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INTRODUCTION

In [1], K. R. Goodearl and E. S. Letzter study prime and primitive
ideals in certain iterated Ore extensions of an infinite field k of arbitrary
characteristic, which include several quantized algebras at non roots of
unity, among them the quantized algebras Oqðspk2�nÞ of symplectic spaces.
The general framework to work in is to consider some group H acting as
automorphism on a ring R which give the set H � SpecðRÞ consisting of all
H-prime ideals of R. The H-stratification of the prime spectrum SpecðRÞ is
then defined as

SpecðRÞ ¼
]

J2H�SpecðRÞ
SpecJðRÞ; ð1Þ

where each stratum SpecJ ðRÞ consists of those prime ideals P of R such thatT
h2H hðPÞ ¼ J .

In the case that H is a torus of rank n acting rationally on a noetherian
algebra R over an infinite field k (see [1] for details), the strata SpecJ ðRÞ
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corresponding to completely prime H-invariant ideals J of R are described
in [1, Theorem 6.6] as follows.

(a) For each completely prime H-invariant ideal J of R, there exists
an Ore set EJ in the algebra R=J such that the localization
map R ! R=J ! RJ ¼ ðR=JÞ½E�1

J � induces a homeomorphism of
SpecJ ðRÞ onto SpecðRJ Þ.

(b) Contraction and extension induce mutually inverse homeo-
morphisms between SpecðRJ Þ and SpecðZðRJ ÞÞ, where ZðRJ Þ is
the centre of RJ .

(c) ZðRJ Þ is a commutative Laurent polynomial ring over an exten-
sion of k, in n of fewer indeterminates.

The foregoing description of the H-strata applies to iterated Ore
extensions of k under suitable conditions ([1, Section 4]), which include
Oqðspk2�nÞ. For such a type of iterated Ore extensions, there are finitely
many H-prime ideals which are all completely prime.

The aim of this note is to give an more explicit description of the H-
stratification of the spectra of the coordinate algebras of quantum sym-
plectic spaces Oqðspk2�nÞ in the following aspects.

1. We prove that the H-prime ideals are just the ideals generated
by the admissible sets in the sense of [2]. More explicitly, consider the
finite subset }n of Oqðspðk2�nÞÞ as defined later in (7). The map
J 7! J \ }n gives a bijection between the H-prime ideals of Oqðspðk2�nÞÞ
and the admissible subsets of }n (Proposition 2.5). As a consequence, we
compute the number of H-prime ideals and, hence, the number of H-
strata (Corollary 2.6).

2. For each H-prime ideal J, let T ¼ J \ }n the corresponding
admissible set. We give explicitly a McConnell-Pettit k-algebra PðQT Þ, which
is strictly contained in RJ , such that the J-th stratum is described as

SpecJðOqðspðk2�nÞÞÞ ¼ fP 2 SpecðOqðspðk2�nÞÞÞjP \ }n ¼ Tg;

and it is homeomorphic to the spectrum of PðQT Þ (Theorem 3.4).
3. By using [3], we obtain that the each stratum is homeomorphic

to the spectrum of the centre ZðPðQT ÞÞ of PðQT Þ for a suitable admissible
set T. We prove that the number of indeterminates in the Laurent
polynomial ring ZðPðQT ÞÞ over k is exactly the number of connected
components of odd length in the connected decomposition of T
(Proposition 3.7).

Our methods allow to give an effective description (modulo Commu-
tative Algebra) of SpecðOqðspðk2�nÞÞÞ for a given n (Theorem 3.10). This is
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possible because each prime ideal in the stratum SpecT ðOqðspðk2�nÞÞÞ is
recognized as the inverse image under an explicitly defined algebra homo-
morphism FT connecting Oqðspðk2�nÞÞ and the McConnell-Pettit algebra
PðQT Þ (Theorem 3.4). It follows from [1, Corollary 6.9) that the primitive
ideals of Oqðspðk2�nÞÞ are precisely the maximal prime ideals of each stra-
tum, which allows, in conjunction with our results, to deduce a clean
description of the primitive spectrum PrimðOqðspðk2�nÞÞÞ very close to
[2, Theorem 7.1]. As an illustration, we compute SpecðOqðspðk2�nÞÞÞ and
PrimðOqðspðk2�2ÞÞÞ, in the algebraically closed case (see the Figure 1).

1 DEFINITIONS AND BASIC PROPERTIES

Throughout this note, we will consider different quantum spaces, so
we will use some convenient notation. Let L ¼ ðlijÞ be a p � p matrix with
entries in k, such that lii ¼ 1 and lji ¼ l�1

ij . Consider the k-algebra
kL½t1; . . . ; tp� generated by t1; . . . ; tp subject to the relations titj ¼ lijtjti. This
is called the coordinate algebra of the p-dimensional quantum affine space
associated to L and it is the iterated Ore extension

kL½t1; . . . ; tp� ¼ k½t1�½t2;s2� 	 	 	 ½tp; sp� ð2Þ

where siðtjÞ ¼ lijtj for every 1 
 j < i 
 m. This k-algebra is a noetherian
domain, and its skew field of fractions is denoted by kLðt1; . . . ; tpÞ. An
useful intermediate algebra is the McConnell–Pettit algebra PðQLÞ ¼
kL½t�1

1 ; . . . ; t�1
p � (see [4]).

Figure 1. The prime spectrum of Oqðspðk2�2ÞÞ (k is algebraically closed).
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Definition 1.1. Let q be a non-zero element in k. I. M Musson found [5, x1.1]

that the coordinate ring Oqðspðk2�nÞÞ of the quantum symplectic space ðcf. ½6;
Definition 14� or ½7; x4�Þ is the k-algebra generated by y1; x1; . . . ; yn; xn satis-
fying the following relations

yjxi ¼ q�1xiyj; yjyi ¼ qyiyj ð1 
 i < j 
 nÞ
xjxi ¼ q�1xixj; xjyi ¼ qyixj ð1 
 i < j 
 nÞ

xiyi � q2yixi ¼ ðq2 � 1Þ
Xi�1

l¼1

qi�lylxl ð1 
 i 
 nÞ
ð3Þ

By [2, Proposition 1.10] or [8, Example 6], Oqðspðk2�nÞÞ can be written
as an iterated Ore extension

R0  R1  	 	 	  Rn ¼ Oqðspðk2�nÞÞ

where R0 ¼ k and Rk ¼ Rk�1½yk ; ak �½xk ; bk ; dk � for k � 1, with

akðxlÞ ¼ q�1xl ¼ bkðxlÞ ð1 
 l < k 
 nÞ
akðylÞ ¼ qyl ¼ bkðylÞ ð1 
 l < k 
 nÞ
bkðykÞ ¼ q2yk ð1 < k 
 nÞ

dkðRk�1Þ ¼ 0; dkðykÞ ¼ ðq2 � 1Þ
Xk�1

l�1

qk�lylxl ð1 
 k 
 nÞ

The quantum space attached to Oqðspðk2�nÞÞ is kQn
½Y1;X1; . . . ; Yn;Xn�,

where Qn is the matrix

1
CCCCCCCCCA

0
BBBBBBBBB@

Y1 X1 Y2 X2 	 	 	 Yn Xn

Y1 1 q�2 q�1 q�1 	 	 	 q�1 q�1

X1 q2 1 q q 	 	 	 q q
Y2 q q�1 1 q�2 	 	 	 q�1 q�1

X2 q q�1 q2 1 	 	 	 q q

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

Yn q q�1 q q�1 	 	 	 1 q�2

Xn q q�1 q q�1 	 	 	 q2 1

ð4Þ

In order to classify the prime ideals of Oqðspðk2�nÞÞ we shall assume
that the parameter q is not a root of unity. Consider the elements
Oi ¼

Pi
l¼1 qi�lylxl ði � 1Þ. For i ¼ 0, let us write O0 ¼ 0. From [2, Lemma

1.3] we get

Oiyk ¼ q2ykOi; Oixk ¼ q�2xkOi ðk 
 iÞ
Oixk ¼ xkOi; Oiyk ¼ ykOi ði < kÞ
OiOk ¼ OkOi ðfor all i; kÞ

ð5Þ
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Oi ¼
X
j<l
i

qi�lylxl þ qi�jOj; ðj 
 iÞ

xiyi � q2yixi ¼ ðq2 � 1ÞqOi�1

xiyi � yixi ¼ ðq2 � 1ÞOi:

ð6Þ

Remark 1.2. Since dkbk ¼ q2bkdk for every index k > 1 and q is not a root
of unity, it follows from [9, Theorem 2.3] that every prime ideal of
Oðspðk2�nÞÞ is completely prime.

Following [2], a subset T of

}n ¼ fy1;x1;O1; . . . ; yn; xn;Ong ð7Þ

is said to be admissible if it satisfies the following conditions

ð1Þ xi or yi 2 T , Oi and Oi�1 2 T; 8i � 2:

ð2Þ x1 or y1 2 T , O1 2 T:
ð8Þ

For such a set we denote by indðTÞ ¼ fi 2 f1; . . . ; ngj Oi 2 Tg; an
index i 2 indðTÞ is said to be removable if yi 2 T and xi 2 T . We say that T is
connected if for any i; j in indðTÞ such that i < k < j, then k 2 indðTÞ. Let
J T ¼ fj 2 f1; . . . ; ngj yj 2 Tg, and IT ¼ fi 2 f1; . . . ; ngj xi 2 Tg, one can
observe that T is an admissible set with no removable indices if and only
if J T \ IT ¼ ;. Let S ¼ T \ fy1; x1; . . . ; yn; xng, where T is a connected
admissible set, the length of T is defined by

lengthðTÞ ¼ jSj if 1 2 indðTÞ
jSj þ 1 if 1 62 indðTÞ

	

Let T1 [ T2 [ 	 	 	 [ Tr be the connected decomposition of T. The length of T
is defined by lengthðTÞ ¼

Pr
k¼1 lengthðTkÞ. The reader is referred to [2] for

more properties of admissible sets.

2 THE COMPUTATION OF THE H-PRIME IDEALS

Consider the algebraic torus H ¼ ðk�Þn
of rank n acting on

Oqðspðk2�nÞÞ by k-algebra automorphisms (see [1, 5.2] or [10, 3.5]). In this
section we will show that the H-prime ideals of Oqðspðk2�nÞÞ are just the
ideals generated by admissible sets. We shall need some control on the
Gelfand-Kirillov dimension of certain localizations of Oqðspðk2�nÞÞ, which
is provided by the following proposition.
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Proposition 2.1. Let W be any subset of f1; . . . ; ng and consider the multi-
plicative subset Y of Oqðspðk2�nÞÞ generated by all yk ; k 2 W . Then Y is a right
Ore set and the Gelfand–Kirillov dimension of Oqðspðk2�nÞÞY�1 equals 2n.

Proof. The multiplicative subset generated by a single yk is right Ore by
[11, Lemma 1.4]. This, in conjunction with [12, Lemma 4.1], gives that Y is
right Ore and, thus, the algebra Oqðspðk2�nÞÞY�1 makes sense. It is well-
known that GKdimðOqðspðk2�nÞÞÞ 
 GKdimðOqðspðk2�nÞÞY�1Þ, so we will
prove the other inequality. Consider the k-algebra S generated by the
variables y1; x1; . . . ; yn; xn, satisfying the relations (3) and new variables
zk ; k 2 W , with the following additional relations for each k 2 W .

zjzk ¼ qzkzj ð j 2 W; j > kÞ
xjzk ¼ q�1zkxj ð1 
 j 
 n; j 6¼ kÞ
xkzk ¼ q�2zkxk þ ð1 � q2Þ

Pk�1
l¼1 qk�l�2ylxlz

2
k

yjzk ¼ qzkyj ð1 
 j < kÞ
yjzk ¼ q�1zkyj ðk < j 
 nÞ
ykzk ¼ zkyk ¼ 1

ð9Þ

There is a surjective homomorphism of algebras S ! Oqðspðk2�nÞÞY�1

sending yi to yi; xi to xi and zk to y�1
k . Therefore, GKdimðOqðspðk2�nÞÞ

Y�1Þ 
 GKdimðSÞ and, thus, it is enough to prove that this last dimension
equals 2n. To see this, order the variables

zi1
< 	 	 	 zim

< y1 < x1 < 	 	 	 < yn < xn

where W ¼ fi1 < 	 	 	 < img. Let 
w be the weighted lexicographical ordering
on N2nþm defined by the vector

w ¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
ðmÞ

; 1; 2; 1; 4; . . . ; 1; 2n; Þ

By [13, Proposition 3.2], S can be endowed with a finite-dimensional N2nþm-
filtration with respect to the order 
w such that the associated N2nþm-graded
algebra G(S) is semi-commutative, namely, it is generated by finitely many
homogeneous elements zi1

; . . . ; zim
; y1; x1; . . . ; yn; xn that commute up to a

nonzero scalar and, in addition, ykzk ¼ 0 for every k 2 W . Therefore, G(S) is
a factor of the coordinate algebra of an 2nþm-dimensional quantum affine
space by the ideal generated by the elements ykzk ; k 2 W . By [14, Theorem
4.4.7] or [15, Theorem 4.10], it is clear that GKdimðGðSÞÞ ¼ 2n þ m � m and,
by [13, Corollary 2.12], we have GKdimGðSÞ ¼ GKdimðGðSÞÞ ¼ 2n. u

Fix an admissible set T, and let T ¼ T1 [ T2 [ . . . Tr be the decom-
position of T in connected components, with il ¼ minðindðTlÞÞ;
jl ¼ maxðindðTlÞÞ. Notice that the following is always true: jl < ilþ1 � 1 for
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all l 2 f1; . . . ; r � 1g. Let QT be the matrix obtained from Qn by deleting the
rows and columns corresponding to the variables xk with k 2 IT ; xil

;
l 2 f1; . . . ; rg (we will not delete the row and the column corresponding to x1

if i1 ¼ 1 and x1 62 T ) and yk with k 2 J T . If k 2 [r
l¼1fil þ 1; . . . ; jlg,

then vk will denote xk if k 62 IT and yk if k 62 J T .
The image of an element r 2 Oqðspðk2�nÞÞ in the factor algebra

Oqðspðk2�nÞÞ=hTi will be denoted by �r. This algebra is generated by �xk ;�yk ,
where k 2 f1; . . . ; i1g [ fj1 þ 1; . . . ; i2g [ 	 	 	 [ fjr�1 þ 1; . . . ; irg [ fjr; . . . ; ng
and �vilþ1; . . . ;�vjl for all l 2 f1; . . . ; rg.

If k 2
Sr

l¼1fil þ 1; . . . ; jlg then the symbol Vk will denote a variable Xk

for k 62 IT , a variable Yk for k 62 J T and the absence of variable when
k 2 IT \ J T . With this notation, define the quantum affine space AT

attached to Oqðspðk2�nÞÞ=hTi as follows

AT ¼ kQT
½Y1;X1;...;Xi1�1;Yi1

; Vi1þ1;...;Vj1
;Yj1þ1;...;Xir�1;

Yir
;Virþ1;...;Vjr

;Yjrþ1;...;Yn;Xn�;
ð10Þ

and consider the algebra BT ¼ ATY
�1
T , where YT is the multiplicative subset

of AT generated by all Yk (it is understood that Yk ¼ Vk for
k 2 fi1 þ 1; . . . ; j1g [ 	 	 	 [ fir þ 1; . . . ; jrgnJ T ). We will denote R ¼ Oq

ðspðk2�nÞÞ, consider the algebra homomorphismCT : R=hTi ! BT defined by

CTð�vkÞ ¼ Vk ðk ¼ i1 þ 1; . . . ; j1;

..

.

ir þ 1; . . . ; jr; and k 62 IT \ J TÞ
CTð�ykÞ ¼ Yk ðk ¼ 1; . . . ; i1;

j1 þ 1; . . . ; i2

..

.

jr�1 þ 1 . . . ir
jr þ 1; . . . ; nÞ

CTð�xkÞ ¼ Xk þ qWk�1Y�1
k ðk ¼ 1; . . . ; i1 � 1;

j1 þ 2; . . . ; i2 � 1;

..

.

jr�1 þ 2; . . . ; ir � 1;

jr þ 2; . . . ; nÞ
CTð�xjlþ1Þ ¼ Xjlþ1 ðl ¼ 1; . . . ; rÞ
CTð�xil

Þ ¼ qWil�1Y�1
il

ðl ¼ 1; . . . ; rÞ

where Wk ¼ �YkXk for every k � 1 and W0 ¼ 0.
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For each k 62 J T , let �Yk be the multiplicative subset of R=hTi generated
by�yk . By [11, 1.4], these are right Ore multiplicative subsets. This implies, after
[12, Lemma 4.1], that the multiplicative subset �YT generated by the �yk ’s, with
k 62 J T is a right Ore set. Therefore, it makes sense to extend CT to ðR=hTiÞ
�Y�1
T . Finally, let YT be the multiplicative subset of R generated by those

yk with k 62 J T . We know that YT \ hTi ¼ ; so by [16, Proposition 3.6.15] we

have
RY�1

T

hTiY�1
T

ffi ð R
hTiÞ �Y

�1
T Þ. By composing CT with this isomorphism we get

a homomorphism of algebras from
RY�1

T

hTiY�1
T

to BT which is also denoted by CT .

A similar algebra homomorphism was given in [17, Section 3.2] for
quantum Weyl algebras. The following is the symplectic version of
[17, Proposition 3.2.1].

Proposition 2.2. The mapping

CT :
RY�1

T

hTiY�1
T

! BT

is a k-algebra isomorphism.

Proof. It is clear that CT is surjective, and hTi  kerðCT Þ. From [12,

Lemma 3.16], we have GKdimð RY�1
T

hTiY�1
T

Þ 
 GKdimðRY�1
T Þ � htðhTiÞ which

implies, by Proposition 2.1, that GKdimð RY�1
T

hTiY�1
T

Þ 
 2n � htðhTiÞ. By [2,

Theorem 3.3], 2n � htðhTiÞ ¼ 2n � lengthðTÞ ¼ 2n � ð
Pr

l¼1ðjl � il þ 1Þ
þcardinalðIT\ > J T ÞÞ. But this last number equals GKdimðBT Þ. Hence,

GKdimð RY�1
T

hTiY�1
T

Þ 
 GKdimðBT Þ. Since hTi is a completely prime ideal [2,

Theorem 2.7], it follows from [12, Proposition 3.15] that CT is a k-algebra
isomorphism. u

Let H denote the torus ðk�Þn
and consider its action on

R ¼ Oqðspðk2�nÞÞ as given in [10, 3.5]

ðh1; . . . ; hnÞ 	 yi ¼ hiyi:

ðh1; . . . ; hnÞ 	 xi ¼ h�1
i xi:

For any subset X  Nn ¼ f1; 2; . . . ; ng, we denote by HX the torus
fðhiÞi2X jhi 2 ðkxÞg. Let T be an admissible set of R and AT the quantum
space attached to R=hTi. We denote by NT the set of indices of the variables
that appear in AT , this is a subset of Nn. By HT we denote the torus HNT

. The
torus HT acts on the variables appearing in AT as follows,

ðhiÞi2NT
	 Yk ¼ hkYk; k 2 NT

ðhiÞi2NT
	 Xl ¼ h�1

l Xl; l 2 NT:
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For example if n ¼ 5, T ¼ fy1; x1;O1g [ fO3; y4;O4g then AT ¼ kQT

½Y2;X2; Y3;X4; Y5;X5� and so NT ¼ f2; 3; 4; 5g; the action of HT on AT is

h 	 Y2 ¼ h2Y2; h:X2 ¼ h�1
2 X2

h 	 Y3 ¼ h3Y3

h 	 X4 ¼ h�1
4 X4

h 	 Y5 ¼ h5Y5; h:X5 ¼ h�1
5 X5

for any h 2 HT .
Consider the canonically extended action of HT to the localization

BT ¼ ATY
�1. For each h 2 HT , we have the following automorphism of

R=hTi �Y�1
T

R

hTi
�Y�1
T !CT

BT !h BT !
C�1

T R

hTi
�Y�1
T :

where h denote the extension of h to BT .

Definition 2.3. We define the action of the torus HT on R
hTi

�Y�1
T as follows.

Given h 2 HT ; define

h 	 x ¼ ðC�1
T hCTÞðxÞ;

for every x 2 R
hTi

�Y�1
T .

Lemma 2.4. Consider HT as a factor group of the torus H. The action of
HT induced on R=hTi by that of H coincides with the action given in
Definition 2:3:

Proof. The k-algebra R=hTi is generated by the elements

�yl ¼ yl þ hTi; l =2 J T;

�xk ¼ xk þ hTi; k =2 IT:

Let h 2 HT and l =2 J T , then C�1
T hCT ð�ylÞ ¼ C�1

T hðYlÞ ¼ hlC
�1
T ðYlÞ ¼ hl�yl.

Now let k =2 IT , we know that

CTð�xkÞ ¼
Xk if k � 1 2 indðTÞ
qWk�1Y�1

k if k � 1 =2 indðTÞ; k 2 indðTÞ
Xk þ qWk�1Y�1

k if k � 1 =2 indðTÞ; k =2 indðTÞ

8<
:

In the first case, C�1
T hCT ð�xkÞ ¼ C�1

T hðXkÞ ¼ h�1
k C�1

T ðXkÞ ¼ h�1
k �xk . In the

second case, C�1
T hCT ð�xkÞ ¼ C�1

T hðqWk�1Y�1
k Þ ¼ h�1

k �xk , because hðWlÞ ¼ Wl

for any l =2 indðTÞ.
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In the third case, C�1
T hCT ð�xkÞ ¼ C�1

T ðh�1
k Xk þ qWk�1h�1

k Y�1
k Þ ¼ h�1

k C�1
T

ðXk þ qWk�1Y�1
k Þ ¼ h�1

k �xk . The lemma now is clear. u

Let us denote by AnðOqðspk2�nÞÞ the set of all admissible sets of
Oqðspðk2�nÞÞ.

Proposition 2.5. There is a bijection z between H-SpecðOqðspðk2�nÞÞÞ and
AnðOqðspÞðk2�nÞÞ defined by

z : H � SpecðOqðspðk2�nÞÞÞ ! AnðOqðspk2�nÞÞ
J 7! J \ }n:

With the inverse maps

z�1 : AnðOqðspk2�nÞÞ ! H � SpecðOqðspðk2�nÞÞÞ
T 7! hTi:

Proof. By [2, Theorem 2.7], each admissible set generates a prime ideal
which is clearly H-invariant. Thus z�1 is well defined. If J is an H-prime
ideal of R ¼ Oqðspðk2�nÞÞ, then by [1, Proposition 4.2] it is a completely
prime ideal. So J \ }n ¼ T is an admissible set of R. This shows that z is well
defined. By [2, Theorem 3.3] we have zz�1 ¼ id. Let us show that J ¼ hTi for
every H-prime ideal J, when J \ }n ¼ T , which gives z�1z ¼ id. Suppose
that hTi  J for a contradiction. By the Lemma 2.4 the ideals ðJ=hTiÞY�1

T

and P ¼ CT ððJ=hTiÞY
�1

T ) are HT -prime ideals of R
hTi Y

�1

T and BT respectively.
Therefore BT is not H-simple. Let J T denotes NnnJ T ¼ fj1; . . . ; jrg. It is
clear that BT is an iterated Ore extension of the form

BT ¼ kQ½Y
�1
j1
; . . . ;Y�1

jr
�½Xi1

; bi1
� 	 	 	 ½Xit

; bit
�:

where k
Q
½Y�1

j1
; . . . ; Y�1

jr
� is the McConnell-Pettit algebra associated to a

suitable matrix Q. The k-automorphisms bil
; l ¼ 1; . . . ; t, arise by the semi-

commutativity of Xil
with Yj1

; . . . ; Yjt
and Xi1

; . . . ;Xil�1
. Let us denote

B0
T ¼ kQ½Y

�1
j1
; . . . ;Y�1

jr
�

Bl
T ¼ B0

T½Xi1
; bi1

� 	 	 	 ½Xil
; bil

�; l ¼ 1; . . . ; t:

The restriction of the action of HT on each k-algebra Bl
T ; l ¼ 1; . . . ; t,

satisfies the hypothesis of [1, 3.1]. To see this claim take l 2 f1; . . . ; tg.
Suppose that there exists k0 2 f1; . . . ; rg such that jk0

¼ il. Define, in this
case, an element h0 ¼ ðhiÞi2NT

2 HT by

hi ¼
q2 if i ¼ jk0

;
q if i 6¼ jk0

:
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Otherwise, take h0 ¼ ðq; . . . ; qÞ 2 HT . The restriction of h0 to Bl�1
T , coincides

with the k-automorphism bil
. Since q is not a root of unity, we can apply [1,

Lemma 3.3], in each iteration. Denote by Pl ¼ P \ Bl
T ; l ¼ 1; . . . ; t � 1. The

restriction of the action of HT to B0
T ¼ k

Q
½Y�1

j1
; . . . ; Y�1

jr
� is the action of the

torus H �J T
, which is the natural action of the torus ðkxÞr

. So by [3, 1.12], B0
T is

HT -simple. We use induction on t to show that BT is HT -simple, which gives
a contradiction. So if t ¼ 1 and B1

T is not HT -simple then, by [1, Lemma 3.3],
Xi1

2 P1, because B0
T is HT -simple. Thus xi1

2 JnT or Oi1
2 JnT , which is

impossible in view of J \ }n ¼ T . Hence B1
T must be HT -simple. However is

we suppose that Bt
T is not HT -simple, induction hypothesis and [1, Lemma

3.3], implies that Xit
2 P, which is also impossible. In conclusion BT is HT -

simple. Therefore J ¼ hTi. u

Corollary 2.6. Let n 2 N; if Cn denotes the cardinal of H � SpecðOq

ðspðk2�nÞÞÞ; then

Cn ¼ ð2 þ
ffiffiffi
2

p
Þnþ1 � ð2 �

ffiffiffi
2

p
Þnþ1

2
ffiffiffi
2

p :

Proof. Using the Proposition 2.5, it suffices to compute the number of the
admissible sets. Let m < n and consider T an admissible set of Oqðspðk2�mÞÞ,
which contains Om. There are four admissible sets in Oqðspðk2�ðmþ1ÞÞÞ,
which contract to T ; namely, T, T [ fOmþ1; ymþ1g, T [ fOmþ1; xmþ1g and

T [ fOmþ1; ymþ1; xmþ1g. In the case when T does not contain Om, there are
only two admissible sets in Oqðspðk2�ðmþ1ÞÞÞ contracting to T. The number
of admissible sets of Oqðspðk2�mÞÞ that do not contain Om is exactly Cm�1.
Then we have a linear recursive sequence;

Cmþ1 ¼ 4ðCm � Cm�1Þ þ 2Cm�1 ¼ 2ð2Cm � Cm�1Þ:

We know that C0 ¼ 1 (if n ¼ 0 we take Oqðspðk2�0ÞÞ ¼ kÞ and C1 ¼ 4, so

Cn ¼ ð2 þ
ffiffiffi
2

p
Þnþ1 � ð2 �

ffiffiffi
2

p
Þnþ1

2
ffiffiffi
2

p :

for all n 2 N. u

3 THE PRIME AND PRIMITIVE IDEALS

In this section we work out the H-stratification (1) of the prime
spectrum of Oqðspðk2�nÞÞ. We start with a simpler description of each H-
stratum. Let T be an admissible set of Oqðspðk2�nÞÞ and let us denote
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SpecTðOqðspðk2�nÞÞÞ ¼ fP 2 SpecðOqðspðk2�nÞÞÞj P \ }n ¼ Tg:

Lemma 3.1. Let J be an H-prime ideal of Oqðspðk2�nÞÞ and let T ¼ J \ }n

be its correspondent admissible set. Then

SpecTðOqðspðk2�nÞÞÞ ¼ SpecJðOqðspðk2�nÞÞÞ:

Proof. Let P 2 SpecT ðOqðspðk2�nÞÞÞ and let J 0 be an H-prime ideal such
that P 2 SpecJ 0 ðOqðspðk2�nÞÞÞ. Put T 0 ¼ J 0 \ }n, it is clear that T 0  T .
Suppose that there exists ui 2 fOi; yi; xig, such that ui 2 TnT 0. The H-
invariant ideal hT 0 [ fuigi  P contains strictly J 0. This is impossible in a
view of the maximality (with respect to the propriety H-invariant) of J 0,
thus T ¼ T 0. Using the Proposition 2.5, we have J ¼ J 0. This shows the
first inclusion. Let now P 2 SpecJ ðOqðspðk2�nÞÞÞ and put P \ }n ¼ T 0. As
J is the maximal H-invariant ideal in P, we have T ¼ T 0. Hence
P 2 SpecT ðOqðspðk2�nÞÞÞ which gives the second inclusion. u

Proposition 3.2. The H-stratification of SpecðOqðspðk2�nÞÞÞ is given by

SpecðOqðspðk2�nÞÞÞ ¼
[

T admissible

SpecTðOqðspðk2�nÞÞÞ ð11Þ

Proof. This is a consequence of Proposition 2.5 and Lemma 3.1. u

Following [2], let oc�mpðTÞ denote the number of connected compo-
nents of odd length in the connected decomposition of T. Our aim is to
prove that each stratum SpecT ðOqðspðk2�nÞÞÞ is homeomorphic to the prime

of the group algebra k½ZocompðTÞ�, where ZocompðTÞ denote the free abelian
group of rank ocompðTÞ. Then we give our description of
SpecðOqðspðk2�nÞÞÞ, Theorem 3.10. When k is algebraically closed, we
determine explicitly the primitive ideals.

The k-algebra obtained by localizing BT at all Xk (it is understood that
if k 2 fi1 þ 1; . . . ; j1g [ 	 	 	 [ fir þ 1; . . . ; jrgnIT then Xk ¼ Vk) is the
McConnell-Pettit k-algebra PðQT Þ. We will denote Oqðspðk2�nÞÞ by R.
Consider FT : R ! PðQT Þ, the composition of the maps

R ! RY�1
T

hTiY�1
T

!CT
BT ,!PðQTÞ:

Remark 3.3. Let J be an H-prime ideal of R and J \ }n ¼ T . Let XT denote

the inverse image in
RY�1

T

hTiY�1
T

of the multiplicative set of BT generated by all the

Xk ’s. This is a right Ore set and the corresponding localization RT satisfies
that RT ffi PðQT Þ. Clearly RT  RJ , where J ¼ hTi and RJ ¼ ðR=JÞE�1

J , EJ is
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the set of all non-zero homogeneous elements, with respect to certain
Zn-grading (see [1, Theorem 6.6]). In the general case one cannot expect
RT ¼ RJ . The following is a counter example; take n ¼ 2, T ¼ fO2g, then the
homogeneous element �1 þ �y1�x1, of degree ð0; 0Þ 2 Z2, is not invertible in RT .

Theorem 3.4. FT induces a homeomorphism F�1
T between SpecðPðQT ÞÞ and

SpecT ðRÞ defined by:

F�1
T : SpecðPðQTÞÞ ! SpecTðRÞ

P 7! F�1
T ðPÞ:

Proof. Notice that F�1
T ðPÞ is prime because every prime ideal in R or

PðQT Þ is completely prime. Next, we have to show that F�1
T ðPÞ 2 SpecT ðRÞ

for all P 2 SpecðPðQT ÞÞ. Put F�1
T ðPÞ \ }n ¼ T 0, clearly T  T 0. Assume for a

contradiction that T 6¼ T 0. If there exits an index k such that Ok 2 T 0nT , then
�Wk ¼ FT ðOkÞ 2 P, a contradiction. Otherwise, IndðTÞ ¼ IndðT 0Þ and there
exists vk 2 T 0nT . We have in particular that k =2IT \ J T . This entails that
0 6¼ Vk ¼ FT ðvkÞ 2 P, which is a contradiction. Let us show the injectivity
of F�1

T . If P;P0 2 SpecðPðQT ÞÞ are such that F�1
T ðPÞ ¼ F�1

T ðP0Þ then
F�1

T ðPÞY�1
T

hTiY�1
T

¼ F�1
T ðP0ÞY�1

T

hTiY�1
T

is a prime ideal of
RY�1

T

hTiY�1
T

, because F�1
T ðPÞ \ YT ¼

F�1
T ðP0Þ \ YT ¼ ;. Apply CT to get P ¼ P0. To prove the surjectivity, let

P 2 SpecT ðRÞ. Thus P \ YT ¼ ; and
PY�1

T

hTiY�1
T

is a prime ideal in
RY�1

T

hTiY�1
T

. The ideal

P ¼ CT ð
PY�1

T

hTiY�1
T

Þ satisfies P \ YT ¼ ;. We will show that Xk =2P for all Xk in

PðQT Þ. Suppose Xk 2 P for a contradiction. The two possible values of
C�1

T ðXkÞ are xk and �yk
�1Ok . In the first case we have the contradiction

xk 2 P, while the second value gives Ok 2 P, another contradiction. So P is
the inverse image of P. u

Corollary 3.5. Let T be an admissible set of Oqðspðk2�nÞÞ. Then
SpecT ðOqðspðk2�nÞÞÞ is homeomorphic to SpecðZðPðQT ÞÞÞ; where ZðPðQT ÞÞ is
the center of the k-algebra PðQT Þ.

Proof. By [3, Corollary 1.5(b)], the contraction P ! P \ ZðPðQT ÞÞ gives a
homeomorphism between SpecðPðQT ÞÞ and SpecðZðPðQT ÞÞÞ. The result
follows from Theorem 3.4. u

By [3, 1.3], the center ZðPðQT ÞÞ is a Laurent polynomial ring. The
variables of this ring are determined by the solutions of the system of
equations MTm ¼ 0, where MT is the matrix with integer entries kij, such
that QT ¼ ðqkijÞ. Our next purpose is to compute the number of independent
variables in ZðPðQT ÞÞ.
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Lemma 3.6. Let A 2 Mm�mðZÞ; v 2 Mm�1ðZÞ; w 2 M1�mðZÞ and r a
nonzero integer. Then

rank
A v v

w 0 �r
w r 0

0
@

1
A ¼ 2 þ rank A

and

rank

A v v v

w 0 �2 �1
w 2 0 1
w 1 �1 0

0
BB@

1
CCA ¼ 2 þ rank A

Proof. Compute the ranks by using minors and suitable row and column
elementary operations. u

Proposition 3.7. Let T be an admissible set; and let MT 2 Mt�tðZÞ be its
associated matrix. Then rankMT ¼ t � ocompðTÞ.

Proof. We proceed by induction on n. The cases n ¼ 1; 2 are easy. Assume
n > 2 and let j ¼ maxðindðTÞÞ. If T has some removable index i, let T 0 be the
admissible subset of }nnfxi; yig obtained by removing xi; yi from T. Notice
that ocompðTÞ ¼ ocompðT 0Þ. Let Mn�1

T 0 the matrix associated to T 0 with
respect to Qn�1. By induction hypothesis, rankMn�1

T 0 ¼ t0 � ocompðT 0Þ. But
t ¼ t0; in fact, MT ¼ Mn�1

T 0 and, thus, rankMT ¼ t � ocompðTÞ. For T
without removable indices, we will consider several cases. Decompose
T ¼ T 0 [ Tr, where Tr is the last connected component of T, and put
ir ¼ minðindðTrÞÞ.

Case 1. If j < n, then

MT ¼
Mn�1

T v v

w 0 �2
w 2 0

0
@

1
A

where Mn�1
T is the matrix associated to T with respect to QN�1. By induction

hypothesis, rankMn�1
T ¼ t � 2 � ocompðTÞ. By Lemma 3.6, rankMT ¼

t � ocompðTÞ.

Case 2. Assume j ¼ n and ir ¼ j. In this case, necessarily, Tr ¼ fOng and
we have
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MT ¼
Mn�2

T0 v v v

w 0 �2 �1
w 2 0 1
w 1 �1 0

0
BB@

1
CCA

By induction hypothesis, rank Mn�2
T 0 ¼ t � 3 � ocompðT 0Þ. In this case,

ocompðT 0Þ ¼ ocompðTÞ � 1 which, in conjunction with Lemma 3.6, gives our
equality rank MT ¼ t � ocompðTÞ.

Case 3. Assume ir < j ¼ n with j ¼ ir þ 1. In this case, Tr ¼ fOn�1;On; xng
or Tr ¼ fOn�1;On; yng. Therefore,

MT ¼
Mn�2

T0 v v

w 0 e
w �e 0

0
@

1
A

In this case ocompðTÞ ¼ ocompðT 0Þ. Use again induction and Lemma 3.6.

Case 4. This is the last case, where ir þ 1 < j ¼ n. Here, Tr ¼ T 0
r [ fOn�1;

On; un�1; ung where un�1 2 fyn�1; xn�1g, un 2 fyn; xng and T 0
r 6¼ ; is an

admissible set with lengthðT0
rÞ ¼ lengthðTrÞ � 2. Now,

MT ¼
Mn�2

T00 v v

w 0 e
w �e 0

0
@

1
A

where T 00 ¼ T 0 [ T 0
r and e 2 f1;�1g. By induction, rankMn�2

T 00 ¼ t � 2�
ocompðT 00Þ. But ocompðT 00Þ ¼ ocompðTÞ and this implies, by Lemma 3.6, the
desired equality. u

Definition 3.8. Let T be an admissible set and MT 2 Mt�tðZÞ; the associated
matrix. The linear system of equations over the integers MT m ¼ 0 where
m 2 Zt will be called the quantum linear system associated to T. We denote by
NullðMT Þ the solution free abelian group fm 2 Zt : MT m ¼ 0g.

Corollary 3.9. Let T be an admissible set. Then the rank of the free abelian
group NullðMT Þ is ocompðTÞ.

Proof. This is the consequence of Proposition 3.7. u

Let T be an admissible set and let

fUa ¼ U
a1

1 ; . . . ;U
at
t : a ¼ ða1; . . . ; atÞ 2 Ztg

be the canonical k-basis of PðQT Þ, where the Ul’s denote the variables in AT

(see (10)). Let
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fmT
1 ; . . . ;m

T
kg

be a basis of NullðMT Þ. By Corollary 3.9, we have that k ¼ ocompðTÞ.
By [3, 1.3]

ZðPðQTÞÞ ¼ k½ðUmT
1 Þ�1

; . . . ; ðUmT
k Þ�1�: ð12Þ

This is a Laurent polynomial ring in the variables ðUmT
1 Þ�1; . . . ; ðUmT

k Þ�1

and, thus, it is canonically isomorphic to the group algebra k½ZocompðTÞ�.
Given a prime ideal p of ZðPðQT ÞÞ, we denote by pe its extension to PðQT Þ.
The set of maximal ideals of k½ZocompðTÞ� is denoted by Maxðk½ZocompðTÞ�Þ. We
combine our results with [3, 1.3 and Corollary 1.5] to get our main theorem.

Theorem 3.10. Let

sp ¼ fðT; pÞ jT is an admissible set; p 2 Specðk½ZocompðTÞ�Þg

and

P ¼ fðT; pÞ jT is an admissible set; p 2 Maxðk½ZocompðTÞ�Þg:

If q is not a root of unity. Then the map ðT ; pÞ 7!F�1
T ðpeÞ defines a bijection

between sp and the prime spectrum SpecðOqðspðk2�nÞÞÞ whose restriction to P
is a bijection onto the primitive spectrum PrimðOqðspðk2�nÞÞÞ.

Proof. The bijection between sp and SpecðOqðspðk2�nÞÞÞ follows from
Theorem 3.4, Corollary 3.5 and (12) in conjunction with the stratification
(1). By [13, Example 3.3] the algebra Oqðspðk2�nÞÞ has a ðN2n;þÞ-filtra-
tion with a semi commutative associated N2n-graded algebra. Then, using
[18, Section 3], Oqðspðk2�nÞÞ satisfies the Nullstellensatz over k. Therefore
the bijection between P and PrimðOqðspðk2�nÞÞÞ follows in the same way
taking into account [3, Corollary 1.5.(c)]. u

Remark 3.11. Let T be an admissible set. By the Proposition 3.7 and
[4, Proposition 1.3] ocompðTÞ ¼ 0 if and only if PðQT Þ is a simple algebra.
In this case, SpecT ðRÞ ¼ fhTig.

From now on, we suppose that k is algebraically closed. Let T be an
admissible set and let fmT

1 ; . . . ;mT
k g; k ¼ ocompðTÞ be a basis of NullðMT Þ.

The maximal ideals of ZðPðQT ÞÞ are of the form

pðkÞ ¼ hUmT
1 � l1; . . . ;U

mT
k � lki

for k ¼ ðl1; . . . ; lkÞ 2 ðk*ÞocompðTÞ
. By Theorem 3.10, the primitive ideals of

Oqðspðk2�nÞÞ are of the form F�1
T ðpðkÞeÞ, when T runs the set of all

admissible sets. We shall exhibit a procedure to compute them from the
solutions of the quantum systems defined in 3.8.
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For m ¼ ðm1; . . . ;mtÞ 2 Zt we denote,

mþ ¼ 1
2 ðm1 þ jm1j; . . . ;mt þ jmtjÞ

and

m� ¼ 1
2 ðm1 � jm1j; . . . ;mt � jmtjÞ

where jmj is the absolute value of m 2 Z. Then the inverse image of pðkÞ
in AT is

hUmTþ
1 � l1U�mT�

1 ; . . . ;UmTþ
k � lkU�mT�

k i ð13Þ

For each s ¼ 1; . . . ; k, let YmT
s
ðlsÞ denote an element of Oqðspðk2�nÞÞ such

that

CTðYmT
s
ðlsÞ þ hTiÞ ¼ UmTþ

s � lsU
�mT�

s :

Then

F�1
T ðpðkÞeÞ ¼ hT;YmT

1
ðl1Þ; . . . ;YmT

k
ðlkÞi

This gives a description of PrimðOqðspðk2�nÞÞÞ close to [2, Theorem 7.1].

Corollary 3.12. The primitive ideals of Oqðspðk2�nÞÞ; when q is not a root of
unity, are the maximal elements of each stratum SpecTðRÞ; where T is an
admissible set. So they are of the form

hT;YmT
1
ðl1Þ; . . . ;YmT

k
ðlkii

where k ¼ ocompðTÞ and l ¼ ðl1; . . . ; lkÞ 2 ðk*Þk
:

Remark 3.13. 1) When T is connected, the elements Y
T1
m ðl1Þ are the a � l1b

of [2, Definition 4.2.(3)]. However, if T is not connected, then the elements
YmT

s
ðlsÞ can be different from the elements YTs

ðlsÞ defined in [2, page 542],
as can be easily checked in the case Oqðspðk2�3ÞÞ and T ¼ fy1;O1;O3g.

2) Let T be a connected admissible set. So if T is of even length then
SpecT ðRÞ ¼ fhTig, and if T is of odd length then SpecT ðRÞ ¼ fhTi +
hT ; YmT

1
ðlÞig; mT

1 is a basis of Null(MT ).

Example 3.14. We give the prime and primitive spectra of Oqðspðk2�2ÞÞ
when q is not a root of unity. Observe that in this case all the admissible sets are
connected, so the prime ideals of Oqðspðk2�2ÞÞ are of the form 2) in Remark
3.13. The lattice of prime ideals of Oqðspðk2�2ÞÞ is drawn in the Figure 1, The
primitive ideal generated by a set A is denoted by hhAii, while prime but not
primitive ideals are denoted by hAi. A line connecting two prime ideals means
inclusion. When both ideals belong to the same stratum, we use a wavy line.
Lastly, a denotes an arbitrary non-zero element in k.
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