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Abstract

The main aim of this paper is to give a Hopf algebroid approach to the
Picard-Vessiot theory of linear differential matrix equations with coefficients
in the polynomial complex algebra. To this end, we introduce a general
construction of what we call here the finite dual of a co-commutative (right)
Hopf algebroid and then apply this construction to the first Weyl algebra
viewed as the universal enveloping Hopf algebroid of the Lie algebroid of
all vector fields on the affine complex line. In this way, for a fixed linear
differential matrix equation of order ≥ 1, we are able to recognize the as-
sociated algebraic Galois groupoid as a closed subgroupoid of the induced
groupoid of the general linear group along the trivial map, and show that is
a transitive groupoid (i.e., it has only one type of isotropy algebraic groups).
The polynomial coordinate ring of the Galois groupoid turns out to be a
Hopf sub-algebroid of the finite dual of the first Weyl algebra and its total
isotropy Hopf algebra (the bundle of all isotropy algebraic groups) is recog-
nized as the Picard-Vessiot extension of the polynomial complex algebra for
the linear differential equation we started with.
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Introduction

We outline the motivation behind this work and we expound from the literature
a general overview of the state of the art of the subject. After introducing the
necessary notations and notions, we expose with details our main results, with
the aim of making this introduction self contained as much as possible.

Motivation, background and overview

The classical Galois theory of linear differential matrix equations with coefficients
in a differential field has two essential interrelated parts. The first one deals with
the representation theory of the differential Galois group attached to the system,
while the second seeks for the space of solutions. Namely, a simple differential
algebra with the same subfield of constants, which is generated by a fundamental
solution matrix and the inverse of its determinant. Its quotient field of fractions
leads then to a Picard-Vessiot (PV) extension of the differential base field. In this
way, the group of differential automorphisms of this simple differential algebra
coincides with the underlying algebraic set of the Galois group. As it was real-
ized by Deligne [11] these classical results can be obtained by means of Tannaka
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reconstruction process applied to the tensor abelian category of a given finite-
dimensional differential module (or linear differential matrix equation) over the
differential base field, whose subfield of constants is assumed to be algebraically
closed. The PV extension of a given linear differential equation, is then recov-
ered as a torsor over the associated affine algebraic group (the differential Galois
group). This have made it clear that the Tannakian approach to linear differential
equations provides new insight and useful methods. For a complete and exten-
sive survey on the subject, the book [48, §1] can be very helpful.

Several results of the classical theory of linear differential equations over dif-
ferential fields, were genuinely extended to the case of partial differential fields,
∆-fields, and the field of higher derivations1. A remarkable issue is that all these
new situations can be unified by employing the notion of C-ferential fields
(C is a co-commutative coalgebra with a grouplike element) and the Hopf
algebra approach to its PV theory, as was introduced and studied by Takeuchi
in [45] (see also [3] and the references therein, for a detailed reading). The advan-
tage of this approach is patent when one wants to establish a Galois correspon-
dence in this context, without appealing to any strong assumption on the subfield
of constants. Nevertheless, it can be highlighted that, in characteristic zero, the
notion of C-ferential field (when C is good enough) together with its PV theory,
are in fact implicitly encoded in Deligne’s approach by considering an adequate
Lie-Rinehart algebra over this field, see [11, §9.9].

A more general and sophisticated framework that encompasses somehow
all the previous approaches including the PV theory of difference equations, is
the one proposed by André [2], where he notably makes use of the Tannakain
formalism in certain monoidal categories of differential modules over non com-
mutative differential graded algebras. Roughly speaking, this approach not only
considers a set of derivations (that comes from Lie-Rinehart algebra or from C-
ferential actions given only by primitive elements), but also takes into account
differential operators of higher order. For instance, if we take a C-ferential field
K, where C is the colagebra of divided powers, then one can construct a non
commutative differential graded algebra whose degree zero space is K and de-
gree one space the non symmetric K-bimodule Ω = HomK−(C, K). The fact is
that, in this case, the category of C-ferential K-modules can be identified with the
category of finite dimensional modules over a certain subalgebra of the algebra
of differential operators of K. As an illustration, in the simplest situation of partial
differential fields, this subalgebra is nothing but the iterated Ore
extension K[Y1, ∂1] · · · [Yn, ∂n], which can be viewed a co-commutative (right)
Hopf algebroid over K.

This simple example makes it patent that Hopf algebroids and groupoids were
implicitly encrypted in the classical theory of linear differential equations with
coefficients in fields. In fact the same situation happens in almost all others ex-
amples, even for non-linear differential equations. Following André 2, the idea
of exploiting the advantages that some structured groupoids offer seems to go
back to Malgrange and Cartier. This idea gives actually a birth to what is perhaps

1That is, a field endowed within a fixed Hasse-Schmidt derivation, see for instance [31].
2Yves André - Grothendieck et les équations différentielles. Institut des Hautes études Scien-

tifiques (IHÉS). YouTube.
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known in the literature as the differential Galois groupoid. In point of fact, Mal-
grange in [27], based on Umemura’s theory [47], introduces a differential Galois
groupoid (a certain Lie groupoid of a foliation) known as D-groupoid, with the aim
of studying (possibly non-linear) differential equations over algebraic varieties
possibly with singularities. It is noteworthy to mention that it is not clear, at least
to us, how the PV theory works in this framework. As we will explain later on,
our approach runs a in different way.

The main motivation of this paper is to explore the possibility of extending the
first part of the classical theory when differential field is replaced by a differential
ring. Our first step is to make use of a construction hereby introduced of the finite
dual commutative Hopf algebroid of the co-commutative Hopf algebroid built
from a suitable Lie-Rinehart algebra (the module of global sections of the tangent
bundle). In the most favourable case (e.g. when the base ring is the coordinate
ring of a smooth algebraic variety), this co-commutative Hopf algebroid coincides
in fact with the algebra of differential operators. Concerning the second part
of the classical theory, that is the PV theory for differential algebras, we follow
Yves André’s approach given in [2]. Although, in [2] no use of groupoids or
Hopf algebroids was made, employing our methods, we are able to recognize the
PV extension of the polynomial complex algebra for any finite rank differential
module, as the total isotropy Hopf algebra (over the base algebra) of a certain
Hopf sub-algebroid of the finite dual Hopf algebroid of the first Weyl algebra.

Description of the main results and the organization of the paper

Given a Lie-Rinehart algebra L over a Dedekind domain A, we construct an
affine groupoid over (the spectrum of) A whose category of A-profinite3 repre-
sentations is isomorphic, as a monoidal symmetric category, to the category of
A–profinite right modules over the universal enveloping algebroid of L, that is,
the category of representations of L4. In particular, this applies to the global sec-
tions of any Lie algebroid over an irreducible smooth curve over an algebraically
closed field. For instance, if A is the coordinate ring of the complex affine line
A1

C
and L is the module of global sections of the transitive Lie algebroid of vector

fields, then we have a monoidal equivalence between the category of all differen-
tial modules DiffA and the category of A-profinite comodules over a commuta-
tive Hopf algebroid U◦, the finite dual of the first Weyl C-algebra U viewed as the
universal enveloping algebroid of L.

Assume now we are given a differential A-module (or equivalently a linear
differential matrix equation) (M, ∂) of rank m and consider the smallest category
〈M〉⊗ generated by (M, ∂) and its differential dual (M∗, ∂∗), which is closed under
tensor products and sub-quotients. Then, in analogy with the classical differen-
tial Galois theory, we show that there exists an affine algebraic C-groupoid HM

whose category of finite-dimensional representations is equivalent as a monoidal

3A profinite A-module stands for a finitely generated and projective A-module.
4For instance, in the case of C-ferential field K, where C is a coalgebra generated by the grou-

plike element and finitely many primitive elements (that is the case of partial derivations fileds),
this category coincides with the category of finite dimensional C-ferential K-vector spaces.
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symmetric category to 〈M〉⊗. We construct the representing algebra of (the objects
of) HM as a finitely generated Hopf sub-algebroid U◦(M) of U◦. Furthermore, we

show that the (fibre) groupoid HM(C) is transitive and there is a monomorphism
HM(C) →֒ G m of groupoids, where

G
m =

(

A
1
C
× GLm(C)×A

1
C
; A

1
C

)

is the pull-back groupoid of the general linear group GLm(C) along the map
A1

C
→ {∗}. The algebraic groupoid HM(C), which is unique up to weak equi-

valences, is then termed the differential Galois groupoid attached to the differential
module (M, ∂) (or to the associated linear differential matrix equation).

Our approach is, in an certain sense, not the expected one, since we do not
construct a solution space (perhaps a differential algebra over A ⊗C A) whose
‘groupoid of differential automorphisms’5 coincides with HM(C). We do, how-
ever, construct a Picard-Vessiot extension, in the sense of André [2], associated
to a differential module M as a quotient Hopf A-algebra of U◦(M) by the Hopf

ideal generated by the image of the subtraction of the source from the target. In
other words, this is the total isotropy Hopf A-algebra (also known as the isotropy
Hopf algebroid) of U◦

(M)
, and its differential is explicitly computed using both the

differential of A and that of the dual A-module M∗ (Eq. (78), Proposition 5.5.2).
In this way, we show that any of the isotropy groups of the transitive groupoid
HM(C) is, up to isomorphisms, the group of differential automorphisms of this
total isotropy Hopf algebra (Proposition 5.5.5).

In order to compare our differential Galois groupoid with the one given by
Malgarange, let us consider as above a differential module (M, ∂) with rank
m = 2. Then the commutative Hopf algebroid of the associated Malgrange’s
Galois groupoid attached to (M, ∂), which we also called Malgrange’s Hopf alge-
broid, can be described as follows6: Consider the following commutative Hopf
algebroid

H
C3 := C[x, x1, x2, y, y1, y2, yα

j , det(y
ǫi
j )
−1]α=(α0, α1, α2)∈N3\{0, ǫ0, ǫ1, ǫ2}

with base algebra C[x, x1, x2], together with its canonical structure of differen-
tial (C[x, x1, x2] ⊗C C[x, x1, x2])-algebra. Then, the Malgrange Hopf algebroid of
(M, ∂) is defined as the quotient Hopf algebroid of H

C3 by a certain differential
Hopf ideal7. Thus, as a groupoid in the set theoretical sense, the set of objects
of this Malgrange’s Galois groupoid is given by the underlying set of the affine
space A3

C
rather than A1

C
, as it would be expected. This means that Malgrange’s

and Umemura’s approaches run in a totally different direction than ours (see Sub-
section 5.6 for more explanations).

The paper is mainly divided in two parts that are organized as follow. The
first one, which can be seen as the theoretical part of the paper, aggregates on

5If such an object exists!
6The computation of the structure maps of this class of Hopf algebroids is hereby introduced

(see Subsection 5.6 below).
7It is highlighted here that it is not clear to us how to give a consistent method of constructing

a generator set of such a Hopf ideal out of the datum (M, ∂) (see Example 5.6.8 below for some
attempts).
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the one hand Sections 1 , 2 and 3, where we introduce a notion of the finite dual
for non commutative ring extensions, and on the other hand Section 4, where we
specialize this construction to the setting of Hopf algebroids. The second part of
the paper is Section 5 and represents the application part of the theoretical results
exposed in that first part.

With more details, in Section 1, besides the statement of the general notations
used along the paper, we collect some basic information on Hopf algebroids an
their relationship to Lie-Rinehart algebras. Section 2 is devoted to describe those
aspects of the reconstruction process related to corings (or cogébroı̈ds, according
to [6]) that will be useful in the sequel, including a review on the bialgebroids and
Hopf algebroids constructed from fibre functors. Principal bi-bundles attached to
pairs of fibre functors are also considered, with the aim of clarifying the Picard-
Vessiot extension constructed in Section 5.

The application of the reconstruction process exposed in Section 2 to a mor-
phism of (possibly non commutative) rings A→ R leads in Section 3 to the (right)
finite dual A-coring R◦, and a functor χ from the category AR of A-profinite (see

footnote 3) right R-modules and the category AR◦

of A-profinite right
R◦-comodules. In contrast with the case of algebras over a field, it is not known if
this functor is an equivalence of categories for a general A-ring R. We construct a
homomorphism of A-bimodules ζ : R◦ → R∗, where R∗ denotes the right dual, as
an A-module, of R, and it is shown that, if ζ is injective, then χ : AR → A

R◦

is an
equivalence of categories (Proposition 3.3.2). A module-theoretical condition im-
plying the injectivity of ζ are investigated in Proposition 3.3.4. As a consequence,
χ is an equivalence of categories if A is a right hereditary right noetherian ring
(e.g. if it is a Dedekind domain or a semi-simple Artinian ring).

Section 4 starts by showing that, if (U, A) is a right bialgebroid, then the map
ζ : U◦ → U∗ is a homomorphism of A⊗ Aop-rings8. In fact, ζ becomes part of
a canonical structure of left bialgebroid (U◦, A). Namely, if we assume that U
is a co-commutative right Hopf algebroid over a commutative ring A, then the
category AU is monoidal symmetric and rigid, and obviously additive, but it is
not abelian in general (even if A is a Dedekind domain). Thus, the Tannakian
reconstruction from [11, 6] will not produce a monoidal equivalence from AU

to the category of A-profinite representations of some affine groupoid. How-
ever, we will show that such a reconstruction process gives a commutative Hopf
algebroid structure on the underlying A-coring of U◦ and, by applying the above
results of Section 3, we obtain that if ζ : U◦ → U∗ is injective, then AU is isomor-
phic, as a symmetric monoidal category, to the category AU◦

of A-profinite right
U◦-comodules. This is the main result of Section 4 and it is summarized in
Theorem 4.2.2. In particular, this machinery can be applied when U = U(L)
is the universal enveloping algebroid of a Lie-Rinehart algebra L over A, produc-
ing an affine groupoid represented by U◦ with the ‘same’ representation theory
than L. We also give some sufficient conditions for the injectivity of ζ. Especially,
we show that ζ is injective for every co-commutative Hopf algebroid U whenever
A is a Dedekind domain.

Section 5 develops the aforementioned application of our theory to differen-

8 Aop stands for the opposite algebra of A
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tial modules, as described above, and the main result here is Theorem 5.4.5. The
associated PV extension and its group of differential automorphisms, as men-
tioned above, are discussed with details in Subsection 5.5. Besides, in Subsection
5.6, we explicitly describe the structure maps of the commutative Hopf
algebroid attached to what is in the literature known as Malgrange’s groupoid
(or D-groupoid) [27]. We also discuss in this section, using some specific exam-
ples, Umemura’s [46] approach to these groupoids.

The paper was written with the idea of trying to use elementary arguments
whenever it was possible, it contains sufficient details including some technical
computations. All this with the hope of making it accessible to wide range of
audience even from different branches of mathematics.

1 Preliminaries: Bialgebroids and Hopf algebroids

In this section, for the convenience of the reader unfamiliar with Hopf algebroids,
we introduce some basic notions and results concerning this theory. We also fix
some notations and terminology to be used along the paper.

1.1 Notations and basic notions

We work over a unital commutative ground ring K. All additive categories will be
assumed to be K–additive categories, and additive functors between them will be
K–linear. For a categoryA, the notation X ∈ Ameans that X is an object ofA. The
identity morphism of an object X ∈ A is denoted simply by the object itself or by
the symbol 1X. Algebra means associative and unital K-algebra and the notation
Z(A) stands for the center of an algebra A. We denote by Ae := A⊗K Ao the en-
veloping algebra of an algebra A, where Aop is the opposite algebra of A, whose
elements are distinguished from those of A by using the notation ao ∈ Aop, for
a ∈ A. For simplicity, the same notation Ae := A⊗L Aop will be used when K → L
is commutative ring extension and A is an L-algebra. Modules are unital mod-
ules, and (A, B)-bimodules, where A and B are two algebras, are assumed to be
central K-bimodules. We denote by AModB the category of all (A, B)-bimodules;

AMod and ModB denote, respectively, the category of left A-modules and the cat-
egory of right B-modules. The corresponding hom-set functors will be denoted,
respectively, by HomA-(−,−) and Hom-B(−,−). For every (A, B)-bimodule AXB,
we denote by X∗ = Hom-B(X, B) its right dual, while by ∗X = HomA-(X, A) its
left dual, which are considered as (B, A)-bimodules with the actions:

bϕa : x 7→ bϕ(ax), bψa : x 7→ ψ(xb)a, for all x ∈ X, ϕ ∈ X∗, ψ ∈ ∗X, a ∈ A, b ∈ B.
(1)

For every algebra A, let add(AA) denote the full sub-category of ModA whose
objects are all finitely generated and projective (fgp for short) right A-modules;
we also use the terminology right A-profinite modules for the objects in this sub-
category. Given a morphism of algebras η : A → R, we denote by η∗ : ModR →
ModA and ∗η : RMod→ AMod the corresponding restriction of scalars functors. It
is clear that, if η∗(R)A is fgp we then have a functor η∗ : add(RR)→ add(AA).
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An algebra R is said to be an A-ring if there is a morphism of algebras
η : A → R (also called a ring extension). By restriction of scalars, R becomes
an A-bimodule and its multiplication factors through the tensor product over
A, that is, its multiplication can be understood as a map µ : R ⊗A R → R. In
this way the triple (R, η, µ) can be seen as a monoid in the monoidal category

AModA. Saying that R is an Ae-ring is equivalent to say that there is a morphism
of algebras s : A → R and an anti-morphism of algebras t : A → R such that
s(a)t(a′) = t(a′)s(a), for every a, a′ ∈ A.

Dually, an A-coring [43] is a comonoid object in the category AModA. That is, a
triple (C, ε, ∆), where C is an A-bimodule together with two A-bimodule maps,
the comultiplication and the counit ∆ : C −→ C⊗A C, ε : C −→ A, which satisfy
the usual coassociativity and counitary properties. A right C-comodule is a right
A-module M together with a right A-linear map ̺M : M → M⊗A C (called right
coaction) such that

(M⊗A ∆C) ◦ ̺M = (̺M ⊗A C) ◦ ̺M, and (M⊗A εC) ◦ ̺M = M.

A morphism of right C-comodules f : M → N (right colinear map) is right A-linear
map such that ( f ⊗A C) ◦ ̺M = ̺N ◦ f . The category of all right C-comodules and
their morphisms will be denoted by ComodC.

We recall from [38, 39, 42, 44] the definition and basic properties of (left, right)
Hopf algebroids. A good survey on the subject is the monograph [5].

1.2 Bialgebroids and Hopf algebroids

Fix A a ground K-algebra, and let V be an Ae-ring via a ring homomorphism
η : Ae → V whose source and target maps are respectively denoted by s : A → V
and t : Aop → V. The pair (A, V) is said to be a left bialgebroid (or V is a left
×A-bialgebra) provided that its category of left V-modules is a monoidal category
and the restriction of scalars functor Ol : VMod→ AeMod, Ol = ∗(s⊗ t), is a strict
monoidal functor. In particular, the underlying bimodule AeV admits a structure
of A-coring, and if we denote by ♦ the given tensor product of VMod and con-
sider two objects X, Y ∈ VMod, then the underlying left Ae-module of X♦Y is the
A-bimodule X⊗A Y whose left V-action is given by the formula

v.(x⊗A y) = v1x⊗A v2y, (2)

where ∆(v) = v1 ⊗A v2 is the comultiplication of the underlying A-coring of V
(we are using a simplified version of Sweedler’s notation with sum understood).

It is known from [39, Proposition 3.3] that the category VMod is right closed
with right inner hom-functors

hom
VMod(X, Y) := HomV-(V♦X, Y), (3)

where the left V-action of the right hand term is given by the V-bimodule V♦X
whose left V-action is (2) and its right V-action is induced by that of the factor V.
This means that for any object X ∈ VMod, the functor −♦X : VMod → VMod is
left adjoint to the functor HomV-(V♦X,−) : VMod → VMod called the right inner
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hom-functor and denoted by hom
VMod(X,−). This adjunction is easily seen once

observed that Y♦X ∼= (V♦X)⊗V Y is a left V-linear isomorphism via the map y⊗A

x 7→ (1⊗A x)⊗V y, and it uses the usual Hom-tensor adjunction isomorphism to
get

HomV-(Y♦X, Z) ∼= HomV-((V♦X)⊗V Y, Z) ∼= HomV-(Y, HomV-(V♦X, Z)).

If we want to compute the right inner hom-functors in the category of modules

VMod via the forgetful functor Ol to the monoidal category AeMod, then it is better
to resume the previous situation in form of a diagram. So with the previous
notations, we have a commutative diagram

HomV-(Y♦X, Z)
∼= //

_�

Ol

��

HomV-(Y, HomV-(V♦X, Z))
_�

Ol

��

HomAe-(Y⊗A X, Z) //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

∼=
��

HomAe-(Y, HomV-(V♦X, Z))

HomAe-(Y, TZ)

��

HomAe-(Y, HomAop-(X, Z))
∼= // HomAe-(Y, HomV-(V ⊗Aop X, Z)),

where the natural transformation TZ : HomV-(V♦X, Z) → HomV-(V ⊗Aop X, Z)
is defined by sending f 7→ [v⊗Aop x 7→ f (v1 ⊗A v2x)]. The dashed arrow is then a
natural isomorphism if and only if T− is a natural isomorphism, if and only if each
map βX : V ⊗Aop X → V♦X sending v⊗Aop x 7→ v1 ⊗A v2x is an isomorphism of
left V-modules, where in the tensor product V⊗Aop X we have used the bimodule

VV1⊗Aop. Now, one can easily see that the maps βX are isomorphisms if and only
if βV is an isomorphism.

Following [39, Theorem 3.5], a left A-bialgebroid V is said to be a left Hopf
algebroid provided that the functor Ol preserves right inner hom-functors. As we
have seen this is equivalent to say that βV is an isomorphism. Its inverse induces

then a well defined map β−1
V (− ⊗A 1) : V → V ⊗Aop V sending v 7→ v+ ⊗Aop v−

(the tensor product is defined using the bimodules VV1⊗Aop and 1⊗AopVV). This
map is known as the anti-multiplication and its definition for bialgebras over field
extensions goes back to W. D. Nichols [33, Definition 4.]. Here the inverse map

β−1
V (−⊗A 1) will be referred to as the translation map.

Analogously, an Ae-ring U with source and target s : A → U and t : Aop →
U, is said to be a right A-bialgebroid whenever its category of right modules is
a monoidal category and the restriction of scalars functor Or : ModU → ModAe

(Or = (s⊗ t)∗) is a strict monoidal functor. In this case the category ModU is left
closed with left inner hom-functors

homModU
(X, Y) := Hom-U(X♦ U, Y). (4)

For each object X ∈ ModU, we have in this case that the functor X♦− is left
adjoint to Hom-U(X♦ U,−), and the adjunction is given by the natural isomor-
phism

Hom-U(X♦Y, Z) ∼= Hom-U(Y ⊗U (X♦ U), Z) ∼= Hom-U(Y, Hom-U(X♦ U, Z)).
(5)
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The corresponding β-maps in the category ModU are defined by βX : X⊗Aop U →
X♦ U sending x⊗Aop u 7→ xu1 ⊗A u2, where in the first tensor product we have
used in its second factor the bimodule 1⊗AopUU. One can check as before that
Or preserves left inner hom-functors if and only if βU is an isomorphism. So the
right A-bialgebroid U is said to be a right Hopf A-algebroid provided that βU is an

isomorphism. In this case, the translation map β−1
U (1⊗A−) : U → U⊗Aop U, where

the first factor of the tensor product is the A-bimodule UAe , will be denoted by

u 7→ u− ⊗Aop u+. As in [39, Proposition 3.7], the map β−1
U (1⊗A −) enjoys a list of

properties. Here we mention few of them which we will need in the sequel: First

note that β−1
U (u′ ⊗A u) = u′u− ⊗Aop u+, so we have

u1,− ⊗Aop u1,+ ⊗A u2 = u− ⊗Aop u+, 1⊗A u+, 2 ∈ (U1⊗Aop ⊗Aop 1⊗AopU) ♦U (6)

s(b)⊗Aop s(a) = η(a⊗ bo)− ⊗Aop η(a⊗ bo)+ ∈ U1⊗Aop ⊗Aop 1⊗AopU. (7)

u−u+ = s

(

ε(u)
)

(8)

1⊗Aop u = u1u2,− ⊗Aop u2,+ (9)

In case A = K which, by our conventions, automatically implies that s = t and
that V (or U) is an ordinary bialgebra, it is well know that V is Hopf algebra if
and only if βV is bijective.

Remark 1.2.1. For a general left A-bialgebroid V, there is no hope of obtaining

from the translation map β−1
V (−⊗A 1) an endomorphism of V which could play

the role of the antipode as in the case of Hopf algebras. Nevertheless, if we
assume that V and A are both commutative K-algebras, then the map

S = (ε ⊗A V) ◦ β−1
V (− ⊗A 1) : V → V, is well defined and gives the antipode

for V9. Conversely, the inverse of βV is given by β−1
V (v⊗A v′) = v1 ⊗A S (v2)v

′,
whenever V has S as an antipode. Of course in this case the notions of bialge-
broid and Hopf algebroid are obviously independent from the sides.

Let (A, U) be a right Hopf algebroid. Then the adjunction (5) and the ana-
logue natural isomorphism to T−, give a right U-action on the right Ae-module
Hom-Aop(X, Y), for every pair of right U-modules X and Y. This action is given
by

f . u : X −→ Y, ( x 7−→ f (xu−) u+ ), where, as before, β−1
U (1⊗A u) = u−⊗Aop u+.

(10)
Now, fix a right U-module X and consider its left dual ∗X also as right U-module
with the action (10) by taking YU = AU, the unit object of ModU, with right
U-action a . u = ε(s(a)u) = ε(t(a)u). In this way, we have the following two
canonical maps:

X♦
∗X ev // A,

x⊗A ϕ ✤ // ϕ(x)

A db′ // Hom-Aop(X, X)

1 ✤ // 1X,

(11)

which in turns are right U-linear, by using Eqs. (8) and (9). The subsequent lemma
is the version on the right of [5, Proposition 4.40].

9We refer to [34, Appendix A.1] for the precise definition of an antipode in the commutative
case. Such a pair (A, V) of commutative K-algebras is called a commutative Hopf algebroid over K,
see [34, Appendix A.1] for more details.
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Lemma 1.2.2. Let (A, U) be a right Hopf algebroid. Then every right U-module X,
which is finitely generated and projective as a left A-module, admits ∗X as the right dual
in the monoidal category ModU.

Proof. Using the maps of Eq.(11), the right dual of X is given by the triple

(∗X, ev, j−1
X ◦ db′), where

jX : ∗X♦ X −→ Hom-Aop(X, X), (ϕ⊗A x 7−→
[

x′ 7→ ϕ(x′)x
]

),

is the canonical isomorphism. To show that jX is in fact a right U-linear map, one
use the properties of the comultiplication of the underlying A-coring of U as well
as Eq.(6).

1.3 Examples of (right) Hopf algebroids.

Any Hopf algebra over a commutative ring is obviously a (left and right) Hopf
algebroid. Below, we list some non trivial examples of Hopf algebroids, specially
the ones with commutative base ring, which we will deal with in the forthcoming
sections.

Example 1.3.1. [34] Assume that the ground ring K is a field and let A be a
commutative K-algebra which is a right H-comodule K-algebra with coaction
̺A : A→ A⊗K H, where H is a commutative Hopf algebra. Consider A⊗K H as
an (A⊗K A)-ring via the following source and target:

s : A→ A⊗K H, (a 7→ a⊗K 1), t = ̺A : A→ A⊗K H, (a 7→ a0 ⊗ a1).

Then A⊗K H is a commutative Hopf algebroid over K, with antipode S : A⊗K

H → A⊗K H sending a⊗ h 7→ a0 ⊗ a1S(h), where S is the antipode of H.

Example 1.3.2. Let A be a commutative algebra over a field K of characteristic 0,
and denote by DerK(A) the Lie algebra of all K-linear derivations of A. Consider
an A–module L, whose underlying K-vector space is endowed with a structure
of K–Lie algebra, and let ω : L→ DerK(A) be a morphism of K-Lie algebras. The
pair (A, L) is called Lie-Rinehart algebra with anchor map ω, provided

(aX)(b) = a(X(b)),

[X, aY] = a[X, Y] + X(a)Y,

for all X, Y ∈ L and a, b ∈ A, where X(a) stands for ω(X)(a). Consider the (left)
A-module direct sum A⊕ L as a K-Lie algebra with the bracket:

[

(a, X), (b, Y)
]

=
(

X(b) − Y(a), [X, Y]
)

,

for any a, b ∈ A and X, Y ∈ L. Denote by τ : A⊕ L → U(A ⊕ L) the canonical
inclusion into its universal enveloping K-algebra.

As it was expounded in [35, 22, 29], associated to any Lie-Rinehart algebra
(A, L) there is a universal object denoted by (A,U (L)). As an algebra, U (L) =
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U(A⊕ L)/I, where I is the two-sided ideal generated by the set
{

τ(a′, 0).τ(a, X)−

τ(a′a, a′X)| a, a′ ∈ A, X ∈ L
}

. There are canonical maps

ιA : A→ U (L),
(

a 7→ a + I
)

and ιL : L→ U (L),
(

X 7→ X + I
)

.

The first one is an algebra map (whose image is not necessarily in the center),
while the second is a K-Lie algebra map. Both maps are compatible in the sense
that the following equations are fulfilled:

ιA(a)ιL(X) = ιL(aX), [ιL(X), ιA(a)] = ιA(X(a)),

for any a ∈ A and X ∈ L. Such equations determine in fact the universality of
U (L).

As observed in [24, §4.2.1], the usual Hopf algebra structure of U(A ⊕ L)
can be lifted to a structure of cocommutative (right) Hopf A-algebroid on U (L).
The source and target are equal: t = s = ιA. The A-coring structure is an
A-coalgebra structure whose underlying A-bimodule uses the right A-module
structure derived from ιA, that is, the A-bimodule U (L)A with two-sided action
a.u.a′ = u ιA(aa′), for every a, a′ ∈ A and u ∈ U (L) (recall that A is commutative).
The comultiplication and the counit of U (L)A are given on generators by

∆(ιL(X)) = ιL(X)⊗A 1U (L) + 1U (L)⊗A ιL(X), ε(ιL(X)) = 0,

∆(s(a)) = s(a)⊗A 1U (L) = 1U (L)⊗A s(a), ε(s(a)) = a.

for any a ∈ A and X ∈ L. The translation map βU (L) : U (L) → U (L)A ⊗A AU (L)
is given on generators by

s(a)− ⊗A s(a)+ := 1U (L)⊗A s(a),

ιL(X)− ⊗A ιL(X)+ := 1U (L)⊗A ιL(X)− ιL(X)⊗A 1U (L).

Example 1.3.3. Here are some basic examples of Lie-Rinehart algebras.

1. The pair (A, DerK(A)) obviously admits the structure of a Lie-Rinehart
algebra.

2. [25, Definition 3.3.1] A Lie algebroid is a vector bundle E →M over a smooth
manifold, together with a map ω : E → TM of vector bundles and a
Lie structure [−,−] on the vector space Γ(E) of global smooth sections of
E , such that the induced map Γ(ω) : Γ(E) → Γ(TM) is a Lie algebra
homomorphism, and for all X, Y ∈ Γ(E) and any f ∈ C∞(M) one has
[X, f Y] = f [X, Y] + Γ(ω)(X)( f )Y. Then the pair (C∞(M), Γ(E)) becomes
a Lie-Rinehart algebra. A Lie algebroid is said to be transitive, provided
that ω is fibrewise surjective. In this case, the anchor map ω := Γ(ω) is
surjective.

3. Let (A, ∂i)i=1, ··· , n be a partial differential commutative K-algebra, that is, ∂i

are K-algebra derivations of A such that ∂i ◦ ∂j = ∂j ◦ ∂i, for every i 6= j.
Consider the A-module L := ⊕n

i A.∂i as a Lie K–algebra with bracket

[a.∂i, a′.∂j] = a∂i(a
′).∂j − a′∂j(a).∂i , for every i, j = 1, · · · , n.
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Then L admits canonically a structure of Lie-Rinehart algebra whose anchor
map is given by:

ω : L −→ DerK(A),
[

a.∂i 7−→ [a′ 7→ a∂i(a
′)]
]

.

Example 1.3.4. Under the assumptions of Example 1.3.2, it is clear that the anchor
map ω : L → DerK(A) can be extended to an algebra map Ω : U(L) → EndK(A)
which gives a left U(L)-action on the base algebra A. If we further assume that
A, with this action, is a locally finite left module (i.e. each element generates a
left U(L)-module which is a finite dimensional K-vector space), then A becomes
a right comodule algebra over the usual finite dual commutative Hopf algebra
U(L)′ , see Example 3.4.1. In this way, as in Example 1.3.1 we obtain another
(commutative) Hopf algebroid, namely, A⊗K U(L)′ .

Example 1.3.5 (Base extension). Let (A,H) be a commutative Hopf algebroid and
φ : A → B be a morphism of commutative algebras. Then (B, B ⊗A H ⊗A B)
admits a structure of commutative Hopf algebroid called the base ring extension of
(A,H) by φ. The structure maps of this Hopf algebroid are given as follows:

s(b) = b⊗A 1⊗A 1, t(b′) = 1⊗A 1⊗A b′, S (b⊗A h⊗A b′) = b′ ⊗A S (h)⊗A b,

∆(b⊗A h⊗A b′) = ∑
(h)

(b⊗A h1⊗A 1) ⊗B (1⊗A h2⊗A b′), ε(b⊗A h⊗A b′) = bb′φ(ε(h)).

2 The reconstruction process, Galois corings and principal bi-

bundles.

We recall in this section the construction of the universal coring from a given fibre
functor [6]. We follow the presentation given in [15]. We also recall the notion of
Galois coring. Roughly speaking, these are corings which can be reconstructed
from their class of right comodules which are finitely generated and projective as
right modules over the base algebra.

2.1 Infinite comatrix corings

Let ω : A → add(AA) be an additive faithful functor (referred to as a fibre functor),
where A is an additive small category and A is an algebra, which is not assumed
to be commutative. Here, add(AA) denotes the category of all finitely generated
and projective right A–modules. The image of an object P of A under ω will be
denoted by ωP := ω(P), or even by P when no confusion may be expected. Given
P, Q ∈ A, we denote by TPQ = HomA(P, Q) the K-module of all morphisms in
A from P to Q. The symbol TP is reserved to the ring of endomorphisms of P.
Clearly, SP = End(ωPA) is a ring extension of TP via ω. In this way, every image
ωP of an object P ∈ A, becomes canonically a (TP, A)-bimodule, and this bi-action
can be extended to the following (TQ, A)-bimodule map

TPQ ⊗TP
P

ωPQ
// Q

t⊗TP
p ✤ // tp = ω(t)(p),

(12)
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since TPQ is already a (TQ, TP)-bimodule. The dual bi-action is given by the fol-
lowing (A, TP)-bimodule map

Q∗ ⊗TQ
TPQ

ωQ∗P∗
// q∗

q∗ ⊗TQ
t ✤ // q∗t = q∗ ◦ω(t).

(13)

For every object P ∈ A, one can define its associated finite comatrix A-coring
P∗ ⊗TP

P with the following comultiplication and counit

P∗ ⊗TP
P

∆P∗⊗TP
P

// P∗ ⊗TP
P⊗A P∗ ⊗TP

P,

p∗ ⊗A p ✤ // ∑αP
p∗ ⊗TP

eαP ⊗A e∗αP
⊗TP

p

P∗ ⊗TP
P

εP∗⊗TP
P
// A

p∗ ⊗TP
p ✤ // p∗(p)

(14)

where {(eαP , e∗αP
)} ⊂ P× P∗ is any right dual basis for PA. The map ∆P∗⊗TP

P does

not depend on the choice of the dual basis [14, Remark 2.2]. Now consider the
following direct sum of A-corings

B (A) =
⊕

P∈A

P∗ ⊗TP
P

and its K-submodule Jω generated by the set

{

q∗ ⊗TQ
tp− q∗t⊗TP

p : q∗ ∈ Q∗, p ∈ P, t ∈ TPQ, P, Q ∈ A
}

, (15)

where the products are defined by the pairings of Eqs. (12) and (13). By [15,
Lemma 4.2], Jω is a coideal of the A-coring B(A). Therefore, we can consider the
quotient A-coring

R (A) := B(A)/Jω =

(

⊕

P∈A

P∗ ⊗TP
P

)

/Jω (16)

and this is the infinite comatrix A-coring associated to the fibre functor ω : A →
add(AA). Furthermore, it is clear that any object P ∈ A admits (via the functor
ω) the structure of a right R(A)-comodule, which leads to a well defined functor
χ : A → ComodR(A).

NOTATION: We will denote by ϕ⊗TP
p := ϕ ⊗TP

p + Jω, for ϕ ∈ ω(P)∗ ,
p ∈ ω(P) and P ∈ A, a generator element in the infinite comatrix A-coring
R(A).

Under this notation the comultiplication of R(A) is given by

∆ : R(A) −→ R(A)⊗A R(A), p∗ ⊗TP
p 7−→∑

αP

p∗ ⊗TP
eα,P ⊗A e∗α,P ⊗TP

p, (17)

where {eα,P, e∗α,P} denotes a finite dual basis for PA = ω(P)A . The counit of R(A)
is

ε : R(A) −→ A, p∗ ⊗TP
p 7−→ p∗(p). (18)
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The above construction is in fact functorial, in the sense that if F : A → A′ is
a K-linear functor and ω : A // add(AA) A′ : ω′oo are fibre functors such

that ω′ ◦ F = ω, then there is a morphism of A-corings R(F ) : R(A)→ R(A′).
There are two typical situations where the above process can be applied.

Namely, starting with a ring extension η : A → R and consider the category
AR of all right R-modules which by restriction of scalars are finitely generated
and projective as right A-modules, the fibre functor is then the restriction of the
forgetful functor η∗ : ModR → ModA, that is, η∗ : AR → add(AA). The associ-
ated A-coring R(AR) is simply denoted by R(R) or by R◦, and referred to as the
(right) finite dual of the A-ring R. This in fact establishes a contravariant functor
from the category of A-rings to the category of A-corings. The basic properties of
the finite dual of a ring extension are presented in Section 3.

The other situation which is somehow dual to the previous one, is that of
an A-coring C, where the small category A is taken to be the category AC of all
right C-comodules whose underlying right A-modules are finitely generated and
projective. The fibre functor here is given by the restriction of the forgetful functor
O : ComodC → ModA, that is, O : AC → add(AA). This situation was studied in
[6, 15].

2.2 Review on Hopf algebroids constructed from fibred functors

Starting with a K-linear monoidal (essentially small) category A (the tensor pro-
duct ⊗ of A is implicitly assumed to be a K-linear functor in both factors) with
a monoidal faithful K-linear functor ω : A −→ AModA with image in add(AA).
Then, one can endow, using multiplication induced form the monoidal structure
(see the formula (22) below), the associated infinite comatrix A-coring R(A) of
equation (16) with a structure of (A⊗TI

Ao)-ring, where TI is the (commutative)
endomorphism K-algebra of the identity object I, and TI → A is the injective
K-algebra homomorphism induced by ω. It turns out that (A, R(A)) with this
algebra structure is a (left) bialgebroid. If we further assume thatA is a symmetric
rigid monoidal category and that A is a commutative K-algebra, then (A, R(A))
has a structure of commutative Hopf algebroid over TI (compare with [6, Section
7]). For sake of completeness and for our needs, as well as for a non expertise
reader convenience, we review in detail the structure maps of this construction.
This detailed construction is to be used later.

Consider the previous situation: ω : A −→ add(AA), where A is a not nec-
essarily commutative algebra, and assume that the resulting functor, after com-
posing ω with the embedding add(AA) →֒ ModA, factors throughout a (strict)
monoidal faithful K-linear functor A → AModA

10. To avoid some technical prob-
lems, we further assume that A is a Penrose category, in the sense that each of
the K-modules TPQ is a central TI-bimodule over the commutative K-algebra TI

(i.e., the left TI-action coincides with right one). This the case when A is for in-
stance a braided or symmetric monoidal category.

Let us first define an unitary and associative multiplication on R(A). As
we have seen before, the infinite comatrix coring R(A) is the quotient A-coring

10This factorization condition is not needed when A is a commutative K–algebra.
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B(A)/Jω , where

B(A) =
⊕

P∈A

P∗ ⊗TP
P (19)

and Jω is the K-submodule spanned by the set of elements as in Eq.(15). Given
P, Q ∈ A, and ϕ ∈ P∗, ψ ∈ Q∗, we define (ϕ ⋆ ψ) ∈ (P ⊗A Q)∗ (remember that
here we are denoting ω(P) := P), by

(ϕ ⋆ ψ) : P⊗A Q −→ A,
(

x⊗A y 7−→ ψ(ϕ(x)y)
)

. (20)

We use (20) to define componentwise an associative multiplication on B(A)
by

P∗ ⊗TP
P⊗A Q∗ ⊗TQ

Q // (Q⊗A P)∗ ⊗TQ⊗P
Q⊗A P

p∗ ⊗TP
p⊗A q∗ ⊗TQ

q ✤ // q∗ ⋆ p∗ ⊗TQ⊗P
q⊗A p

(21)

To see that the map (21) is well defined, we used the fact that A is monoidal and
thatA → AModA is a (strict) monoidal functor. Since Jω is easily checked to be an
ideal of B(A), we get that the following multiplication is well defined :

(p∗ ⊗TP
p) . (q∗ ⊗TQ

q) = (q∗ ⋆ p∗)⊗TQ⊗P
(q⊗A p), (22)

for every p∗ ⊗TP
p and q∗ ⊗TQ

q in R(A). A straightforward computation checks

that this multiplication is associative. Let us show that there is a unit in R(A) for
this multiplication. To this end, observe that there is an injective K-algebra map
TI → A induced by ω. Therefore, one can consider the following well defined
map

η : Ae := A⊗TI
Ao −→ R(A),

[

(a′ ⊗ ao) 7−→ (la′ ⊗TI
a)
]

, (23)

where we denote by la′ : A → A the left multiplication map sending r 7→ a′r for

any a′ ∈ A. The element idA ⊗TI
1A ∈ R(A) is clearly the unit for the multiplica-

tion (22). As before the source map s : A → R(A) sends a 7→ η(a⊗TI
1o) and the

target t sends a 7→ η(1⊗TI
ao).

The following result could be deduced from [6, Exemple, pp. 5849] and also
from [21, Theorem 2.2.4]. However, a direct application of the former or the latter
will not lead to an explicit description of the structure maps of the constructed
Hopf algebroid. For our needs and for the reader convenience, we give here an
elementary proof of these statements.

Proposition 2.2.1. Let A, A and ω be as above. Then the pair (A, R(A)) admits a
structure of left bialgebroid. Assume furthermore that A is a commutative K-algebra,
A is symmetric rigid monoidal K-linear and that ω is a symmetric monoidal faithful
K-linear functor. Then (A, R(A)) is a commutative Hopf algebroid over TI.

Proof. We need to endow the category of left R(A)-modules with a monoidal
structure such that the restriction of scalars functor ∗η : R(A)Mod → AeMod

becomes strict monoidal. Take two left R(A)-modules X, Y. The tensor product
X ⊗A Y is then a left module over R(A) with the action given by

λ : R(A)⊗ X ⊗A Y // X ⊗A Y

(p∗ ⊗TP
p)⊗ (x⊗A y) ✤ // ∑αP

(p∗ ⊗TP
eα,P)x⊗A (e∗α,P ⊗TP

p)y,

(24)
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where we have used the comultiplication displayed in Eq. (17) and the fact that
this map lands in an appropriate Sweedler-Takeuchi’s product. The restriction of
this action to scalars from Ae via η gives the canonical A–bimodule structure of
X⊗A Y, that is, the action

(a′ ⊗TI
ao) . x⊗A y = (a′x)⊗A (ya), for every a, a′ ∈ A and x ∈ X, y ∈ Y.

This in particular shows that the action is unital. The associativity property of
the action given by Eq. (24) is derived as follows. Take two elements of the form
p∗ ⊗TP

p and q∗ ⊗TQ
q in R(A), then

λ
(

(p∗ ⊗TP
p) (q∗ ⊗TQ

q)⊗ (x⊗A y)
)

= λ
(

(q∗ ⋆ p∗)⊗TQ⊗P
(q⊗A p)⊗ (x⊗A y)

)

= ∑
αP, βQ

(q∗ ⋆ p∗)⊗TQ⊗P
(eβ,Q ⊗A eα,P)x⊗A (e∗β,Q ⋆ e∗α,P)⊗TQ⊗P

(q⊗A p)y

= ∑
αP, βQ

(

(p∗ ⊗TP
eα,P) (q∗ ⊗TQ

eβ,Q)x
)

⊗A

(

(e∗α,P ⊗TP
p) (e∗β,Q ⊗TQ

q)y
)

= λ
(

(p∗ ⊗TP
p)⊗ λ

(

(p∗ ⊗TP
p)⊗Ae (x⊗A y)

))

.

Given Z another left R(A)–module, the natural isomorphism (X ⊗A Y) ⊗A

Z ∼= X ⊗A (Y ⊗A Z) is clearly an isomorphism of left R(A)-modules. On the
other hand, for any two arrows f , g in R(A)Mod, it is easily seen, using the above
action, that f ⊗A g is a morphism in R(A)Mod.

Now, consider the monoidal unit Ae A as a left R(A)-module via the action

p∗ ⊗TP
p a = p∗(ap) = p∗a(p) = ε

(

p∗ ⊗TP
p s(a)

)

= ε
(

p∗ ⊗TP
p t(a)

)

,

where ε is the counit of R(A). For a left R(A)-module X, let ι : A ⊗A X ∼=
X sending a ⊗A x 7→ s(a)x be the canonical isomorphism. Using the action of
Eq.(24), we have

ι
(

p∗ ⊗TP
p (a⊗A x)

)

= ∑
αP

ι
(

p∗(aeα,P)⊗A (e∗α,P ⊗TP
p)x
)

= ∑
αP

p∗(aeα,P)eα,P ⊗TP
p x

= p∗a⊗TP
p x

= p∗ ⊗TP
p s◦(a)x

= p∗ ⊗TP
p ι(a⊗A x),

which shows that ι is left R(A)-linear. Similarly, one can show that the isomor-
phism X⊗A A ∼= X is also left R(A)–linear. Thus, R(A)A is the monoidal unit for
the tensor product in R(A)Mod.

Summarizing, we obtain that the category of left R(A)-modules is a monoidal
category with unit the left module R(A)A, and the restriction of scalars functor



70 L. El Kaoutit - J. Gómez-Torrecillas

∗η : R(A)Mod → AeMod is a strict monoidal. Therefore, (A, R(A)) is left bialge-
broid.

Regarding the commutative case, we need first to introduce some notations:
let us denote by τP,Q : P⊗ Q→ Q⊗ P the symmetry of A and by (−)∨ : A → A
the K-linear contravariant functor which sends any object P ∈ A to its dual P∨

and any morphism f : P → Q to it dual f ∨ : Q∨ → P∨. Under assumption,
there is a natural isomorphism γ− : (−)∗ ◦ ω → ω ◦ (−)∨, which leads to a
natural isomorphism φP : ω(P) → ω(P∨)∗. Using the action of (12) and (13), the
naturality of both γ and φ, reads

φQ(ω( f ) p) = φP(p)ω( f ∨) (25)

γP(ϕ ω( f )) = ω( f ∨) γQ(ϕ), (26)

for every morphism f : P → Q in A , p ∈ ω(P) and ϕ ∈ ω(Q)∗. In this way, γ
and φ render commutative the following diagrams

(ω(P∨)∗)∗
φ∗

// ω(P)∗
γ

// ω(P∨)

ω(P∨),

ψ

OO ✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(ω(P)∗)∗ ω(P∨)∗
γ∗

oo ω(P)
φ

oo

ω(P),

ψ

OO
✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(27)

where the vertical map is the canonical isomorphism of A-modules, sending
q 7→ [q∗ 7→ q∗(q)].

Now, consider each of the A-module ω(P) as a central A-bimodule, and
denote the evaluation and the dual basis morphisms attached to ω(P) by:

evω(P) : ω(P)∗ ⊗A ω(P) −→ A,
(

p∗ ⊗A p 7−→ p∗(p)
)

dbω(P) : A −→ ω(P)⊗A ω(P)∗ ,
(

1 7−→∑
α

eα P ⊗A e∗α P

)

.

Therefore, the natural isomorphism γ rends also the following diagrams

ω(P)∗⊗A ω(P)
evω(P)

//

γ⊗Aω(P)

uu❧❧
❧❧
❧❧
❧❧
❧❧
❧

A

ω(P∨)⊗A ω(P)

∼= ((❘
❘❘

❘❘
❘❘

❘❘
❘❘

ω
(

P∨ ⊗ P
)

ω(evP) // ω(I)

∼=

OO A
dbω(P)

// ω(P)⊗A ω(P)∗

ω(P)⊗Aγ

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

ω(P∨)⊗A ω(P)

ω(I)

∼=

OO

ω(dbP) // ω
(

P∨ ⊗ P
)

∼=

66❧❧❧❧❧❧❧❧❧❧❧

(28)
commutative. Furthermore, φ is compatible with the tensor product, that is, for
any pair of objects P, Q ∈ A, we have a commutative diagram:

ω(P⊗ Q)
∼= //

φP⊗Q

..

ω(P)⊗A ω(Q)
φP⊗AφQ

// ω(P∨)∗ ⊗A ω(Q∨)∗
∼= // (ω(Q∨)⊗A ω(P∨))∗

∼=
��

(ω(Q∨ ⊗ P∨))∗

ω(ιP, Q)
∗

��

ω
(

(P⊗ Q)∨
)∗

,

(29)
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where ιQ, P : (Q⊗ P)∨ ∼= P∨⊗ Q∨ is the canonical natural isomorphism in the cat-
egoryA. The natural transformation γ is also compatible with the tensor product,
that is, we have another commutative diagram:

ω(P⊗ Q)
γP⊗Q

//

∼=
��

ω
(

(P⊗ Q)∨
)

ω(P)∗ ⊗A ω(Q)∗
γP⊗AγQ

// ω(P∨)⊗A ω(Q∨)
∼= // ω(Q∨ ⊗ P∨).

ω(ι−1
P, Q)

OO

(30)

On elements, the commutativity of both diagrams of Eqs. (74) and (30), are
expressed by the following first two equalities:

ιQ, P γQ⊗P

(

q∗ ⋆ p∗
)

= γP(p∗)⊗A γQ(q
∗), (31)

φQ⊗P

(

q⊗A p
)

=
(

φP(p) ⋆ φQ(q)
)

ιQ, P, (32)

(q∗ ⋆ p∗) τP, Q = p∗ ⋆ q∗, (33)

for every P, Q ∈ A, p ∈ ω(P), q ∈ ω(Q) and p∗ ∈ ω(P)∗ , q∗ ∈ ω(Q)∗, where we
have used the actions of equations (12) and (13).

Take two elements (p∗ ⊗TP
p), (q∗ ⊗TQ

q) ∈ R(A) and using equality (33), we
compute

(p∗ ⊗TP
p) (q∗ ⊗TQ

q) = (q∗ ⋆ p∗)⊗TQ⊗P
(q⊗A p)

= (q∗ ⋆ p∗)⊗TQ⊗P
τP, Q(p⊗A q), τP, Q is an arrow in A

= (q∗ ⋆ p∗)τP, Q ⊗TP⊗Q
(p⊗A q)

= (p∗ ⋆ q∗)⊗TP⊗Q
(p⊗A q)

= (q∗ ⊗TQ
q) (p∗ ⊗TP

p),

which means that the multiplication (22) is commutative, and so R(A) is a com-
mutative (A⊗TI

A)-algebra. The compatibility of the comultiplication of Eq.(17)
and the counit of Eq.(18) with the multiplication of Eq.(22), are routine computa-
tions using the dual basis properties.

The following map

S : R(A) −→ R(A),
(

p∗ ⊗TP
p 7−→ φ(p)⊗T

P∨
γ(p∗)

)

, (34)

which is well defined thanks to the naturality of γ− and φ−, is our candidate for
the antipode map of the commutative bialgebroid (A, R(A)). Let us check that
S transforms the source to the target and vice-versa, and that it is an algebra map
as well. So, for two elements a, b ∈ A, we have

S (η(a⊗TI
b)) = S (la ⊗TI

b) = φ(b)⊗T
I∨

γ(la)
(27)
= lb ⊗TI

a = η(b⊗TI
a).

Hence S ◦ s = t and S ◦ t = s. The fact that S is a multiplicative map follows
from the following computation: For any two elements (p∗ ⊗TP

p),
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(q∗ ⊗TQ
q) ∈ R(A), we have

S

(

(p∗ ⊗TP
p) (q∗ ⊗TQ

q)
)

= S

(

(q∗ ⋆ p∗)⊗TQ⊗P
(q⊗A p)

)

= φ(q⊗A p)⊗T
(Q⊗P)∨

γ(q∗ ⋆ p∗)

(31)
= φ(q⊗A p)⊗T(Q⊗P)∨

ι−1
Q, P γ(p∗)⊗A γ(q∗)

= φ(q⊗A p) ι−1
Q, P ⊗T

P∨⊗Q∨
γ(p∗)⊗A γ(q∗)

(32)
= φ(p) ⋆ φ(q)⊗T

P∨⊗Q∨
γ(p∗)⊗A γ(q∗)

(22)
= (φ(q) ⊗T

Q∨
γ(q∗)) (φ(p) ⊗T

P∨
γ(p∗))

= S (q∗ ⊗TQ
q) S (p∗ ⊗TP

p),

which shows that S is a morphism of algebras.
We still need to check that, for every element h ∈ R(A), we have

h1S (h2) = η(ε(h) ⊗ 1), S (h1)h2 = η(1⊗ ε(h)).

Take h ∈ R(A) of the form h = p∗ ⊗TP
p, where p∗ ∈ ω(P)∗, p ∈ ω(P), for some

object P ∈ A, then we have (summation understood)

h1S (h2) = (p∗ ⊗TP
eα,P)S (e∗α,P ⊗TP

p)

= (p∗ ⊗TP
eα,P) (φ(p) ⊗T

P∨
γ(e∗α,P))

= (p∗ ⋆ φ(p)) ⊗T
P⊗P∨

(eα,P ⊗A γ(e∗α,P))

(28)
= (p∗ ⋆ φ(p)) ⊗T

P⊗P∨
ω(dbP)(1A)

= (p∗ ⋆ φ(p))ω(dbP)⊗TI
1A

=
(

ω(dbP)∗ ◦ (p∗ ⊗A φ(p))
)

⊗TI
1A

(28)
=

(

db∗
ω(P)
◦ (ω(P)∗ ⊗A γ∗) ◦ (p∗ ⊗A φ(p))

)

⊗TI
1A

=
(

db∗
ω(P)
◦ (p∗ ⊗A γ∗φ(p))

)

⊗TI
1A

(27)
=

(

db∗
ω(P)
◦ (p∗ ⊗A ψ(p))

)

⊗TI
1A

= (p∗ ⊗A ψ(p))
(

dbω(P)(1A)
)

⊗TI
1A

= lp∗(p) ⊗TI
1A = η(ε(h) ⊗ 1A),

which shows the first desired equality. The second one is similarly obtained (or
can be obtained from the equality S 2 = id which is shown below). Lastly, since
the natural isomorphisms dP : P→ (P∨)∨ in A, satisfy the following equalities

γP∨ ◦ φP = ω(dP) ω(dP)
∗ ◦ φP∨ ◦ γP = idω(P)∗ , (35)

it is not difficult to show that S 2 = id, and this finishes the proof.
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Remark 2.2.2. Given two symmetric rigid monoidal K-linear categories with sym-
metric monoidal faithful K-linear functors: ω : A → add(A) and ω′ : A′ →
add(A), and F : A → A′ a monoidal K-linear functor such that

A F //

ω ((P
PP

PP
PP

PP
P A′

ω′vv♠♠
♠♠
♠♠
♠♠
♠

add(A)

is a commutative diagram, then there exists a morphism φ =: R(F ) :
(A, R(A)) → (A, R(A′)) of Hopf algebroids making commutative the
following diagram of functors:

AR(A)
φ∗

//

O

##

(A′)R(A′)

O

tt

A F //

ω
::tttttttt

ω

,,

A′

ω′
88qqqqqqqq

ω

ww

add(A)

where O is the forgetful functor and φ∗ is the restriction of the induced functor
φ∗ : ComodR(A) → ComodR(A′) sending any right R(A)-comodule (M, ̺M) to

the right R(A′)-comodule

M
̺M

// M⊗A R(A)
M⊗Aφ

// M⊗A R(A′),

and acting obviously on morphisms.

2.3 Reconstruction and Galois corings

It is well known that any coalgebra over a field can be reconstructed from its cate-
gory of finite-dimensional right comodules. That is, it is isomorphic to an infinite
comatrix coalgebra. Over a general base ring, one only obtains an
A-coring morphism which is not always an isomorphism. Precisely, let R(AC)
be the A-coring associated to the fibre functor O : AC → add(AA) for some
A-coring C. Then there is a homomorphism of A-corings known as the canonical
map:

canAC : R(AC) −→ C,
(

p∗ ⊗TP
p + JA 7−→ (p∗ ⊗A C) ◦ ̺P(p)

)

. (36)

Obviously any K-linear functor A → AC induces an analogue morphisms of cor-
ings canA.

Following the terminology used in [15, 20]:

Definition 2.3.1. An A-coring C is said to be a Galois coring (or Σ = ⊕P∈ACP is a
right Galois comodule) provided canAC is an isomorphism of A-corings.
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This is the case when ComodC is an abelian category havingAC as a set of gen-
erators [15, Theorem 4.8], which is exactly the situation in the aforementioned
coalgebra case (see [11, Proposition 4.13] for the case of corings over fields). The
case of corings underlying certain commutative Hopf algebroids is of special in-
terest as the following example shows.

Example 2.3.2 (Geometrically transitive Hopf algebroids [6, 13]). Roughly speak-
ing, a commutative flat Hopf algebroid (A,H) over a base field K, is said to be
geometrically transitive (GT for short), provided that the algebra map η = s⊗K t :
A ⊗K A → H is a faithfully flat extension. The fact that K should be a field is
a crucial condition here. It turns out that GT Hopf algebroid (A,H) is recon-
structed from its A-profinite comodules, that is, from the category AH of the un-
derlying A-coring H, as (the skeleton of) this category form a ‘set’ of generators,
see [13, Corollary A (2)]. Indeed, every H-comodule is an inductive limit of
comodules from AH. Besides, any comodule is faithfully flat as an A-module
[13, Lemma 4.3 (b)]. In summary, by applying [15, Theorem 4.8], the canonical
map of Eq. (36) is bijective andH is a Galois A-coring.

2.4 Principal bi-bundles attached to two different fibre functors

Apart from its own general interest, the material of this section will be used
to clarify the construction of Picard-Vessiot extensions (over the affine line) in
Section 5. In this subsection all algebras are commutative K-algebras over a base
field K and are assumed to have K-points. The category of all commutative alge-
bras over a commutative algebra A, is denoted by Alg

A
.

We keep the notation of subsection 2.2 and fix a symmetric rigid monidal
K-linear category A. For our needs it is convenient to assume further that the
endomorphism algebra of the identity object of A is isomorphic to the base field,
that is, TI

∼= K. For a given (non trivial) monoidal symmetric K-linear faithful
functor ω : A → add(A) (i.e., a fibre functor), instead of denoting by R(A)
the resulting Hopf algebroid from Proposition 2.2.1, we will use the notation
RA⊗A(ω) := R(A) in order to specify which fibre functor we are using and over
which base algebra we are working.

Given an algebra map ξ : A → C, we denote by ω ⊗A ξC : A → add(C) the
extended fibre functor, which sends any object P ∈ A to the finitely generated
and projective C-module ω(P)⊗A ξC.

Assume we are given two fibre functors ωi : A → add(Ai), i = 1, 2. If R is
an A1 ⊗ A2-algebra, that is, we have an extension s⊗ t : A1 ⊗ A2 → R, then we
have two extended fibre functors, namely, ω1 ⊗A1 sR and ω2 ⊗A2 tR. In this way,
we can define the following (A1, A2)-bimodule:

RA1⊗A2
(ω1, ω2) :=

⊕

P∈A ω1(P)
∗ ⊗TP

ω2(P)

Jω1, ω2

(37)

where Jω1, ω2
is the subbimodule generated by the set

{

q∗ ⊗TQ
ω2(t)(p)− (q∗ ◦ω1(t))⊗TP

p| q∗ ∈ ω1(Q)∗, p ∈ ω2(P), t ∈ TPQ, P, Q ∈ A
}

.

(38)
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Then there are two bimodule maps

α : A1 −→ RA1⊗A2
(ω1, ω2),

(

a1 7−→ la1
⊗K 1A2

)

and

β : A2 −→ RA1⊗A2
(ω1, ω2),

(

a2 7−→ 1A1
⊗K la2

)

. (39)

Our next aim is to show that the triple (RA1⊗A2
(ω1, ω2), α, β) admits a struc-

ture of (RA1⊗A1
(ω1), RA2⊗A2

(ω2))-bicomodule algebra which becomes a principal
bibundle (see [17, Section 4] for the pertinent definition) when the involved Hopf
algebroids are geometrically transitive (see Example 2.3.2 and [13, Theorem A]
for more details).

The commutative algebra structure of RA1⊗A2
(ω1, ω2) is defined in similar

way as in Eq. (22). That is, for two object P, Q ∈ A and elements p∗1 ∈ ω1(P)
∗,

q∗1 ∈ ω1(Q)∗ and p2 ∈ ω2(P), q2 ∈ ω2(Q), we have that

(p∗1 ⊗TP
p2) . (q∗1 ⊗TQ

q2) := (p∗1 ⋆ q∗1)⊗TP⊗Q
(p2 ⊗A q2), (40)

is a well defined multiplication, such that the map α ⊗ β : A1 ⊗K A2 →
RA1⊗A2

(ω1, ω2) is a K-algebra map. Clearly, we have RA1⊗A2
(ω1, ω2) = RA⊗A(ω),

whenever A1 = A2 = A and ω1 = ω2 = ω. In case we only assume that
A1 = A2 = A, we denote by 〈α − β〉 the ideal of RA⊗A(ω1, ω2) generated by
the set of elements

{

α(a)− β(a)| a ∈ A
}

, and by

RA(ω1, ω2) :=
RA⊗A(ω1, ω2)

〈α− β〉
(41)

its quotient A-algebra with extension denoted by ι : A→ RA(ω1, ω2). The equiv-
alence class of element p∗ ⊗TP

p in this quotient algebra RA(ω1, ω2) is denoted by
[p∗ ⊗TP

p]. When ω1 = ω2, we denote RA(ω, ω) := RA(ω) (here α and β are
the source and the target maps, respectively, of this Hopf algebroid). Specifically,
RA(ω) inherits canonically a structure of commutative Hopf A-algebra, that is, a
commutative Hopf algebroid with source is equal to the target.

In the general situation we will denote by Isom⊗
A1⊗A2

(

ω2, ω1

)

the functor

Isom⊗
A1⊗A2

(

ω2, ω1

)

: Alg
A1⊗A2

−→ Sets,
(

R −→ Isom⊗(ω2 ⊗A2 tR, ω1 ⊗A1 sR)
)

(42)
from the category of (A1 ⊗ A2)-algebras to the category of sets, which sends any
(A1 ⊗ A2)-algebra R to the set of all tensorial natural transformations from the
functor ω1 ⊗A1 sR to ω2 ⊗A2 tR (recall that the category A is assumed to be rigid,
so that each of these natural transformations is already a natural isomorphism).
We will employ the same notations for the case A1 = A2 = A, that is, we will
denote by Isom⊗

A

(

ω2, ω1

)

: Alg
A
→ Sets the functor which sends any A-algebra

C to the set Isom⊗(ω2 ⊗A C, ω1 ⊗A C).

Proposition 2.4.1. Keep the above notations. Then the functor Isom⊗
A1⊗A2

(

ω2, ω1

)

of
equation (42) is represented by the (A1 ⊗ A2)-algebra RA1⊗A2

(ω1, ω2). Assume that
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A1 = A2 = A, then up to natural isomorphisms, there is a commutative diagram

Alg
A

Isom⊗A(ω2, ω1) &&▲
▲▲

▲▲
▲▲

▲▲
▲

// Alg
A⊗A

Isom⊗A⊗A(ω2, ω1)xxqq
qq
qq
qq
qq

Sets

where the horizontal functor is the canonical one. Furthermore the functor
Isom⊗

A

(

ω2, ω1

)

is represented by the quotient A-algebra RA(ω1, ω2) of equation (41).

Proof. The first statement of the proposition is [11, Proposition 6.6]. The rest of
the proof is not difficult and left to the reader.

Recall that a pair (P , α) is said to be a left comodule algebra over a commu-
tative Hopf algebroid (A,H), when α : A → P is an extension of algebras
and P is endowed with a structure of left H-comodule whose underlying left
A-module is αP such that the coaction λ : P → Hs ⊗A αP is an A-algebra map.
Right comodule algebras are similarly defined, and bicomodule algebras are nat-
urally introduced. Thus an (H,K)-bicomodule algebra over two commutative
Hopf algebroids (A,H) and (B,K), is a triple (P , α, β) such that (P , α) is a left
H-comodule algebra, (P , β) is a rightK-comodule algebra and the leftH-coaction
is a morphism of right K-comodules (or equivalently the right K-coaction is left
H-comodule morphism).

Definition 2.4.2. ([17, Defintion 4.1]) A left principal (H,K)-bundle (P , α, β) for
two Hopf algebroids (A,H) and (B,K) is an (H,K)-bicomodule algebra, that is,
P is equipped with a left H-comodule algebra and a right K-comodule algebra
structures with respect to the algebra maps α : A→ P resp. β : B→ P such that

1. β is a faithfully flat extension;

2. the canonical map

canl : P ⊗B P → H⊗A P , p⊗B p′ 7→ p(−1) ⊗A p(0)p′ (43)

is bijective.

A triple (P, α, β) which only satisfies condition (2) is called left pseudo (H,K)-
bundle. Right (pseudo) principal bundles are similarly defined and we use the no-
tation canr for the corresponding canonical map. For instance, the opposite right
principal bundle of a given left principal bundle (P , α, β), is the bundle (P op, β, α)
where the algebra P op = P and the coactions are switched (interchanging the
source and the target maps). A (pseudo) principal bibundle is a left and right (pseu-
do) principal bundle. That is, for pseudo bibundle, both canl and canr are required
to be bijective. If, furthermore, both α and β are faithfully flat, then the bibundle
is principal. For a given flat Hopf algebroid (A,H) it is easily shown that the
triple (H, s, t) is a principal (H,H)-bibundle, see [17, §4] for more examples and
details.
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Now we come back to our situation. Consider as above the algebras
RAi⊗Aj

(ωi, ωj), for i = 1, 2. For an object P ∈ A we fix a dual basis for ωi(P) ∈

add(Ai) using the notation {eαi, P
, e∗αi, P

}αi, P
, i = 1, 2. We also make use of the nota-

tion pi ∈ ωi(P) and p∗i ∈ ωi(P)
∗, for any object P ∈ A. In this way we have the

following well defined maps:

RA1⊗A2
(ω1, ω2)

λ // RA1⊗A2
(ω1, ω2)⊗A2

RA2⊗A2
(ω2)

(

p∗1 ⊗TP
p2

✤ // ∑α2, P
p∗1 ⊗Tp eα2, P ⊗A2

e∗α2, P
⊗TP

p2

)

,

(44)

where the left A2-action on RA2⊗A2
(ω2) is given by the algebra map α of equation

(39), and

RA1⊗A2
(ω1, ω2)

̺
// RA1⊗A1

(ω1)⊗A1
RA1⊗A2

(ω1, ω2)
(

p∗1 ⊗TP
p2

✤ // ∑α1, P
p∗1 ⊗Tp eα1, P

⊗A2
e∗α1, P
⊗TP

p2

)

,

(45)

where the right A1-action on RA1⊗A1
(ω1) is given by the algebra map β of equa-

tion (39).
The following Lemma and its subsequent Corollary are inspired from Propo-

sition 2.4.1.

Lemma 2.4.3. Consider (Ai, RAi⊗Ai
(ωi)), for i = 1, 2, as commutative Hopf algebroids

with structure maps given as in subsection 2.2. Then the triple (RA1⊗A2
(ω1, ω2), α, β)

is an (RA1⊗A1
(ω1), RA2⊗A2

(ω2))-bicomodule algebra with left and right coactions given
by equations (44) and (45), respectively. Furthermore, RA1⊗A2

(ω1, ω2) is a pseudo
(RA1⊗A1

(ω1), RA2⊗A2
(ω2))-bibundle.

Proof. The first statement is a straightforward verification. As for the last one,
recall the natural transformations γ and φ from equations (25) and (26). We only
give the translation map which leads to the inverse of the canonical map can,
the pertinent verification are routine computations which use the properties of γ
and φ already mentioned in subsection 2.2. For the left one, that is, for canl the
translation map is given by:

RA(ω1)
τl

//
αRA1⊗A2

(ω1, ω2)β ⊗A2
RA1⊗A2

(ω1, ω2)β

p∗1 ⊗TP
p1

✤ // ∑α2, P
p∗1 ⊗Tp eα2, P ⊗A2

φ(p1)⊗T
P∨

γ(e∗α2, P
)

While for the right canonical map canr the translation map is given by:

RA(ω2)
τr

//
αRA1⊗A2

(ω1, ω2) ⊗A1 αRA1⊗A2
(ω1, ω2)β

p∗2 ⊗TP
p2

✤ // ∑α1, P
γ(eα1, P

)⊗T
P∨

φ(p∗2)⊗A1
e∗α1, P
⊗Tp p2

This finishes the proof.

Over the same algebra, the coaction of equations (44) and (45) are canonically
lifted to the quotient algebras of Eq. (41) and the Lemma 2.4.3 still working in
this case as well.
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Corollary 2.4.4. Assume that A1 = A2 = A. Then the bicomodule algebra struc-
ture of Lemma 2.4.3, induces a structure of (RA(ω1), RA(ω2))-bicomdule algebra on
RA(ω1, ω2). Furthermore, RA(ω1, ω2) is a pseudo (RA(ω1), RA(ω2))-bibundle.

The following is the main result of this section, it is the affine groupoid schemes
version of the similar well known result for affine group schemes (over an affine
scheme). As before, the ground ring K is assumed to be a field. For more notions
and properties of geometrically transitive Hopf algebroids we refer to [6, 13].

Theorem 2.4.5. Let A be a symmetric rigid monoidal K-linear category with the
endomorphism algebra of the identity object TI = K. Assume we have two fibre functors
ωi : A → add(Ai), i = 1, 2 (i.e., faithful symmetric monoidal K-linear functors) and
consider the associated (RA1⊗A1

(ω1), RA2⊗A2
(ω2))-bicomodule algebra (RA1⊗A2

(ω1, ω2),
α, β). Then,

(i) if the Hopf algebroid RA1⊗A1
(ω1) (resp., RA2⊗A2

(ω2)) is geometrically transitive,
then RA1⊗A2

(ω1, ω2) is a left (resp., right) principal (RA1⊗A1
(ω1), RA2⊗A2

(ω2))-
bundle.

(ii) ifA is an abelian locally finite K-linear category and both functors ωi are exact, then
RA1⊗A2

(ω1, ω2) is a principal (RA1⊗A1
(ω1), RA2⊗A2

(ω2))-bibundle with opposite
bibundle isomorphic to RA2⊗A1

(ω2, ω1).

(iii) if, in addition to the assumptions of item (ii), we also assume that ω1 = ω ⊗K A,
for some fibre functor ω : A → vectK, then RA(ω1, ω2) is a principal (RA(ω1),
RA(ω2))-bibundle.

Proof. (i) If RA1⊗A1
(ω1) is geometrically transitive, then by [13, Lemma 4.3(b)]

every (left) RA1⊗A1
(ω1)-comodule is faithfully flat as an A1-module. In particular

RA1⊗A2
(ω1, ω2) is faithfully flat as an A1-module. Combining this with part (i),

we have that RA1⊗A2
(ω1, ω2) is a left principal (RA1⊗A1

(ω1), RA2⊗A2
(ω2))-bundle.

Analogously, if we assume that RA2⊗A2
(ω2) is a geometrically transitive Hopf al-

gebroid, then RA1⊗A2
(ω1, ω2) is a right principal (RA1⊗A1

(ω1), RA2⊗A2
(ω2))-bundle.

(ii) Under these assumptions the reconstructed Hopf algebroids RA1⊗A1
(ω1)

and RA2⊗A2
(ω2) are, by [11, Théorème 1.12] (see also [6, Théorèmes 5.2 et 7.1]),

both geometrically transitive. Therefore, part (ii) implies that RA1⊗A2
(ω1, ω2) is a

left and right principal bundle and so a principal bibundle. The opposite bibun-
dle of RA1⊗A2

(ω1, ω2) is clearly isomorphic to RA2⊗A1
(ω2, ω1).

(iii) We already know form Corollary 2.4.4 that RA(ω1, ω2) is a pseudo
bibundle between the Hopf A-algebras RA(ω1) and RA(ω2). The only remaining
condition is the faithfully flatness of the involved A-algebras. Up to the canoni-
cal symmetric monoidal equivalence of K-linear categories betweenA and finite-
dimensional comodules over the Hopf K-algebra RK(ω) = RK⊗K(ω), we know
that RA(ω1) is a flat A-module and so it is faithfully flat (as the unit splits by
the counit). To show that RA(ω1, ω2) is a faithfully flat over A, we proceed as in
the proof of [37, Théorème 4.2.2, page 155], by realising RA(ω1, ω2) as an induc-
tive limit of an inductive system of finitely generated and projective A-modules
whose transition morphisms are split monomorphisms.
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3 The finite dual of a ring extension.

In this section we specialize the construction of Section 2 to the case of a ring
homomorphism A → R, which leads to the (right) finite dual A–coring R◦, and
of a functor χ : AR −→ A

R◦ . We will show that, in the case of coalgebras over
a Dedekind domain, our R◦ is isomorphic to the usual finite dual defined as the
subspace of R∗ of all linear forms whose kernel contains a cofinite ideal of R.
When RA is finitely generated and projective, we show that R◦ is isomorphic to
R∗. We also study when R◦ is Galois and, what is more important, when χ is an
isomorphism of categories. All these results are related to the injectivity of a map
R◦ → R∗ to be defined below.

3.1 The finite dual coring R◦

Given an A–ring R, consider the category AR of all right R–modules that are
finitely generated and projective as right A–modules. We define the right finite
dual of the extension A→ R as the A-coring R◦ = R(AR) described in Section 2.

We know from equation (16) that R◦ is the factor A-coring B(AR)/J(AR),
where

B(AR) =
⊕

P∈AR

P∗ ⊗TP
P

and J(AR) is the K-submodule spanned by the set of elements as in Eq.(15). The
elements

p∗ ⊗TP
p = p∗ ⊗TP

p + JAR
, p∗ ∈ P∗, p ∈ P, P ∈ AR

form a set of generators of R◦ as a K-module (and, of course, as an A-bimodule).
Recall that the comultiplication of R◦ is given by

∆◦ : R◦ −→ R◦ ⊗A R◦, p∗ ⊗TP
p 7−→ p∗ ⊗TP

eα,P ⊗A e∗α,P ⊗TP
p, (46)

where {eα,P, e∗α,P} denotes a finite dual basis for PA. The counit of R◦ is

ε◦ : R◦ −→ A, p∗ ⊗TP
p 7−→ p∗(p). (47)

3.2 The functors χ and L

Consider the homomorphism of A-bimodules b : R◦ ⊗R R → A defined as the
composite

b : R◦ ⊗R R ∼= R◦ ε◦ // A

and let ηR : R→ ∗(R◦) be its image under the adjunction isomorphism

HomA-(R
◦ ⊗R R, A) ∼= HomR-(R, ∗(R◦)).

Explicitly,

ηR(r)(p∗ ⊗TP
p) = p∗(pr). (48)
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Recall that, since R◦ is an A-coring, we know that ∗(R◦) is a ring with the convo-
lution product. A straightforward computation shows that ηR is an anti-homo-
morphism of rings.

From the well-known (see, e.g [7, 19.1]) functor l : ComodR◦ → ∗(R◦)Mod we
get, after composing with the restriction of scalars functor associated to ηR, a
functor

L : AR◦

−→ AR.

This functor is explicitly given on objects as follows: given a right R◦-comodule
̺M : M → M ⊗A R◦, and using a Sweedler-type notation (summation under-
stood), we define the following right R-action on M

m · r = m0m∗1(m1r), r ∈ R, ̺M(m) = m0 ⊗A m∗1 ⊗TP
m1. (49)

Conversely, every object P ∈ AR is a right R◦-comodule with the coaction

χP : P −→ P⊗A R◦, p 7−→ eα,P ⊗A e∗α,P ⊗TP
p. (50)

This gives the object map of a functor χ : AR −→ A
R◦ . A straightforward com-

putation shows that L ◦ χ = idAR
.

3.3 The injectivity of the map ζ : R◦ → R∗

Consider the image ζ : R◦ → R∗ of the A-bilinear map b : R◦ ⊗R R → A under
the adjunction isomorphism

Hom-A(R
◦ ⊗R R, A) ∼= Hom-R(R

◦, R∗)

This homomorphism of (A, R)-bimodules is explicitly given by

ζ : R◦ −→ R∗, p∗ ⊗TP
p 7−→ (r 7→ p∗(pr)). (51)

Clearly, we have ζ(p∗ ⊗TP
p)(r) = ηR(r)(p∗ ⊗TP

p), where ηR is the map defined
in Eq.(48).

For each module MA, define βM : M⊗A R◦ → Hom-A(R, M) by

βM(m⊗A p∗ ⊗TP
p)(r) = mp∗(pr).

Lemma 3.3.1. βM is injective for every MA finitely generated and projective if and only
if ζ : R◦ → R∗ is injective.

Proof. Observe that, up to the canonical isomorphism A ⊗A R◦ ∼= R◦, we have
that βA = ζ, which gives the direct implication. The converse is clearly deduced
from the fact that the class of modules MA for which βM is injective is closed
under finite direct sums and direct summands.

Proposition 3.3.2. If ζ : R◦ → R∗ is injective, then the functor χ : AR → A
R◦

is an
isomorphism of categories.
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Proof. Since we already know that L ◦ χ = idAR
, we only need to prove that the

composition χ ◦ L is also the identity functor. Let M be an object of AR◦

with
coaction ̺M : M → M ⊗A R◦. Then L sends M to a right R-module with the
action (49). With this structure, M ∈ AR, and, therefore, by applying χ, we obtain
a comodule χM : M → M⊗A R◦. We need to check that ̺M = χM and, since βM

is injective by Lemma 3.3.1, it is enough if we prove that βM ◦ ̺M = βM ◦ χM.
This follows from the following computation:

(βM ◦ ̺M)(m)(r) = m0m∗1(m1r) = mr

(βM ◦ χM)(m)(r) = eα,Me∗α,M(mr) = mr.

Proposition 3.3.3. If ζ : R◦ → R∗ is injective, then R◦ is a Galois A-coring.

Proof. Recall that the canonical map canR◦ : R(R◦)→ R◦ is defined by

canR◦(m∗ ⊗TM
m) = m∗(m0)m∗1 ⊗TM1

m1.

Therefore

(canR◦ ◦R(χ))(p∗ ⊗TP
p) = canR◦(p∗ ⊗Tχ(P)

p) = p∗(eα,P)e
∗
α,P ⊗TP

p = p∗ ⊗TP
p

In this way, canR◦ ◦R(χ) = idR◦ . By Proposition 3.3.2, χ is an isomorphism of
categories and, henceforth, R(χ) is bijective. Therefore, canR◦ is bijective and R◦

is Galois.

Proposition 3.3.4. Assume that for every homomorphism of right R-modules
f : P → R∗, where P ∈ AR, there exists Q ⊆ AR and an exact sequence of right

R-modules
⊕

Q∈Q Q
g
// P

f
// R∗. Then ζ : R◦ → R∗ is injective.

Proof. For every P ∈ AR we consider the adjunction isomorphism of (A, TP)-
bimodules

Hom-R(P, R∗) ∼= P∗, f 7→ (p 7→ f (p)(1))

with inverse

P∗ −→ Hom-R(P, R∗), ϕ 7→ (p 7→ (r 7→ ϕ(pr)))

Writing P⋆ = Hom-R(P, R∗), we obtain an isomorphism of A-bimodules

R◦ ∼=

⊕

P∈AR
P⋆ ⊗TP

P

K
{

f ⊗TQ
tp− f t⊗TP

p : f ∈ Q⋆, p ∈ P, t ∈ TPQ, P, Q ∈ AR

}

Up to this isomorphism, ζ : R◦ → R∗ is given by ζ( f ⊗TP
p) = f (p), for f ∈ P⋆

and p ∈ P. Assume ∑i fi ⊗TPi
pi ∈ ker ζ, that is, ∑i fi(pi) = 0. Write P = ⊕iPi

and define f : P → R∗ and p ∈ P uniquely by the conditions f ιi = fi and
πi(p) = pi for every i, where ιi : Pi → P is the i-th canonical injection. We use the
notation πi : P → Pi for the canonical projections. Since p ∈ ker f , there exist a
homomorphim of right R-modules g : Q→ P and q ∈ Q such that p = g(q). The
following computation

∑
i

fi ⊗TPi
pi = ∑

i

fi ⊗Pi
πi(g(q)) = ∑

i

fiπig⊗TQ
q = f g⊗TQ

q = 0.

finishes the proof.
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When RA is finitely generated and projective, it is well-known that R∗ is an
A–coring (see e.g. [5, Proposition 2.11]).

Corollary 3.3.5. If RA is finitely generated and projective, then ζ : R◦ → R∗ is an
isomorphism of A–corings.

Proof. Our map ζ : R◦ → R∗ is injective by Proposition 3.3.4, since R is a genera-
tor of AR. In this case, ζ is obviously surjective.

Recall (see, e.g. [41, page 22]) that a ring is said to be right hereditary if every
right ideal is projective as a right module.

Corollary 3.3.6. If A is a right hereditary right noetherian ring, then ζ : R◦ → R∗ is
injective.

Proof. Recall that, over a right hereditary ring, submodules of projective right
modules are projective modules (see, e.g., [41, Proposition I.9.5]). Thus, given a
homomorphism of right R-modules f : P → R∗, where P ∈ AR, then Q := ker f
is projective as a right A–module, and, of course, it is finitely generated over
A, since we are assuming that A is right noetherian. Now, apply Proposition
3.3.4.

Example 3.3.7. Of course, every commutative Dedekind domain A fulfills the
hypotheses of Corollary 3.3.6.

Example 3.3.8. Obviously, if A is semi-simple Artinian, then A fulfills the hy-
potheses of Corollary 3.3.6.

Problem 1. Corollaries 3.3.5 and 3.3.6 require “extreme” conditions to guarantee,
by virtue of Proposition 3.3.4, that ζ is injective. More precisely, Corollary 3.3.5
imposes a strong condition on the ring extension A → R, while Corollary 3.3.6
restricts the kind of ground ring A we are allowed to work with. It would be
interesting, in view of the consequences of the injectivity of ζ (see Theorem 4.2.2
and Corollary 4.2.4 below), to investigate more general hypotheses (presumably,
module-theoretical conditions) that would imply it.

3.4 Dual coalgebras

Let R be an algebra over a commutative noetherian hereditary ring A. As a gen-
eralization to the case of algebras over fields, it is possible to define a structure of
A–coalgebra over the A–submodule R′ of R∗ consisting of those ϕ ∈ R∗ such that
ker ϕ contains an A–cofinite ideal of R (see [1, Theorem 2.8, Proposition 2.11]).
Here, an ideal I of R is A–cofinite if R/I is a finitely generated A–module.

The map ζ : R◦ → R∗ factorizes through R′. Indeed, for any generator
p∗ ⊗TP

p ∈ R◦, we need to prove that the cyclic right R–module ϕR, where
ϕ = ζ(p∗ ⊗TP

p), is finitely generated as an A–module (see [1, 2.3]). Let r, s ∈ R.
Since ζ is right R–linear, A is central in R, and by using a suitable dual basis, we
get

(ϕr)(s) = p∗(prs) = ∑
αP

p∗(eαP e∗αP
(pr)s) = ∑

αP

p∗(eαP se∗αP
(pr)) = ∑

αP

p∗(eαP s)e∗αP
(pr).
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This implies that ϕr belongs to the A–submodule of R∗ generated by the finite set
of all p∗(eαP−)’s and, hence, ϕR is finitely generated as an A–module.

It follows from Example 3.3.7 that ζ : R◦ → R∗ is injective. Let τ : R◦ ⊗ R◦ →
R◦ ⊗ R◦ denote the flip map. A straightforward computation shows that the
following diagram is commutative.

R◦ τ∆◦

//

ζ
��

R◦ ⊗ R◦

ζ⊗ζ
��

R∗

m∗

%%❑
❑❑

❑❑
❑❑

❑❑
R∗ ⊗ R∗

ww♦♦
♦♦
♦♦
♦♦
♦♦

(R⊗ R)∗

In resume, we have that, if R is an algebra over a commutative noetherian heredi-
tary ring A, then ζ : R◦ → R′ is an injective anti-homomorphism of A–coalgebras.

Proposition 3.4.1. Let R be an algebra over a commutative Dedekind domain A. Then
ζ : R◦ → R′ is an anti-isomorphism of A–coalgebras.

Proof. We need just to show that ζ : R◦ → R′ is surjective. Let ϕ ∈ R′. We
know that the cyclic right R–module ϕR is a finitely generated A–module. On the
other hand, ϕR ⊆ R∗ and, therefore, ϕR is a torsion-free A–module. Since A is a
Dedekind domain, we get that ϕR is a fgp A–module. Now, I := {r ∈ R : ϕr = 0}
is a right ideal of R and, since ϕR ∼= R/I, we get that P := R/I is fgp as an
A–module. On the other hand, I ⊆ ker ϕ, which implies that there is ϕ ∈ P∗ such

that ϕ(r + I) = ϕ(r) for all r ∈ R. Hence, ϕ = ζ(ϕ ⊗TP
(1 + I)).

Remark 3.4.2. The proof of Proposition 3.4.1 works to prove that if R is an algebra
over a semisimple commutative ring A, then ζ : R◦ → R′ is an anti-isomorphism
of coalgebras.

4 The finite dual of a right bialgebroid, and of a cocommutative

Hopf algebroid.

We show that the right finite dual U◦ of a right bialgebroid (A, U) is a left bial-
gebroid. When A is commutative, this fact can be deduced from [6, Exemple, pp.
5849], although that construction cannot be directly extended to the setting of a
non-commutive basis A because add(AA) is not a monoidal category. We also
prove that the map ζ : U◦ → U∗ is a homomorphism of Ae–rings, when U∗ is en-
dowed with the convolution product. Theorem 4.2.2 states that the finite dual of
a cocommutative Hopf algebroid with commutative base ring is a commutative
Hopf algebroid. This could also have been deduced from [6, Example, pp. 5849],
we include an elementary proof. Our approach could be useful to treat specific
examples. This will be illustrated in the last section. Theorem 4.2.2 also con-
tains our main contribution in this section, namely, a sufficient condition to get
a monoidal equivalence between the category of the A–profinite modules over
a cocommutative Hopf algebroid over A and the A–profinite representations of
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its associated affine groupoid via the finite dual construction. This equivalence
works in a non necessarily tannakian context.

4.1 Duality for bialgebroids

Let U be a right bialgebroid over a (possibly non commutative) K–algebra A, and
consider U as an A–ring via its source map s : A → U. Consider the fibre func-
tor s∗ : AU → add(AA) as in Section 2, and the corresponding right finite dual
A–coring U◦ as in Subsection 3.1. Our aim is to endow U◦ with the structure of
a left bialgebroid over A in such a way that the map ζ : U◦ → U∗ defined in
Eq.(51) becomes a morphism of Ae-rings. Here, the right convolution ring U∗ is
an Ae–ring via the homomorphism of rings

ξ : Ae −→ U∗,
(

a⊗ bo 7−→
[

u 7→ aε(t(b)u)
]

)

. (52)

Lemma 4.1.1. Let (A, U) be a right bialgebroid. Then U◦ admits a structure of Ae-ring
such that ζ : U◦ → U∗ is a homomorphism of Ae-rings.

Proof. Observe first that A ∈ AU , where the right U–module structure is given
by the action

a.u = ε(t(a)u) = ε(s(a)u). (53)

With this right U-module structure, it is clear that A is the identity object of
the monoidal category AU . Now, as in Eq. (23) of subsection 2.2, the element

idA ⊗TA
1 ∈ U◦ is the unit for the multiplication (22), and we have that

η◦ : Ae −→ U◦,
(

(a⊗ bo) 7−→ (la ⊗TA
b)
)

, (54)

is a homomorphism of rings (the associated source and target are denoted by s◦

and t◦, respectively) where the endomorphism ring TA of AU is the commutative
subalgebra of A defined by

TA =
{

a ∈ Z(A)| aε(u) = ε
(

t(a)u
)

, for every u ∈ U
}

. (55)

Recall that the map ζ sends p∗ ⊗TP
p 7→ [u 7→ p∗(pu)]. In order to see that it is

a homomorphism of Ae–rings, let us check first that it is unital. So,

ζ ◦ η(a⊗ bo)(u) = ζ(la ⊗TA
b)(u) = la(bu) = aε(t(b)u) = ξ(a⊗ bo)(u), ∀u ∈ U.

Hence ζ ◦ η = ξ, where ξ is the map defined in Eq.(52). Now, using the above
multiplication Eq.(22), we have

ζ
(

(p∗ ⊗TP
p) . (q∗ ⊗TQ

q)
)

(u) = ζ
(

(q∗ ⋆ p∗)⊗TQ⊗AP
(q⊗A p)

)

(u)

= (q∗ ⋆ p∗)((q⊗A p) u)

= (q∗ ⋆ p∗)(qu1 ⊗A pu2) = p∗(q∗(qu1)(pu2))

= p∗((pu2)(t(q
∗(qu1)))).
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On the other hand, using the convolution multiplication defined by the coring
UAe , we have

ζ(p∗ ⊗TP
p) ∗ ζ(q∗ ⊗TQ

q) (u) = ζ(p∗ ⊗TP
p)
(

ζ(q∗ ⊗TP
q)(u1)u2

)

= ζ(p∗ ⊗TP
p)(q∗(qu1)u2)

= p∗(p(q∗(qu1)u2)) = p∗(p(u2t(q
∗(qu1))))

= p∗((pu2)t(q
∗(qu1))).

Henceforth, ζ is multiplicative, and this finishes the proof.

Proposition 4.1.2. If (A, U) is a right bialgebroid, then (A, U◦) is a left bialgebroid.

Proof. We know that U◦ is constructed from the monoidal category AU and the
forgetful functor ω = s∗ : AU → AModA, that is, we have that U◦ = R(AU) as
in the notation of subsection 2.2. Therefore, we can apply the first statement of
Proposition 2.2.1 to obtain the claim.

Remark 4.1.3. There is a kind of symmetry in Proposition 4.1.2. This means that
given a left bialgebroid (A, V), using it target map t : A → V and it associated
category VA of left V-modules which are finitely generated and projective as
A-modules via the fibre functor ∗t : VMod → add(A A). The reconstruction
process of Section 2 leads to a right bialgebroid

(

A, R(VA)
)

:= (A, ◦V).

4.2 Duality for Hopf algebroids

In this subsection we assume that (A, U) is a left Hopf algebroid over a commu-
tative K-algebra A, and the underlying A-coring of U is co-commutative. Bialge-
bras over field extensions studied in [33, 8] and those over a commutative algebra
studied in [36], as well as the universal algebras of Lie algebroids or, in general,
of Lie-Rinehart algebras (Examples 1.3.3 and 1.3.2), are all examples of this class
of left bialgebroids.

It is easily checked that, under the current assumptions, the source of U is
equal to its target (i.e., s = t). This fact will be implicitly used in the sequel. Recall
that for such a bialgebroid (A, U), the category AU consists of right U-modules
whose underlying A-modules are finitely generated and projective, using either
the functor s∗ or t∗.

Proposition 4.2.1. Let (A, U) be a co-commutative right Hopf algebroid over a commu-
tative algebra A. Consider the category AU with the fibre functor s∗ : AU → add(A).
Then AU is a monoidal symmetric and rigid category with s∗ a strict monoidal fibre
functor.

Proof. First observe that, since t = s, each object in AU is a central A-bimodule.
On the other hand, for every pair of objects P, Q ∈ AU the flip map τP, Q : P⊗A

Q → Q⊗A P, sending p⊗A q 7→ q⊗A p is actually an arrow in AU, since U is co-
commutative. The rigidity of AU is immediate from Lemma 1.2.2, and the duals
are described as follows: For every arrow f : P → Q in AU , its A-linear dual
map f ∗ : Q∗ → P∗ is clearly an arrow in the same category AU, where P∗, Q∗ are
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objects ofAU by the action of Eq.(10). Thus, P∗ is a dual object inAU for an object
P ∈ AU, and the duality is given by the following arrows in AU

ev : P∗♦ P = P∗ ⊗A P→ A,
(

p∗ ⊗A p 7→ p∗(p)
)

,

db : A→ P♦ P∗ = P⊗A P∗,
(

1 7→ eα, P ⊗A e∗α, P

)

, (56)

(respectively called evaluation and dual-basis) where {eα,P, e∗α,P} is a dual basis for
P. The rest of the proof is now clear.

The main results of this section are the last two parts of the following theorem.

Theorem 4.2.2. Let (A, U) be a co-commutative right Hopf algebroid over a commuta-
tive algebra A. Then

1. (A, U◦) is a commutative Hopf algebroid over TA.

2. The functor χ : AU → A
U◦

is strict monoidal and preserves the symmetry.

3. If ζ : U◦ → U∗ is injective, then χ is an isomorphism of symmetric monoidal
categories.

Proof. (1) This part follows from Propositions 4.2.1 and 2.2.1, and the Hopf al-
gebroid structure maps are explicitly given as follows. The algebra structure is
given by the multiplication of equation (22) and unit the algebra map η of equa-
tion (54). The the comultiplication is the algebra map

∆◦ : U◦ −→ U◦ ⊗A U◦, p∗ ⊗TP
p 7−→∑

αP

p∗ ⊗TP
eα,P ⊗A e∗α,P ⊗TP

p, (57)

where {eα,P, e∗α,P} denotes a finite dual basis for PA. The counit of U◦ is

ε◦ : U◦ −→ A, p∗ ⊗TP
p 7−→ p∗(p), (58)

and the antipode is the algebra map

S
◦ : U◦ −→ U◦, (p∗ ⊗TP

p 7−→ ψ(p)⊗TP∗
p∗), (59)

where ψ : P → (P∗)∗ is the canonical isomorphism of A-modules, as in subsec-
tion2.2.

(2) Let P, Q be two objects in AU . Then the right U◦-comodule structure of
χ
(

P⊗A Q
)

, is given as in (50) by the coaction:

̺χ(P⊗AQ) : P⊗A Q −→ P⊗A Q⊗A U◦,
(

p⊗A q 7−→∑(eα,P ⊗A eβ,Q)⊗A (e∗α,P ⋆ e∗β,Q)⊗TP⊗AQ
(p⊗A q)

)

where {eα,P, e∗α,P} and {eβ,Q, e∗β,Q} denote as above the dual basis of PA and QA.

On the other hand, the tensor product χ(P) ⊗A χ(Q), in the monoidal subcate-
gory of right U◦-comodules AU◦

, has the following comodule structure:

̺χ(P)⊗Aχ(Q) : P⊗A Q −→ P⊗A Q⊗A U◦,
(

p⊗A q 7−→∑ p(1) ⊗A q(1) ⊗A p(2)q(2)

)
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Now, using equation (50) and the commutativity of the multiplication of U◦, as
given in (22), we get that ̺χ(P)⊗Aχ(Q) = ̺χ(P⊗AQ). Therefore, χ(P) ⊗A χ(Q) =

χ(P⊗A Q), for any two objects P, Q in AU .

The identity object of AU is the right U-module A with action a.u = ε(au),
for any a ∈ A and u ∈ U. The image by χ of this object has the right coaction
̺χ(A) : A→ A⊗A U◦ sending a 7→ 1⊗A 1⊗TA

a. Thus, by equation (54), we have

̺A(a) = t◦(a), for every a ∈ A. Hence, χ(A) = (A, t◦) the identity object of the
monoidal category AU◦

. We have then shown that χ is a strict monoidal functor.
Lastly, since both monoidal categories AU and AU◦

have the flip as symmetry,
one trivially obtains that χ is a symmetric monoidal functor.

(3) Follows from Proposition 3.3.2.

Corollary 4.2.3. Let (A, U) be a cocommutative right Hopf algebroid over a Dedekind
domain A. Then the category AU is isomorphic, as a symmetric monoidal category, to
AU◦

.

Proof. This is deduced from Corollary 3.3.6 and Theorem 4.2.2.

We also get the following consequence of Theorem 4.2.2, whose geometri-
cal interpretation is that, under suitable conditions, given a Lie-Rinehart algebra
there is a groupoid with the “same” representation theory (see Example 1.3.2 for
details on the Hopf algebroid attached to a Lie-Rinehart algebra).

Corollary 4.2.4. Let L be a Lie-Rinehart algebra over a commutative ring A, and let
U (L) denote its universal enveloping Hopf algebroid. If ζ is an injective map (e. g. if A is
a Dedekind domain), then the category of A-profinte right U (L)-modules is isomorphic,
as a symmetric rigid monoidal category, to the category of A-profinite right comodules
over the commutative Hopf algebroid U (L)◦ .

Remark 4.2.5. Starting with a commutative Hopf algebroid (A, V), then, by Propo-
sition 4.1.2, we know that (A, V◦) is a right bialgebroid. The fact that (A, U◦) is
actually a right Hopf algebroid can be shown using the tecniques developed in
[21]. In analogy with the classical situation of Hopf algebra over fields, it stills
then to check that U◦ is a co-commutative A-coring. It seems that in general,
there is no direct way of proving this property. However, it can be derived under
some assumptions, which are always fulfilled in the finite case (i.e., when VA or

AV are finitely generated and projective). Precisely, if we assume that the map
ζ : V◦ → V∗ of subsection 3.3 and the canonical map

ΨV : V∗ ×A V∗ −→ (V ⊗A⊗A V)∗,
(

(p∗ ⊗TP
p)×A (q∗ ⊗TQ

q) 7−→
[

u⊗A⊗A v 7→ p∗(pu) q∗(qv)
])

(60)

(here ×A is the Sweedler-Takeuchi’s product [42, 44]), are injective and that VA

is flat, then one can deduce, from the following commutative diagram, the co-
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commutativity of the comultiplication ∆◦ of the A-coring V◦

V◦

∆◦

��

ζ
// V∗

µ∗

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

(V ⊗A⊗A V)∗

V◦ ×A V◦
ζ×Aζ

// V∗ ×A V∗
ΨV

44✐✐✐✐✐✐✐✐✐✐✐✐✐

Following the observations of Example 3.3.5, the duality stated in [36, Proposi-
tions 3, 4] (see also [23, 9, 40]), is now a particular instance of the one established
hereby.

5 Application: The finite dual of the first Weyl algebra, differen-

tial Galois groupoid and PV extensions

In this section, we illustrate our methods by treating, in an exhaustive way, the
universal Hopf algebroid of the transitive Lie algebroid of vector fields over the
complex affine line A

1
C

. In other words the first Weyl C-algebra. We first show
that the category of differential modules is a Tannakian category (in the sense
of [11]) which is identified with the category of comodules over the finite dual
with underlying finitely generated free C[X]–modules. Second we show that
for a fixed differential module (M, ∂), this finite dual contains a commutative
Hopf algebroid denoted by U◦

(M) whose category of comodules comodU◦

(M)
with

finitely generated underlying modules, is equivalent, as a symmetric monoidal
C-linear category, to the full subcategory 〈M〉⊗ of differential modules which are
sub-quotients objects of tensor products of (M, ∂) and its dual (M∗, ∂). In anal-
ogy with the classical differential Galois theory over C(X), the associated affine
algebraic groupoid of U◦

(M), is then termed the differential Galois groupoid attached
to (M, ∂) (or to the linear differential matrix equation defined by (M, ∂)). We
also combine our result with those of [2], in order to give an explicit description

of a Picard-Vessiot extension of (C[X], ∂
∂X ) for (M, ∂). In the last subsection, we

compare our approach with that of Malgrange [27] and Umemura [46], and give
several illustrating examples.

5.1 The Hopf algebroid structure of the first Weyl algebra

Let A = C[X] be polynomial ring in the variable X over the field of complex num-
bers, and consider its (noncommutative) ring of differential operators

U := C[X][Y, ∂
∂X ], that is, the first Weyl algebra. We shall consider U as free

right A-module with basis {Yn}n∈N, and with left action given by the rule aY =

Ya + ∂a
∂X , for every a ∈ A. This algebra is clearly isomorphic to the universal right

Hopf algebroid of the transitive Lie algebroid (A, DerC(A)), see Example 1.3.2.
The structure maps are

∆(Y) = 1⊗A Y + Y⊗A 1, ε(Y) = 0, and Y− ⊗A Y+ = 1⊗A Y−Y ⊗A 1.
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We are interested in describing the relationship between the category of co-
modules over the finite dual U◦ and the category of differential modules over the
differential ring A. To this end, we will apply Theorem 4.2.2 to the pair (A, U).
But, first let us make the following general remark.

Remark 5.1.1. Theorem 4.2.2 applies for any ring of differential operators A[Y, δ],
for δ any K–linear derivative of A. In particular, Corollary 4.2.3 leads to a monoi-
dal equivalence of categories between the category DiffA of A–profinite differ-
ential modules and the A–profinite representations of the affine groupoid repre-
sented by the finite dual of A[Y, δ], whenever A is a Dedekind domain (e.g. the
coordinate ring of an irreducible smooth curve over C). If A is not a field, DiffA

will probably fail to be abelian, as the example of C[X][Y, δ] shows by taking

δ( f (X)) = X
∂ f (X)

∂X for all f (X) ∈ C[X]. What makes the Weyl algebra so special
is that, in this case, DiffA is abelian.

5.2 Differential modules DiffA as a Tannakian category

In all what follows a right A-module M will be considered as central (or symmet-
ric) A-bimodule, that is, we have ax = xa, for every x ∈ M and a ∈ A. Recall that
a differential right module over the differential ring A is a finitely generated right A-
module equipped with a C-linear map ∂ : M→ M such that ∂(xa) = ∂x.a+ ∂a.x,
for every a ∈ A and x ∈ M (here ∂a denote ∂a(X)/∂X). The C-linear map ∂ is
called the differential of M.

Every differential module is in fact free of finite rank as an A-module: if
x ∈ M is a torsion element, then ax = 0 for some nonzero a ∈ A. It follows that
(∂x)a + x∂a = 0, whence (∂x)a2 = 0. This shows that the (C-finite dimensional)
torsion submodule t(M) of M is indeed a differential module. This is only possi-
ble when t(M) = 0 (see, e.g. [4, Lemma 4.2]).

Using the notation of Section 2, the category AU is in this case the category
of all differential modules over A, equivalently linear differential matrix equations.
If we denote by {e1, . . . , em} any basis of M over A, the differential ∂ is then given
by a matrix mat(M) = (aij) ∈ Mm(A) such that

∂ei = −
m

∑
j=1

ejaji. (61)

The minus sign in introduced, not only for historical reasons, but also for compu-
tational ones11. So if we identify an element y ∈ M with its coordinate column in
Am, we have

∂y =







∂y1
...

∂ym






−mat(M)







y1
...

ym






.

11As we will notice in subsection 5.5, this depends on considering the principal bibundle struc-
ture of a Picard-Vessiot extension or its opposite bibundle, see Remark 5.5.7.
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Thus ker(∂) is the solution space of the following linear differential matrix equa-
tion







y′1
...

y′m






= mat(M)







y1
...

ym






. (62)

In analogy to [48, §2.2] we denote by DiffA the category AU. A morphism of
differential modules f : (M, ∂) → (N, ∂) is an A-linear map f : M → N which
commutes with differentials, that is, ∂ ◦ f = f ◦ ∂.

Next we list the properties of DiffA. First, we know from Section 4 that the
category DiffA inherits a monoidal symmetric structure from the category of right
U-modules. In this case, the tensor product of two objects (M, ∂), (N, ∂) in DiffA

is again a differential module with differential map

∂ : M⊗A N −→ M⊗A N,
(

∂(x⊗A y) = ∂(x)⊗A y + x⊗A ∂(y)
)

(63)

By Lemma 1.2.2, DiffA is then a monoidal symmetric and rigid C-linear category
with identity object (A, ∂). The forgetful functor (which going to be a fibre functor
in a Tannakian sense) is given as in subsection 2.1 by the restriction of scalars
functor ω = η∗ : DiffA := AU → add(A), where η : A → U is the canonical
ring extension. Observe that ω is a non trivial functor in the sense of [11] since
we know that ω(A, ∂) = A and that Spec(A) 6= ∅. Moreover, DiffA is a full
subcategory of the category ModU stable under finite limits and colimits. Hence,
it is an abelian category. All the aforementioned properties of the category DiffA

are well known facts, and can also be obtained as described above. We summarize
these properties of DiffA in the following lemma.

Lemma 5.2.1. The category DiffA is C-linear abelian and the functor ω : DiffA →
add(A) is strict monoidal C-linear faithful exact functor. Moreover, we have an isomor-

phism of rings EndDiffA

(

(A, ∂)
)

∼= C.

Remark 5.2.2. Observe furthermore, that Lemma 5.2.1 and [6, Proposition 2.5]
imply that DiffA is a locally finite category over C, in the sense that each object is
of finite length and the Hom-vector spaces are finite dimensional C-vector spaces.
This in particular implies that the endomorphism ring of any differential module
is a finite dimensional C-algebra. Therefore, the centre of the endomorphism ring
of any simple object in DiffA, coincides with the base field C. Thus, the category
DiffA of differential modules is a separable category in the sense of [6, Définitions
page 5847].

Remark 5.2.3. Let (M, ∂) be a differential module with rank(M) = m. Denote
by M∂ := ker(∂) the C-vector space of solutions in A of the equation (62). Then,
there is an isomorphism of C-vector spaces

HomDiffA
((A, ∂), (M, ∂)) ∼= M∂.

Therefore, by Remark 5.2.2, we know that dimC(M∂) < ∞. In fact we have that
dimC(M∂) ≤ m.
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Apart from the above structure, the usual linear algebra operations are also
permitted in the category of differential modules. For instance, the exterior

powers
∧d M of a differential module M, are again differential modules with

differential given by

∂ (x1 ∧ · · · ∧ xd) =
d

∑
i=1

x1 ∧ · · · ∧ ∂xi ∧ · · · ∧ xd,

such that the canonical linear map M⊗
d

:= M ⊗A · · · ⊗A M −→
∧d M is a

differential map, i.e. a morphism in DiffA. Similarly one can endow the sym-
metric dth-powers Symd(M) A-module with a differential, for a given differential
module (M, ∂).

The internal hom-functors, as given for the general case of Eq.(4), are explicitly
given, in the case of DiffA, by the hom-functors HomA(M, N) whose differential
is defined by the formula

∂l : M −→ N,
(

x 7−→ (∂l)(x) = ∂l(x)− l(∂x)
)

, (64)

for every l ∈ HomA(M, N). Thus, up to isomorphisms, we have

homModU
(M, N) = HomA(M, N).

In particular, the vector space HomU(M, N) is identified with the A-linear maps
whose differential is zero. The differential of the dual module is given then by

∂ : M∗ −→ M∗,
(

(∂ϕ)(x) = ∂ϕ(x)− ϕ(∂(x))
)

, (65)

for every ϕ ∈ M∗ and x ∈ M.

5.3 The commutative Hopf algebroid attached to the first Weyl algebra

Next we state some properties of the commutative Hopf algebroid (A, U◦) con-
structed from U by applying Theorem 4.2.2. First, we know from Example 3.3.7,
that the canonical algebra map ζ : U◦ → U∗ defined by equation (51) is injective,
where U∗ is the right linear dual of U endowed with the convolution product.
This fact will be implicitly used in the sequel.

Proposition 5.3.1. Let A = C[X] and U = A[Y, ∂/∂X] its differential operator al-
gebra. Then the commutative Hopf algebroid (A, U◦) is a Galois A-coring. In partic-
ular the category DiffA is isomorphic to the full subcategory AU◦

(described in subsec-
tion 2.1) of the category of right U◦-comodules. Furthermore, we have an isomorphism

EndComodU◦

(

(A, t)
)

∼= C of rings.

Proof. The first statement is a direct consequence of Proposition 3.3.3. The parti-
cular cases are immediate from Proposition 3.3.2 and Lemma 5.2.1.

The subsequent contains further properties of the Hopf algebroid (A, U◦).
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Corollary 5.3.2. Let A = C[X] and U = A[Y, ∂/∂X] its differential operator algebra.
Then the commutative Hopf algebroid (A, U◦) enjoys the following properties:

(i) The algebra map η◦ : A⊗C A→ U◦ induces on U◦ a projective (A⊗C A)-module
structure.

(ii) There is an isomorphism of symmetric monoidal C-linear categories
DiffA

∼= comodU◦ , where comodU◦ denotes the full subcategory of right
U◦-comodules with finitely generated underlying A-modules.

(iii) Every right U◦-comodule is projective and faithfully flat as an A-module. In par-
ticular, the modules U◦

A and AU◦ are projective.

(iv) Any right U◦-comodule is a filtered limit of subcomodules in comodU◦ .

Proof. (i), (ii). We know from subsection 3.1, that (A, U◦) was constructed from
the pair (AU , s∗), or up to the isomorphism of Proposition 5.3.1, from the pair
(DiffA, ω) of Lemma 5.2.1. By applying Deligne’s Theorem [6, Théorèmes 5.2,
7.1], we have from one hand that the functor ω induces the equivalence sated in
(ii) which proves this item. From another hand, we have that the Hopf algebroid
(A, U◦) is transitive and also separable by Remark 5.2.2. Therefore, it is geometri-
cally transitive by [6, Corollaire 6.7], which by definition [6, Définition page 5845]
means that U◦ is a projective (A⊗C A)-module, and this shows part (i).

(iii). It follows directly from [6, Proposition 7.2], while item (iv) follows from
[6, Proposition 6.2].

Remark 5.3.3. By [15, Theorem 5.7] and Corollary 5.3.2(iii), the category of right
comodules over the Hopf algebroid (A, U◦) admits DiffA as a generating set of
small projectives if and only if the direct sum ⊕M∈DiffA

M is a faithfully flat right
module over the ring ⊕M, N ∈DiffA

Hom(M, N) with enough orthogonal idempo-
tents (i.e. Gabriel’s ring of DiffA). Both equivalent conditions are fulfilled by
Corollary 5.3.2(iv).

5.4 The differential Galois groupoid of a differential module.

Fix a differential module M ∈ DiffA with a dual basis {ei, e∗i }1≤i≤m. We set

det(e1, . . . , em) := ∑
σ∈ Sm

(−1)sg(σ)eσ(m) ⊗A . . .⊗A eσ(1) ∈ M
⊗m

, (66)

where Sm is the permutation group of m elements, sg(σ) is the signature of σ and
M⊗

m
:= M⊗A · · · ⊗A M denotes the m-fold tensor product of the A-module M.

We also denote

detM := e∗m ⋆ · · · ⋆ e∗1 ⊗T
M⊗

m det(e1, . . . , em) ∈ U◦, (67)

where, as in equation (20), the A-linear map e∗m ⋆ · · · ⋆ e∗1 is defined by

e∗m ⋆ · · · ⋆ e∗1 : M⊗
m
−→ A,

(

x1 ⊗A · · · ⊗A xm 7−→ e∗m(xm) · · · e
∗
1(x1)

)

.



On the finite dual of a cocommutative Hopf algebroid. Applications 93

Lemma 5.4.1. Keeping the previous notations, we then have

(i) As an element in M
⊗m

, the differential of det(e1, . . . , em) is

∂ det(e1, . . . , em) = tr
(

mat(M)
)

det(e1, . . . , em),

where tr
(

mat(M)
)

is the trace of mat(M);

(ii) (e∗m ⋆ · · · ⋆ e∗1)
(

det(e1, . . . , em)
)

= 1.

Proof. Both part (i) and (ii) are routine computations by using the formulae (63)
and definitions. The details are left to the reader.

A crucial consequence of this lemma is the subsequent.

Lemma 5.4.2. The element detM of Eq.(67) is invertible in the algebra U◦.

Proof. Let
∧m M∗ be the m-exterior power of the dual module M∗ of M. This is a

free A-module of rank one and basis e∗1 ∧ · · · ∧ e∗m with differential
∂(e∗1 ∧ · · · ∧ e∗m) = −tr(mat(M))e∗1 ∧ · · · ∧ e∗m, where as before tr(mat(M))
denotes the trace of the matrix mat(M). Thus, the module

∧m M∗ is an object
in the category DiffA. By Lemma 5.4.1(i), we define the following differential
map

f : A −→ (∧mM∗)⊗A M⊗m ,
(

1 7−→ (e∗1 ∧ · · · ∧ e∗m)⊗A det(e1, . . . , em)
)

,

which we consider as a morphism in the category DiffA.
Now let us check that

det−1
M =

(

e∗m ⋆ · · · ⋆ e∗1 ⊗T
M⊗m

det(e1, . . . , em)
)−1

= (e∗1 ∧ · · · ∧ e∗m)
∗ ⊗T∧m M∗

(e∗1 ∧ · · · ∧ e∗m).

(68)
So we compute their multiplication:

e∗m ⋆ · · · ⋆ e∗1 ⊗T
M⊗m

det(e1, . . . , em) . (e∗1 ∧ · · · ∧ e∗m)
∗ ⊗T∧m M∗

(e∗1 ∧ · · · ∧ e∗m)

=
(

(e∗1 ∧ · · · ∧ e∗m)
∗ ⋆ (e∗m ⋆ · · · ⋆ e∗1)

)

⊗T
(∧m M∗)⊗AM⊗m

(

(e∗1 ∧ · · · ∧ e∗m)⊗A det(e1, . . . , em)
)

=
(

(e∗1 ∧ · · · ∧ e∗m)
∗ ⋆ (e∗m ⋆ · · · ⋆ e∗1)

)

⊗T
(∧m M∗)⊗AM⊗m

(

f (1)
)

=
(

(e∗1 ∧ · · · ∧ e∗m)
∗ ⋆ (e∗m ⋆ · · · ⋆ e∗1)

)

f ⊗TA
1.

The A-linear map
(

(e∗1 ∧ · · · ∧ e∗m)
∗ ⋆ (e∗m ⋆ · · · ⋆ e∗1)

)

f ∈ A∗ is defined by

(

(e∗1 ∧ · · · ∧ e∗m)
∗
⋆ (e∗m ⋆ · · · ⋆ e∗1)

)

(

f (1)
)

=
(

(e∗1 ∧ · · · ∧ e∗m)
∗
⋆ (e∗m ⋆ · · · ⋆ e∗1)

)(

(e∗1 ∧ · · · ∧ e∗m)⊗A det(e1, . . . , em)
)

= (e∗1 ∧ · · · ∧ e∗m)
∗
(

e∗1 ∧ · · · ∧ e∗m

)

(e∗m ⋆ · · · ⋆ e∗1)
(

det(e1, . . . , em)
)

5.4.1(ii)
= 1,
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which shows that

e∗m ⋆ · · · ⋆ e∗1 ⊗T
M⊗m

det(e1, . . . , em) . (e∗1 ∧ · · · ∧ e∗m)
∗ ⊗T∧m M∗

(e∗1 ∧ · · · ∧ e∗m) = 1

and this finishes the proof.

Remark 5.4.3. Similar to the context of commutative Hopf algebras, a grouplike
element g in a commutative Hopf algebroid is always an invertible element with
inverse S (g), its image by the antipode. In the particular situation of Lemma
5.4.2, it is easily seen from equation (68) that

∆
(

det−1
M

)

= (e∗1 ∧ · · · ∧ e∗m)
∗ ⊗T∧m M∗

(e∗1 ∧ · · · ∧ e∗m) ⊗A (e∗1 ∧ · · · ∧ e∗m)
∗ ⊗T∧m M∗

(e∗1 ∧ · · · ∧ e∗m)

= det−1
M ⊗A det−1

M .

which shows that det−1
M is a groulike element, and so is detM. Therefore, we have

that

S (detM) = det−1
M . (69)

On the other hand, the structure of right U◦-comodule over AA which corre-
sponds to this grouplike element and, up to an isomorphism, is the right
U◦-comodule structure of

∧m M∗ deduced by applying Proposition 5.3.1, is given

by the coaction A→ U◦, a 7→ det−1
M a. This corresponds to the differential module

(AA, ∂M) with differential

∂M : A −→ A,
(

a 7−→ −tr
(

mat(M)
)

a + ∂a
)

. (70)

For a given M, let
◦

UM be the (A ⊗C A)–subalgebra of U◦ generated by the
image of M∗ ⊗TM

M via the canonical map M∗ ⊗TM
M → U◦. It is not hard to

see that
◦

UM is generated as an (A⊗C A)–algebra by the set
{

e∗j ⊗TM
ei

}

1≤i,j≤m
for

any given a dual basis {ei, e∗i }1≤i≤m as above.

Proposition 5.4.4. The subalgebra
◦

UM is in fact a sub-bialgebroid of U◦, which contains

the element detM defined in Eq. (67). Furthermore, its localized algebra
◦

UM[det−1
M ] is a

Hopf subalgebroid of U◦.

Proof. The first statement is immediate, since we already know that

∆
(

e∗j ⊗TM
ei

)

= ∑
k

e∗j ⊗TM
ek ⊗A e∗k ⊗TM

ei,

where ∆ denotes the comultiplication of U◦. Since ∆ is already multiplicative,

we get a coassociative and multiplicative A–bimodule map ∆ :
◦

UM →
◦

UM ⊗A
◦

UM. Observe that we are using that A is a principal ideal domain and that U◦ is

torsionfree over A on both sides. The fact that detM ∈
◦

UM clearly follows from
the formula of the multiplication in U◦ displayed in (22).
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Next we show that the antipode of U◦ restricts to
◦

UM[det−1
M ], since we already

have by Lemma 5.4.2 the inclusion
◦

UM[det−1
M ] ⊆ U◦. Denote by uij the generating

elements e∗i ⊗TM
ej, for i, j = 1, . . . , m, and by detu the determinant detM of Eq.(67).

Recall that the (j, i)th cofactor of the matrix (uij)1≤i,j≤m is then defined to be

vji = (−1)i+j ∑
σ∈P(j,i)

(−1)sg(σ)uj1σ(j1)
. . . ujm−1σ(jm−1)

,

where P(j, i) is the set of all bijections from {1, . . . , m} \ {j} = {j1 < · · · < jm−1}
to {1, . . . , m} \ {i}, and sg(σ) is the signature of σ viewed as a permutation in

Sm−1. Clearly, each of the vji is an element in the (A⊗ A)-subalgebra
◦

UM. Writing
down this element using the notation of Eq.(66), we get

vji = (−1)i+j e∗jm−1
⋆ · · · ⋆ e∗j1 ⊗T

M
⊗m−1

det(e1, . . . ,
g
ei, . . . , em),

where det(e1, . . . ,
g
ei, . . . , em) is the resulting determinant of the vector (e1, . . . , em)

after removing the component ei, see Eq.(66).
Define now the following morphism in the category DiffA, by the composi-

tion

hm : M∗
db⊗m−1⊗M∗

// (M⊗ M∗)⊗m−1 ⊗ M∗ // M⊗m−1 ⊗ (M∗)⊗m // // M⊗m−1 ⊗
(

∧m M∗
)

,

where db : A→ M⊗A M∗ is the coevaluation map of Eq.(56) up to the differential
isomorphism M⊗A M∗ ∼= HomA(M, M), the second map is the flip, and the third
one is obvious. On elements, hm acts by

hm(ϕ) = ∑
k1,..., km−1

(ekm−1
⊗A . . .⊗A ek1

)⊗A (e
∗
k1
∧ · · · ∧ e∗km−1

∧ ϕ),

for every ϕ ∈ M∗, where each of the index kl runs the set {1, . . . , m}, for each of
the l = 1, · · · , m− 1. Reordering the indices, we obtain

hm(e∗i ) = (−1)idet(e1, . . . ,
g
ei, . . . , em)⊗A (e

∗
1 ∧ · · · ∧ e∗m). (71)

Using this equality and the above notation, we show that

γ(ej) =
[

(−1)je∗jm−1
⋆ · · · ⋆ e∗j1 ⋆ (e

∗
1 ∧ · · · ∧ e∗m)

∗
]

◦ hm, (72)

where as above γ : M→ (M∗)∗ is the canonical isomorphism. Now, we compute

det−1
u . vji

(68)
= (e∗1 ∧ · · · ∧ e∗m)

∗ ⊗T∧m M∗
(e∗1 ∧ · · · ∧ e∗m)

(−1)i+j e∗jm−1
⋆ · · · ⋆ e∗j1 ⊗T

M
⊗m−1

det(e1, . . . ,
g
ei, . . . , em)

(71)
= (−1)j e∗jm−1

⋆ · · · ⋆ e∗j1 ⋆ (e
∗
1 ∧ · · · ∧ e∗m)

∗ ⊗T
M
⊗m−1⊗∧m M∗

hm(e∗i )

= (−1)j e∗jm−1
⋆ · · · ⋆ e∗j1 ⋆ (e

∗
1 ∧ · · · ∧ e∗m)

∗hm ⊗TM∗
e∗i )

(72)
= γ(ej)⊗TM∗

e∗i = SM(uij).
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Thus, we have
det−1

u . vji = SM(uij). (73)

This with Eq.(69) show that S is restricted to the localization
◦

UM[det−1
M ], and this

completes the proof.

From now on, we denote by U◦

(M) :=
◦

UM[det−1
M ] the Hopf sub-algebroid of U◦

stated in Proposition 5.4.4.
Fix a differential module (M, ∂) ∈ DiffA with a dual basis {ei, e∗i }1≤i≤m, and

keep the above notations. Given two positive integers k, l, we denote by
T(k, l)(M) := M⊗ l ⊗A (M∗)⊗k which we consider as a differential module
using the tensor product of Eq.(63). We denote by 〈M〉⊗ the full sub-category of
DiffA of finite sub-quotients differential modules of M. Thus, an object (X, ∂)
of DiffA belongs to 〈M〉⊗ if it is a quotient of the form X = X2/X1, where
X1 ⊆ X2 ⊆ ⊕k, lT

(k, l)(M) (finite direct sum). Since DiffA is by Lemma 5.2.1 an
abelian category, a differential module (X, ∂) belongs to 〈M〉⊗ if and only if it is a
sub-object of an object finitely generated by those T(k, l)(M)’s.

Let us denote by ω|〈M〉⊗ : 〈M〉⊗ −→ add(A) the restriction of the fibre func-

tor ω : DiffA −→ add(A), and by (A, R(〈M〉⊗)) its associated commutative
Hopf algebroid defined in Proposition 2.2.1, see also Eq. (16) and Remark 2.2.212.
Since 〈M〉⊗ is a symmetric rigid monoidal C-linear abelian, locally finite cate-
gory and ω|〈M〉⊗ is an exact faithful functor, we have that (A, R(〈M〉⊗)) enjoys

similar properties (i)-(iv) of Corollary 5.3.2. Thus, (A, R(〈M〉⊗)) is a geometri-
cally transitive Hopf algebroid, see Example 2.3.2 and [6, 13]. In particular we
have that the fibre functor ω|〈M〉⊗ induces a symmetric monoidal equivalence of

categories 〈M〉⊗ ≃ comodR(〈M〉⊗) to the category of R(〈M〉⊗)-comodules with
finitely generated underlying A-modules. On the other hand, the embedding
〈M〉⊗ →֒ DiffA = AU which commutes with the forgetful functors, leads to the
canonical map

φ : (A, R(〈M〉⊗)) −→ (A, U◦),
(

p∗ ⊗TP
p + J〈M〉⊗ 7−→ p∗ ⊗TP

p + JAU

)

.

(74)
The following is our main result of this subsection.

Theorem 5.4.5. The morphism displayed in equation (74), induces an isomorphism
R(〈M〉⊗) ∼= U◦

(M) of Hopf algebroids, where U◦

(M) is as in Proposition 5.4.4. Conse-
quently, we get that the equivalence of categories stated in Corollary 5.3.2(ii), rectricts to
a symmetric monoidal C-linear equivalence of categories:

χ : 〈M〉⊗ −→ comodU◦

(M)
,

where comodU◦

(M)
is the full subcategory of U◦

(M)-comodules with finitely generated un-

derlying A-modules.

Proof. The map φ is clearly an injective morphism of Hopf algebroids. We then

identify R(〈M〉⊗) with its image. Consider now the (A ⊗C A)–subalgebra
◦

UM

12In the notations of subsection 2.4, this is R(〈M〉⊗) = RA⊗A(ω).



On the finite dual of a cocommutative Hopf algebroid. Applications 97

of U◦ described in Proposition 5.4.4. Any generic element in
◦

UM of the form

e∗j ⊗TM
ei obviously belongs to the subalgebra R(〈M〉⊗), whence

◦

UM ⊆ R(〈M〉⊗),

as M is a differential module in the subcategory 〈M〉⊗. The determinant detM

of equation (67) and its inverse given by equation (68), are both elements in

R(〈M〉⊗). Therefore, U◦

(M) =
◦

UM[det−1
M ] ⊆ R(〈M〉⊗).

Conversely, take an object N in 〈M〉⊗ of the form N = M(k, l), for some positive
integers, k, l. Consider (N, ̺N) as a right U◦-comodule, via the isomorphism χ
(see subsection 3.2). Denote by

C(N) := ∑
f ∈HomU◦ (N,U◦)

Im( f )

the A-subbimodule of coefficients of N. By Corollary 5.3.2(iii), U◦

A and AU◦ are
projective modules, and so by [16, Example 2.5], we can apply [16, Proposition
2.12]. Therefore, C(N) ⊆ U◦

(M), since we have ̺N(N) ⊆ (N ⊗A τ)(N ⊗A U◦

(M)),
where τ : U◦

(M) →֒ U◦ is the canonical injection. The same inclusion holds true:

C(N) ⊆ U◦

(M), if we take N = ⊕(k, l)T
(k, l)(M) a finite direct sum. Taking a sequence

X1 ⊆ X2 ⊆ N of differential modules, with N as before, we get by [16, Proposition
2.12] that

C(X1) ⊆ C(X2) ⊆ C(N) ⊆ U◦

(M), C(X2/X1) ⊆ C(X2) ⊆ C(N) ⊆ U◦

(M).

Henceforth, any object in 〈M〉⊗ is a right U◦

(M)-comodule (under the isomorphism

χ). Now, take an element of the form p∗ ⊗TP
p ∈ R(〈M〉⊗), thus P is an object

in 〈M〉⊗. We know that P is a right U◦

(M)-comodule, and so p∗(p(0))p(1) ∈ U◦

(M).
Up to the canonical isomorphism canU◦ of equation (36), we have the equality
p∗ ⊗TP

p = p∗(p(0))p(1) , which shows that p∗ ⊗TP
p ∈ U◦

(M). Therefore, R(〈M〉⊗) ⊆
U◦

(M).
In summary, we have an isomorphism (A, R(〈M〉⊗)) ∼= (A, U◦

(M)) of Hopf
algebroids. This leads to the following commutative diagram of symmetric monoi-
dal categories:

〈M〉⊗
� � //

≃uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦

χ∼=

��
✤

✤

✤

✤

✤

✤
DiffA = AU

χ∼=

��

comodR(〈M〉⊗)
≃

))❙
❙❙

❙❙
❙❙

❙❙
❙

comodU◦

(M)

� � // comodU◦

which shows the stated equivalence of monoidal categories.

Let (M, ∂) be a differential module over A and consider the attached Hopf al-
gebroid (A, U◦

(M)) of Theorem 5.4.5. Denote by HM : Alg
C
→ Grpds its associated

presheaf of groupoids and let HM(C) be its fibre at Spec(C), that is, the char-
acter groupoid of (A, U◦

(M)). We know that (A, U◦

(M)) is a finitely generated Hopf
algebroid (i.e., both A and U◦

(M) are finitely generated C-algebras), thus, HM is an
affine algebraic C-groupoid scheme in the fpqc (fidèlement plate quasi-compacte)
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topology. Moreover, the category of comodules comodU◦

(M)
is identified with the

category of C-representations of the groupoid HM, see [11].
In comparison with the classical case of differential Galois theory of fields (see

[48, Theorem 2.33]), we have by Theorem 5.4.5 the following definition:

Definition 5.4.6. Let (A, U◦

(M)) and HM be as above. Then the character groupoid
HM(C) is referred to as a differential Galois algebraic groupoid of (A, ∂) for the differ-
ential module (M, ∂) (see Remark 5.4.8 below for a brief discussion on the unique-
ness of this groupoid).

Next, we observe that, always for A = C[X], any differential Galois groupoid
is transitive as an abstract groupoid. First we observe that, for any differential
A-module (M, ∂), U◦

(M) as a Hopf algebroid over C, satisfies similar conditions
(i)-(iv) of Corollary 5.3.2. Thus, U◦

(M) is a geometrically transitive Hopf algebroid
over C, so that HM is a transitive groupoid scheme in the sense of [11], see also
[6, 13]. Since HM(C) 6= ∅, we have by [13, Corollary B] that HM(C) is a transitive
groupoid in the set-theoretical sense (i.e., a groupoid in sets with only one con-
nected component, or equivalently, the Cartesian product of the source and the
target maps leads to a surjective map). In other words, HM(C) posses only one
type of isotropy group. In the sequel we will show that the isotropy type group
of HM(C) coincides with the so called differential Galois algebraic group of the dif-
ferential module (M, ∂) following the terminology of Y. André [2, §3.2.1.2], (see
Example 5.4.9 for more terminologies).

Now, we proceed to show that HM(C) is in fact a sub-groupoid of the induced
algebraic groupoid of the general linear group GLm(C) along the map A1

C
→ {∗}

(the algebraic set with one point), where m is the rank of M. So let {ei, e∗i }1≤i≤m

be a dual basis for M. Consider the coordinate ring C[Xij, det−1
X ] of the complex

general linear group of order m with indices i, j ∈ {1, · · · , m}. Recall that this a
Hopf C-algebra with structure maps:

∆(Xij) =
m

∑
k=1

Xik ⊗A Xkj, ε(Xij) = δij, S(Xij) = det−1
X Yji, (75)

where δij is Kronecker’s symbol, and where Yji is the (j, i)th cofactor of the matrix
(Xij). This is also a differential C-algebra, where the differential is given by

∂(Xij)1≤,i,j≤m := (X′ij)1≤,i,j≤m = mat(M) (Xij)1≤,i,j≤m, (76)

and the differential of det−1
X is by extension ∂(det−1

X ) = −∂(detX)det−2
X . Extending

this differential to the tensor product algebra A⊗C C[Xij, det−1
X ] via the map:

∂
(

a⊗C Xij

)

= ∂a⊗C Xij + a⊗C ∂Xij

we will consider this tensor algebra as a differential algebra and obviously an
extension of (A, ∂).

The base extension of the Hopf algebra C[Xij, det−1
X ] via the algebra map

C → A (see Example 1.3.5), leads to the commutative Hopf algebroid
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A⊗C C[Xij, det−1
X ]⊗C A which is isomorphic to the polynomial (A⊗C A)-algebra

(A⊗C A)[Xij, det−1
X ]. Furthermore, there is a surjective map:

φM : (A⊗ A)[Xij, det−1
X ] // U◦

(M)

Xij
✤ // e∗j ⊗TM

ei,

(77)

of commutative Hopf algebroids. The affine algebraic groupoid attached to the

Hopf algebroid (A⊗ A)[Xij, det−1
X ] is also transitive. Thus, (A, A⊗ A)[Xij, det−1

X ])
is geometrically transitive Hopf algebroid over C, see [13, Theorem A]. Its char-
acter groupoid is easily computed and it is given by:

G m : A1
C
× GLm(C) ×A1

C

pr3 //

pr1 // A
1
C
,ιoo

where the source and target are, respectively, pr3 and pr1 the third and first pro-
jections, the identity map sends x → ι(x) = (x, Im, x), where Im is the identity of
GLm(C). The multiplication and the inverse maps of this groupoid are given by:

(x, a, y) . (y, b, z) = (x, ab, z), (x, a, y)−1 = (y, a−1, x).

This is clearly a transitive groupoid, and so there is only one type of isotropy
group, namely, each of them is isomorphic to the general linear group GLm(C).
The groupoid G m is in fact the induced groupoid of the groupoid (with only one
object) GLm(C) along the map A

1
C
→ {∗}, see [13, Example 2.4].

Now, using the morphism of equation (77) we claim the following corollary,
where the particular claim can be compared with [2, Théorème 3.2.1.1(ii)].

Corollary 5.4.7. There is a monomorphism of affine algebraic groupoids

HM(C) �
�

// G
m . In particular, any isotropy group of HM(C) is identified with a closed

sub-group of the algebraic group GLm(C).

Next, we discuss the uniqueness of the differential Galois groupoid and give
a motivating example.

Remark 5.4.8. Keep the above notations and assume that there is a flat Hopf
algebroid (A,H) over C withH finitely generated as an algebra, such that there is
a symmetric monoidal C-linear equivalence of categories 〈M〉⊗ ≃ comodH to the
category of right H-comodules with free of finite rank underlying A-modules.
Assume further that (A,H) is geometrically transitive (see Example 2.3.2 and
[13], or equivalently that the associated affine C-groupoid scheme H is transi-
tive). Then by Theorem 5.4.5 in conjunction with Deligne’s Theorem [6, Theorem
5.2], there is a symmetric monoidal C-linear equivalence of categories ComodH ≃
ComodU◦

(M)
of all comodules (i.e., the extension of the previous equivalence to the

ind-objects categories). Therefore by [17, Theorem A], there is a two-stage zig-zag
of weak equivalences connecting (A,H) and (A, U◦

(M)), that is, they are weakly
equivalent Hopf algebroids. Therefore their character groupoids should be also
weakly equivalent, meaning that HM(C) and H (C) are weakly equivalent affine
algebraic groupoids. This means that, in contrast with the classical case of differ-
ential Galois theory where the Galois group is unique up to isomorphisms, in this
framework the differential Galois groupoid is unique up to weak equivalences.



100 L. El Kaoutit - J. Gómez-Torrecillas

Example 5.4.9. Let (M, ∂) be a differential module whose underlying module
M = A.m is a free A-module of rank one, endowed with the differential matrix
mat(M) = a ∈ A, that is, ∂(m) = a(X)m. Then the Hopf algebroid U◦

(M) is gen-

erated as an (A⊗C A)-algebra by the invertible element detM = m∗ ⊗TM
m. Thus

U◦

(M) is isomorphic to the Hopf algebroid (A⊗C A)[T, T−1] ∼= A⊗C C[T, T−1]⊗C

A, which is induced by the Hopf C-algebra C[T, T−1] (the coordinate algebra of
the multiplicative group).

Remark 5.4.10. As we can realize in Example 5.4.9, the differential ∂(m) = a(X)m
does not influence the Hopf structure of U◦

(M). In other words, taking a different
differential (e.g., ∂(m) = b(X)m, for some b 6= a ∈ A) will leads, up to canoni-
cal isomorphism, to the same Hopf algebroid (A ⊗C A)[T, T−1]. Thus, the Hopf
structure of U◦

(M) does not take into account the differential of (M, ∂). This is
perhaps why in the more general context of [2, 3.2.2.2] the algebraic group
attached to the (isotropy) Hopf A-algebra U◦

(M)/〈s − t〉, is referred to as the
intrinsic differential Galois group of (A, ∂) for (M, ∂).

As we will see in the next subsection, it turns out that in the case we are inter-
ested in, that is, the case of linear differential matrix equations over the complex
affine line, the differential ∂ of the module M endows this Hopf algebra with a
structure of simple differential algebra and converts it into a Picard-Vessiot ex-
tension of (A, ∂) for (M, ∂).

5.5 Picard-Vessiot extensions for linear differential matrix equation, after

André

In this subsection we will perform the Picard-Vessiot theory for the particular
case of polynomial algebra A = C[X]. In order to do so, we will use our results in
combination with the general theory established in [2] for differential noetherian
commutative rings with semisimple total ring of fractions. Precisely, we give
a complete description, using results from subsection 2.4, of the Picard-Vessiot
algebra attached to a differential module (M, ∂) (or to a linear differential matrix
equation) and observe that the outcome, in this particular situation, is not far
from the classical situation of differential vector spaces over differential fields.

We refer to [2, Définition 3.4.1.1] for the definition of the Picard-Vessiot exten-
sion of a commutative differential algebra which we are going to use in the sequel.
Recall that our differential algebra A = C[X] is endowed with the usual differen-
tiation d = ∂/∂X and the A-bimodule of differential forms Ω1 (the notation is that
of [2]) is a central one which is a free A-module of rank one (i.e., Ω1 = DerC(A)∗

is the A-linear dual of the module of derivations DerC(A)). Thus, we are in the
situation which is referred to in [2] as situation classique. Besides, we will im-
plicitly use the symmetric monoidal equivalence between the category of free
A-modules of finite rank with connections (for the previous Ω1) and the category
of representations of the Lie-Rinehart algebra (A, DerC(A)), that is, the category
AU in the notation of sub-section 5.2, where U is the first Weyl C-algebra of A.

Let us fix a differential module (M, ∂) over A of rank m, with dual basis
{ei, e∗i }1≤i≤m and a differential matrix mat(M) = (aij)1≤i, j≤m. Consider as before
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the attached C-linear abelian category 〈M〉⊗ and its associated Hopf algebroid
(A, U◦

(M)) over C, constructed as in subsection 5.5. It is well known that this cat-
egory admits a tensor generator (e.g., the differential module M⊕M∗) and have
a fibre functor over Spec(A) 6= ∅, namely, the forgetful functor ω := ω|〈M〉⊗ :

〈M〉⊗ → add(A). Then by applying [11, Corollaire 6.20], the category 〈M〉⊗
admits a fibre functor over the base field C, which we denote by ω′ : 〈M〉⊗ →
vectC. On the other hand, since 〈M〉⊗ is a neutral tannakian category over C, we
have that the dimension of the C-vector space ω′(M) is the rank of the underly-
ing A-module of the differential module (M, ∂), that is, dimC

(

ω′(M)
)

= m, see
[11, Théorème 7.1]. Let us then denote by {vi, v∗i }1≤i≤m a dual basis for the vector
space ω′(M).

Similar to the classical situation of linear differential matrix equations over a
differential field, and as it was shown in [2, Théorème 3.4.3.1], the existence of
ω′ is a fundamental step in building up the Picard-Vessiot extension of (A, ∂) for
(M, ∂). Next, we will show, however, that the existence of ω′ comes for free with
the information encoded in the Hopf algebroid structure of the pair (A, U◦

(M)).
This will provide us with a more conceptual way in overcoming that fundamental
step in the Picard-Vissiot theory for our situation.

As we already mentioned, the Hopf algebroid (A, U◦

(M)) is geometrically tran-
sitive over C and we know that H (C) 6= ∅, so we are in position to apply [13,
Theorem A]. Therefore, for any point x ∈ A1

C
, we can consider the associated

isotropy Hopf C-algebra U◦

(M), x which is by definition (see [13, Definition 5.1 and
Lemma 5.2]) the base extension Hopf algebra (C, U◦

(M), x := Cx ⊗A U◦

(M) ⊗A Cx),
where Cx is C viewed as an A-algebra via the C-algebra map x : A→ C. It turns
out that [13, Theorem A] implies that the canonical Hopf algebroid extension
x : (A, U◦

(M)) → (C, U◦

(M), x) is a weak equivalence, which means that the induced
functor x∗ : ComodU◦

(M)
→ ComodU◦

(M), x
establishes an equivalence of symmet-

ric monoidal categories. Henceforth, the full sub-category of finite-dimensional
comodules comodU◦

(M), x
(i.e., the full sub-category of rigid objects) is equivalent,

as symmetric monoidal category, to the category comodU◦

(M)
. Thus, by Theorem

5.4.5, we conclude that 〈M〉⊗ is equivalent, as symmetric monoidal category, to
comodU◦

(M), x
. In this way we have a chain of symmetric monoidal C-linear faithful

and exact functors:

ωx : 〈M〉⊗ ⊗-≃

χ
// comodU◦

(M) ⊗-≃

x∗ // comodU◦

(M), x

O // vectC,

where O is the forgetful functor. In summary, the previous observations assert
the following, see also the proof of [11, Corollaire 6.20, pages 163-164].

Corollary 5.5.1. There is a point x ∈ A1
C

such that ω′ = ωx, up to a canonical natural
isomorphism. In particular, the extended fibre functor ω′ ⊗C A : 〈M〉⊗ → add(A) over
A is naturally isomorphic to ω.

So far, we have two fibre functors the extension ℘ := ω′ ⊗C A and the restric-
tion of the forgetful functor ω := ω|〈M〉⊗ : 〈M〉⊗ → add(A), we are then in the sit-
uation of subsection 2.4. Therefore, by Theorem 2.4.5, we can consider the princi-
pal (RA⊗A(ω), RA⊗A(℘))-bibundle (RA⊗A(ω,℘), α, β), which is lifted to a princi-
pal (RA(ω), RA(℘))-bibundle (RA(ω,℘), ι), over the quotient Hopf A-algebras,
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see Eq. (41). Combining this with Theorem 5.4.5 and Corollary 5.5.1, we have
that the first principal bibundle is isomorphic to a trivial bibundle (U◦

(M), U◦

(M))-
bibundle U (U◦

(M)), namely, to the unit principal bibundle attached to U◦

(M), see
[17].

Now we consider the quotient algebra P := RA(ω,℘) = RA⊗A(ω,℘)/
〈α − β〉 with the canonical algebra extension ι : A → P and denote by [ f ] the
equivalence class of an element f ∈ RA⊗A(ω,℘). Define the map

∂ : P −→ P ,
([

p∗ ⊗TP
(p⊗C a)

]

7−→
[

∂p∗ ⊗TP
(p⊗C a)

]

+
[

p∗ ⊗TP
(p⊗C ∂a)

])

,

(78)
where P ∈ 〈M〉⊗, p∗ ∈ P∗, p ∈ ω′(X) and a ∈ A, and where we have used the

differential of the duals as in given by Eq. (65).

Proposition 5.5.2. Keep the above notations. Then the pair (P , ∂) is a differential alge-
bra which enjoys the following properties:

(i) the map ι : (A, ∂)→ (P , ∂) is a morphism of differential algebras;

(ii) (P , ∂) is a simple differential algebra which is a Picard-Vessiot extension of (A, ∂)
for (M, ∂);

(iii) P is isomorphic to the quotient Hopf A-algebra
U◦

(M)

〈s−t〉
;

(iv) there is a surjective map

ψM : A[Xij, det−1
X ] // P

Xij
✤ //

[

e∗i ⊗TM
(vj ⊗C 1A)

]

:= fij,

(79)

of differential algebras over (A, ∂). In particular, P ∼= A[Xij, det−1
X ]/I as a

differential algebra over A, where I is a maximal differential ideal. Furthermore,
P is generated as an A-algebra by the entries of the matrix F = ( fij)1≤i, j≤m and

det−1
F with differential ∂F = mat(M) F (i.e., F is a fundamental matrix of solu-

tions of the linear differential matrix equation (62)).

Proof. The first claim and item (i) are easy verifications. Part (ii) follows from
[2, Lemme 3.4.2.1(ii)] by combining Proposition 2.4.1 and Theorem 2.4.5(iii) with
[2, §3.2.2.1]. As we have seen before, using Theorem 5.4.5 in conjunction with
Corollary 5.5.1, we get an isomorphism U◦

(M)
∼= RA⊗A(ω,℘) of Hopf algebroids.

So part (iii) is obtained by going to the quotient Hopf A-algebras, that is,
by considering the extended isomorphism of Hopf A-algebras U◦

(M)/〈s − t〉 ∼=
RA⊗A(ω,℘)/〈s− t〉 = P .

The first claim of part (iv) is a direct consequence of part (iii) once taking
into account the surjective morphism of Hopf algebroids given in Eq. (77). The
particular statement is a direct implication of the first claim in this part and item
(ii). The last claim of (iv) follows from the following computation:
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∂
([

e∗i ⊗TM
(vj ⊗C 1A)

])

=
[

∂e∗i ⊗TM
(vj ⊗C 1A)

]

=
m

∑
k=1

[

∂e∗i (ek)e
∗
k ⊗TM

(vj ⊗C 1A)
]

(65)
=

m

∑
k=1

[

(

∂(e∗i (ek))− e∗i (∂ek)
)

e∗k ⊗TM
(vj ⊗C 1A)

]

=
m

∑
k=1

[

∂(e∗i (ek))e
∗
k ⊗TM

(vj ⊗C 1A)
]

−
m

∑
k=1

[

e∗i (∂ek)e
∗
k ⊗TM

(vj ⊗C 1A)
]

= 0−
m

∑
k=1

[

e∗i (∂ek)e
∗
k ⊗TM

(vj ⊗C 1A)
]

(61)
=

m

∑
k, l

[

alke∗i (el)e
∗
k ⊗TM

(vj ⊗C 1A)
]

=
m

∑
k=1

ι(aik)
[

e∗k ⊗TM
(vj ⊗C 1A)

]

=
m

∑
k=1

ι(aik) fkj,

which shows that ∂F = mat(M) F and this finishes the proof.

Now we focus on the structure of the group of differential algebra automor-
phisms of a Picard-Vessiot extension. As before we consider (P , ∂) a Picard-
Vessiot extension of (A, ∂) for (M, ∂) and denote by Aut(A, ∂)

(

(P , ∂)
)

the group
of differential A-algebra automorphisms, that is, an element in this group is an alge-
bra automorphism σ : P → P such that σ ◦ ι = ι and ∂ ◦ σ = σ ◦ ∂. In this way,
we obtain a functor valued in groups:

Aut(A, ∂)

(

(P , ∂)
)

: Alg
C
−→ Grps,

(

C −→ Aut(A⊗C,∂⊗C)

(

(P ⊗ C, ∂⊗ C)
)

)

,

whose fibre at Spec(C) is the starting group Aut(A, ∂)

(

(P , ∂)
)

.
Our next task is to prove that this in fact is an affine algebraic group. Namely,

we show that is isomorphic to each of the isotropy groups of the differential
Galois groupoid HM(C). The proof will be done in several steps. First, we
know from the definition of the Picard-Vessiot extension that the fibre functor
ω′ : 〈M〉⊗ → vectC is naturally isomorphic to the fibre functor κ : 〈M〉⊗ →
vectC, which sends any differential module N ∈ 〈M〉⊗ to the finite-dimensional
C-vector space ker(∂N⊗AP) the kernel of the differentiation of the differential mod-
ule N ⊗A P , see [2, Lemme 3.4.2.1] for the proof of this fact. Let us denote by
V = κ(M) and by {vi, v∗i }1≤i≤m a dual basis of this vector space. Notice that,
as we have seen before, dimC(V) = rank(M) = m. We will make the following
choice for this basis vi = ∑j ej⊗A f ji, for every i = 1, · · · , n. The following lemma
will be implicitly used in the subsequent one.

Lemma 5.5.3. Let k, l be a positive integer. Then, for any objet X ∈ 〈M〉⊗, we have a
monomorphism of C-vector spaces ⊕k,lT

(k, l)
(

κ(X)
)

→֒ ⊕k,lT
(k, l)(X ⊗A P) (finite direct
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sums), which is extended to a monomorphism

⊕

k,l T(k, l)
(

κ(X) ⊗ C
)

� � //
⊕

k,l T(k, l)
(

X⊗A P ⊗ C
)

of C-modules, for any C-algebra C.

Proof. It is immediate by using the fact that κ is a fibre functor.

We refer to [12, Chapitre II. §1. no 3] for the definition of the stabilizers
sub-functors occurring in the following claim which can be compared with
[2, Théorème 3.5.1.1].

Lemma 5.5.4. There is a monomorphism of functors Aut(A, ∂)

(

(P , ∂)
)

→֒ GLC(V ) ∼=

GLC(ω′(M)). Moreover, the image of Aut(A, ∂)

(

(P , ∂)
)

is contained in Stab{κ(N)}, the

stabilizer of every sub-object N of a finite direct sum⊕k, lT
(k, l)(M) in the category 〈M〉⊗.

In particular, the image of Aut⊗(ω′) containts that of Aut(A, ∂)

(

(P , ∂)
)

.

Proof. Let C be an object in Alg
C

and γ ∈ Aut(A⊗C, ∂⊗C)

(

(P ⊗ C, ∂⊗ C)
)

. We set

̺
γ

:= (M⊗A γ)|V : V ⊗ C→ V ⊗ C

which by definition is a well defined C-linear automorphism. This gives the
stated morphism of functors. The fact that this is a monomorphism can be
obtained as follows: Take two automorphisms γ and γ′ and assume that ̺

γ
=

̺
γ′

. Using the basis {vi ⊗ 1C}1≤i≤m of the free C-module V ⊗ C, we get that

γ( f ji⊗ 1C) = γ′( f ji⊗ 1C), for every pair of indices i, j = 1, · · · , m. Thus γ = γ′, as
they are (A⊗ C)-algebra maps. As for the second claim, take C and γ as before
and consider a monomorphism N →֒ ⊕k,lT

(k,l)(M) to a finite direct sum in the
category 〈M〉⊗. Denote by W = κ(N), so up to a canonical natural isomorphism,
we have the following commutative diagram of C-modules:

⊕

k,l T(k,l)(M⊗A P ⊗ C)
⊕k,lT

(k,l)(M⊗Aγ)
// ⊕

k,l T(k,l)(M⊗A P ⊗ C)

⊕

k,l T(k,l)(V ⊗ C)
⊕k,l T

(k,l)(̺γ)
//

6 V

ii❙❙❙❙❙❙❙❙❙❙❙❙
⊕

k,l T(k,l)(V ⊗ C)
6 V

ii❙❙❙❙❙❙❙❙❙❙❙❙

N ⊗A P ⊗ C
N⊗Aγ

//
?�

OO

N ⊗A P ⊗ C
?�

OO

W ⊗ C //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴
7 W

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚
?�

OO

W ⊗ C
7 W

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚
?�

OO

This implies that the front rectangle is commutative as well. Therefore, the
action given ̺

γ
stabilizes κ(N) ⊗ C and shows the claim. Lastly, the particular

consequence is a direct application of [2, Théorème 3.2.1.1(iii)] combined with
the previous statement.
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Proposition 5.5.5. Let (P , ∂) be the above Picard-Vessiot extension of (A, ∂) for (M, ∂).
Then, we have an isomorphism Aut(A, ∂)

(

(P , ∂)
) ∼= Aut⊗(ω′) of affine group schemes.

Furthermore, the attached affine algebraic group Aut(A, ∂)

(

(P , ∂)
)

is isomorphic to each
of the isotropy groups of the algebraic groupoid HM(C) of Definition 5.4.6.

Proof. The last claim is a direct consequence of the first one in conjunction with
Corollary 5.5.1. In order to prove the first statement, we only need to check
that (the image of) Aut⊗(ω′) is contained in the image of Aut(A, ∂)

(

(P , ∂)
)

by the
monomorphism of Lemma 5.5.4. So take an object C in Alg

C
and a natural iso-

morphism ξ ∈ Aut⊗(ω′)(C). Consider then the C-linear automorphism ξM and
its associated invertible m× m-matrix (cij)i, j with coefficients in C. Now, define
the following (A⊗ C)-algebra map:

γξ : P⊗ C −→ P⊗ C,
(

a fij ⊗ c 7−→∑
l

a fil ⊗ cjlc
)

.

It is not difficult to check that γξ ∈ Aut(A⊗C,∂⊗C)

(

(P ⊗ C, ∂⊗ C)
)

. We still have to
check that ̺γξ

= ξM and this follows form the following computations: For each

i = 1, · · · , m, we compute

̺γξ

(

vi ⊗ 1C

)

= ̺γξ

(

∑
j

ej ⊗A f ji ⊗ 1C

)

= (M⊗A γξ)
(

∑
j

ej ⊗A f ji ⊗ 1C

)

= ∑
j, l

ej ⊗A f jl ⊗ cjl = ∑
l

vl ⊗ cjl = ∑
l

(vl ⊗ 1C) cjl

= ξM

(

vi ⊗ 1C

)

,

which shows the desired equality and finishes the proof.

Proposition 5.5.5 suggests a terminology for the algebraic group
Aut(A, ∂)

(

(P , ∂)
)

, thus, we can refer to this group as the differential Galois isotropy
group of (A, ∂) for the differential module (M, ∂).

Example 5.5.6. Let (M, ∂) be a differential A-module of rank 2 with differential

matrix mat(M) =

(

0 a
0 0

)

, for some non-zero polynomial a ∈ A. The associated

Hopf algebroid U◦

(M) is generated as an (A ⊗ A)-algebra by the set
{

e∗i ⊗TM
ej

}

1≤i, j≤2
. Now, by considering the following differential morphisms

A −→ M,
(

1 7−→ e1

)

; M −→ A,
(

(

a1

a2

)

7−→ a2

)

(these are morphisms in the category 〈M〉⊗), we show that f11 = f22 = 1P and
f21 = 0. Therefore P is generated as an A-algebra by the element f12. Since, we
already know that there is a non constant polynomial b ∈ A such that ∂b = a, we
have another morphism in the category 〈M〉⊗, namely, the one given by

t : A −→ M,
(

1 7−→ (e2 − e1b)
)

.
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Using, this morphism, we have the following equalities in the algebra U◦

(M)

e∗1 ⊗TM
e2 = e∗1 ⊗TM

(e2 − e1b) + e∗1 ⊗TM
e1b

= e∗1 ⊗TM
t(1A) + e∗1 ⊗TM

e1b

= e∗1t⊗TA
1A + e∗1 ⊗TM

e1b

= −bl1A
⊗TA

1A + e∗1 ⊗TM
e1b

Passing to the quotient A-algebra P = U◦

(M)/〈s − t〉, this implies that f12 = 0.
Thus P = A and the differential Galois isotropy group is a trivial group in this
case.

Remark 5.5.7. Observe that the opposite principal bibundle (RA⊗A(℘, ω), β, α)
of the principal bibundle (RA⊗A(ω,℘), α, β) (see Theorem 2.4.5 and [17, Section
4]) provides us with another Picard-Vessiot extension of (A, ∂), although, as an
algebra it will be generated by a fundamental matrix of solutions F satisfying
∂F = −Fmat(M), which is obviously not a matrix of solutions for the system (62),
but it is for the differential module (M∗, ∂). This, explain the why of the minus
sign in the differentiation of equation (61) and of the use of columns instead of
rows in the formulation of the system (62). On the other hand, since P is a simple
differential A-algebra and A its self is so, we can show by elementary arguments
that P has no non zero divisor (see also [2, Proposition 3.4.4.4]), and so consider
its total field of fractions Q(P). In this way, we will end up with a differential
field extension C(X) → Q(P). If the field of constants of Q(P) coincides with
C, then the extension Q(P)/C(X) can be referred to as the Picard-Vessiot field
extension for (M, ∂).

Lastly, as we have seen along the previous subsections, the results as well as
the examples described therein, present a strong resemblance with the classical
case of the differential field C(X).

5.6 Comparison with Malgrange’s and Umemura’s differential Galois grou-

poids

In this section we compute the Hopf algebroid structure of the coordinate ring
of what is know in the literature as Malgrange’s groupoid (or D-groupoid) for
some special cases, and illustrate the differences between this groupoid and our
approach.

Before going on, the following notations are needed. For any positive integer
n ∈ N \ {0}, we denote by ǫ0, ǫ1, · · · , ǫn the elements (1, 0, . . . , 0), (0, 1, 0, · · · , 0),
· · · , (0, · · · , 0, 1) ∈ Nn+1, respectively. Given such an integer n, we define the
following function

Nn kn
// N

(k1, · · · , kn)
✤ // k1 + 2k2 + 3k3 + · · ·+ nkn := k(k1, ··· , kn).

We denote by k(n) := (kn)−1({n}) the inverse image of {n} by the function
kn. Thus elements of k(n) are n-tuples (k1, · · · , kn) ∈ Nn of integers such that
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n = k1 + 2k2 + · · ·+ nkn. For instance, we have

k(1) =
{

1
}

, k(2) =
{

(0, 1); (2, 0)
}

, k(3) =
{

(0, 0, 1); (1, 1, 0); (3, 0, 0)
}

,

k(4) =
{

(0, 0, 0, 1); (1, 0, 1, 0); (2, 1, 0, 0); (4, 0, 0, 0); (0, 2, 0, 0)
}

, · · · .

Let A = C[X] be as before the one variable polynomial complex algebra and
{x0, yn}n∈N be a set of independent variables over C. Consider the following
commutative polynomial C-algebra

H := C[x0, y0, y1, · · · , yn, · · · ,
1

y1
],

which we also denote byHC. There are two algebra maps

s : A→ H,
(

X 7→ x0 := x
)

and t : A→ H,
(

X 7→ y0 := y
)

(80)

so that we can consider the A-bimodule sHt. Moreover, we have the following
algebra maps:

sHt

∆ //
sHt ⊗A sHt

∆(x) = x⊗A 1, ∆(y) = 1⊗A y,

∆(yn) = ∑
(k1,··· ,kn)∈ k(n)

n!

k1! · · · kn!

( (y1

1!

)k1
(y2

2!

)k2
· · ·

(yn

n!

)kn
)

⊗A yk1+k2+···+kn
, for n ≥ 1.

(81)

Thus, for n = 1, 2, 3, 4, the image by ∆ of the variables yn’s reads as follows:

∆(y1) = y1 ⊗A y1, ∆(y2) = y2 ⊗A y1 + y2
1 ⊗A y2,

∆(y3) = y3 ⊗A y1 + 3y1y2 ⊗A y2 + y3
1 ⊗A y3,

∆(y4) = y4⊗A y1 + 4y3y1⊗A y2 + 6y2y2
1⊗A y3 + 3y2

2⊗A y2 + y4
1⊗A y4, · · · .

It is by construction that ∆ is actually a morphism of A-bimodules. There are
other A-bimodule morphisms which are given as follows:

sHt

S //
tHs

S (x) = y, S (y) = x, S (y1) = y−1
1 , and

S (yn) = ∑
(n,0,··· ,0) 6=(k1,··· ,kn)∈ k(n)

−
n!

k1! · · · kn!
S
(

yk1+k2+···+kn

)

( (y1

1!

)k1−n (y2

2!

)k2
· · ·

(yn

n!

)kn
)

, for n ≥ 2,

(82)
for instance,

S (y1) = y−1
1 , S (y2) = −y2y−3

1 , S (y3) = −y3y−4
1 + 3y2

2y−5
1 ,

S (y4) = −y4y−5
1 + 10y3y2y−6

1 − 15y3
2y−7

1 , · · · .
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And

sHt

ε // A

ε(x) = X, ε(y) = X, ε(y1) = 1, and

ε(yn) = 0, for every n ≥ 2.

(83)

The C-algebraH is a differential algebra with differential given by:

H δ //H

δ(x) = 1, δ(y) = y1, δ(yn) = yn+1, for n ≥ 1.
(84)

Thus, we have

δ =
∂

∂x
+

∞

∑
i=0

yi+1
∂

∂yi
.

We will considerH as an (A⊗ A)-algebra using the C-algebra map η := s⊗ t :
A⊗ A→ H given by equation (80). It is by construction thatH is via η a faithfully
flat (A ⊗ A)-bimodule. The following proposition can be seen as the algebraic
counterpart of the “universal” geometric groupoid constructed in [27] and [46].

Proposition 5.6.1. The pair (A,H) admits a structure of geometrically transitive com-
mutative Hopf algebroid over C, whose comultiplication, counit and antipode, are given
by equations (81), (83) and (82), respectively. Furthermore, (H, δ) is a differential
extension of (A, ∂) via the source map.

Proof. The last claim is clear. As for the proof of the first one, there are differ-
ent ways to achieve it and the details are left to the reader. One way could be
the use of direct computations, using a certain kind of induction, to show that
these maps are compatible (i.e., they satisfy the pertinent commutative diagrams
for the definition of a commutative Hopf algebroid, see for instance [17, 3.1]
or [13, 3.2]), since we already know that the stated maps are obviously C-algebra
maps. Another way, is to show that the associated presheaf H of the pair (A,H)
of C-algebras lands in fact in groupoids. To do so, one need to think of the vari-
able y0 = y as if it was a function on x and the monomials y

αi
i as if they were

formal derivative
∂αi y
∂xαi

. In this way the compositions in the fibre groupoids are
given by the chain rule of derivatives, and the inverse is by thinking this time
that x is a function on y and using its derivative, see [30, 46]. Lastly, the fact that
(A,H) is geometrically transitive follows from the fact that η is a faithfully flat
extension, as we have mentioned above, and from [13, Theorem A].

Remark 5.6.2. Let (A,H) be the Hopf algebroid of Proposition 5.6.1 and consider
the sub C-algebra Hr := C[x, y0, y1, · · · , yr,

1
y1
] of H, for each r ∈ N \ {0} and set

H0 = C[x, y0] ∼= A ⊗ A. It is clear from the definitions that the structure maps
given in equations (81), (83) and (82), when restricted toHr (denoted by sr, tr, εr, ∆r

and Sr), leads to a Hopf algebroid (A,Hr). Thus, the family {(A,Hr)}r ∈N is a
family of Hopf sub-algebroids of (A,H) and the canonical inclusions Hr → Hr+1

give an inductive system of Hopf A-algebroids such that

H = lim
−→

r ∈N

(

Hr

)

.
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In order to clarify the connection with our approach, it is convenient to explain
the idea which relates these Hopf algebroids with the Lie algebroids of jet vector
bundles of the tangent bundle of A1

C
.

Notice first that each of the algebras Hr is clearly the coordinate ring of a
complex variety which we denote by J∗r andH is the coordinate ring of a variety
denoted by J∗∞. This means that we have a family of groupoids (Lie groupoids
indeed)

{(

J∗r , A1
C

)}

r∈N
with “prolongation” the groupoid J∗∞ = lim

←−

(

J∗r
)

. The
later is the Zariski open set of the infinite dimensional analytic space C × CN

defined by the sequences (x, yn)n≥0 with y1 6= 0 (referred to in the literature as the
Lie groupoid of invertible jets).

Following the general idea of [27, 3.2], if we consider the Lie algebroid Lie(J∗r )
of the groupoid J∗r (i.e., the relative tangent via the source (or target) map), then
Lie(J∗r ) is identified with JrT, the jet vector bundle of order r of the tangent bun-
dle T of A1

C
. In this way, the module of global sections of the associated coherent

sheaf is isomorphic as (right) A-module to the differential operators bimodule
Diffr(A) of order r (see [32, Definition 9.67] for the definition of this A-bimodule).
The general construction of the Lie algebroid structure of the jet bundles for
a given Lie algebroid can be found in [10, 4.1], the explicit formulae for the bracket
on the global sections of these jet bundles is detailed in [27, page 478]. It is note-
worthy to mention also that these constructions can be performed in a purely
algebraic way by using Lie-Rinehart algebras and their jets (or differential opera-
tors), in the sense of [32].

In relation with the constructions we have seen so far, we can easily check

that he Hopf algebroid H1 = C[x, y0, y±1
1 ] is isomorphic to U◦

(M) for a given dif-
ferential module (M, ∂) of rank one, as was mentioned in Example 5.4.9. For a
higher order, that is, for r ≥ 2, it is possible that the Hopf algebroid Hr can be re-
lated to the finite dual of the co-commutative Hopf algebroid VA(Lr) the universal
enveloping algebroid of the Lie-Rinehart algebra Lr := Γ(JrT) the global sections
of the Lie algebroid of jets bundle of order r of the bundle T (see Example 1.3.3(2)).

In summary it seems that with our approach (and also that of [2]) we only can
treat the study of a system of linear differential equation associated to a repre-
sentation of a given Lie algebroid (or Lie-Rinehart algebra, which in the situation
of the present section is Γ(TA1

C
) the global sections of the tangent bundle), and

we are not able to analyse a system of partial differential equations attached to
the jets of order higher than 2. This perhaps can be seen as a disadvantage of
our approach, however, with this approach we are able also to study a system of
linear differential equation attached to differential module with rank higher than
2 without being forced to change the base algebra (i.e., without being forced to
increase the number of the coordinates system), which is the situation adopted
in [27, page 493]. To be more precise, let us consider a differential module (M, ∂)
over (A, ∂) of rank m. In comparison with [27], the underlying module M can be
considered as the global sections module of a trivial vector bundle of the rank
m over A1

C
, that is, we have M = Γ(E) (or E in the notation of [27]), where

E = Cm × C. The differential structure map ∂ on M, is then interpreted as a
flat connection ∇ on the vector bundle E (recall here, as in [27], were are in the
case of smooth connected spaces). Following [27, 5.3, page 493], (here we take the
discrete subset Z = ∅ of A1

C
), the corresponding Hopf algebroid whose quotient
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leads to the description of the differential Galois group of ∇ (or to the associated
one dimensional foliation without singularity, as Z = ∅), is the one with the base
algebra OCm×C, since the Lie groupoid of invertible jets has the space Cm × C as
the space of objects. Such a Hopf algebroid is given by the following differential
polynomial algebra

H
Cm+1 :=

C

[

x0, x1, x2, · · · , xm, y0, y1, · · · , ym, yiα, det(yiǫj
)−1
]

i,j=1, ··· , m; α∈Nm+1\{0, ǫ0, ··· , ǫm}
,

(85)

viewed as an Hopf algebroid with base algebra C[X0, X1, · · · , Xm], see Exam-
ple 5.6.8 below where we illustrated the construction of this Hopf algebroid for
m = 1. Therefore, if we want to employ the method of [27] for studying a dif-
ferential module of rank m ≥ 2 over A = C[X0], then we are forced to use the
Hopf algebroid of equation (85) as a Hopf algebroid over C[X0, X1, · · · , Xm]. This
shows that our approach is somehow different from that adopted in [27], since all
our Hopf algebras and Hopf algebroids have for the base algebra the polynomial
algebra with no more than one variable, i.e., the algebra A.

Next, we introduce the notion of Malgrange Hopf algebroid which is the coor-
dinate ring of what is known in the literature as the D-groupoid, or Malgrange
groupoid. We will treat only the case of Hopf algebroids of over the polynomial
algebra A, that is, Hopf quotients of the above Hopf algebroid HC, since this is
the case we are interested in this section.

Recall first that a Hopf ideal of a given Hopf algebroid (A,H) is an ideal I ofH
such that the pair of algebras (A,H/I) admits a unique structure of Hopf alge-
broid for which the morphism (idA, π) : (A,H)→ (A,H/I) becomes a universal
morphism of Hopf algebroids. That is, any morphism (ida, φ) : (A,H) → (A,K)
of Hopf algebroids such that I ⊆ ker(φ), factors through (idA, π) by a morphism
of Hopf algebroids. This in fact is a naive definition which only consider sub-
groupoids of H with same set of objects H0. The strict definition is a pair of
ideals (I0, I1) of the pair of algebras (A,H) satisfying pertinent conditions; since
we will not use this general notion, we will not go on to the details.

Here is the promised definition:

Definition 5.6.3 ([27, 46]). Given (A,H) as in Proposition 5.6.1 with H the asso-
ciated presheaf of groupoids. A Malgrange Hopf A-algebroid over C is a quotient
Hopf algebroid of the form (A,H/I), where I is a differential Hopf ideal, that is,
a Hopf ideal I with δ(I) ⊆ I , where δ is the derivation of equation (84). Obvi-
ously the pair (A,H/I) defines a presheaf of groupoids which we denote by KI ,
and for every commutative C-algebra C we have that KI(C) is a sub-groupoid
of H (C). Thus, KI is a sub-groupoid of H . An alternative terminology and
the one which can be found in the literature, is to say that KI is a D-groupoid (or
Malgrange groupoid over A1

C
) defined by the Hopf ideal I (see also [19], where the

notion of Hopf algebroid or that of presheaf of groupoids were not specified).

Remark 5.6.4. As we have seen before, it is by construction that the Hopf alge-
broid (A,H) of Proposition 5.6.1 is geometrically transitive in the sense of [13],
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see also Example 2.3.2. Therefore, the associated presheaf of groupoids H is a
transitive groupoid scheme in the sense of [11]. It is noteworthy to mention that,
taking a Malgrange groupoid KI associated to a differential Hopf ideal I , even if
H defines a transitive groupoid scheme, it is not necessarily that this the case for
KI . That is, the (A⊗ A)-module H/I does not necessarily have to be faithfully
flat. Henceforth, Malgrange Hopf algebroids fail in general to be geometrically
transitive.

In the subsequent we give examples of Malgrange Hopf algebroids and
describe, in some cases, Umemura’s method [46] dealing with the study of certain
partial differential equation.

Example 5.6.5 ([46]). Let I be the ideal ofH generated by the set {y1− 1, yn}n≥2.

Since δk(y1) = yk+1, for all k ∈ N∗, I is a differential ideal ofH. Let us check that
is also a Hopf ideal. We know that

∆(y1 − 1) = (y1 − 1)⊗A 1 + 1⊗A (y1 − 1) ∈ H⊗A I + I ⊗AH,

and by using the formula (81) with n ≥ 2, we conclude that ∆(I) ∈ H ⊗A I +
I ⊗A H. On the other hand, we have ε(y1 − 1) = 0 and ε(yn) = 0, whence
ε(I) = 0. Concerning the image of I by the antipode, we have that S (y1 − 1) =
y−1

1 − 1 = y−1
1 (1− y1) ∈ I , and by induction employing equation (82), we get

S (I) ⊆ I . Therefore, (A,H/I) is a Malgrange Hopf A-algebroid which can
be shown to be isomorphic to the Hopf algebroid (A, A ⊗ A). The associated
groupoid is just the fibrewise groupoid of pairs ([13, Example 2.2]) and not the
action groupoid ([13, Example 2.1]) of the additive on it self, as was claimed in
[46, page 446], since obviously none of the images of x, y is a primitive element in
H/I .

Example 5.6.6. ([27, 3.5]) Consider A with the derivation X∂/∂X. As we have
seen in Remark 5.1.1, in this case the category DiffA fails to be an abelian cate-
gory. Thus, the classical Tannakian theory fails too, when considering the Lie-
Rinehart algebra L = A.(X∂/∂X). Following [27], this is due perhaps to the
fact that associated D-groupoid is not a reduced one. Let us check this by com-
puting its coordinate ring, and compare Umemura’s [46] method with this case.
Consider then the Hopf algebroid (A,H) of Proposition 5.6.1 with differential as

in equation (84), and take the differential ideal I generated by
{

δk(xy1 − y)
}

k≥0
(as we have mentioned before we thing of y1 as if it was the first derivative of y
with respect to the variable x). Let us check first that I is a Hopf ideal. So, by the
formula

δn+1(xy1 − y) = nyn+1 + xyn+2, n ≥ 0

we have that

ε(xy1 − y) = 0, and ε
(

δn(xy1 − y)
)

= 0, for any n;≥ 1

whence ε(I) = 0. As for the image of I by the comuplitplication, we have that

∆(xy1 − y) = (xy1 − y)⊗A y1 + 1⊗A (xy1 − y) ∈ I ⊗AH+H⊗A I ,

∆(δ(xy1 − y)) = ∆(xy2) = xy2 ⊗A y1 + xy2
1 ⊗A y2 =

xy2 ⊗A y1 + (xy1 − y)y1 ⊗A y2 + y1 ⊗A xy2 ∈ I ⊗AH+H⊗A I ,
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and
∆
(

δ2(xy1 − y)
)

= ∆(y2 + xy3)

= y2 ⊗A y1 + y2
1 ⊗A y2 + xy3

1 ⊗A y3 + 3xy1y2 ⊗A y2 + xy3 ⊗A y1

= (y2 + xy3)⊗A y1 + (xy1 − y)⊗A y3 + y2
1 ⊗A (xy3 + y2) +

3xy1y2 ⊗A y2 ∈ I ⊗AH+H⊗A I

Seeking for a general formula of ∆
(

δn(xy1− y)
)

and using induction shows that

∆(I) ⊆ I ⊗AH+H⊗A I . Concerning the image by the antipode, we have

S (xy1 − y) = yy−1
1 − x = −(xy1 − y)y−1

1 ∈ I ,

S

(

δ(xy1 − y)
)

= S

(

xy2

)

= −y(y2y−3
1 ) = (xy1 − y)y−3

1 y2 − xy1y2 ∈ I and

S

(

δ2(xy1 − y)
)

= S

(

y2 + xy3

)

= −(y2 + xy3)y
−3
1 +

(xy1 − y)
(

y3 − y2
2y−1

1

)

y−4
1 + 3xy2

(

y2y−4
1

)

∈ I ,

and one can also show, using a kind of induction, that S

(

δn(xy1 − y)
)

∈ I , for

any n ≥ 3. Thus I is a differential Hopf ideal and so (A,H/I) is a Malgrange
Hopf algebroid. Since xy2 ∈ I and none of the elements x, y2 belong to I , the
algebraH/I is not reduced.

Now, we come back to Umemura’s method as promised. Following [46], if we
use the universal Taylor morphism,

ι : C[x] −→ C[x][[Z]], a 7−→ ∑
n≥ 0

∂
n
(a)

n!
Zn,

where the differential is ∂ = x ∂
∂x , then we can see that the image of x satisfies

the equality ι(x) = x Exp(Z), and so x ∂ι(x)
∂x = ι(x). Moreover, ι can be extended

to an algebra map ι : H → A[[Z]] by sending y 7→ ι(x), x 7→ x (i.e., the power

series (x, 0, · · · , 0)) and ι(yn) = ∂nι(x)
∂xn , for n ≥ 1. Thus, ι(y1) = Exp(Z) and

ι(yn) = 0, for n ≥ 2. Henceforth, we have a morphism κ : H/I → A[[Z]]13 of
(A⊗ A)-algebras, which is, of course, not injective nor a differential morphism.
Thus there is no hope in obtaining an analogue result to the one claimed in [46,
Proposition 6.1] for this case, and so Umemura’s method only works for some
specific cases. This is due perhaps to the fact that the morphism κ does not take
into account the whole system of equations

(n− 1)y(n) − xy(n+1) = 0, for n ≥ 0, (86)

in the sense that the images of yn by κ are zero up to degree 2.

13Note that the I-adic completion of this algebra map leads to a morphism of complete Hopf
algebroids over A, where A is considered as a discrete topological ring, see [18].
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There are observations which should be highlighted here with respect to what
we have seen so far. The previous power series algebra can in fact be seen as
the convolution algebra of the co-commutative Hopf algebroid U, that is, we
have U∗ ∼= A[[Z]] where U is the universal enveloping algebroid of the Lie-

Rinehart algebra A. ∂ and where the universal Taylor map ι is nothing but the
target map for the (A⊗ A)-algebra U∗ (this is in fact a topological commutative
Hopf algebroid, see [18] for more details). In this way, it is not clear, at least to us,
if the commutative Hopf algebroid H/I can be identified with the finite dual of
a certain co-commutative Hopf algebroid. According to what was explained in
Remark 5.6.2, an answer to this question can be perhaps performed by using not
only the finite dual of the universal enveloping algebroid of a given Lie-Rinehart
algebra, but also the finite duals of the universal enveloping algebroids of the
attached jets Lie-Rinehart algebras of any order. In this direction, it is perhaps
possible that one could also establish a certain Picard-Vessiot theory for the sys-
tem of equation (86). On the other hand, if we allow solutions of the system (86)
to be with coefficients in the localized algebra C[X±1], then the system can be lin-
earized and one can try to employ directly the theory we have developed hereby
in order to solve this new linear system.

In the following remark we illustrate the difference between the approach to
the Galois groupoid of Definition 5.4.6 and the one introduced by B. Malgrange
in [27] (see also [46]).

Remark 5.6.7. Let place ourselves in the context of [27, 5.3] by taking the analytic
smooth connected curve X to be the affine complex line A1

C
and set as before

A = C[X] its coordinate ring. This is indeed the case we are treating in this sec-
tion. Now given a Malgrange groupoid KI , as in Definition 5.6.3, defined by
a differential Hopf ideal I , then, following [26, 27], the attached Galois groupoid
has X as the space of objects and an arrow is a germ of local diffeomorphism
g : (X , p) → (X , g(p)) from an open neighbourhood of p in X to an open neigh-
bourhood of g(p) in X , such that g is a solution of the differential equations gen-
erating the ideal I . The structure groupoid is the one induced from the groupoid
Aut(X ) of germs of local diffeomorphisms (étale Lie groupoid in fact, see [28,
Example 2.5(4)] for details). Therefore, for a differential module (M, ∂) of rank
one over (A, ∂), the Galois groupoid H(M)(C) of Definition 5.4.6, have the same
set of objects as the Galois groupoid attached to a Malgrange groupoid KI , for
a given differential Hopf ideal I (notice that there are case when this two Galois
groupoids coincide, for instance, when I is the differential Hopf ideal 〈yn〉n≥2).

For a differential module with rank m ≥ 2 over A, the situation is totally
different. Precisely, let us consider such a differential module and consider as
in Remark 5.6.2 the associated locally free vector bundle (E, π) of constant rank
m over X . Following the procedure of [27, 5.3], in order to define the Galois
groupoid Gal(F) (notation of [27, 5.2]) of the foliation F attached to (E, π) (and
given by the connection ∇ corresponding to the differential ∂ of M), one has to
consider a Malgrange Hopf algebroid extracted form a certain differential Hopf
ideal IF of the Hopf algebroid H

Cm+1 of equation (85). The existence and the con-
struction of this differential Hopf ideal, or equivalently that of the Malgrange
groupoid KIF

is guaranteed by [27, Théorème 4.5.1]. Indeed IF is the largest dif-
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ferential Hopf ideal for which the germs of sections of F are solutions. In this
direction, the Galois groupoid H(M)(C) still having A1

C
as set of objects, while

the Galois groupoid Gal(F) has the space A
m+1
C

(the analytic variety underlying
the bundle (E, π), see [27, page 493]) as a set of objects. This at first glance shows
that H(M)(C) is not isomorphic to Gal(F), it is not clear, however, at least to us,
if they are weakly equivalent in the sense of Remark 5.4.8.

As we have seen in Remark 5.6.7, perfunctorily our differential Galois
groupoid attached to a differential A-module is different from the one introduced
by Malgrange in [27]. It seems that the two approaches are also far from being
similar. Specifically, let (M, ∂) be a differential A-module of rank 2. If we want
to study the system of linear differential equations attached to (M, ∂) by using
Malgrange’s Hopf algebroids, then the ‘universal’ Hopf algebroid described in
Proposition 5.6.1 is useless, since no isotropy group of the attached presheaf of
groupoids will provide us with an algebraic closed subgroup of GL2(C). Besides,
even for differential modules of rank one, like for instance the one considered
in Example 5.4.9, it is not clear how to construct a differential Hopf ideal of this
Hopf algebroid form this differential module (apriori the defining ideal should
be the differential ideal generated by y1 − xy which is clearly not a Hopf ideal,
nor the one generated by z1 − xz, where z = y− x and z1 = z′).

On the other hand, the ‘universal’ Hopf algebroid of Proposition 5.6.1 (or the
one defined by any reduced algebraic variety as the coordinate ring of invertible
jets [27, 46], like the one in Example 5.6.8), leads to partial differential equations
defined by given differential Hopf ideals. This means that this approach and its
methods of studying these equations goes somehow in the contrary direction of
what is traditionally done in the differential Galois theory of differential fields
(unless perhaps one is interested in founding partial differential equations at-
tached to some dynamical system and providing its groupoid of “symmetries”
[46, 30]). More precisely, usually one considers, in the first step, a system of (alge-
braic) differential equations as an initial data and look for a representation over
a certain Lie algebroid (i.e., Lie-Rinehart algebra) which defines such system of
equations. In the second step, one seek for a Picard-Vessiot extension of the differ-
ential base algebra as a formal solution space of the starting system of equations.
Furthermore, if we want to use Malgrange’s Hopf algebroids, then it is not clear
from [27] or [47], how to construct a Picard-Vessiot extension, in the sense of [2],
associated to the system of equations defining a differential Hopf ideal.

In summary, our (algebraic) approach to differential Galois theory over dif-
ferential rings seems to be different form the (geometric) one adopted in [27, 47],
although, there are some similar aspects between the two approaches.

In the following example, we give a map of bialgebroids involving the
underlying bialgebroid of the Hopf algebroid of Proposition 5.6.1. Besides, we try
to mimic the method employed in [46, Example 5.1], for the case affine complex
plan (by taking a certain sub Lie-Rinehart algebra of the Lie algebra of deriva-
tions of the coordinate ring), and arrive to the conclusion that this method doesn’t
behave well in this case, which in some sense bears out the above explanations.

Example 5.6.8. In this example we compute the structure maps of the Hopf alge-
broid describe in Proposition 5.6.1, but for two variables instead of one. That is,
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a Hopf algebroid over C[x0, x1] the coordinate ring of the affine plane. The quo-
tients by differential ideals of this ‘universal’ Hopf algebroid lead to Malgrange
Hopf algebroids which allows the study of systems of certain algebraic partial
differential equations with two variables. Let {x0, x1, yi α}i=0,1; α∈N2 be a set of
independent variables over C. To simplify the notations we will adopt the fol-
lowing one:

yi 0 := yi, for i = 0, 1;

yi ǫj
:= yij, for i, j = 0, 1; and where ǫ0 = (1, 0), ǫ1 = (0, 1);

yi α := yiα1α2
, where α = (α1, α2) ∈ N

2 \ {0, ǫ0, ǫ1}.

Then we have a family of variables:











x0, x1, y0, y1;

y00, y10, y01, y11;

yi11, yi02, yi20, yi12, yi21, yi03, yi30, · · · · · · , i = 0, 1.

As before, we think of yi as functions of two variables x0, x1, and yij their first

partial derivatives
∂yi
∂xj

, and yiα1α2
are their higher derivatives

∂|α|yi

∂x
α1
0 ∂x

α2
1

. In this way

the determinant det(yij) can be viewed as the Jacobian of the function (y0, y1) in
two variables x0, x1. We consider the following commutative C-algebra

K := H
C2 = C

[

x0, x1, y0, y1, yij, det(yij)
−1, yiα1α2

]

i,j=0,1, α=(α1, α2)∈N2, |α|≥2

This is a (B ⊗ B)-algebra where B = C[x0, x1] is the polynomial algebra with
two variables. Clearly it is a free (B⊗ B)-module. The source and the target are
s(xi) = xi and t(xi) = yi, for every i = 0, 1. The algebra K is a partial differential
algebra extension of (B, ∂/∂x0, ∂/∂x1) via the source map. The partial derivations
of K are given as in [27, page 470] by

∂iP =
∂P

∂xi
+ ∑

∂P

∂yjα
yj(α+ǫi)

, i = 0, 1,

for any polynomial function P ∈ K.
Next, we illustrate the Hopf algebroid structure of the pair (B,K). The counit

is the map which sends:

ε(xi) = ε(yi) = xi, for all i = 0, 1;

ε(yij) = δij (Kronecker symbol ), for all i, j = 0, 1;

ε(yiα) = 0, for all i = 0, 1 and α ∈ N \ {0, ǫ0, ǫ1}.

The comultiplication and the antipode are given as follows:

∆(yij) = ∑
k

yik ⊗A ykj, for i, j = 0, 1.



116 L. El Kaoutit - J. Gómez-Torrecillas

While for any i = 0, 1, we have

∆(yi11) = yi20 ⊗B y00y01 + yi11 ⊗B y00y11 + yi11 ⊗B y10y01 + yi02 ⊗B y10y11

+yi0 ⊗B y011 + yi1 ⊗B y111,

∆(yi02) = yi20 ⊗B y2
01 + yi11 ⊗B y11y01 + yi0 ⊗B y002 + yi11 ⊗B y01y11

+yi02 ⊗B y2
11 + yi1 ⊗B y102,

∆(yi20) = yi20 ⊗B y2
00 + yi11 ⊗B y10y00 + yi0 ⊗B y020 + yi11 ⊗B y00y10

+yi02 ⊗B y2
10 + yi1 ⊗B y120,

the antipode is given by:

S (xi) = yi, for all i, j = 0, 1;

S (yij) = det(yij)
−1(−1)i+jyji, for all i, j = 0, 1,

and for α ∈ N2 such that |α| = 2 and for any i = 0, 1, we have

S (yi11) det(yij)
2 =

(

y00y11 + y10y01

)

(

S (yi0)y011 + S (yi1)y111

)

− y10y00

(

S (yi1)y102 + S (yi0)y002

)

− y11y01

(

S (yi0)y020 + S (yi1)y120

)

,

S (yi02) det(yij)
2 = 2y00y01

(

S (yi0)y011 +S (yi1)y111

)

− y2
00

(

S (yi1)y102 + S (yi0)y002

)

− y2
01

(

S (yi0)y020 + S (yi1)y120

)

,

S (yi20) det(yij)
2 = 2y11y10

(

S (yi0)y011 +S (yi1)y111

)

− y2
10

(

S (yi1)y102 + S (yi0)y002

)

− y2
11

(

S (yi0)y020 + S (yi1)y120

)

.

For higher degrees, that is, for α ∈ N with |α| ≥ 3, one can use the higher partial
derivative Chain rules for both comultiplication and the antipode. We have that
(B,K) is a geometrically transitive Hopf algebroid.

Assume we are given on B the following derivation δ(x0) = 1 and δ(x1) =
x0x1 (in other words we are considering the sub Lie-Rinehart algebra of DerC(B)

generated by ∂
∂x0

and x0x1
∂

∂x1
). As we will observe below, this Lie-Rinehart alge-

bra can be used to seek the solutions of the linear differential equation y′ = x0y
over the polynomial algebra C[x0].

From the definition of δ, we have that δn(x1) = pn(x0)x1, for any n ∈ N,
where the sequence polynomials {pn(x0)}n≥0 in x0, satisfies the following non
homogeneous recurrence:

{

pn+1(x0) = x0pn(x0) + pn(x0)
′, n ≥ 1,

p0(x0) = 1
(87)

Following the method of [46] and by using the universal Taylor map

i : B → B[[Z]] sending b 7→ ∑n≥0
δn(b)

n! Zn, we can conclude the following par-
tial differential equations:

∂i(x0)

∂x0
= 1,

∂i(x0)

∂x1
= 0, x1

∂i(x1)

∂x1
= i(x1). (88)
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On the other hand, extending δ to the B[[Z]] by putting δ(Z) = 0 and considering

the derivation ∂• = 1
2

(

δ + ∂
∂Z

)

on B[[Z]], we have that i : (B, δ) → (B[[Z]], ∂•)
is a morphism of differential algebras, so that the equation ∂• i(x1) = x0i(x1)
holds true. Therefore, B[[Z]] contains a solution of the above linear differential
equation (up to a certain scalar).

Now, if we want to use equations (88) with the purpose of guessing a differ-
ential Hopf ideal and construct a Malgrange Hopf algebroid according to Defini-
tion 5.6.3 (this is the method adopted, for instance in the example expounded in
[46, §5]), then the adequate set of generators seems to be {y00 − 1, y01, x1y11− y1}

and their higher partial derivatives: ∂k
i (y00 − 1), ∂l

i(y01), ∂m
i (x1y11 − y1), k, l, m ≥

1, i = 0, 1. Unfortunately, this is not the case, since the differential ideal J
generated by this set, only leads to a structure of bialgebroid on the quotient
B-bimodule K/J . This is due to the fact that J is not stable under the antipode
of K, as one can check from the equality S (y01) = det(yij)

−1y10. Nevertheless,
we still have a morphism K/J → B[[Z]] of (B ⊗ B)-algebras, and one can also
construct a morphism H → K/J of bialgebroids, sending y1 7→ y11 + J and
yn 7→ y1(n−1)1 + J for n ≥ 2, where H is the Hopf algebroid of Example 5.6.5.
It is noteworthy to mention that it is also possible that K/J becomes a Hopf
algebroid after localizing on certain denominator set.

In case of dimension two, that is, for a differential module (M, ∂) over
A = C[x0] of rank 2 with matrix M := mat(M) = (aij)1≤i,j≤2 ∈ M2(A), the
previous method can be described as follows. Assume this time that δ is a deriva-
tion of the polynomial complex algebra C = C[x0, x1, x2], sending, x0 7→ 1,
xi 7→ ∑1≤j≤2 aijxj, for i = 1, 2. In this case the Hopf algebroid to be considered is

the pair (C,W), whereW is the commutative polynomial algebra

W := H
C3 = C[x0, x1, x2, y0, y1, y2, yij, yiα, det(yij)

−1]i,j=0,1,2, α∈N3\{0, ǫ0,ǫ1,ǫ2}

whose structure maps are given as above, by thinking of the yi’s as if they were
certain functions on the variables x0, x1, x2. The equivalent recurrence of the re-
currence given in equation (87), is the following recurrence on 2× 2-matrices with
entries in C[x0]

{

Mn+1 = M′
n +MnM, n ≥ 1,

M0 = I2,
(89)

where the notation M′
n stand for the matrix whose entries are the derivations

of the entries of Mn. Employing the universal Taylor map i : C → C[[Z]], this
means that, we have

∂i(xi)

∂xj
= ∑

n≥0

a
(n)
ij

n!
Zn, for any i, j ∈ {1, 2},

where, for any n ≥ 0, the coefficients a
(n)
ij are the entries of the matrixMn. Using

the recurrence system of (89), we end up with the subsequent system of partial
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differential equations

∂i(x0)
∂x0

= 1,
∂i(x0)

∂x1
= 0,

∂i(x0)
∂x2

= 0,
∂i(x1)

∂x0
= 0, ∂i(x2)

∂x0
= 0,

i(xi) = ∑
2
k=1 xk

∂i(xi)
∂xk

for i = 1, 2.

(90)

The corresponding differential ideal J is the one generated by the set:

{

y00 − 1, y01, y02, y10, y20, yi − x1yi1 − x2yi2

}

i=1,2
.

The quotient leads here also to a bialgebroid over the algebra C and it is not
clear, up to now, how to relate this bialgebroid with the Hopf algebroid U◦

(M) of
subsection 5.5 attached to (M, ∂).
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