PRIME IDEALS OF THE COORDINATE
 RING OF QUANTUM SYMPLECTIC SPACE

J. Gómez-Torrecillas, ${ }^{1}$ L. El Kaoutit, ${ }^{2}$ and L. Benyakoub ${ }^{2}$
${ }^{1}$ Departamento de Algebra, Facultad de Ciencias, Universidad de Granada, E18071-Granada, Spain
${ }^{2}$ Université Abdelmalek Essaadi, Départemant de Mathématiques, Faculté des Sciences de Tétouan, B.P. 2121, Tétouan, Morocco

INTRODUCTION

In [1], K. R. Goodearl and E. S. Letzter study prime and primitive ideals in certain iterated Ore extensions of an infinite field \mathbf{k} of arbitrary characteristic, which include several quantized algebras at non roots of unity, among them the quantized algebras $\mathcal{O}_{q}\left(\mathfrak{S p k} \mathbf{k}^{2 \times n}\right)$ of symplectic spaces. The general framework to work in is to consider some group H acting as automorphism on a ring R which give the set $H-\operatorname{Spec}(R)$ consisting of all H-prime ideals of R. The H-stratification of the prime spectrum $\operatorname{Spec}(R)$ is then defined as

$$
\begin{equation*}
\operatorname{Spec}(R)=\biguplus_{J \in H-\operatorname{Spec}(R)} \operatorname{Spec}_{J}(R), \tag{1}
\end{equation*}
$$

where each stratum $\operatorname{Spec}_{J}(R)$ consists of those prime ideals P of R such that $\bigcap_{h \in H} h(P)=J$.

In the case that H is a torus of rank n acting rationally on a noetherian algebra R over an infinite field \mathbf{k} (see [1] for details), the strata $\operatorname{Spec}_{J}(R)$
corresponding to completely prime H-invariant ideals J of R are described in [1, Theorem 6.6] as follows.
(a) For each completely prime H-invariant ideal J of R, there exists an Ore set \mathcal{E}_{J} in the algebra R / J such that the localization map $R \rightarrow R / J \rightarrow R_{J}=(R / J)\left[\mathcal{E}_{J}^{-1}\right]$ induces a homeomorphism of $\operatorname{Spec}_{J}(R)$ onto $\operatorname{Spec}\left(R_{J}\right)$.
(b) Contraction and extension induce mutually inverse homeomorphisms between $\operatorname{Spec}\left(R_{J}\right)$ and $\operatorname{Spec}\left(Z\left(R_{J}\right)\right)$, where $Z\left(R_{J}\right)$ is the centre of R_{J}.
(c) $Z\left(R_{J}\right)$ is a commutative Laurent polynomial ring over an extension of \mathbf{k}, in n of fewer indeterminates.

The foregoing description of the H-strata applies to iterated Ore extensions of \mathbf{k} under suitable conditions ([1, Section 4]), which include $\mathcal{O}_{q}\left(\mathfrak{S} \mathfrak{p} \mathbf{k}^{2 \times n}\right)$. For such a type of iterated Ore extensions, there are finitely many H -prime ideals which are all completely prime.

The aim of this note is to give an more explicit description of the H stratification of the spectra of the coordinate algebras of quantum symplectic spaces $\mathcal{O}_{q}\left(\mathfrak{s p} \mathbf{k}^{2 \times n}\right)$ in the following aspects.

1. We prove that the H-prime ideals are just the ideals generated by the admissible sets in the sense of [2]. More explicitly, consider the finite subset \wp_{n} of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right.$) as defined later in (7). The map $J \mapsto J \cap \wp_{n}$ gives a bijection between the H-prime ideals of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)$ and the admissible subsets of \wp_{n} (Proposition 2.5). As a consequence, we compute the number of H-prime ideals and, hence, the number of H strata (Corollary 2.6).
2. For each H-prime ideal J, let $T=J \cap \wp_{n}$ the corresponding admissible set. We give explicitly a McConnell-Pettit \mathbf{k}-algebra $\mathbf{P}\left(Q_{T}\right)$, which is strictly contained in R_{J}, such that the J-th stratum is described as

$$
\operatorname{Spec}_{J}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)=\left\{P \in \operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) \mid P \cap \wp_{n}=T\right\},
$$

and it is homeomorphic to the spectrum of $\mathbf{P}\left(Q_{T}\right)$ (Theorem 3.4).
3. By using [3], we obtain that the each stratum is homeomorphic to the spectrum of the centre $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ of $\mathbf{P}\left(Q_{T}\right)$ for a suitable admissible set T. We prove that the number of indeterminates in the Laurent polynomial ring $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ over \mathbf{k} is exactly the number of connected components of odd length in the connected decomposition of T (Proposition 3.7).

Our methods allow to give an effective description (modulo Commutative Algebra) of $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{B p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$) for a given n (Theorem 3.10). This is
possible because each prime ideal in the stratum $\operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ is recognized as the inverse image under an explicitly defined algebra homomorphism Φ_{T} connecting $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ and the McConnell-Pettit algebra $\mathbf{P}\left(Q_{T}\right)$ (Theorem 3.4). It follows from [1, Corollary 6.9) that the primitive ideals of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)$ are precisely the maximal prime ideals of each stratum, which allows, in conjunction with our results, to deduce a clean description of the primitive spectrum $\operatorname{Prim}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ very close to [2, Theorem 7.1]. As an illustration, we compute $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$) and $\operatorname{Prim}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times 2}\right)\right)\right.$), in the algebraically closed case (see the Figure 1).

1 DEFINITIONS AND BASIC PROPERTIES

Throughout this note, we will consider different quantum spaces, so we will use some convenient notation. Let $\Lambda=\left(\lambda_{i j}\right)$ be a $p \times p$ matrix with entries in \mathbf{k}, such that $\lambda_{i i}=1$ and $\lambda_{j i}=\lambda_{i j}^{-1}$. Consider the k-algebra $\mathbf{k}_{\Lambda}\left[t_{1}, \ldots, t_{p}\right]$ generated by t_{1}, \ldots, t_{p} subject to the relations $t_{i} t_{j}=\lambda_{i j} t_{j} t_{i}$. This is called the coordinate algebra of the p-dimensional quantum affine space associated to Λ and it is the iterated Ore extension

$$
\begin{equation*}
k_{\Lambda}\left[t_{1}, \ldots, t_{p}\right]=\mathbf{k}\left[t_{1}\right]\left[t_{2} ; \sigma_{2}\right] \cdots\left[t_{p} ; \sigma_{p}\right] \tag{2}
\end{equation*}
$$

where $\sigma_{i}\left(t_{j}\right)=\lambda_{i j} t_{j}$ for every $1 \leq j<i \leq m$. This \mathbf{k}-algebra is a noetherian domain, and its skew field of fractions is denoted by $\mathbf{k}_{\Lambda}\left(t_{1}, \ldots, t_{p}\right)$. An useful intermediate algebra is the McConnell-Pettit algebra $\mathbf{P}\left(Q_{\Lambda}\right)=$ $\mathbf{k}_{\Lambda}\left[t_{1}^{ \pm 1}, \ldots, t_{p}^{ \pm 1}\right]$ (see [4]).

Figure 1. The prime spectrum of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(k^{2 \times 2}\right)\right)(k$ is algebraically closed $)$.

Definition 1.1. Let q be a non-zero element in k. I. M Musson found [5, §1.1] that the coordinate ring $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$ of the quantum symplectic space (cf. [6, Definition 14] or [7, §4]) is the k-algebra generated by $y_{1}, x_{1}, \ldots, y_{n}, x_{n}$ satisfying the following relations

$$
\begin{array}{lll}
y_{j} x_{i}=q^{-1} x_{i} y_{j}, & y_{j} y_{i}=q y_{i} y_{j} & (1 \leq i<j \leq n) \\
x_{j} x_{i}=q^{-1} x_{i} x_{j}, & x_{j} y_{i}=q y_{i} x_{j} & (1 \leq i<j \leq n) \tag{3}\\
x_{i} y_{i}-q^{2} y_{i} x_{i}=\left(q^{2}-1\right) \sum_{l=1}^{i-1} q^{i-l} y_{l} x_{l} & (1 \leq i \leq n)
\end{array}
$$

By [2, Proposition 1.10] or [8, Example 6], $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ can be written as an iterated Ore extension

$$
R_{0} \subseteq R_{1} \subseteq \cdots \subseteq R_{n}=\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)
$$

where $R_{0}=\mathbf{k}$ and $R_{k}=R_{k-1}\left[y_{k} ; \alpha_{k}\right]\left[x_{k} ; \beta_{k}, \delta_{k}\right]$ for $k \geq 1$, with

$$
\begin{array}{ll}
\alpha_{k}\left(x_{l}\right)=q^{-1} x_{l}=\beta_{k}\left(x_{l}\right) & (1 \leq l<k \leq n) \\
\alpha_{k}\left(y_{l}\right)=q y_{l}=\beta_{k}\left(y_{l}\right) & (1 \leq l<k \leq n) \\
\beta_{k}\left(y_{k}\right)=q^{2} y_{k} & (1<k \leq n) \\
\delta_{k}\left(R_{k-1}\right)=0, \quad \delta_{k}\left(y_{k}\right)=\left(q^{2}-1\right) \sum_{l-1}^{k-1} q^{k-l} y_{l} x_{l} & (1 \leq k \leq n)
\end{array}
$$

The quantum space attached to $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ is $\mathbf{k}_{Q_{n}}\left[Y_{1}, X_{1}, \ldots, Y_{n}, X_{n}\right]$, where Q_{n} is the matrix

$$
\begin{gather*}
 \tag{4}\\
Y_{1} \\
X_{1} \\
Y_{2} \\
X_{2} \\
\vdots \\
Y_{n} \\
X_{n}
\end{gather*}\left(\begin{array}{ccccccc}
Y_{1} & X_{1} & Y_{2} & X_{2} & \cdots & Y_{n} & X_{n} \\
q^{2} & q^{-2} & q^{-1} & q^{-1} & \cdots & q^{-1} & q^{-1} \\
q & q^{-1} & q & q & q^{-2} & \cdots & q \\
q & q^{-1} & q^{2} & 1 & \cdots & q^{-1} & q^{-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
q & q^{-1} & q & q^{-1} & \cdots & 1 & q^{-2} \\
q & q^{-1} & q & q^{-1} & \cdots & q^{2} & 1
\end{array}\right)
$$

In order to classify the prime ideals of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$ we shall assume that the parameter q is not a root of unity. Consider the elements $\Omega_{i}=\sum_{l=1}^{i} q^{i-l} y_{l} x_{l}(i \geq 1)$. For $i=0$, let us write $\Omega_{0}=0$. From [2, Lemma 1.3] we get

$$
\begin{align*}
& \Omega_{i} y_{k}=q^{2} y_{k} \Omega_{i}, \quad \Omega_{i} x_{k}=q^{-2} x_{k} \Omega_{i} \quad(k \leq i) \\
& \Omega_{i} x_{k}=x_{k} \Omega_{i}, \quad \Omega_{i} y_{k}=y_{k} \Omega_{i} \quad(i<k) \tag{5}\\
& \Omega_{i} \Omega_{k}=\Omega_{k} \Omega_{i} \quad(\text { for all } i, k)
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{\Omega}_{i}=\sum_{j<l \leq i} q^{i-l} y_{l} x_{l}+q^{i-j} \boldsymbol{\Omega}_{j}, \quad(j \leq i) \\
& x_{i} y_{i}-q^{2} y_{i} x_{i}=\left(q^{2}-1\right) q \boldsymbol{\Omega}_{i-1} \tag{6}\\
& x_{i} y_{i}-y_{i} x_{i}=\left(q^{2}-1\right) \boldsymbol{\Omega}_{i} .
\end{align*}
$$

Remark 1.2. Since $\delta_{k} \beta_{k}=q^{2} \beta_{k} \delta_{k}$ for every index $k>1$ and q is not a root of unity, it follows from [9, Theorem 2.3] that every prime ideal of $\mathcal{O}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ is completely prime.

Following [2], a subset T of

$$
\begin{equation*}
\wp_{n}=\left\{y_{1}, x_{1}, \Omega_{1}, \ldots, y_{n}, x_{n}, \Omega_{n}\right\} \tag{7}
\end{equation*}
$$

is said to be admissible if it satisfies the following conditions

$$
\begin{align*}
& \text { (1) } x_{i} \text { or } y_{i} \in T \Leftrightarrow \Omega_{i} \text { and } \Omega_{i-1} \in T, \forall i \geq 2 \text {. } \\
& \text { (2) } x_{1} \text { or } y_{1} \in T \Leftrightarrow \Omega_{1} \in T \text {. } \tag{8}
\end{align*}
$$

For such a set we denote by $\operatorname{ind}(T)=\left\{i \in\{1, \ldots, n\} \mid \Omega_{i} \in T\right\}$; an index $i \in \operatorname{ind}(T)$ is said to be removable if $y_{i} \in T$ and $x_{i} \in T$. We say that T is connected if for any i, j in $\operatorname{ind}(T)$ such that $i<k<j$, then $k \in \operatorname{ind}(T)$. Let $\mathcal{J}_{T}=\left\{j \in\{1, \ldots, n\} \mid y_{j} \in T\right\}$, and $\mathcal{I}_{T}=\left\{i \in\{1, \ldots, n\} \mid x_{i} \in T\right\}$, one can observe that T is an admissible set with no removable indices if and only if $\mathcal{J}_{T} \cap \mathcal{I}_{T}=\emptyset$. Let $S=T \cap\left\{y_{1}, x_{1}, \ldots, y_{n}, x_{n}\right\}$, where T is a connected admissible set, the length of T is defined by

$$
\operatorname{length}(\mathrm{T})= \begin{cases}|S| & \text { if } 1 \in \operatorname{ind}(T) \\ |S|+1 & \text { if } 1 \notin \operatorname{ind}(T)\end{cases}
$$

Let $T_{1} \cup T_{2} \cup \cdots \cup T_{r}$ be the connected decomposition of T. The length of T is defined by length $(T)=\sum_{k=1}^{r}$ length $\left(T_{k}\right)$. The reader is referred to [2] for more properties of admissible sets.

2 THE COMPUTATION OF THE H-PRIME IDEALS

Consider the algebraic torus $H=\left(\mathbf{k}^{\times}\right)^{n}$ of rank n acting on $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ by \mathbf{k}-algebra automorphisms (see [1, 5.2] or [10, 3.5]). In this section we will show that the H-prime ideals of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)$ are just the ideals generated by admissible sets. We shall need some control on the Gelfand-Kirillov dimension of certain localizations of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right.$), which is provided by the following proposition.

Proposition 2.1. Let W be any subset of $\{1, \ldots, n\}$ and consider the multiplicative subset \mathcal{Y} of $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ generated by all $y_{k}, k \in W$. Then \mathcal{Y} is a right Ore set and the Gelfand-Kirillov dimension of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right) \mathcal{Y}^{-1}$ equals $2 n$.

Proof. The multiplicative subset generated by a single y_{k} is right Ore by [11, Lemma 1.4]. This, in conjunction with [12, Lemma 4.1], gives that \mathcal{Y} is right Ore and, thus, the algebra $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right) \mathcal{Y}^{-1}$ makes sense. It is wellknown that $\operatorname{GKdim}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) \leq \operatorname{GKdim}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right) \mathcal{Y}^{-1}\right)$, so we will prove the other inequality. Consider the k-algebra S generated by the variables $y_{1}, x_{1}, \ldots, y_{n}, x_{n}$, satisfying the relations (3) and new variables $z_{k}, k \in W$, with the following additional relations for each $k \in W$.

$$
\begin{array}{ll}
z_{j} z_{k}=q z_{k} z_{j} & (j \in W, j>k) \\
x_{j} z_{k}=q^{-1} z_{k} x_{j} & (1 \leq j \leq n, j \neq k) \\
x_{k} z_{k}=q^{-2} z_{k} x_{k}+\left(1-q^{2}\right) \sum_{l=1}^{k-1} q^{k-l-2} y_{l} x_{l} z_{k}^{2} & \tag{9}\\
y_{j} z_{k}=q z_{k} y_{j} & (1 \leq j<k) \\
y_{j} z_{k}=q^{-1} z_{k} y_{j} & (k<j \leq n) \\
y_{k} z_{k}=z_{k} y_{k}=1 &
\end{array}
$$

There is a surjective homomorphism of algebras $S \rightarrow \mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right) \mathcal{Y}^{-1}$ sending y_{i} to y_{i}, x_{i} to x_{i} and z_{k} to y_{k}^{-1}. Therefore, $\operatorname{GKdim}\left(\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$ $\left.\mathcal{Y}^{-1}\right) \leq \operatorname{GKdim}(S)$ and, thus, it is enough to prove that this last dimension equals 2 n . To see this, order the variables

$$
z_{i_{1}}<\cdots z_{i_{m}}<y_{1}<x_{1}<\cdots<y_{n}<x_{n}
$$

where $W=\left\{i_{1}<\cdots<i_{m}\right\}$. Let $\leq_{\mathbf{w}}$ be the weighted lexicographical ordering on $\mathbb{N}^{2 n+m}$ defined by the vector

$$
\mathbf{w}=(\underbrace{1, \ldots, 1}_{(m)}, 1,2,1,4, \ldots, 1,2 n,)
$$

By [13, Proposition 3.2], S can be endowed with a finite-dimensional $\mathbb{N}^{2 n+m}-$ filtration with respect to the order $\leq_{\mathbf{w}}$ such that the associated $\mathbb{N}^{2 n+m}$-graded algebra $G(\mathrm{~S})$ is semi-commutative, namely, it is generated by finitely many homogeneous elements $z_{i_{1}}, \ldots, z_{i_{m}}, y_{1}, x_{1}, \ldots, y_{n}, x_{n}$ that commute up to a nonzero scalar and, in addition, $y_{k} z_{k}=0$ for every $k \in W$. Therefore, $G(\mathrm{~S})$ is a factor of the coordinate algebra of an $2 n+m$-dimensional quantum affine space by the ideal generated by the elements $y_{k} z_{k}, k \in W$. By [14, Theorem 4.4.7] or [15, Theorem 4.10], it is clear that $\operatorname{GKdim}(G(S))=2 n+m-m$ and, by [13, Corollary 2.12], we have $\operatorname{GKdim} G(S)=\operatorname{GKdim}(G(S))=2 n$.

Fix an admissible set T, and let $T=T_{1} \cup T_{2} \cup \ldots T_{r}$ be the decomposition of T in connected components, with $i_{l}=\min \left(\operatorname{ind}\left(T_{l}\right)\right)$, $j_{l}=\max \left(\operatorname{ind}\left(T_{l}\right)\right)$. Notice that the following is always true: $j_{l}<i_{l+1}-1$ for
all $l \in\{1, \ldots, r-1\}$. Let Q_{T} be the matrix obtained from Q_{n} by deleting the rows and columns corresponding to the variables x_{k} with $k \in \mathcal{I}_{T}, x_{i_{l}}$, $l \in\{1, \ldots, r\}$ (we will not delete the row and the column corresponding to x_{1} if $i_{1}=1$ and $\left.x_{1} \notin T\right)$ and y_{k} with $k \in \mathcal{J}_{T}$. If $k \in \cup_{l=1}^{r}\left\{i_{l}+1, \ldots, j_{l}\right\}$, then v_{k} will denote x_{k} if $k \notin \mathcal{I}_{T}$ and y_{k} if $k \notin \mathcal{J}_{T}$.

The image of an element $r \in \mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)$ in the factor algebra $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right) /\langle T\rangle$ will be denoted by \bar{r}. This algebra is generated by \bar{x}_{k}, \bar{y}_{k}, where $k \in\left\{1, \ldots, i_{1}\right\} \cup\left\{j_{1}+1, \ldots, i_{2}\right\} \cup \cdots \cup\left\{j_{r-1}+1, \ldots, i_{r}\right\} \cup\left\{j_{r}, \ldots, n\right\}$ and $\bar{v}_{i_{l}+1}, \ldots, \bar{v}_{j l}$ for all $l \in\{1, \ldots, r\}$.

If $k \in \bigcup_{l=1}^{r}\left\{i_{l}+1, \ldots, j_{l}\right\}$ then the symbol V_{k} will denote a variable X_{k} for $k \notin \mathcal{I}_{T}$, a variable Y_{k} for $k \notin \mathcal{J}_{T}$ and the absence of variable when $k \in \mathcal{I}_{T} \cap \mathcal{J}_{T}$. With this notation, define the quantum affine space A_{T} attached to $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right) /\langle T\rangle$ as follows

$$
\begin{gather*}
A_{T}=\mathbf{k}_{Q_{T}}\left[Y_{1}, X_{1}, \ldots, X_{i_{1}-1}, Y_{i_{1}}, V_{i_{1}+1}, \ldots, V_{j_{1}}, Y_{j_{1}+1}, \ldots, X_{i_{r}-1}\right. \tag{10}\\
\left.Y_{i_{r}}, V_{i_{r}+1}, \ldots, V_{j_{r}}, Y_{j_{r}+1}, \ldots, Y_{n}, X_{n}\right]
\end{gather*}
$$

and consider the algebra $B_{T}=A_{T} \mathbb{Y}_{T}^{-1}$, where \mathbb{Y}_{T} is the multiplicative subset of A_{T} generated by all Y_{k} (it is understood that $Y_{k}=V_{k}$ for $\left.k \in\left\{i_{1}+1, \ldots, j_{1}\right\} \cup \cdots \cup\left\{i_{r}+1, \ldots, j_{r}\right\} \backslash \mathcal{J}_{T}\right)$. We will denote $R=\mathcal{O}_{q}$ $\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$, consider the algebra homomorphism $\Psi_{T}: R /\langle T\rangle \rightarrow B_{T}$ defined by

$$
\begin{array}{cc}
\Psi_{T}\left(\bar{v}_{k}\right)=V_{k} \quad\left(k=i_{1}+1, \ldots, j_{1},\right. \\
& \vdots \\
\Psi_{T}\left(\bar{y}_{k}\right)=Y_{k} \quad & \left.i_{r}+1, \ldots, j_{r}, \text { and } k \notin \mathcal{I}_{T} \cap \mathcal{J}_{T}\right) \\
& \left(k=1, \ldots, i_{1},\right. \\
& j_{1}+1, \ldots, i_{2} \\
& \vdots \\
& j_{r-1}+1 \ldots i_{r} \\
& \left.j_{r}+1, \ldots, n\right) \\
& \left(k=1, \ldots, i_{1}-1,\right. \\
& j_{1}+2, \ldots, i_{2}-1, \\
& \vdots \\
\Psi_{T}\left(\bar{x}_{k}\right)=X_{k}+q W_{k-1} Y_{k}^{-1} \\
& j_{r-1}+2, \ldots, i_{r}-1, \\
& \left.j_{r}+2, \ldots, n\right) \\
& (l=1, \ldots, r) \\
\Psi_{T}\left(\bar{x}_{j_{l}+1}\right)=X_{j_{l}+1} & (l=1, \ldots, r) \\
\Psi_{T}\left(\bar{x}_{i_{l}}\right)=q W_{i_{l}-1} Y_{i_{l}}^{-1} & (l=1)
\end{array}
$$

where $W_{k}=-Y_{k} X_{k}$ for every $k \geq 1$ and $W_{0}=0$.

For each $k \notin \mathcal{J}_{T}$, let $\overline{\mathcal{Y}}_{k}$ be the multiplicative subset of $R /\langle T\rangle$ generated by \bar{y}_{k}. By [11, 1.4], these are right Ore multiplicative subsets. This implies, after [12, Lemma 4.1], that the multiplicative subset $\overline{\mathcal{Y}}_{T}$ generated by the \bar{y}_{k} 's, with $k \notin \mathcal{J}_{T}$ is a right Ore set. Therefore, it makes sense to extend Ψ_{T} to $(R /\langle T\rangle)$ $\overline{\mathcal{Y}}_{T}^{-1}$. Finally, let \mathcal{Y}_{T} be the multiplicative subset of R generated by those y_{k} with $k \notin \mathcal{J}_{T}$. We know that $\mathcal{Y}_{T} \cap\langle T\rangle=\emptyset$ so by [16, Proposition 3.6.15] we have $\left.\frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}} \cong\left(\frac{R}{\langle T\rangle}\right) \overline{\mathcal{Y}}_{T}^{-1}\right)$. By composing Ψ_{T} with this isomorphism we get a homomorphism of algebras from $\frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle Y_{T}^{-1}}$ to B_{T} which is also denoted by Ψ_{T}.

A similar algebra homomorphism was given in [17, Section 3.2] for quantum Weyl algebras. The following is the symplectic version of [17, Proposition 3.2.1].

Proposition 2.2. The mapping

$$
\Psi_{T}: \frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}} \rightarrow B_{T}
$$

is a \mathbf{k}-algebra isomorphism.
Proof. It is clear that Ψ_{T} is surjective, and $\langle T\rangle \subseteq \operatorname{ker}\left(\Psi_{T}\right)$. From [12, Lemma 3.16], we have $\operatorname{GKdim}\left(\frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}}\right) \leq \operatorname{GKdim}\left(R \mathcal{Y}_{T}^{-1}\right)-h t(\langle T\rangle)$ which implies, by Proposition 2.1, that $\operatorname{GKdim}\left(\frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle Y_{T}^{-1}}\right) \leq 2 n-h t(\langle T\rangle)$. By [2, Theorem 3.3], $2 n-h t(\langle T\rangle)=2 n-$ length $(\mathrm{T})=2 n-\left(\sum_{l=1}^{r}\left(j_{l}-i_{l}+1\right)\right.$ $\left.+\operatorname{cardinal}\left(\mathcal{I}_{T} \cap>\mathcal{J}_{T}\right)\right)$. But this last number equals $\operatorname{GKdim}\left(B_{T}\right)$. Hence, $\operatorname{GKdim}\left(\frac{R y_{T}^{-1}}{\langle T\rangle Y_{T}^{-1}}\right) \leq \operatorname{GKdim}\left(B_{T}\right)$. Since $\langle T\rangle$ is a completely prime ideal [2, Theorem 2.7], it follows from [12, Proposition 3.15] that Ψ_{T} is a k-algebra isomorphism.

Let H denote the torus $\left(\mathbf{k}^{\times}\right)^{n}$ and consider its action on $R=\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$ as given in $[10,3.5]$

$$
\left(h_{1}, \ldots, h_{n}\right) \cdot y_{i}=h_{i} y_{i} .
$$

$$
\left(h_{1}, \ldots, h_{n}\right) \cdot x_{i}=h_{i}^{-1} x_{i}
$$

For any subset $X \subseteq \mathbb{N}_{n}=\{1,2, \ldots, n\}$, we denote by H_{X} the torus $\left\{\left(h_{i}\right)_{i \in X} \mid h_{i} \in\left(\mathbf{k}^{x}\right)\right\}$. Let T be an admissible set of R and A_{T} the quantum space attached to $R /\langle T\rangle$. We denote by N_{T} the set of indices of the variables that appear in A_{T}, this is a subset of \mathbb{N}_{n}. By H_{T} we denote the torus $H_{N_{T}}$. The torus H_{T} acts on the variables appearing in A_{T} as follows,

$$
\begin{aligned}
\left(h_{i}\right)_{i \in N_{T}} \cdot Y_{k} & =h_{k} Y_{k}, \quad k \in N_{T} \\
\left(h_{i}\right)_{i \in N_{T}} \cdot X_{l} & =h_{l}^{-1} X_{l}, \quad l \in N_{T}
\end{aligned}
$$

For example if $n=5, T=\left\{y_{1}, x_{1}, \Omega_{1}\right\} \cup\left\{\Omega_{3}, y_{4}, \Omega_{4}\right\}$ then $A_{T}=\mathbf{k}_{Q_{T}}$ [$Y_{2}, X_{2}, Y_{3}, X_{4}, Y_{5}, X_{5}$] and so $N_{T}=\{2,3,4,5\}$; the action of H_{T} on A_{T} is

$$
\begin{aligned}
& h \cdot Y_{2}=h_{2} Y_{2}, \quad h \cdot X_{2}=h_{2}^{-1} X_{2} \\
& h \cdot Y_{3}=h_{3} Y_{3} \\
& h \cdot X_{4}=h_{4}^{-1} X_{4} \\
& h \cdot Y_{5}=h_{5} Y_{5}, \quad h \cdot X_{5}=h_{5}^{-1} X_{5}
\end{aligned}
$$

for any $h \in H_{T}$.
Consider the canonically extended action of H_{T} to the localization $B_{T}=A_{T} \mathbb{Y}^{-1}$. For each $h \in H_{T}$, we have the following automorphism of $R /\langle T\rangle \overline{\mathcal{Y}}_{T}^{-1}$

$$
\frac{R}{\langle T\rangle} \overline{\mathcal{Y}}_{T}^{-1} \xrightarrow{\Psi_{T}} B_{T} \xrightarrow{h} B_{T} \xrightarrow{\Psi_{T}^{-1}} \frac{R}{\langle T\rangle} \overline{\mathcal{Y}}_{T}^{-1}
$$

where h denote the extension of h to B_{T}.
Definition 2.3. We define the action of the torus H_{T} on $\frac{R}{\langle T\rangle} \mathcal{Y}_{T}^{-1}$ as follows. Given $h \in H_{T}$, define

$$
h \cdot x=\left(\Psi_{T}^{-1} h \Psi_{T}\right)(x)
$$

for every $x \in \frac{R}{\langle T\rangle} \bar{Y}_{T}^{-1}$.
Lemma 2.4. Consider H_{T} as a factor group of the torus H. The action of H_{T} induced on $R /\langle T\rangle$ by that of H coincides with the action given in Definition 2.3.

Proof. The k-algebra $R /\langle T\rangle$ is generated by the elements

$$
\begin{array}{ll}
\bar{y}_{l}=y_{l}+\langle T\rangle, & l \notin \mathcal{J}_{T}, \\
\bar{x}_{k}=x_{k}+\langle T\rangle, & k \notin \mathcal{I}_{T} .
\end{array}
$$

Let $h \in H_{T}$ and $l \notin \mathcal{J}_{T}$, then $\Psi_{T}^{-1} h \Psi_{T}\left(\bar{y}_{l}\right)=\Psi_{T}^{-1} h\left(Y_{l}\right)=h_{l} \Psi_{T}^{-1}\left(Y_{l}\right)=h_{l} \bar{y}_{l}$. Now let $k \notin \mathcal{I}_{T}$, we know that

$$
\Psi_{T}\left(\bar{x}_{k}\right)= \begin{cases}X_{k} & \text { if } k-1 \in \operatorname{ind}(T) \\ q W_{k-1} Y_{k}^{-1} & \text { if } k-1 \notin \operatorname{ind}(T), k \in \operatorname{ind}(T) \\ X_{k}+q W_{k-1} Y_{k}^{-1} & \text { if } k-1 \notin \operatorname{ind}(T), k \notin \operatorname{ind}(T)\end{cases}
$$

In the first case, $\Psi_{T}^{-1} h \Psi_{T}\left(\bar{x}_{k}\right)=\Psi_{T}^{-1} h\left(X_{k}\right)=h_{k}^{-1} \Psi_{T}^{-1}\left(X_{k}\right)=h_{k}^{-1} \bar{x}_{k}$. In the second case, $\Psi_{T}^{-1} h \Psi_{T}\left(\bar{x}_{k}\right)=\Psi_{T}^{-1} h\left(q W_{k-1} Y_{k}^{-1}\right)=h_{k}^{-1} \bar{x}_{k}$, because $h\left(W_{l}\right)=W_{l}$ for any $l \notin \operatorname{ind}(T)$.

In the third case, $\Psi_{T}^{-1} h \Psi_{T}\left(\bar{x}_{k}\right)=\Psi_{T}^{-1}\left(h_{k}^{-1} X_{k}+q W_{k-1} h_{k}^{-1} Y_{k}^{-1}\right)=h_{k}^{-1} \Psi_{T}^{-1}$ $\left(X_{k}+q W_{k-1} Y_{k}^{-1}\right)=h_{k}^{-1} \bar{x}_{k}$. The lemma now is clear.

Let us denote by $\mathcal{A}_{n}\left(\mathcal{O}_{q}\left(\mathfrak{S p} \mathbf{k}^{2 \times n}\right)\right)$ the set of all admissible sets of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$.

Proposition 2.5. There is a bijection ζ between $H-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$) and $\mathcal{A}_{n}\left(\mathcal{O}_{q}(\mathfrak{F p})\left(\mathbf{k}^{2 \times n}\right)\right)$ defined by

$$
\begin{aligned}
\zeta: \quad H-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) & \rightarrow \mathcal{A}_{n}\left(\mathcal { O } _ { q } \left(\mathfrak{\mathfrak { p k } \mathbf { k } ^ { 2 \times n }))}\right.\right. \\
& \mapsto J \cap \wp_{n} .
\end{aligned}
$$

With the inverse maps

$$
\begin{array}{cccc}
\zeta^{-1}: \mathcal{A}_{n}\left(\mathcal{O}_{q}\left(\mathfrak{S p} \mathbf{k}^{2 \times n}\right)\right) & \rightarrow & H-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) \\
T & \mapsto & \langle T\rangle .
\end{array}
$$

Proof. By [2, Theorem 2.7], each admissible set generates a prime ideal which is clearly H-invariant. Thus ζ^{-1} is well defined. If J is an H-prime ideal of $R=\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$, then by [1, Proposition 4.2] it is a completely prime ideal. So $J \cap \wp_{n}=T$ is an admissible set of R. This shows that ζ is well defined. By [2, Theorem 3.3] we have $\zeta \zeta^{-1}=i d$. Let us show that $J=\langle T\rangle$ for every H-prime ideal J, when $J \cap \wp_{n}=T$, which gives $\zeta^{-1} \zeta=i d$. Suppose that $\langle T\rangle \subseteq J$ for a contradiction. By the Lemma 2.4 the ideals $(J /\langle T\rangle) \overline{\mathcal{Y}}_{T}^{-1}$ and $\mathcal{P}=\bar{\Psi}_{T}\left((J /\langle T\rangle) \overline{\mathcal{Y}}_{T}^{-1}\right)$ are H_{T}-prime ideals of $\frac{R}{\langle T\rangle} \overline{\mathcal{Y}}_{T}^{-1}$ and B_{T} respectively. Therefore B_{T} is not H-simple. Let $\overline{\mathcal{J}}_{T}$ denotes $\mathbb{N}_{n} \backslash \mathcal{J}_{T}=\left\{j_{1}, \ldots, j_{r}\right\}$. It is clear that B_{T} is an iterated Ore extension of the form

$$
B_{T}=\mathbf{k}_{\bar{Q}}\left[Y_{j_{1}}^{ \pm 1}, \ldots, Y_{j_{r}}^{ \pm 1}\right]\left[X_{i_{1}}, \beta_{i_{1}}\right] \cdots\left[X_{i_{t}}, \beta_{i_{t}}\right] .
$$

where $\mathbf{k}_{\bar{Q}}\left[Y_{j_{1}}^{ \pm 1}, \ldots, Y_{j_{r}}^{ \pm 1}\right]$ is the McConnell-Pettit algebra associated to a suitable matrix \bar{Q}. The \mathbf{k}-automorphisms $\beta_{i_{l}}, l=1, \ldots, t$, arise by the semicommutativity of $X_{i_{l}}$ with $Y_{j_{1}}, \ldots, Y_{j_{t}}$ and $X_{i_{1}}, \ldots, X_{i_{l-1}}$. Let us denote

$$
\begin{aligned}
B_{T}^{0} & =\mathbf{k}_{\bar{Q}}\left[Y_{j_{1}}^{ \pm 1}, \ldots, Y_{j_{r}}^{ \pm 1}\right] \\
B_{T}^{l} & =B_{T}^{0}\left[X_{i_{1}}, \beta_{i_{1}}\right] \cdots\left[X_{i_{l}}, \beta_{i_{l}}\right], \quad l=1, \ldots, t .
\end{aligned}
$$

The restriction of the action of H_{T} on each k-algebra $B_{T}^{l}, l=1, \ldots, t$, satisfies the hypothesis of $[1,3.1]$. To see this claim take $l \in\{1, \ldots, t\}$. Suppose that there exists $k_{0} \in\{1, \ldots, r\}$ such that $j_{k_{0}}=i_{l}$. Define, in this case, an element $h_{0}=\left(h_{i}\right)_{i \in N_{T}} \in H_{T}$ by

$$
h_{i}= \begin{cases}q^{2} & \text { if } i=j_{k_{0}} \\ q & \text { if } i \neq j_{k_{0}}\end{cases}
$$

Otherwise, take $h_{0}=(q, \ldots, q) \in H_{T}$. The restriction of h_{0} to B_{T}^{l-1}, coincides with the \mathbf{k}-automorphism $\beta_{i_{l}}$. Since q is not a root of unity, we can apply [1, Lemma 3.3], in each iteration. Denote by $\mathcal{P}^{l}=\mathcal{P} \cap B_{T}^{l}, l=1, \ldots, t-1$. The restriction of the action of H_{T} to $B_{T}^{0}=\mathbf{k}_{\bar{Q}}\left[Y_{j_{1}}^{ \pm 1}, \ldots, Y_{j_{r}}^{ \pm 1}\right]$ is the action of the torus $H_{\overline{\mathcal{J}}_{T}}$, which is the natural action of the torus $\left(\mathbf{k}^{x}\right)^{r}$. So by [3, 1.12], B_{T}^{0} is H_{T}-simple. We use induction on t to show that B_{T} is H_{T}-simple, which gives a contradiction. So if $t=1$ and B_{T}^{1} is not H_{T}-simple then, by [1, Lemma 3.3], $X_{i_{1}} \in \mathcal{P}^{1}$, because B_{T}^{0} is H_{T}-simple. Thus $x_{i_{1}} \in J \backslash T$ or $\Omega_{i_{1}} \in J \backslash T$, which is impossible in view of $J \cap \wp_{n}=T$. Hence B_{T}^{1} must be H_{T}-simple. However is we suppose that B_{T}^{t} is not H_{T}-simple, induction hypothesis and [1, Lemma 3.3], implies that $X_{i_{t}} \in \mathcal{P}$, which is also impossible. In conclusion B_{T} is $H_{T^{-}}$ simple. Therefore $J=\langle T\rangle$.

Corollary 2.6. Let $n \in \mathbb{N}$; if C_{n} denotes the cardinal of $H-\operatorname{Spec}\left(\mathcal{O}_{q}\right.$ $\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)$, then

$$
C_{n}=\frac{(2+\sqrt{2})^{n+1}-(2-\sqrt{2})^{n+1}}{2 \sqrt{2}}
$$

Proof. Using the Proposition 2.5, it suffices to compute the number of the admissible sets. Let $m<n$ and consider T an admissible set of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times m}\right)\right)$, which contains Ω_{m}. There are four admissible sets in $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times(m+1)}\right)\right)$, which contract to T; namely, $T, T \cup\left\{\Omega_{m+1}, y_{m+1}\right\}, T \cup\left\{\Omega_{m+1}, x_{m+1}\right\}$ and $T \cup\left\{\Omega_{m+1}, y_{m+1}, x_{m+1}\right\}$. In the case when T does not contain Ω_{m}, there are only two admissible sets in $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times(m+1)}\right)\right)$ contracting to T. The number of admissible sets of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times m}\right)\right)$ that do not contain Ω_{m} is exactly C_{m-1}. Then we have a linear recursive sequence;

$$
C_{m+1}=4\left(C_{m}-C_{m-1}\right)+2 C_{m-1}=2\left(2 C_{m}-C_{m-1}\right)
$$

We know that $C_{0}=1$ (if $n=0$ we take $\left.\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times 0}\right)\right)=\mathbf{k}\right)$ and $C_{1}=4$, so

$$
C_{n}=\frac{(2+\sqrt{2})^{n+1}-(2-\sqrt{2})^{n+1}}{2 \sqrt{2}}
$$

for all $n \in \mathbb{N}$.

3 THE PRIME AND PRIMITIVE IDEALS

In this section we work out the H-stratification (1) of the prime spectrum of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$. We start with a simpler description of each H stratum. Let T be an admissible set of $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)$ and let us denote

$$
\operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)=\left\{P \in \operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) \mid P \cap \wp_{n}=T\right\} .
$$

Lemma 3.1. Let J be an H-prime ideal of $\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)$ and let $T=J \cap \wp_{n}$ be its correspondent admissible set. Then

$$
\operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{g p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)=\operatorname{Spec}_{J}\left(\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) .
$$

Proof. Let $P \in \operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ and let J^{\prime} be an H-prime ideal such that $P \in \operatorname{Spec}_{J^{\prime}}\left(\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$). Put $T^{\prime}=J^{\prime} \cap \wp_{n}$, it is clear that $T^{\prime} \subseteq T$. Suppose that there exists $u_{i} \in\left\{\Omega_{i}, y_{i}, x_{i}\right\}$, such that $u_{i} \in T \backslash T^{\prime}$. The H invariant ideal $\left\langle T^{\prime} \cup\left\{u_{i}\right\}\right\rangle \subseteq P$ contains strictly J^{\prime}. This is impossible in a view of the maximality (with respect to the propriety H-invariant) of J^{\prime}, thus $T=T^{\prime}$. Using the Proposition 2.5, we have $J=J^{\prime}$. This shows the first inclusion. Let now $P \in \operatorname{Spec}_{J}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ and put $P \cap \wp_{n}=T^{\prime}$. As J is the maximal H-invariant ideal in P, we have $T=T^{\prime}$. Hence $P \in \operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ which gives the second inclusion.

Proposition 3.2. The H-stratification of $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ is given by

$$
\begin{equation*}
\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)=\bigcup_{T \text { admissible }} \operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right) \tag{11}
\end{equation*}
$$

Proof. This is a consequence of Proposition 2.5 and Lemma 3.1.
Following [2], let $o c ø m p(T)$ denote the number of connected components of odd length in the connected decomposition of T. Our aim is to prove that each stratum $\operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{B p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ is homeomorphic to the prime of the group algebra $\mathbf{k}\left[\mathbb{Z}^{\operatorname{ocomp}(T)}\right]$, where $\mathbb{Z}^{\text {ocomp }(T)}$ denote the free abelian group of rank $\operatorname{ocomp}(T)$. Then we give our description of $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$), Theorem 3.10. When \mathbf{k} is algebraically closed, we determine explicitly the primitive ideals.

The \mathbf{k}-algebra obtained by localizing B_{T} at all X_{k} (it is understood that if $k \in\left\{i_{1}+1, \ldots, j_{1}\right\} \cup \cdots \cup\left\{i_{r}+1, \ldots, j_{r}\right\} \backslash \mathcal{I}_{T}$ then $X_{k}=V_{k}$) is the McConnell-Pettit \mathbf{k}-algebra $\mathbf{P}\left(Q_{T}\right)$. We will denote $\mathcal{O}_{q}\left(\mathfrak{B p}\left(\mathbf{k}^{2 \times n}\right)\right)$ by R. Consider $\Phi_{T}: R \rightarrow \mathbf{P}\left(Q_{T}\right)$, the composition of the maps

$$
R \rightarrow \frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}} \xrightarrow{\Psi_{T}} B_{T} \hookrightarrow \mathbf{P}\left(Q_{T}\right) .
$$

Remark 3.3. Let J be an H-prime ideal of R and $J \cap \wp_{n}=T$. Let \mathcal{X}_{T} denote the inverse image in $\frac{R y_{T}^{-1}}{\langle T\rangle\rangle_{T}^{-1}}$ of the multiplicative set of B_{T} generated by all the X_{k} 's. This is a right Ore set and the corresponding localization R_{T} satisfies that $R_{T} \cong \mathbf{P}\left(Q_{T}\right)$. Clearly $R_{T} \subseteq R_{J}$, where $J=\langle T\rangle$ and $R_{J}=(R / J) \mathcal{E}_{J}^{-1}, \mathcal{E}_{J}$ is
the set of all non-zero homogeneous elements, with respect to certain \mathbb{Z}^{n}-grading (see [1, Theorem 6.6]). In the general case one cannot expect $R_{T}=R_{J}$. The following is a counter example; take $n=2, T=\left\{\Omega_{2}\right\}$, then the homogeneous element $\overline{1}+\bar{y}_{1} \bar{x}_{1}$, of degree $(0,0) \in \mathbb{Z}^{2}$, is not invertible in R_{T}.

Theorem 3.4. $\quad \Phi_{T}$ induces a homeomorphism Φ_{T}^{-1} between $\operatorname{Spec}\left(\mathbf{P}\left(Q_{T}\right)\right)$ and $\operatorname{Spec}_{T}(R)$ defined by:

$$
\begin{array}{rlll}
\Phi_{T}^{-1}: & \operatorname{Spec}\left(\mathbf{P}\left(Q_{T}\right)\right) & \rightarrow & \operatorname{Spec}_{T}(R) \\
& \mathcal{P} & \mapsto & \Phi_{T}^{-1}(\mathcal{P})
\end{array}
$$

Proof. Notice that $\Phi_{T}^{-1}(\mathcal{P})$ is prime because every prime ideal in R or $\mathbf{P}\left(Q_{T}\right)$ is completely prime. Next, we have to show that $\Phi_{T}^{-1}(\mathcal{P}) \in \operatorname{Spec}_{T}(R)$ for all $\mathcal{P} \in \operatorname{Spec}\left(\mathbf{P}\left(Q_{T}\right)\right)$. Put $\Phi_{T}^{-1}(\mathcal{P}) \cap \wp_{n}=T^{\prime}$, clearly $T \subseteq T^{\prime}$. Assume for a contradiction that $T \neq T^{\prime}$. If there exits an index k such that $\Omega_{k} \in T^{\prime} \backslash T$, then $-W_{k}=\Phi_{T}\left(\Omega_{k}\right) \in \mathcal{P}$, a contradiction. Otherwise, $\operatorname{Ind}(T)=\operatorname{Ind}\left(T^{\prime}\right)$ and there exists $v_{k} \in T^{\prime} \backslash T$. We have in particular that $k \notin \mathcal{I}_{T} \cap \mathcal{J}_{T}$. This entails that $0 \neq V_{k}=\Phi_{T}\left(v_{k}\right) \in \mathcal{P}$, which is a contradiction. Let us show the injectivity of Φ_{T}^{-1}. If $\mathcal{P}, \mathcal{P}^{\prime} \in \operatorname{Spec}\left(\mathbf{P}\left(Q_{T}\right)\right)$ are such that $\Phi_{T}^{-1}(\mathcal{P})=\Phi_{T}^{-1}\left(\mathcal{P}^{\prime}\right)$ then $\frac{\Phi_{T}^{-1}(\mathcal{P}) \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}}=\frac{\Phi_{T}^{-1}\left(\mathcal{P}^{\prime}\right) \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}}$ is a prime ideal of $\frac{R \mathcal{Y}_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}}$, because $\Phi_{T}^{-1}(\mathcal{P}) \cap \mathcal{Y}_{T}=$ $\Phi_{T}^{-1}\left(\mathcal{P}^{\prime}\right) \cap \mathcal{Y}_{T}=\emptyset$. Apply Ψ_{T} to get $\mathcal{P}=\mathcal{P}^{\prime}$. To prove the surjectivity, let $P \in \operatorname{Spec}_{T}(R)$. Thus $P \cap \mathbb{Y}_{T}=\emptyset$ and $\frac{P y_{T}^{-1}}{\langle T\rangle Y_{T}^{-1}}$ is a prime ideal in $\frac{R y_{T}^{-1}}{\langle T\rangle \mathscr{Y}_{T}^{-1}}$. The ideal $\mathcal{P}=\Psi_{T}\left(\frac{P y_{T}^{-1}}{\langle T\rangle \mathcal{Y}_{T}^{-1}}\right)$ satisfies $\mathcal{P} \cap \mathbb{Y}_{T}=\emptyset$. We will show that $X_{k} \notin \mathcal{P}$ for all X_{k} in $\mathbf{P}\left(Q_{T}\right)$. Suppose $X_{k} \in \mathcal{P}$ for a contradiction. The two possible values of $\Psi_{T}^{-1}\left(X_{k}\right)$ are $\overline{x_{k}}$ and $-\overline{y_{k}}{ }^{-1} \overline{\Omega_{k}}$. In the first case we have the contradiction $x_{k} \in P$, while the second value gives $\Omega_{k} \in P$, another contradiction. So \mathcal{P} is the inverse image of P.

Corollary 3.5. Let T be an admissible set of $\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)$. Then $\operatorname{Spec}_{T}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ is homeomorphic to $\operatorname{Spec}\left(Z\left(\mathbf{P}\left(Q_{T}\right)\right)\right)$, where $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ is the center of the \mathbf{k}-algebra $\mathbf{P}\left(Q_{T}\right)$.

Proof. By [3, Corollary 1.5(b)], the contraction $\mathcal{P} \rightarrow \mathcal{P} \cap Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ gives a homeomorphism between $\operatorname{Spec}\left(\mathbf{P}\left(Q_{T}\right)\right)$ and $\operatorname{Spec}\left(Z\left(\mathbf{P}\left(Q_{T}\right)\right)\right)$. The result follows from Theorem 3.4.

By [3, 1.3], the center $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ is a Laurent polynomial ring. The variables of this ring are determined by the solutions of the system of equations $\mathcal{M}_{T} \boldsymbol{m}=0$, where \mathcal{M}_{T} is the matrix with integer entries $k_{i j}$, such that $Q_{T}=\left(q^{k_{i j}}\right)$. Our next purpose is to compute the number of independent variables in $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$.

Lemma 3.6. Let $A \in \mathbf{M}_{m \times m}(\mathbb{Z}), v \in \mathbf{M}_{m \times 1}(\mathbb{Z}), w \in \mathbf{M}_{1 \times m}(\mathbb{Z})$ and ρ a nonzero integer. Then

$$
\operatorname{rank}\left(\begin{array}{ccc}
A & v & v \\
w & 0 & -\rho \\
w & \rho & 0
\end{array}\right)=2+\operatorname{rank} A
$$

and

$$
\operatorname{rank}\left(\begin{array}{cccc}
A & v & v & v \\
w & 0 & -2 & -1 \\
w & 2 & 0 & 1 \\
w & 1 & -1 & 0
\end{array}\right)=2+\operatorname{rank} A
$$

Proof. Compute the ranks by using minors and suitable row and column elementary operations.

Proposition 3.7. Let T be an admissible set, and let $\mathcal{M}_{T} \in \mathbf{M}_{t \times t}(\mathbb{Z})$ be its associated matrix. Then rank $\mathcal{M}_{T}=t-\operatorname{ocomp}(T)$.

Proof. We proceed by induction on n. The cases $n=1,2$ are easy. Assume $n>2$ and let $j=\max (\operatorname{ind}(T))$. If T has some removable index i, let T^{\prime} be the admissible subset of $\wp_{n} \backslash\left\{x_{i}, y_{i}\right\}$ obtained by removing x_{i}, y_{i} from T. Notice that $\operatorname{ocomp}(T)=\operatorname{ocomp}\left(T^{\prime}\right)$. Let $\mathcal{M}_{T^{\prime}}^{n-1}$ the matrix associated to T^{\prime} with respect to Q_{n-1}. By induction hypothesis, $\operatorname{rank} \mathcal{M}_{T^{\prime}}^{n-1}=t^{\prime}-\operatorname{ocomp}\left(T^{\prime}\right)$. But $t=t^{\prime}$; in fact, $\mathcal{M}_{T}=\mathcal{M}_{T^{\prime}}^{n-1}$ and, thus, $\operatorname{rank} \mathcal{M}_{T}=t-\operatorname{ocomp}(T)$. For T without removable indices, we will consider several cases. Decompose $T=T^{\prime} \cup T_{r}$, where T_{r} is the last connected component of T, and put $i_{r}=\min \left(\operatorname{ind}\left(T_{r}\right)\right)$.

Case 1. If $j<n$, then

$$
\mathcal{M}_{T}=\left(\begin{array}{ccc}
\mathcal{M}_{T}^{n-1} & v & v \\
w & 0 & -2 \\
w & 2 & 0
\end{array}\right)
$$

where \mathcal{M}_{T}^{n-1} is the matrix associated to T with respect to Q_{N-1}. By induction hypothesis, $\operatorname{rank} \mathcal{M}_{T}^{n-1}=t-2-\operatorname{ocomp}(T)$. By Lemma 3.6, $\operatorname{rank} \mathcal{M}_{T}=$ $t-\operatorname{ocomp}(T)$.

Case 2. Assume $j=n$ and $i_{r}=j$. In this case, necessarily, $T_{r}=\left\{\Omega_{n}\right\}$ and we have

$$
\mathcal{M}_{T}=\left(\begin{array}{cccc}
\mathcal{M}_{T}^{n-2} & v & v & v \\
w & 0 & -2 & -1 \\
w & 2 & 0 & 1 \\
w & 1 & -1 & 0
\end{array}\right)
$$

By induction hypothesis, $\operatorname{rank} \mathcal{M}_{T^{\prime}}^{n-2}=t-3-\operatorname{comp}\left(T^{\prime}\right)$. In this case, $\operatorname{ocomp}\left(T^{\prime}\right)=\operatorname{ocomp}(T)-1$ which, in conjunction with Lemma 3.6, gives our equality $\operatorname{rank} \mathcal{M}_{T}=t-\operatorname{ocomp}(T)$.

Case 3. Assume $i_{r}<j=n$ with $j=i_{r}+1$. In this case, $T_{r}=\left\{\Omega_{n-1}, \Omega_{n}, x_{n}\right\}$ or $T_{r}=\left\{\Omega_{n-1}, \Omega_{n}, y_{n}\right\}$. Therefore,

$$
\mathcal{M}_{T}=\left(\begin{array}{ccc}
\mathcal{M}_{T}^{n-2} & v & v \\
w & 0 & \varepsilon \\
w & -\varepsilon & 0
\end{array}\right)
$$

In this case $\operatorname{ocomp}(T)=\operatorname{ocomp}\left(T^{\prime}\right)$. Use again induction and Lemma 3.6.
Case 4. This is the last case, where $i_{r}+1<j=n$. Here, $T_{r}=T_{r}^{\prime} \cup\left\{\Omega_{n-1}\right.$, $\left.\Omega_{n}, u_{n-1}, u_{n}\right\}$ where $u_{n-1} \in\left\{y_{n-1}, x_{n-1}\right\}, u_{n} \in\left\{y_{n}, x_{n}\right\}$ and $T_{r}^{\prime} \neq \emptyset$ is an admissible set with length $\left(\mathrm{T}_{\mathrm{r}}^{\prime}\right)=$ length $\left(\mathrm{T}_{\mathrm{r}}\right)-2$. Now,

$$
\mathcal{M}_{T}=\left(\begin{array}{ccc}
\mathcal{M}_{T^{\prime \prime}}^{n-2} & v & v \\
w & 0 & \varepsilon \\
w & -\varepsilon & 0
\end{array}\right)
$$

where $T^{\prime \prime}=T^{\prime} \cup T_{r}^{\prime}$ and $\varepsilon \in\{1,-1\}$. By induction, $\operatorname{rank} \mathcal{M}_{T^{\prime \prime}}^{n-2}=t-2-$ $\operatorname{ocomp}\left(T^{\prime \prime}\right)$. But $\operatorname{ocomp}\left(T^{\prime \prime}\right)=\operatorname{ocomp}(T)$ and this implies, by Lemma 3.6, the desired equality.

Definition 3.8. Let T be an admissible set and $\mathcal{M}_{T} \in \mathbf{M}_{t \times t}(\mathbb{Z})$, the associated matrix. The linear system of equations over the integers $\mathcal{M}_{T} \boldsymbol{m}=0$ where $\boldsymbol{m} \in \mathbb{Z}^{t}$ will be called the quantum linear system associated to T. We denote by $\operatorname{Null}\left(\mathcal{M}_{T}\right)$ the solution free abelian group $\left\{\boldsymbol{m} \in \mathbb{Z}^{t}: \mathcal{M}_{T} \boldsymbol{m}=0\right\}$.

Corollary 3.9. Let T be an admissible set. Then the rank of the free abelian group $\operatorname{Null}\left(\mathcal{M}_{T}\right)$ is ocomp (T).

Proof. This is the consequence of Proposition 3.7.
Let T be an admissible set and let

$$
\left\{U^{\alpha}=U_{1}^{\alpha_{1}}, \ldots, U_{t}^{\alpha_{t}}: \alpha=\left(\boldsymbol{\alpha}_{1}, \ldots, \alpha_{t}\right) \in \mathbb{Z}^{t}\right\}
$$

be the canonical k-basis of $\mathbf{P}\left(Q_{T}\right)$, where the U_{l} 's denote the variables in A_{T} (see (10)). Let

$$
\left\{\boldsymbol{m}_{1}^{T}, \ldots, \boldsymbol{m}_{k}^{T}\right\}
$$

be a basis of $\operatorname{Null}\left(\mathcal{M}_{T}\right)$. By Corollary 3.9, we have that $k=\operatorname{ocomp}(T)$. By [3, 1.3]

$$
\begin{equation*}
Z\left(\mathbf{P}\left(Q_{T}\right)\right)=\mathbf{k}\left[\left(U^{\boldsymbol{m}_{1}^{T}}\right)^{ \pm 1}, \ldots,\left(U^{\boldsymbol{m}_{k}^{T}}\right)^{ \pm 1}\right] \tag{12}
\end{equation*}
$$

This is a Laurent polynomial ring in the variables $\left(U^{\boldsymbol{m}_{1}^{T}}\right)^{ \pm 1}, \ldots,\left(U^{\boldsymbol{m}_{k}^{T}}\right)^{ \pm 1}$ and, thus, it is canonically isomorphic to the group algebra $\mathbf{k}\left[\mathbb{Z}^{\operatorname{ocomp}(T)}\right]$. Given a prime ideal \mathfrak{p} of $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$, we denote by \mathfrak{p}^{e} its extension to $\mathbf{P}\left(Q_{T}\right)$. The set of maximal ideals of $\mathbf{k}\left[\mathbb{Z}^{\circ \operatorname{comp}(T)}\right]$ is denoted by $\operatorname{Max}\left(\mathbf{k}\left[\mathbb{Z}^{\text {ocomp }(T)}\right]\right)$. We combine our results with [3, 1.3 and Corollary 1.5] to get our main theorem.

Theorem 3.10. Let

$$
\mathfrak{S p}=\left\{(T, \mathfrak{p}) \mid T \text { is an admissible set }, \mathfrak{p} \in \operatorname{Spec}\left(\mathbf{k}\left[\mathbb{Z}^{\text {ocomp }(T)}\right]\right)\right\}
$$

and

$$
\mathcal{P}=\left\{(T, \mathfrak{p}) \mid T \text { is an admissible set, } \mathfrak{p} \in \operatorname{Max}\left(\mathbf{k}\left[\mathbb{Z}^{o c o m p}(T)\right]\right)\right\} .
$$

If q is not a root of unity. Then the map $(T, \mathfrak{p}) \mapsto \Phi_{T}^{-1}\left(\mathfrak{p}^{e}\right)$ defines a bijection between $\mathfrak{g p}$ and the prime spectrum $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ whose restriction to \mathcal{P} is a bijection onto the primitive spectrum $\operatorname{Prim}\left(\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$.

Proof. The bijection between $\mathfrak{H p}$ and $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right.$) follows from Theorem 3.4, Corollary 3.5 and (12) in conjunction with the stratification (1). By [13, Example 3.3] the algebra $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right.$) has a $\left(\mathbb{N}^{2 n},+\right)$-filtration with a semi commutative associated $\mathbb{N}^{2 n}$-graded algebra. Then, using [18, Section 3], $\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times n}\right)\right)$ satisfies the Nullstellensatz over \mathbf{k}. Therefore the bijection between \mathcal{P} and $\operatorname{Prim}\left(\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ follows in the same way taking into account [3, Corollary 1.5.(c)].

Remark 3.11. Let T be an admissible set. By the Proposition 3.7 and [4, Proposition 1.3] $\operatorname{ocomp}(T)=0$ if and only if $\mathbf{P}\left(Q_{T}\right)$ is a simple algebra. In this case, $\operatorname{Spec}_{T}(R)=\{\langle T\rangle\}$.

From now on, we suppose that \mathbf{k} is algebraically closed. Let T be an admissible set and let $\left\{\boldsymbol{m}_{1}^{T}, \ldots, \boldsymbol{m}_{k}^{T}\right\}, k=\operatorname{ocomp}(T)$ be a basis of $\operatorname{Null}\left(\mathcal{M}_{T}\right)$. The maximal ideals of $Z\left(\mathbf{P}\left(Q_{T}\right)\right)$ are of the form

$$
\mathfrak{p}(\lambda)=\left\langle U^{\boldsymbol{m}_{1}^{T}}-\lambda_{1}, \ldots, U^{\boldsymbol{m}_{k}^{T}}-\lambda_{k}\right\rangle
$$

for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in\left(\mathbf{k}^{*}\right)^{\operatorname{ocomp}(T)}$. By Theorem 3.10, the primitive ideals of $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ are of the form $\Phi_{T}^{-1}\left(\mathfrak{p}(\lambda)^{e}\right)$, when T runs the set of all admissible sets. We shall exhibit a procedure to compute them from the solutions of the quantum systems defined in 3.8.

For $\boldsymbol{m}=\left(m_{1}, \ldots, m_{t}\right) \in \mathbb{Z}^{t}$ we denote,

$$
\boldsymbol{m}^{+}=\frac{1}{2}\left(m_{1}+\left|m_{1}\right|, \ldots, m_{t}+\left|m_{t}\right|\right)
$$

and
$\boldsymbol{m}^{-}=\frac{1}{2}\left(m_{1}-\left|m_{1}\right|, \ldots, m_{t}-\left|m_{t}\right|\right)$
where $|m|$ is the absolute value of $m \in \mathbb{Z}$. Then the inverse image of $\mathfrak{p}(\lambda)$ in A_{T} is

$$
\begin{equation*}
\left\langle U^{\boldsymbol{m}_{1}^{T^{+}}}-\lambda_{1} U^{-\boldsymbol{m}_{1}^{T^{-}}}, \ldots, U^{\boldsymbol{m}_{k}^{T^{+}}}-\lambda_{k} U^{-\boldsymbol{m}_{k}^{T^{-}}}\right\rangle \tag{13}
\end{equation*}
$$

For each $s=1, \ldots, k$, let $Y_{\boldsymbol{m}_{s}^{T}}\left(\lambda_{s}\right)$ denote an element of $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times n}\right)\right)$ such that

$$
\Psi_{T}\left(Y_{\boldsymbol{m}_{s}^{T}}\left(\lambda_{s}\right)+\langle T\rangle\right)=U^{\boldsymbol{m}_{s}^{T^{+}}}-\lambda_{s} U^{-\boldsymbol{m}_{s}^{T^{-}}}
$$

Then

$$
\Phi_{T}^{-1}\left(\mathfrak{p}(\boldsymbol{\lambda})^{e}\right)=\left\langle T, Y_{\boldsymbol{m}_{1}^{T}}\left(\lambda_{1}\right), \ldots, Y_{\mathbf{m}_{k}^{T}}\left(\lambda_{k}\right)\right\rangle
$$

This gives a description of $\operatorname{Prim}\left(\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times n}\right)\right)\right)$ close to [2, Theorem 7.1].
Corollary 3.12. The primitive ideals of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times n}\right)\right)$, when q is not a root of unity, are the maximal elements of each stratum $\operatorname{Spec}_{\mathrm{T}(\mathrm{R})}$, where T is an admissible set. So they are of the form

$$
\left\langle T, Y_{\boldsymbol{m}_{1}^{T}}\left(\lambda_{1}\right), \ldots, Y_{\boldsymbol{m}_{k}^{T}}\left(\lambda_{k}\right\rangle\right\rangle
$$

where $k=\operatorname{ocomp}(T)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in\left(\mathbf{k}^{*}\right)^{k}$.
Remark 3.13. 1) When T is connected, the elements $Y_{\boldsymbol{m}}^{T_{1}}\left(\lambda_{1}\right)$ are the $a-\lambda_{1} b$ of [2, Definition 4.2.(3)]. However, if T is not connected, then the elements $Y_{m_{s}^{T}}\left(\lambda_{s}\right)$ can be different from the elements $Y_{T_{s}}\left(\lambda_{s}\right)$ defined in [2, page 542], as can be easily checked in the case $\mathcal{O}_{q}\left(\mathfrak{G p}\left(\mathbf{k}^{2 \times 3}\right)\right)$ and $T=\left\{y_{1}, \Omega_{1}, \Omega_{3}\right\}$.
2) Let T be a connected admissible set. So if T is of even length then $\operatorname{Spec}_{T}(R)=\{\langle T\rangle\}$, and if T is of odd length then $\operatorname{Spec}_{T}(R)=\{\langle T\rangle \subset$ $\left.\left\langle T, Y_{m_{1}^{T}}(\lambda)\right\rangle\right\}, \boldsymbol{m}_{1}^{T}$ is a basis of $\operatorname{Null}\left(\mathcal{M}_{T}\right)$.

Example 3.14. We give the prime and primitive spectra of $\mathcal{O}_{q}\left(\mathfrak{S p}\left(\mathbf{k}^{2 \times 2}\right)\right)$ when q is not a root of unity. Observe that in this case all the admissible sets are connected, so the prime ideals of $\mathcal{O}_{q}\left(\mathfrak{F p}\left(\mathbf{k}^{2 \times 2}\right)\right)$ are of the form 2) in Remark 3.13. The lattice of prime ideals of $\mathcal{O}_{q}\left(\mathfrak{s p}\left(\mathbf{k}^{2 \times 2}\right)\right)$ is drawn in the Figure 1, The primitive ideal generated by a set A is denoted by $\langle\langle A\rangle\rangle$, while prime but not primitive ideals are denoted by $\langle A\rangle$. A line connecting two prime ideals means inclusion. When both ideals belong to the same stratum, we use a wavy line. Lastly, α denotes an arbitrary non-zero element in \mathbf{k}.

REFERENCES

1. Goodearl, K.R.; Letzter, E.S. The Dixmier-Moenglin Equivalence in Quantum Coordinate Rings and Quantized Weyl Algebras. Trans. Amer. Math. Soc. 2000, (352), 1381-1403.
2. Oh, Sei-Qwon. Primitive Ideals of the Coordinate Ring of Quantum Symplectic Space. J. Algebra 1995, (174), 531-552.
3. Goodearl, K.R.; Letzter, E.S. Prime and primitive spectra of multiparameter quantum affine spaces. Trends in ring theory (V. et alt. Dlab, ed.), CMS Conf. Proc. 1998, (22), 39-58.
4. McConnell, J.C.; Pettit, J.J. Crossed Products and Multiplicative Analogues of Weyl Algebras. J. London Math. Soc. 1988, 2 (38), 47-55.
5. Musson, I.M. Ring Theoretic Properties of the Coordinate Rings of Quantum Symplectic and Euclidean Space in Ring Theory, Proc. Biennial Ohio State-Denison Conf. 1992 Jain, S.K., Rizvi, S.T., Eds.; World Scientific; Singapore, 1993; 248-258,
6. Reshetikhin, N.Yu.; Takhtadzhyan, N.Yu.; Faddeev, L.D. Quantization of Lie groups and Lie algebras. Leningrad Math. J 1990, (1), 193-225.
7. Smith, S.P. Quantum groups: An introduction and survey for ring theorists. In Noncommutative Rings; Montgomery, S., Small, L., Eds.; MSRI Publ, 1992; (24), 131-178.
8. Oh, Sei-Qwon. Catenarity in a Class of Iterated Skew Polynomial Rings. Comm. Algebra 1997, 25 (1), 37-49.
9. Goodearl, K.R; Letzter, E.S. Prime Factor Algebras of the Coordinate Ring of Quantum Matrices. Proc. Amer. Math. Soc. 1994, (121), 1017-1025.
10. Goodearl, K.R. Prime spectra of quantized coordinate rings; Proceeding of Euroconference on Interactions Between Ring Theory and Representation Algebras. Van Oystaeyen, F., Saorin, M., Eds.; Dekker: New York (2000), Murcia, 1998; 205-237.
11. Goodearl, K.R. Prime ideals in Skew Polynomial Rings and Quantized Weyl algebras. J. Algebra 1992, (150), 324-377.
12. Krause, G.R.; Lenagan, T.H. Growth of Algebras and Gelfand-Kirillov Dimension; Research Notes in Mathematics. Pitman Pub. Inc.: London, 1985; Vol. 116.
13. Gómez-Torrecillas, J. Gelfand-Kirillov Dimension of Multi-filtered algebras. P. Edinburgh Math. Soc. 1999, 155-168.
14. Bueso, J.L.; Castro, F.J.; Gómez-Torrecillas, J.; Lobillo, F.J. Computing the Gelfand-Kirillov dimension. SAC Newsletter 1996; (1), 39-52, http://www.ugr.es/ ~ torrecil/Sac.pdf
15. Bueso, J.L.; Castro, F.J.; Gómez-Torrecillas, J.; Lobillo, F.J. An introduction to effective calculus in quantum groups; In Rings, Hopf algebras and Brauer groups; Caenepeel, S., Verschoren, A., Eds.; 1998.
16. Dixmier, J. Algèbres enveloppantes, Gauthier-Villars, 1974.
17. Rigal, L. Spectre de l'algèbre de Weyl quantique. Beiträge zur Algebra and Geometrie 1996, 1 (37), 119-148.
18. Bueso, J.L.; Gómez-Torrecillas, J.; Lobillo, F.J. Re-filtering and exactness of the Gelfand-Kirillov dimension. preprint, 1999.

Received February 2000
Revised November 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request
Permission/Reprints Here" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081AGB100105016

