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Comatrix Corings and Invertible Bimodules (*) 

L. E L  KAOUTIT (**) (***) - J. GOMEZ-TORRECILLAS (***) 

SUNTO - Estendiamo il Teorema di Masuoka [11] riguardante l'isomorfismo trail gruppo 
dei bimoduli invertibili su un'estensione di anelli non commutativa e il gruppo di au- 
tomorfismi del coanello canonico associato di Sweedler, alla classe dei coanelli di co- 
matrici finiti introdotta in [6]. 

ABSTRACT - We extend Masuoka's Theorem [11] concerning the isomorphism between the 
group of invertible bimodules in a non-commutative ring extension and the group of 
automorphisms of the associated Sweedler's canonical coring, to the class of finite 
comatrix corings introduced in [6]. 

Introduction. 

Comatrix corings were introduced by the authors in [6] to give a structure 
theorem of all cosemisimple corings. This construction generalizes Sweedler's 
canonical corings [15], and provides a version of descent theory for modules [6, 
Theorem 3.10]. Sweedler's canonical corings and their  automorphisms were the 
key tool in [11] to give a non-commutative version of the fact that  the relative 
Picard group attached to any commutative ring extension is isomorphic to the 
Amistur l-cohomology for the units-functor due to Grothendieck's faithfully flat 
descent. 

In this note we extend, by using different methods, the main result of [11, w 
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to the context of comatrix corings. In fact, we apply ideas and recent results from 
[7] and [6], and the present paper can be already seen as natural continuation of 
the theory developed in [6]. 

The first section is rather technical, and it is devoted to prove that there is an 
adjoint pair of functors between the category of comodules over a given comatrix 
coring and the category of comodules over its associated Sweedler's canonical 
coring. This adjunction will have a role in the proof of the main result. Section 2 is 
the core of the paper, as it contains the aforementioned isomorphism of groups 
(Theorem 2.5). The maps connecting bimodules and coring automorphisms are at 
a first glance different from the maps constructed in [11]. However, they are 
neatly related, as Proposition 2.6 shows. 

All rings considered in this note are algebras with 1 over a commutative 
ground base ring K. A right or left module, means a unital module. All bimodules 
over rings are central K-bimodules. If A is any ring, then we denote by AriA 
(respectively AM) the category of all right (respectively left) A-modules. The 
opposite ring of A will be denoted by A ~ its multiplication is defined by 
a2alO o = (ala2)O, alo, a2O E A ~ (i.e. al, a2 E A). As usual, some special convention will 
be understood for the case of endomorphism rings of modules. Thus, if XA is an 
object of AriA, then its endomorphism ring will be denoted by End(XA), while if 
AY is left A-module, then its endomorphism ring, denoted by End(AY), is, by 
definition, the opposite of the endomorphism ring of Y as an object of the ca- 
tegory AM. In this way X is an ( E n d ( X d ) , A ) - b i m o d u l e ,  while Y is an 
(A, End(AY))-bimodule. The opposite left A~ of XA,  will be denoted by 
X ~ the action is given by a ~  ~ = (xa)  ~ a ~ E A ~ x ~ E X ~ Of course, i f f  : X ~ W 
is right A-linear map, then its opposite mapf  ~ : X ~ ~ W ~ is left A~ which 
is defined b y f ~  ~ = ( f ( x ) )  ~ for all x ~ E X ~ The same process will be applied on 
bimodules and bilinear maps. For any (B,A)-bimodule M we denote by 
M* = H o m ( M A , A A )  its right dual and by *M = Hom(BM, BB) its left dual. M* 
and *M are considered, in a natural way, as (A,  B)-bimodules. 

Recall from [15] that an A-coring is a three-tuple ((g, A~, er consisting of an 
A-bimodule (2 and two A-bilinear maps 

(g A• eg 
) ( g @ A  ~ ,  (g , A  

such that (A~ | (g)oA~ = ((g@A Af)oA~ and (ec @A (g)oA f : ((g@A g~)oAE : (g .  
A morphism of A-eorings is anA-bilinear map r : (g -~ ~ which satisfies: ev o r = e~ 
and A~ o r = (r | r o A~. A right (g-comodule is a pair  (M,  PM) consisting of a right 
A-module M and a rightA-linear map PM : M --~ M @A (g, called right (g-eoaction, 
such that (M @A Aft) o PM = (40M @A (g) o tiM and (M | e~) o ,o M : M. Left (g-co- 
modules are symmetrically defmed, and we will use the Greek letter ,~_ to denote 
their coactions. For more details on comodules, definitions and basic properties of 
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bicomodules and the cotensor product, the reader is referred to [3] and its bib- 
liograpy. 

1. - C o m a t r i x  c o r i n g  and adjunct ions .  

Throughout this section Z will be a fixed (B, A)-bimodule which is finitely 
generated and projective as a t ight  A-module with a fLxed dual basis 

e. * ~F*. {( ~, ei)}l<i<n C X • Let  S = End(XA) be its t ight  endomorphism ring, and 
let ;~ : B -~ S be the canonical associated ring extension. I t  is known that there is 
an S-bimodule isomorphism 

: Z @A 27* ) S = End(ZA) 

(1) u |  v*, , 

~ i  ei | e~s = ~ i  s(ei) | e~( , s 

With this identification the product of S (the composition) satisfies 

s(u | u*) = s(u) | u*, 

(2) (u | U*)S = U | U'S, 

(U | U*)(V | V*) --~ UU*(V) | Y* : U | U*(V)V*, 

for every s c S, u, v E X, v*, u* c Z*. By [6, Proposition 2.1], the A-bimodule 
27" | Z is an A-coting with the following comultiplication and counit 

dr*c~r(u* | u) = E u* | ei | e~ | U, er*~,r(u* | U) = U*(U). 
i 

The map Az*o,z is independent of the choice of the right dual basis of ZA, see [6, 
Remark 2.2]. This coting is known as the comatrix coring associated to the 
(B, A)-bimodule 2s 

REMARK 1.1. One can define a comatrix coring using a bimodule which is a 
finitely generated and projective left module. However, the resulting coring is 
isomorphic to the comatrix coring defined by the left dual module. To see this, 
consider any bimodule AAB such that  g A is a finitely generated and projective 
module with a f'Lxed left dual basis ~., *fj}j. P u t  BZA = B*AA,  the s e t  {*f j , f j*} j  

wherefj* E Z* are defined byff(u)j = u(~.),, for all u c Z and j; form a right dual 
basis for ZA. The isomorphism of A-cotings is given by 

Z* | Z ~ *A ) A |  

u* |  u*(*f v v,vj |  *v 

The proof is direct, using the above dual bases, and we leave it to the reader. 
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Keeping the notations before the Remark 1.1, we have that the right (re- 
spectively left) A-module X (respectively Z*) is a right (respectively left) 
X* | Z-comodule with right A-linear (respectively left A-linear) maps: 

pZ':X----*Z|174 ( u ~ .  ei@Ae~| 

for every u ~ Z, and 

2r* : Z*--~X* | 22 @A Z*, (u%--~ E u *  |174 e~), 
i 

for every u* c 2:*. Since ~ i  bei @A el = ~ i  ei | e~b for every b E B, we get that 
Pr is left B-linear and 2z. is right B-linear. Furthermore, the natural right A-linear 
isomorphism 22 -~ *(X*) turns out to be a right 22" | X-colinear isomorphism. 
Associated to the ring extension ,~:B-~ S, we consider also the canonical 
Sweedler S-coring S @B S whose comultiplication is given by As| NB s') = 
- - - -  8 @B 1 @S 1 | S', S, S' E S, and the counit is the usual multiplication. 

The aim of this section is to establish an adjunction between the category of 
right Z* | X-comodules and the category of right S | S-comodules. Recall 
first that this last category is isomorphic to the category of descent data asso- 
ciated to the extension B -~ S, (cf. [13], [1]). This isomorphism of categories will 
be implicitly used in the sequel. For every right S-module Y and every left S- 
module Z, we denote by ~z : Z -~ S | Z, and ~} : Y -~ Y Ns S the obvious nat- 
ural S-linear isomorphisms. 

The functor - Os Z : .A4 sesS ~ .M Z*~ 

Let (Y, py) c .Ad S@RS, and consider the following right S-linear map 

(3) y zr , y @s S @, S Y| 'e~s , Y | Z | Z* | S 

where ( is the S-bilinear map given in (1). Applying - | Z to (3), we get 

(4) 

):" @s E_ P~Ss~ > Y@s S| S| E v|162174174 | E| E* | S| E 

Y @sE@A E*| E, 

explicitly, 

PY| | u) = 2-, Y(0) | ei | el | Y0)U, 
i,(Y) 
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where py(y) = ~(~) Y(0) | 1 | Y(1). I t  is clear that flY~s2 is a r ight A-linear map 
and satisfies the counitary property.  To check the coassociativity, first consider 
the diagram 

(5) 

Y @s E ~| Y @s S | S| E 

~ oY%s~S| v%l| 
Y | 1 7 4  sE ~ Y|174 sS @  s S |  sE 

I I 

Y @s E @A E* | S @s E pv%seA~*eS| y | S @8 S @~ E @A E* | S @~ E 

I I 

Y | E @~ E* @, E ~|174 ~ Y | S |  S@s E @~ E* | E 

It  is commutative because Pv is a coaction for the right S | S-comodule Y. Now, 
look at the following diagram 

(6) 

l"| l| 

Y @s S@. S@ s S@~ S| E 

Y~sSQBSOI~-I~BS~SE 

Y|174 

Y | S | S | ,< 
Y| ~ I|174 ~n 

Y | E@A ~* @BS| 

l"| E| ~'| -I 

Y | ~ | ~* @B E Y@SI@AA 
I 

which is easily shown to be commutative. By concatenating diagrams (5) and (6) 
we see that  the map ,Oy| endows Y | Z with a s t ructure of r ight X* | Z- 
comodule. 

Now, l e t f  : Y ~ Y' be a morphism in .M S~200 and consider the right A-linear 
map f | X : Y | Z ~ Y' | 2:. Then we have the following commutative 
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diagram 
Y @s E Y Q~ E | E* | S |  E 

Y ~.~, S | S @~ E [ Y | E | E* | E 

yt@~ E "" s w * ,~ ,~ 

Y'@s S Go S @s E Y' |  E | E* | E, 

which means that f  | Z is a morphism in M x*~x, with the eoaction (4). Therefore, 
we have constructed a well defined functor - | Z : 34 se~s ~ M z*c~z. 

The funetor  - @ A  ~7" : M X*c/)BX --+ .]~S(.~BS 

Let (X, Px) c M x*~Bz, and consider the right S-linear map 

X @A E* P'u > X @A E* @B E @A E* "u > X On  E* @ B S 

X | E* @~ S @B S- 
Direct verifications, using elements, and the coassociativity of Px, give a com- 
mutative diagram: 

X |  A E* X@.~ E* | S 

px@ A E* X@ A ~* ~B ~ 

X|  E*@. E@~ E* X,:A ~:A T M  

! ! 

P"< ~"~ 'G~----]  ~ ~*% %s~'~' |174 

X| E*G~ B E |  A E*| R S, 
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where fir is the (B - S)-bilinear map defined by gr(s) = 1 | S, for all s c S. That 
is, the right S-linear map f := (X | X* | ~) o (Px | Z*) verify the cocycle 
condition (see [13, Definition 3.5(2)]). Since PxeAs satisfies the counitary prop- 
erty, f is actually a descent datum on X | 2" (see [5], [13]). Henceforth, 
Px~sAs* = (X | / | S) o f  is a right S | S-coaction on X | 2". 

Given any right 27" | Z-colinear map g : X  ~ X ~, we easily get a right 
S | S-colinear map g | Z* : X | X* -~ X' | 27", with the coactions (7). 
Therefore, - | 27* : J ~4~*::~B~ ~ A JsG~s is a well defined functor. 

The precedent discussion serves to state the following proposition. 

PROPOSITION 1.2. For every pair of comodules ((Yse~s,Py); (Xx*e~s 
the following K-linear map 

T~u( : Homz..~z(Y | S , X )  , Homs%s(Y ,X  | X*) 

! 
f~  ) ( f  @A ~y'*) 0 ( g  @s ~-1) o ly 

(X | e') o (g | 2;)~ ,g 

(where ~' is the counit of the comatrix S-coring X* | X), is a natural iso- 
morphism. In  other words, - | X is left adjoint to - | X*. 

PROOF. We only prove that  Ty,x  and its inverse are well defined 
maps, the rest  is straightforward. Clearly Ty~( f )  is S-linear, for every 
f c H o m z . ~ ( Y  | X,X). The colinearity of Ty~;(f) follows if we show 
that  

(8) 

y ~(f)  ~- X @A E* 

Y @B S ~(f)| . X @A E* @B S 

is a commutative diagram, where p} = (/y1 @B S) o fly. Put 

f = Ty~y(f) o p'y = ( f  | X* | ~) o (Y | ~ 1 | S) o py. 

Using that the map f is colinear, we easily prove that  the following diagram is 
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commutative 

/i 
f Y|174 S I 

YCs( i ~B S 

.~ E | E* @~ S 

A ~*~b'BS 
X | E* @s S ,  

*Y| 

}.,F)~E| E.| ( i 

X~A E*C'OB~ 

Y| ~ 
�9 Y| E| E* 

I PY@sE~ 
Y|174174174 E* 

Y@s E| E'?s i ] | E* / 
/ 

�9 }"| E@ A E * |  E |  A E*  
�9 * ] , 

X | E* @~ E | E* 

which is exactly the diagram (8). Now, let g c Homs| | --~*), SO the fol- 
lowing diagram is easily shown to be commutative 

Y@s E 

PYi s~ 

Y | 

Y|174 

Y @s E @n E* @B S | E 
J 

Y | E @A E* |  E - -  

gos~ > X @A E* @s~ E 

PX@A~*@SE 
X | E* @. E @A E* (9 s E 

l X|174 ~, 
X | E* | S | E 

E* 

Y |  S| s E = 

X | A | E* @~ E 

X| | E*| E 

g|174 ~ X @A E* @s E | E* | E 

On the other hand, we have 

fix O (X @A '~') = (XeA ~* @B /-1) o ( X e  A ~'* e B ~@s~)O( f iXeA v'* @s ~')t 

putting this in the above diagram, we get that (X QA ~') o (g |  --Y') is X* | X- 
colinear; and this finishes the proof. [] 
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REMARK 1.3. 1) Applying Proposition 1.2, we get (up to natural isomorph- 
isms) the following commutative diagram of functors 

.~/[S@BS 

-| ~ s |  

.A/~ E * |  < > - / ~ B ~  
--@B E 

where the sideways pairs represent adjunctions. 
2) Symmetrically, one can define a pair of adjoint functors relating the ca- 

tegories of left comodules: Z* | - : se~s.M -~ r*~xA4 : 2: | --, which turns 
the diagram 

S| B S ~/~ 

(10) / / ~ |  S |  

H~174 " ~  

E*| < > B.A/[, 
E*| -- 

commutative. 

2. - A g r o u p  i s o m o r p h i s m .  

Let B c S be ring extension. The set IB(S) of all B-sub-bimodules of S is a 
monoid with the obvious product. For I, J c IB(S), consider the multiplication 
map: 

m : I | J -~ I J ,  m ( x  ~ s  Y) = xy.  

It(S) (respectively I~(S)) denotes the submonoid consisting of all B-sub-bimo- 
dules I c S such that 

S | I ~ S (respectively I | S --  S )  through m. 

InvB(S) denote the group of invertible B-sub-bimodules of S. By [11, Proposition 
1.1], InvB(S) c It(S) n I~(S). 

From now on fix a bimodule U~ A with XA finitely generated and projective, 
consider the endomorphism ring S = End(XA), and assume that BX is faithful, 
i.e., the canonical ring extension ~ : B -~ S is injective (B will be identified then 
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with its image). Consider the comatrix A-coring (~ := 2:* | 2, and denote by 
EndA-~or((5) the monoid of the coring endomorphisms of (s We denote by 
AUtA-,or((~) its group of units, that is, the group of all coring automorphisms of (S. 
The canonical Sweedler S-coring S | S associated to the ring extension B c S, 
will be also considered. 

REMARK 2.1. Keeping the previous notations, we make the following remarks. 

1) As we have seen, the (B,A)-bimodule Z is actually a (B, (~)-bicomodule (B is 
considered as a trivial B-coring), while 2;* becomes a (iS, B)-bicomodule. Given 
g E EndA-c~r((~), and a right comodule X~ (respectively left comodule ~X), we 
denote by Xg the associated induced right (respectively left) ~-comodule. That is, 
Pxg = (X | g) o PX (respectively ,~x~ = (g | X) o '~x)- If (X, Px) is any right .~- 
comodule such that XA is finitely generated and projective module, then it is well 
known that the right dual module X* admits a structure of left (~-comodule with 
coaction 

AX*(x*) = E ( (  x* | (~)~ flx(Xj)) | s X* C X*,  

where {xj, xj}j is any right dual basis Of XA. In this way (Za)* and (Z*)g have the 
same left ~-coaction, that is, they are equal as a left ~-comodules, then we can 
remove the brackets Z~ = (Xg)* = (X*)g. 

2) Given g, h c EndA ,o~((~), the B-subbimodule ZhD~L*g of Z | Z* is identi- 
fled, via the isomorphism given in (1), with Hom~(X~, Zh). Another way to obtain 
this identification is given as follows. Recall, from [7, Example 3.4] or [6, Example 6], 
that (Xg)B is a quasi-finite ((S, B)-bicomodule with adjunction - | Xg q --[~Z~, so 
the cotensor functor -E]~L~ is naturally isomorphic to the hom-functor 
Hom~(2:g,-). Moreover, this isomorphism can be chosen to be just the re- 
striction of - | Z~ ~ HOmA(Xg, --). Applying this isomorphism to Zh, for any 
h E EndA_cor((S), we arrive to the desired identification. 

3) Let g E EndA ~r((~). The following multiplication 

~:2*| X) ~Xg (U*OBtF--~u*t) 

is a left (~-comodule map. Furthermore, we have a commutative diagram 

/ 

S | Hom~.| E) ~" ~ S, 

where m is the usual multiplication of S. 
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We define the following two maps: 

F r : EndA-cor(~) ) Is(S) (g, ~ Hom~(Z, Xg)), 

and 

F / : EndA cor((~) ) IB(S) (g, ) Hom(~(Zg~ Z)). 

These maps obey the following lemma. First, recall from [14] (cfi [4]), that  a 
(B,A)-bimodule M is called a separable bimodule or B is said to be M-separable 
over A provided the evaluation map 

M QA *M ~ B, m QA (fl ~ ~o(m) 

is a split epimorphism of (B, B)-bimodules. As shown in [14] (cf. [10, Theorem 
3.1]), i fM is a separable (B,A)-bimodule and S := End(MA), then B ~ S is a split 
extension, i.e., there is a B-linear map a:S--*  B such that a ( l s ) =  lB. 
Conversely, if BMA is such that MA is finitely generated and projective module, 
and B ~ S is a splits extension, then BMA is a separable bimodule. 

LEMMA 2.2. Let g C EndA-cor((~). Then 

(i) ~ ( g ) ~  I~(S) i f  and only i f  BS preserves the equalizer of 
(Pzg | Z*, Xg | ~z') (cf. [7, Section 2.4]). In particular, i f  either BZ is fiat 
module or BZA is a separable bimodule, then F(g) E I~(S). 

(ii) IZl(g) E I /(S) i f  and only i f  SB preserves the equalizer of 
(P~ | Z'g, Z | ,~r;). In  particular, i f  either Z* B is fiat module or BZA is a se- 
parable bimodule, then Ft(g) c I~(S). 

(iii) I f  g c AUtA-cor(~), then Fl(g) = F(g-1). 

PROOF. (i) and (ii) We only prove (i) because (ii) is symmetric. Following the 
identifications made in Remark 2.1, we have Fr(g) ~ Zg[3~Z*. Taking this iso- 
morphism into account, the first s tatement  in (i) is reduced to the problem of 
compatibility between tensor and cotensor products. Effectively, by [7, Lemma 
2.2], BS ~-- Z ~A ~* preserves the equalizer of (Pzg ~A ~*, ~g ~A ~Z*) if and only if 

if and only if (Z a [3~ Z*) E I~(S), since by Remark 2.1 (3) this composition coin- 
cides with the multiplication of the monoid IB(S). If  BZ is a flat module, then 
clearly 8S is also flat. Hence, it preserves the stated equalizer. Now, if we assume 
t h a t  B~A is a separable bimodule, then [2, Theorem 3.5] implies that ~ = Z* | X 
is a coseparable A-coring (cf. [9], [8] for definition). Therefore, equalizers split by 
[9, Proposition 1.2], and so they are preserved by any module. 
(iii) A straightforward computation shows that Hom~(Zg, X) = Hom(~(Z, Z a 1). 

[] 
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THEOREM 2.3. Let 8ZA be a bimodule such that BZ~, is faithful and ZA is fi- 
nitely generated and projective. Consider (~ = Z* QB • its associated comatrix 
A-coring. I f  either 

(a) Z* B is a faithfuUy flat module, or 
(b) BXA is a separable bimodule, 

then i :l : EndA-cor(~) -~ I~(S) is a monoid isomorphism with inverse 

F 1 : I~(S) ) EndA cor(~) 
(11) 

U* I, ,[U*| Sk| 

where m - l ( 1 )  = E k  Sk |  Xk E S |  I .  

PROOF. Under  the hypothesis (a), we have, by the left version of the 
generalized Descent Theorem for modules [6, Theorem 2], that 
2 7 * |  : B M - ~ r * |  is an equivalence of categories with inverse 
Homz*| Applying the diagram (10) of Remark 1.3, we obtain that  
S | - : BA/[ -~ s| is a separable functor (cf. [12] for definition). Now, as- 
sume (b), then the ring extension B -~ S splits as a B-bimodule map. By [12, 
Proposition 1.3], the functor S @ B -  :BA/I--~ sA4 is separable, and by [12, 
Lemma 1.1(3)], the functor S | -- : B J ~  --+ S |  is separable. In conclusion, 
under the hypothesis (a) or (b), the functor S | -- : B .All --+ S@BSJ~ reflects iso- 
morphisms. Therefore, any inclusion I c_ J in IzB(S), implies equality I = J .  This 
fact will be used implicitly in the remainder of the proof. 

The map F t is easily shown to be well defined, while Lemma 2.2 implies that  t :l 
is also well defined. Let  us first show that ! :l is a monoid map. The image of the 
unit is mapped to B, F/(1SndA c~(~)) ---- End~(Z) = B, since by [6, Proposition 2] 
the inclusion B __ End(Zr*| is always true. Let  g,h E EndA_co~(($), and 
t c Fl(g), s C Fl(h), that is 

ei |  e; | tu = ~ tei |  g(e~ | U) 
i i 

E e i  | e~ | SU = ~ sei | h(e~ | U) 
i i 

for every element u E Z. So, for every u c Z, we have 

Pr(tsu) = E e i  | e~ | tSU 
i 

= E tel @A g(e~ | SU) 
i 
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= ~ .  tsei | gh(e~ | U) 
i 

= (ts | ($) o Pz~ (u) 

which means that  ts ~ Hom~(Zah, Z) = F~(gh), and so Fl(g)Fl(h) = Fl(gh). Now, 
let I c I~(S) with m-l(1) = ~ k  sk | tk E S | I. I f  s is any element in I, then 
1 | s = ~ k  ssk | tk E S | I. Henceforth, 

= ~ sei | e~sk | tku 
i,k 

= ~ ei | e~ssk | tku 
i,k 

= ~ ei | e~ | SU = pr(su) 
i 

for every u ~ X, that  is s:Zr~(i ) -~ X E I is a ~-colinear map. Therefore, 
I = Fl(Fl(I)), for every I E I~(S). Conversely, let g c EndA_eor(Z* | Z), and put 
I := Fl(9) = Hom~(Zg, Z) with m 1(1) = ~ k  sk | Xk ~ S | I. For  every t c I, 
we have 

~~-i g( t | el) | ei = ~ i  u | ei | eft, Vu* C X* 
(12) 

~ i  ei | e~ | tu = ~ i  tei | g(e~ | U), Yu ~ X. 

Computing, using equations (12) we get 

(Fl(I) ~ A  •X*(g*) ----EU*Sk | tkei | e~ 
i,k 
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= E g(u* | el) | e; 
i 

= (g | Z*) o ~ . (u* )  

for every u* E X*, that  is (F(I) | •*) o ~Z* : (g | 2;*) o A.V*. Whence, 

(13) (F(I) | 2;* | Z)  o A -~ (g @A 2;* | 2;) o A, 

because A~ = fix, Q8 Z. On the other hand 

o 

| X |  g ( ~ u * s k  | tkei | e~ | U I 
\ i,k / 

= (2;* | X | g) o (Fl(I) | X* | X) o A(U* | U) 

= (Z* | X | g) o (g | X* | X) o A(u* | U), by (13) 

= (g | g) o A(u* | U) 

= d o g(u* QB U), g C EndA-cor(($), 

for every u* E Z*, u E Z. Therefore, d o Ft(I) = d o g, thus Ft(I) = Ft(Ft(g)) = g, 
for every g E EndA-c~r(~) since d is injective. [] 

Symmetrically we have the anti-homomorphism of monoids 

/~  : I~(S) ~ EndA-cor(X* | Z)  
(14) 

I,  ) [u* | u ~  ~ k  u*tk | sku], 

where m 1(1) = ~ k  tk | Sk C I | S. Let  B ~ c S ~ denote the opposite ring 
extension ofB d S, and identify S o with End((X*)~ where the notation X ~ for 
any left A-module X, means the opposite right A~ Put 8oWAo := (AX~B) ~ 
the opposite bimodule, and consider its right dual W*, with respect to A ~ i.e. 
W* = Hom(WAo,A~o). Obviously WAO is finitely generated and projective mod- 
ule, and we can consider its associated comatrix A~ W* | W. By the 
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Remark 1.1, there is an A-coring isomorphism 

(W* |176 W)~ ~ "~* @B ~W' ((W* |176 W)~ E w | e~w*((e~)~176 

where (W* | W) ~ is the opposite A-coring of the A~ W* | W. 
Therefore, we have an isomorphism of monoids EndAo ~o~(W* | W) 
~-EndA-cor(Z* | Z). Finally, using this last isomorphism together with the 
equality I~(S) = I~o(S~ we can identify t h e / ~ - m a p  of equation (14) with the 
FZ-map (11) associated to the new data: A ~ B ~ c S ~ and BoWdo. Henceforth, 
Theorem 2.3 yields 

THEOREM 2.4. Let BZA be a bimodule such that BZ is faithful and ZA is fi- 
nitely generated and projective. Consider ~ = Z* | Z its associated comatrix 
A-coring. I f  either 

(a) BZ is faithfully f lat module, or 
(b) BZA is a separable bimodule, 

then F : EndA_co~(Z* | X) ~ I~(S) is an anti-isomorphism of monoids 
with inverse map 

F r : I ~ ( S )  

I, 

EndA_~o~(Z* | Z) 

[u* | u ~ ~ u*tk | sku], 
k 

where m-1(1) = ~ k  tk | Sk E I | S. 

The isomorphism F l given in (11) gives, by restriction, an isomorphism of 
groups F : InvB(S) ~ AutA_cor(Z* | •). Analogously, the anti- isomorphism/~ 
defined in (14), gives, by restriction, an anti-isomorphism of groups 
F '  : InvB(S) -~ ~ AUtA_co~(Z* | X). Moreover, when b o t h / ~  and F t are bi- 
jective, Lemma 2.2. (iii) says that  F = ( - )-1 o F/, where ( - )-1 denotes the 
antipode map in the group of automorphisms. We can thus say that, either in the 
hypotheses of Theorem 2.3 or in the hypotheses of Theorem 2.4, we have an 
isomorphism of groups F : InvB(S) -~ AUtA_co~(X* | X) defined either as F Z or 
as ( - )-1 o / ~ ,  respectively. We can then state our main theorem as follows: 

THEOREM 2.5. Let BZA be a bimodule such that BZ is faithful and ZA is fi- 
nitely generated and projective. Consider ~ = Z* | Z its associated comatrix 
A-coring. I f  either 

(a) BY, or Z* B is a faithfuUy flat module, or 
(b) BZA is a separable bimodule, 

then there is an isomorphism of groups F : InVB(S) ~ AutA-cor(Z* @B X). 
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To finish, we want to compare Masuoka's maps [11, Theorem 2.2(2.3)] with 
our F-maps, using the adjunction of Section 1. 

PROPOSITION 2.6. Let ~XA be a bimodule such that BZ is faithful and ZA is 
finitely generated and projective. Let S = End(2:A) be its ring of right linear 
endomorphisms. Then 

(1) the map 

(~- ) : EndA_cor(X* @B z~,) ) Ends-cor(S | S) 

g' ' g ~-~ (G @B G) o (• @A g @A ~Y'*) o (G -1 @B G -1) 

is an injective homomorphism of monoids which turns the following diagram 
commutative 

I ~ ( S )  r~ > EndA-co~(E* | E) 

Ends -~or (S  | S) 

where YJ is the Gamma map associated to the bimodule BSs and the comatrix S- 
coring S | S (see [11, (2.1)]); 

2)for every g E EndA-cor(2:* | Z), we have 

Hom~*osx(Zg,Z) = Homs~,s(So,S) = {s c SI ~(s | 1) = 1 | S} 

PROOF. (1) We only show that (-~) is a well defined map, the compat- 
ibilities with the multiplication and unit are easy computations. So let 
g ~ EndA-cor(Z* | Z). By definition ~ is an S-bilinear map, and preserves the 
counit. Denote by zf the comultiplication of S|  i.e. A' :S |  
--+ S | S @B S sending s | S'~S | 1 | S', S, S' E S. Then ~ is coassociative if 
and only if 

(15) A' o~ = (~ | S) o (S | ~) o A'. 

Now, direct computations give the following equations 

@ | S) o (S | g) -~ (~ | G | ~) o (• | g | g | ~') o (~-1 | G -1 | G-l), 

(~ | ,4 | --Y'*) o (~-1 | G -1) = (G -1 | ~-1 | f -1) o A, 

A' o (G | G) = (~ | G | ~) o (~: | A | ~;*), 

which in conjunction with the coassociativity ofg imply the equality of equation (15). 
(2) The second stated equality is a direct consequence of the identification of the B- 
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bimodule Homs| S) with a B-sub-bimodule of S. Now, observe that the 
canonical right A-linear and a right S-linear isomorphisms S o | Z ~ Zg and 
S ~ 27 | ~* are, respectively, a right 27* | Z-colinear map and a right S | S- 
colinear map, with respect to the coactions defined in equations (4) and (7). Whence, 

Hom~.| Z) ~ Hom~.| | Z, 27) =" 

-~ Homs~ s(S0 X | 27*) "~ Homs| s(So S) 
- -  B ~ ~ B ~ 

where the second isomorphism is given by Proposition 1.2. The desired fzrst 
equality is now obtained using the inclusion Hom~.v~(27g, 27) c 
c_ Homs| ) c S which we show as follows. An element s ~ S belongs to 
Homz~| 27) if and only if 

ei | e~ | su = ~ sei | g(e; | u), Vu ~ 27. 
i i 

This implies 

ei | e~ | sej | e~ = ~ sei | g(e~ | ej) | q 
~,3 z,3 

Using the isomorphism ~ of equation (1) and the definition of the map (-~), we 
obtain s c Hom~.~,z(Xg, Z) implies 1 | S = ~(S | 1). [] 
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