 2.2 with its canonical right unital B-action and left L -coaction. Then
the following statements are equivalent

(1) The right module L l
R is flat and the functor Q ⊗B − : BMod −→ L Comod is

an equivalence of monoidal categories;
(2) QB is a faithfully flat unital module.

Proof. The monoidal condition is, by Lemma 3.2, always satisfied, so it can be
omitted in the proof. Henceforth, we only need to show that L l

R is flat and Q⊗B −
is an equivalence, if and only if QB is a faithfully flat module. By the left version of
the generalized faithfully flat descent theorem [14, Theorem 5.9], we know that QB
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is faithfully flat if and only if D l
R = 1⊗Ro(Q⊗B

∨Q) is flat and Q⊗B − : BMod →
DlComod is an equivalence of category. We then conclude by Theorem 2.18.

Notice that, when QB is faithfully flat, the inverse of the functor of Q ⊗B − :
BMod → L Comod is given by the cotensor product ∨Q�L− : L Comod → BMod.
The structure of bicomodule on ∨Q is given as follows. Recall that Q is in fact an
(L , B)-bicomodule, that is, the left L -coaction ofQ is rightB-linear. So, since each
of the Qn, n ≥ 0, is finitely generated and projective left R-module, each of the left
duals ∗Qn admits a right L -coaction, for which ∨Q becomes a (B,L )-bicomodule.

The condition L l
R is flat, stated in item (1) of Theorem 3.3, seems to be redun-

dant. But, although we can deduce form the equivalence of categories that the
category of left L -comodule is abelian, we cannot affirm that the forgetful functor
L Comod → RMod is left exact. Thus, L l

R is not necessarily a flat module, see
[15, Proposition 2.1].

Consider the category Ch+(k) of chain complexes of k-modules and denote by
O : Ch+(k) → BMod the canonical isomorphism of categories explicitly given in
Sec. 2.3. In the case when R = k is a field, it is known that QB is always faithfully
flat wherever dimk(A) < ∞ (a complete proof for a noncommutative field, that is,
a division ring is given in Theorem 3.10). We thus obtain the following corollary.

Corollary 3.4 ([29, Theorem 4.4]). Let k be a field and A an k-algebra such that
1 < dimk(A) < ∞. Consider the associated coendomorphism k-bialgebra L given
in Proposition 2.1. Then the category Ch+(k) of chain complexes of k-modules is
monoidally equivalent, via the functor (Q ⊗B −) ◦ O : Ch+(k) → L Comod, to the
category of left L -comodules.

Proof. By the foregoing observations, this is a direct consequence of Theorem 3.3.

Explicitly, the composition of the functor given in Corollary 3.4 with the for-
getful functor L Comod → kMod is given as follows. For any chain complex V• in
Ch+(k), we have

Q⊗B O(V•) =

⊕
n≥0(Qn ⊗ Vn)

〈∂un ⊗ xn+1 − un ⊗ ∂xn+1〉n≥0

.

3.2. Equivalence between chain complexes of R-modules

and L -comodules

Our main aim here is to extend the result of Theorem 3.3 to the category Ch+(R)
of chain complexes over left R-modules. In other words, we are interested in
relating the category of chain complexes of left R-modules and the category of
left L (A)-comodules over the left R-bialgebroid of Proposition 2.1. Precisely,
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we show an analog of Theorem 3.3 where L is replaced by its quotient R-
coring L := L (A)/〈1L (r ⊗ 1o − 1 ⊗ ro)〉r∈R and the ring B by its extension
C = R(N) ⊕ R(N). This is our second main result, see Theorem 3.9. Of course, in
this case, the monoidal equivalence of categories is reduced to an equivalence, unless
the base ring R is commutative and the extension A is an R-algebra.

Let A be an R-ring and assume that RA is a finitely generated and projective
module. Fix a dual basis {(ei,

∗ei)}i for RA, and consider L := L (A) the left R-
bialgebroid of Proposition 2.1. We denote by π : TRe((A⊗ ∗A)) → L the canonical
projection.

Lemma 3.5. Let J be the left ideal of L generated by the following set of elements

{π(ar ⊗ ϕ) − π(a⊗ rϕ)}a∈A,ϕ∈∗A,r∈R .

Then J is a coideal of the underlying R-coring L l.

Proof. An easy computation shows that

π(ar ⊗ ϕ) − π(a⊗ rϕ) = π(a⊗ ϕ)(r ⊗ 1o − 1 ⊗ ro),

for every elements a ∈ A, ϕ ∈ ∗A and r ∈ R. Thus, J as left Re-bimodule is
generated by the set {gr := 1L .(r⊗ 1o−1⊗ ro)}r∈R. For arbitrary elements x ∈ L

and r ∈ R, we get

ε(xgr) = ε(x.(1 ⊗ ε(gr)o)) = 0,

as ε(gr) = 0. Hence, ε(J ) = 0. On the other hand, for every r ∈ R, we have

∆(gr) = (1L ⊗R 1L )(r ⊗ 1o) − (1L ⊗R 1L )(1 ⊗ ro).

Using these equalities we can show that, for every x ∈ L and r ∈ R, we have

∆(xgr) =
∑
(x)

x(1) ⊗R x(2)(r ⊗ 1o) −
∑
(x)

x(1) ⊗R x(2)(1 ⊗ ro)

=
∑
(x)

x(1) ⊗R x(2)(r ⊗ 1o − 1 ⊗ ro),

where ∆(x) =
∑

(x) x(1) ⊗R x(2). Therefore, (π⊗R π)◦∆(xgr) = 0, for every x ∈ L

and r ∈ R, where π : L → L /J is the canonical projection. Thus J is a coideal
of L .

Denote by L := L /J the quotient R-coring and by π : L → L the canonical
projection. Notice that π is also left L -colinear. Consider the cochain complex Q•
of Sec. 2.2. We know, by Proposition 2.9, that each Qn is a left L -comodule. Hence
each of them is a left L -comodule with coaction

λn : Qn → L ⊗R Qn → L ⊗R Qn, n ≥ 0.
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Lemma 3.6. The L -coaction λn is right R-linear. That is, Qn is an (L , R)-
bicomodule (here R is considered as a the trivial R-coring).

Proof. For n = 0 the statement is trivial since λ0(r) = (r⊗1o)π(1L ) = π(1L )(1⊗
ro), for every r ∈ R. Take n ≥ 1 and an element un ∈ Qn of the form un =
a0∂a1 ⊗A · · · ⊗A ∂an−1. Then, for every r ∈ R, we have

λn(unr) =
∑

α

π(π(a0 ⊗ ∗ei0) · · ·π(an−1r ⊗ ∗ein−1)) ⊗R ωn,α,

where α = (i0, . . . , in−1), and ωn,α = ei0∂ei1 ⊗A · · · ⊗A ∂ein−1

=
∑

α

π(π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ r∗ein−1)) ⊗R ωn,α

=
∑

α

(π ⊗R Qn)[π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1)(1 ⊗ ro) ⊗R ωn,α]

=
∑

α

(π ⊗R Qn)[π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1) ⊗R ωn,αr]

=
∑

α

π(π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1)) ⊗R ωn,αr

= λn(un)r,

where in the fourth equality we have used that each Qn is in fact a left ×R-L -
comodule, that is, λn(Qn) ⊆ L ×R Qn. We then conclude by linearity.

Remark 3.7. The quotient R-coring L does not admit, in general, a structure of
left R-bialgebroid. However, if we assume that R is commutative (i.e. a commutative
k-algebra) and that A is an R-algebra, then the left ideal J is in fact a two-sided
ideal, since in this case we have the following equalities

grπ(a⊗ ϕ) = π(a⊗ ϕ)gr, for every r ∈ R, a ∈ A, and ϕ ∈ A∗.

In view of this, a direct verification shows that L is an R-bialgebroid such that the
canonical surjection π : L → L is a morphism of R-bialgebroids.

Let us consider the k-linear category R(N) whose objects are the natural num-
bers N and homomorphisms sets are defined by

HomR(N) (n, m) =


0 if m /∈ {n, n+ 1},
R.1n = 1n.R if n = m,

R.n+1
n = n+1

n .R if m = n+ 1.

(3.1)

The last two terms are copies of RRR viewed as an R-bimodule which is free
as left and right R-module of rank one, generated by an invariant element. The
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composition is defined using the regular R-biactions of RRR. The induced ring
with enough orthogonal idempotents is the free left R-module C = R(N) ⊕ R(N)

generated by elements {hn, un}n∈N subject to the following relations:

hnhm = δn,mhn, ∀n,m ∈ N (Kronecker delta),

unum = umun = 0, ∀n,m ∈ N,

unhn+1 = un = hnun, ∀n,m ∈ N.

(3.2)

In other words C is the ring of (N × N)-matrices over R of the form

C =



R R 0 0

0 R R 0

0 0 R R

...
. . . . . . . . .

0 R R

. . . . . . . . .


(3.3)

i.e. with possibly non-zero entries in each row: (i, i) and (i, i+ 1). C is also free as
right R-module, since the generators are invariant. One can easily check that the
category of chain complexes of left R-modules Ch+(R) is equivalent to the category
of unital left C-modules. Let B be the ring with enough orthogonal idempotents
of (2.19). There is a morphism of rings B → C with the same set of orthogonal
idempotents. In this way, we have by [12, p. 733] the usual adjunction between left
unital B-modules and C-modules using restriction of scalars and the tensor product
functor C ⊗B −.

By Lemma 3.6, we have a morphism of rings R→ EndL (Qn), for every n ≥ 0.
This leads to a faithful functor from the category R(N) to the category of (L , R)-
bicomodules (here R is considered as a trivial R-coring) χ′ : R(N) → L ComodR.
The composition of χ′ with the forgetful functor gives rise then to a fiber functor
ω : R(N) → RModR whose image is in add(RR). Therefore, we can apply the
constructions performed in Sec. 2.3. Thus, we have an infinite comatrix R-coring
Q⊗C

∨Q together with a canonical map canC : Q⊗C
∨Q −→ L sending

un ⊗C ϕn
canC ��

∑
i0,...,in−1

π(π(a0 ⊗ ∗ei0) · · ·π(an−1 ⊗ ∗ein−1))

ϕn(ei0∂ei1 ⊗A · · · ⊗A ∂ein−1) . (3.4)

Clearly we have a surjective map ϑ : Q ⊗B
∨Q → Q⊗C

∨Q. Moreover, we have a
commutative diagram with exact rows relating the two R-corings morphisms canB
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and canC (see Eqs. (2.23) and (3.4))

0 �� Ker(ϑ) ��

���
�
�
�
�
�

Q⊗B
∨Q ϑ ��

canB

��

Q⊗C
∨Q

canC

��

�� 0

0 �� J �� L
π �� L �� 0

(3.5)

Proposition 3.8. In diagram (3.5), we have the following equality canB(Ker(ϑ)) =
J. In particular, the map canC of Eq. (3.4) is an isomorphism of R-corings.

Proof. The inclusion canB(Ker(ϑ)) ⊆ J is clear from the commutative diagram
(3.5). Conversely, consider arbitrary elements y ∈ L and r ∈ R. We need to show
that ygr ∈ canB(Ker(ϑ)), where gr are as in the proof of Lemma 3.5. There is no
loss of generality if we assume that y = xπ(a ⊗ ϕ), for some x ∈ L and a ∈ A,
ϕ ∈ ∗A. Since canB is, by Theorem 2.18, bijective, there exists u ∈ Q⊗B

∨Q such
that x = canB(u). In view of this, ygr = canB(u(ar ⊗B ϕ − a ⊗B rϕ)), as canB is
multiplicative. We need to check that ϑ(u(ar ⊗B ϕ− a⊗B rϕ)) = 0. However, this
is directly obtained from the following equality

ϑ((un ⊗B ϕn)(ar ⊗B −a⊗B rϕ)) = 0, for every un ∈ Qn, ϕn ∈ ∗Qn,

whose proof follows by induction on n. The last statement to prove is a consequence
of the first one, since the diagram (3.5) has exact rows.

Our second main result is the following theorem.

Theorem 3.9. Let R be an algebra over a commutative ground ring k, and A an
R-ring which is finitely generated and projective as left R-module. Consider the
associated left R-bialgebroid L stated in Proposition 2.1 and J the coideal of L

generated by the set of elements {1L (r ⊗ 1o − 1 ⊗ ro)}r∈R. Denote by L = L /J

the corresponding quotient R-coring. Let C = R(N) ⊕ R(N) be the ring with enough
orthogonal idempotents induced from the small k-linear category R(N) defined by
relations (3.1). Consider the cochain complex Q• given in Sec. 2.2 with its canonical
right unital C-action and left L -coaction as in Lemma 3.6. Then the following
statements are equivalent

(1) The right module L
l

R is flat and the functor Q⊗C − : CMod −→ L Comod is
an equivalence of categories;

(2) QC is a faithfully flat unital module.

Proof. By the left version of the generalized faithfully flat descent Theorem [14,
Theorem 5.9], we know that (Q⊗C

∨Q)R is flat and Q⊗C− : CMod → Q⊗C
∨QComod

is an equivalence of categories, if and only if QC is faithfully flat. We then deduced
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the stated equivalence by using the isomorphism of R-corings canC : Q⊗C
∨Q ∼= L

established in Proposition 3.8.

Notice that, if QC is faithfully flat, then the inverse functor of Q⊗C− : CMod →
L Comod is given by the cotensor product ∨Q�L− : L Comod → CMod. Here the
structure of (C,L )-bicomodule of ∨Q is deduced, as was observed in Sec. 3.1, from
that of Q using the fact that each of the Qn’s is finitely generated and projective
left R-module.

3.3. Conditions under which QC is faithfully flat

As was seen in Theorems 3.3 and 3.9, a sufficient and necessary condition for estab-
lishing an equivalence of categories of left comodules and chain complexes, is the
faithfully flatness of the unital right module Q. The proof of this fact is actually
the most difficult task in this theory. In this subsection we will analyze assumptions
under which QC is faithfully flat.

The following is our third main result.

Theorem 3.10. The notations and assumptions are that of Theorem 3.9. Assume
further that AR is finitely generated and projective, and the cochain complex Q•
is exact and splits, in the sense that, for every m ≥ 1, Qm = ∂Qm−1 ⊕ Qm =
Ker(∂) ⊕ Qm as right R-modules, for some right R-module Qm. Then QC is a
flat module. Furthermore, if k is a field and R is a division k-algebra, then QC is
faithfully flat.

Proof. We first consider the following family of right R-modules

Q(m) =

{
∂Qm ⊕Qm for m ≥ 1,

∂Q0 ⊕Q0 for m = 0,

which we claim to be a family of right unital flat C-modules. Using this claim we
can easily deduce that QC is a flat module since we know that QC =

⊕
m≥0Q

(m)
C .

The structure of unital right C-module of each Q(m) is given as follows: Denote by
im : ∂Qm → Q(m), im : Qm → Q(m) the canonical injections and by jm, jm their
canonical projections. For every element u(m) ∈ Q(m), we set

u(m)hn =


0 if n /∈ {m,m+ 1},
imjm(u(m)) if n = m,

imjm(u(m)) if n = m+ 1,

u(m)un =

{
0 if n �= m,

im(γmjm(u(m))) if n = m,
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where γm : Qm → Qm → ∂Qm. That is, the obtained cochain complexes have the
following form

Q
(m)
• : 0 �� 0 · · · · · · 0 �� Qm

���
��

��
��

�

γm ��������� ∂Qm
�� 0 �� 0 · · · · · ·

Qm

�����������

(3.6)

Put en,n+1 = hn + hn+1, for every n ≥ 0. These are idempotents elements in C,
and the induced rings, i.e. en,n+1Cen,n+1 are all isomorphic to the upper-triangular
matrices over R. That is, of the form

Cn,n+1 := en,n+1Cen,n+1 =
(
R R

0 R

)
, for every n ∈ N.

It is clear that, for every m ≥ 0, we have Q(m)em,m+1 = Q(m). Therefore, there is
an isomorphism of right unital C-modules

Q(m)em,m+1

⊗
Cm,m+1

em,m+1C ∼= Q(m). (3.7)

Next we will show that each of the right Cm,m+1-modules Q(m)em,m+1 = Q(m) is
finitely generated and projective. This fact, combined with the isomorphisms (3.7),
establish the above claim.

For m = 0, it is clear that the right C0,1-module

Q(0) = R⊕R =
(

R R
0 0

)
=
(

1R 0
0 0

)
C0,1

is finitely generated and projective. Now take m ≥ 1, under the hypothesis AR is
finitely generated and projective, we can show, as in Lemma 2.8, that each right
R-module Qm is also finitely generated and projective. Thus, we can consider a
dual basis {(qm,k, q

∗
m,k)}k for each right R-module Qm. In this way, we have a right

Cm,m+1-linear map

θ∗m,k : Q(m) −→ Cm,m+1,

[
u(m) �−→

(
q∗m,k(jm(u(m)) q∗m,k(xm)

0 0

)]
,

where xm ∈ Qm is the projection of xm ∈ Qm = ∂Qm−1 ⊕ Qm, defined by
jm(u(m)) = ∂xm ∈ ∂Qm. We should mention that, under our assumptions, the maps
θ∗m,k are well defined. Effectively, if there is some other element ym ∈ Qm such that
jm(u(m)) = ∂xm = ∂ym, then xm−ym ∈ Ker(∂m) = ∂Qm−1 which means that they
have equal image xm = ym in Qm

∼= Qm/∂Qm−1. It is convenient to check that
θ∗m,k are right Cm,m+1-linear. But first we will identify the right module Qm with
the quotient of Qm, Qm = Qm/∂Qm−1. The right Cm,m+1-action of Q(m) is given
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as follows: Take an element u(m) ∈ Q(m) and write it in the form u(m) = (qm, ∂pm)
for some elements qm, pm ∈ Qm. Here jm(u(m)) = ∂pm and jm(u(m)) = qm. So

(qm, ∂pm)

(
r11 r12

0 r22

)
=
(
qmr11, ∂qmr12 + ∂pmr22

)
,

for every element
(

r11 r12
0 r22

)
in Cm,m+1. Therefore,

θ∗m,k

(
(qm, ∂pm)

(
r11 r12

0 r22

))
= θ∗m,k

(
qmr11, ∂qmr12 + ∂pmr22

)

=

(
q∗m,k(qmr11) q∗m,k

(
qmr12 + pmr22

)
0 0

)

=

(
q∗m,k(qmr11) q∗m,k(qmr12) + q∗m,k(pmr22)

0 0

)

=

(
q∗m,k(qm)r11 q∗m,k(qm)r12 + q∗m,k(pm)r22

0 0

)

=

(
q∗m,k(qm) q∗m,k(pm)

0 0

)(
r11 r12

0 r22

)

= θ∗m,k(qm, ∂pm)

(
r11 r12

0 r22

)
.

Take an arbitrary element (qm, ∂pm) ∈ Q(m), we have

(qm, ∂pm) = (qm, 0) + (0, ∂pm)

= (qm, 0) + (pm, 0)

(
0 1

0 0

)

=
∑

k

(qm,kq
∗
m,k(qm), 0) +

∑
k

(qm,kq
∗
m,k(pm), 0)

(
0 1

0 0

)

=
∑

k

(qm,k, 0)

(
q∗m,k(qm) 0

0 0

)
+
∑

k

(qm,k, 0)

(
q∗m,k(pm) 0

0 0

)(
0 1

0 0

)

=
∑

k

(qm,k, 0)

(
q∗m,k(qm) 0

0 0

)
+
∑

k

(qm,k, 0)

(
0 q∗m,k(pm)

0 0

)
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=
∑

k

(qm,k, 0)

(
q∗m,k(qm) q∗m,k(pm)

0 0

)

=
∑

k

(qm,k, 0)θ∗m,k

(
qm, ∂pm

)
,

which shows that {((qm,k, 0), θ∗m,k)}k is a dual basis for the right Cm,m+1-module
Q(m), and this finishes the proof of the main statement.

If we assume now that k is a field and R is a division k-algebra, then one can
show as follows that each Q(m)em,m+1 is a progenerator in the category of right
Cm,m+1-modules. This means that Q(m)em,m+1⊗Cm,m+1− : Cm,m+1Mod → RMod is
a faithful functor. By identifying each ring Cm,m+1 with the generalized matrix ring

T :=
(

R R
0 R

)
, we know that T = eT ⊕ (1− e)T , where e is the obvious idempotent

element. The structure of right T -module of Q(m) is given by the decomposition
Q

(m)
T = ∂Qm⊕Qm with a surjective canonical map γm : Qm → ∂Qm of (3.6). Since

R is a division ring and each component of Q(m) is by assumption finite-dimensional
with d = dimR(Qm) ≥ dimR(∂Qm) = d′, we can split Q(m) as

Q(m) ∼= (eT )d ⊕ ((1 − e)T )d−d′
,

and this shows that Q(m)
T is a progenerator. Notice, that if d = d′ then we still have

the faithfully property. Let f : X → Y be a morphism of right unital C-modules
such that Q⊗C f = 0. Hence Q(m)⊗C f = 0, for every m ≥ 0, as QC = ⊕m≥0Q

(m).
Therefore, we have

0 = Q(m) ⊗C f ∼= Q(m)em,m+1

⊗
Cm,m+1

em,m+1C ⊗C f,

∀m ≥ 0 ⇒ em,m+1C ⊗C f = 0, ∀m ≥ 0.

This means that hmC ⊗C f = 0, for every m ≥ 0, and so f = 0. This shows that
Q⊗C − is a faithful functor, which completes the proof.

Remark 3.11. As one can see, the hypothesis on the complex Q• in Theorem 3.10,
is not easy to check. However, under further conditions on the ring extensionR → A,
this hypothesis is satisfied. For instance, it is clear from Lemma 2.5 and Remark 2.6
that it is satisfied by assuming that the ring extension R → A splits either in the
category of right or left R-modules. Obviously this includes the case when A is
free as right (or left) R-module with 1A as an element of the canonical basis. In
particular, this is the case when R is a division ring.

Corollary 3.12. Let D be a division k-algebra over a field k, and A a D-ring which
is finite dimensional as left and right D-vector space with dimension ≥ 2. Consider
the associated left D-bialgebroid L given by Proposition 2.1 and its coideal J of
Lemma 3.5. Then the category Ch+(D) of chain complexes of left D-vector spaces
is equivalent to the category of left (L/J )-comodules.
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Proof. It follows from Theorems 3.9 and 3.10.

3.4. The main example

Here we will explain why Pareigis’s example [25], even in the noncommutative case,
always works. Thus, we will check using the first statement of Theorem 3.10 that
the cochain complex Q• associated to the example of the R-ring A considered
in Example 2.3, always satisfies condition (2) of Theorem 3.9. In this way the
category Ch+(R) of chain complexes of left R-modules is always equivalent to the
category of left L (A)-comodules, where L (A) is the left R-bialgebroid described
in Example 2.3.

Recall from Example 2.3, the R-ring A = R⊕Rt which is the trivial generalized
ring extension of R. Set 1A = (1, 0) and t = (0, t), so we have t2 = 0. It is easily
seen that the kernel of the multiplication of A, i.e. K = Ker(A ⊗R A → A) is free
as a left and right R-module with basis {∂t, t∂t}. In fact K is a free A-module with
rank one and basis ∂t. We summarize the properties of the cochain complex Q•, as
follows.

Proposition 3.13. The cochain complex Q• associated to the trivial generalized
ring A = R ⊕Rt, fulfils the following properties:

(i) For every m ≥ 2, Qm is free as a left and right R-module with rank two, and
its basis (on both sides) is given by the set {t∂t⊗A · · · ⊗A ∂t, ∂t⊗A · · ·⊗A ∂t}.

(ii) Q is a homotopically trivial complex.
(iii) QC is faithfully flat module.

Proof. (i) This is proved by induction on m.
(ii) The homotopy is given by switching the dual basis. Let qm = ∂t⊗A · · ·⊗A∂t,

((m − 1)-times) and q1 = 1A be the generating element of Qm. Then we define a
homotopy hm : Qm+1 → Qm by sending qm+1 �→ tqm and tqm+1 �→ qm, h0 is the
first projection.

(iii) The fact that QC is flat follows from Theorem 3.10, since we know that Q•
is exact and splits either by Lemma 2.5, or by item (ii) and [17, Théorème 2.4.1].
Following the notations of the proof of Theorem 3.10, we can easily see that each
right T =

(
R R
0 R

)
-module Q(m) = ∂Qm−1 ⊕ tqmR is isomorphic to eT , where e

is the canonical idempotent of T . Henceforth, the same argument of the last part
of the proof of Theorem 3.10 serves to deduce that QC is actually a faithfully flat
module.

Corollary 3.14. Let R be any k-algebra and A = R ⊕ Rt its trivial generalized
extension. Consider the left R-bialgebroid L (A) described in Example 2.3 and its
quotient R-coring L (A) by the left ideal 〈1L (A)(r⊗ 1o −1⊗ ro)〉. Then the functor
Q ⊗C − establishes an equivalence between the categories of chain complexes of
left R-modules and the category of left L (A)-comodules. In particular, if R is a
commutative ring, then Q⊗C − establishes in fact a monoidal equivalence.
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Proof. The main claim is an immediate consequence of Proposition 3.13 and The-
orem 3.9. In the last statement, the functor in question can be shown to be monoidal
using a similar proof of Lemma 3.2.
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mann, Paris 1973).
[18] P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Progress in Mathemat-

ics, Vol. 174 (Birkhäuser, Basel, 1999).
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