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Monoida| categories of corings 

L A I A C H I  E L  KAOUTIT  (*) 

SUNTO - -  Introduciamo una categoria monoidale di coanelli usando due diverse nozioni di 
morfismi di coanelli. La prima ~ l'estensione (destra) di coanelli recentemente in- 
trodotta da Brzezifiski in [2], mentre la seconda ~ la nozione usuale di morfismo de- 
finita in [6] da J. GSmez-Torrecillas. 

ABSTRACT - We introduce a monoidal category of corings using two different notions of 
corings morphisms. The first one is the (right) coring extensions recently introduced 
by T. Brzezifiski in [2], and the other is the usual notion of morphisms defined in [6] by 
J. GSmez-Torrecillas. 

Mathematics Subject Classification (1991): 16W30, 13B02 

Introduction. 

The word coring appeared for the first  t ime in the l i terature in the paper  of 
M. Sweedler [9], where he showed that  this notion can be used to give a simple 
proof  of the first  Galois-eorrespondence theorem for division rings. I t  turns out 
that  corings and their  comodules unify many  kinds of relative modules, such as 
graded modules, Doi-Hopf modules, and more general  entwined modules. This 
was shown by T. Brzezifiski in [1]. 

Corings are, in some sense, a generalization of coalgebras to the case of non- 
commutative scalar base rings. They have a bimodule s t ructure  ra ther  than a 
module one. Thus a tensor  product  in the category of bimodules hampers  any 
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attempts to give a compatibility with multiplication and comultiplication. This is 
the well known problem of how to define bialgebras using bimodules. The first 
approach to generalize bialgebras to the case of bimodules was given by M. 
Sweedler in [10]. I f  we see that such bialgebras should be defined as monoids or 
comonoids in an appropriate monoidal category, then we should look first at the 
possible monoidal categories. In this note we prove that there is more than one 
monoidal category whose objects are corings. 

We work over a unital commutative ring k. All algebras A, A', B, B', etc. are 
unital associative k-algebras. For any algebra we denote by MA its category of 
all unital right A-modules; we use the notation AM to denote the category of 
unital left A-modules. Bimodules are assumed to be central k-bimodules, and 
their category is denoted by A./~B. IfAMB and 8Nc are, respectively, an (A, B)- 
bimodule and (B, C)-bimodule, then their tensor product M | N will be con- 
sidered as an (A, C)-bimodule, in the canonical way. 

An A-coring is a three-tuple ((~, z]~, ~ )  consisting of an A-bimodule (~ and two 
A-bilinear maps 

.~ A~  ~ | ~, ~ Z ~ A  

such tha t  (A~ | (~) o A~ : ((~ | /Ig) o z~ and (e~ | ~) o A~ = (~ ~A 8~)o 
oA~ = (~. A right ~-comodule is a pair (M, pM) consisting of a right A-module and 
a -'ight A-linear map pM : M  ~ M | (~, called right ~-coaction, such that  
(M | A~) o pM = (pM | ~) o pM and (M | ~ )  o pM = M. Left  (~-comodules 
are symmetrically defined. For  instance, ((~, A~) is a left and right (S-comodule. 
We use Sweedler's notation for comultiplications, that  is A~(c) = c(1) | C(2), for 
every c E (S (the finite sums are understood). We also use lower index Sweedler 
notation for coactions: pM(m) = m(0) | m(1), for all m c M .  However in the 
case of two different coactions, it is convenient to use upper indices: 
pN(n) = n [~ | n [1], for a right ~-comodule N. A source for the basic notions of 
corings, categories of comodules, bicomodules, and cotensor product is [4]. 

1. - Tensor  product  o f  cor ings .  

In this section we recall the tensor product of two corings over different 
scalar base rings. 

Let  d and C' be, respectively, an A-bimodule and A'-bimodule. We consider 
the tensor product d | d' as an A Qk A'-bimodule by the canonical bi-action 

(1.1) (a | a')(c | c')(b | b') =(acb) | (a' c'b'), 

for all (a, b) ~ A x A, (a', b') E A' x A', and (c, c') c C x d'. The following well 
known lemma will be used frequently; for completeness we include the proof. 
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LEMMA 1.1. F o r  e v e r y  pair of modules ( M A ,  NA ,  ) E J ~ A  • J ~ A ' ,  t h e r e  e x i s t s  

a right A | X - l i n e a r  map 

I~(MA,NA,): M | 1 7 4 1 7 4 1 7 4  | (C| 
A k A' Ac;kA' 

m | 1 7 4 1 7 4 1 7 4  | (c| 
A k A' A@kA ~ 

which becomes an (A ,A  | A')-bilinear map i f  M E A J ~ A .  Furthermore, 

~(- , - )  : -- |  C |  -- |  Ct )( - |  -- ) @d| (C |  C') 

is a natural  isomorphism. 

PROOF. It is clear that A | C | A '  | C' -~ (A | A')  |174 r~ | C'), via 
the map a | c | a' | c '~ (a  | a').(c | c') = ac | a'c'. If (f,g) : (AA,XA,) --~ 
--~ (AA,A'A,) is any arrow in the product category MA • A4A,, then it is also clear 
that 

f | 174174  ~ 
A | 1 7 4 1 7 4  a k A t > A | 1 7 4 1 7 4  

A k A ~ A k A t 

( A |  | (C |  AekA' ~ ( A e k A ' )  | (C |  
A |  ~ A |  ~ 

is a commutative diagram. Since (AA,A~A ,) is a projective generator in 
J~A • and the tensor product commutes with direct limits, Mitchell's 
Theorem [8, Theorem 5.4, p. 109], implies that there exists a unique natural 
isomorphism 

1"](__) : -- |  C |  - | C----+( -- |  -- ) |174 (C |  Ct) . 

For all m E M ,  n E N ,  c c C  and c '~C' ,  the form of the image 
q(M,N)( m | C | n | e'), is computed by using the morphisms (AA,A~A ,) -+ 
-+ (mA, nA') and the naturality of ~, where m A  and n A  denote the cyclic sub- 
modules. [] 

Let (~,A~,e~) and ((~', A~,,e~,) be, respectively, an A-coring and A'-coring, 
and consider (S | ~' canonically as an A | A'-bimodule. 

PROPOSITION 1.2 ([7]). The tensor product ~ | (~' is an A | X-cor ing  with 
comultiplication given by the composition map 

and counit by 

| (~' ~ok~, ~ A | A'. 
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2. - Tensor product of right coring extensions. 

Let A and B be k-algebras, (5 an A-coring and ~ a B-coring. Recall from [2, 
Definition 2.1], that ~ is called a right extension of ~ provided (5 is a (G, ~ ) -  
bicomodule with the regular left coaction Ar This implies that (5 is an (A, B)- 
bimodule and Ar is a right B-linear map. 

PROPOSITION 2.1. Let ~ and ~ '  be, respectively, a B-coring and B'-coring. 
Assume that ~ (resp. ~') is a right extension of(5 (resp. of($'). Then ~ | ~ '  is 
a right extension of (~ | (s 

PROOF. Denote by p~ : (~ --+ (~ |  ~ (c ~ c(0) | co)) and pC': (~' --+ G' | ~ '  
! ! (c' ~ %) | c(1 )) ( sums  are unders tood)  the  r ight  coact ions  corresponding  to the  

s tated  extens ions .  Def ine  pr162 as the  compos i t ion  of  maps  

C @k C~ ' (C(0) @k Ct(0)) @BGkB' (C(1) @k Ct(1)) �9 

Using the B-linearity of A~- and the B'-linearity of A~,, it is easily checked that 
this composition is a (A | A') - (B | B')-bilinear map. Furthermore, pC, pC', 
and the eomultiplieations of (~ and ~', enjoy the following four commutative 
diagrams. 

k 

I 
A G A  t 

k 

( r  r (r  r 
A k A ~ 

p r  
k 

B k B ~ 

(A|174174 

) 

A B k A ~ B ~ 

(r174162 | 
A 

The diagn'am (1) commutes by colinearity of p~ and pC', 

B k B'  k B~:~k B'  k 

(2) (~,~,/X') ~!,,.. ( ~ ' )  

t 

(A~?B~)~.9~.(A'G,~, ~ ' ) ~- /3~k t~, k 

{ + 

A ~ k A, . ,  " r | r  @ ( r  r | A k B@kB t 
(~ | ~ ' ) .  

k 
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The diagram (2) commutes by the naturality of ~] _,  

(,~5"-&p~) @ (~" @ p ~' ) 
A k A ~ r r ( r  o 

A B k A '  B '  

k A| 

The diagram (3) commutes by the naturality of the left version of ~/__ 

! • 

The diagram (4) commutes by direct computation, where the isomorphisms in 
this diagram are defined by the natural isomorphism of Lemma 1.1. If  we ar- 
range those diagrams in the following form 

we then obtain another commutative diagram, which shows that  p~OS is left 
(5 | (5'-colinear with respect to the regular left eoaction A~ S .  The proof of the 
fact that  p~Ok~' is a right ~ | ~'-eoaetion can be done in a similar way. This 
completes the proof. [] 

3. - A m o n o i d a l  c a t e g o r y .  

Let  us recall from [2] the category of coring extensions CrgExt~. The 
objects in this category are corings understood as pairs ((5 : A) (that is (5 is an 
A-coring), and morphisms ((5 : A) --+ ( ~  : B) are pairs (p~,p~), where 
fie : (5 | B -~ (5 is a left (5-colinear r ight  B-action, and p~ : (S -~ (5 | ~ is 
a left (5-colinear r ight  ~-coaction (that is ~ is a r ight  extension of (5). 
The identi ty arrow of an object ((5 :A) is given by the pair id(~) = (p~,p~) 
where p~ = ~ : (5 | A --~ (5 is the initial r ight  A-action and p~ = ~ is the 
comultiplication of (5. The composition law is given as follows. If  
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(p~ p~) : (@ : C) ~ (($ : A) and (p~, p~) : (~ : A) ~ ( ~  : B), then  

(p~,pr o (p~,p~) = (p~ �9 p~,p(~ . p(~), 

where  

~| (~| 8 
p~ �9 ,O~ : ~ | B p~| ~ | (~ | B @ | ~ ~ | A ~ @ 

and 

P ~ ' P ~ : ~  -~ > ~ E3~ ~ ~E3eP~> @ E3~ ((~ | ~ )  -- ~ N B ~ .  

Explicit ly,  the  bul let  composit ions are given as follows: for e ~ @ and b ~ B 

p~ �9 p~(e Nk b) = e(o)e~(eu)b) , 

(3.2) p~ �9 p~(e) = e(o)e~(e(1) [~ | e(1) [1], 

whe re  p~(e) = e(o) | e(1) ~ ~ | ~, and, for  all c E ~, p~(c) = c [~ | c [~] 

The tensor  product  of two morphisms (p~,p~) : (~ : A) --~ ( ~  : B) and 
(p~ , ,p~ ' ) : (~ ' :A ' ) - - - . (~ ' :B ' )  in CrgExt~,  is defined as in the proof  of 
Proposit ion 2.1; explicitly 

( P ~ | 1 7 4 1 7 4 1 7 4  ') >(~|  ~ ' : B |  

where  the r ight  multiplication is given by 

(3.3) P~| : ( ~  | (~') | (B | B') > ~ | ~', 
(c | c') | (b | b'), > (cb) | (c'b'). 

Here  p~(c | b) = cb, p~,(c' | b') = c'b'. The r ight  coaction is defined by 

p~| : L~ | ~' > (~ | ~') |174 (~ | ~'), (3.4) 
C | C" ) (C(0) | C~O )) |174 (C(1) | C~1)), 

where  p~(c) = C(o) | c(1) and p(~'(c') = Clo ) | c~1). 

PROPOSITION 3.1. Let k be an unital commutative ring. Consider the category 
CrgExt~ of corings with morphisms right coring extensions, and denote by 
k := (k : k) the trivial k-coring k. Then there exists a covariant bi-functor 

- | - :  CrgExt~  x CrgExt~  > CrgExt~,  

(((~ : A), (~ '  : A')) > (~ | ~ '  : A | A'), 

((p~, p~), (p~,, p~')) > (p~| p~| 
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where (p~| (~~ is the morphism defined in equations (3.3) and (3.4). 
Moreover, 

k | (~ : A) ~- (~ : A) and ((~ : A) | s ~- ((~ : A) 

are natural isomorphisms in CrgExt~. In particular, CrgExt~ is a monoidal ca- 
tegory with unit L 

PROOF. Propositions 1.2 and 2.1, imply that the stated functor is well de- 
fined. Now, by definition of the comultiplication of the tensor product of two 
corings, the identity arrow of any pair of corings is mapped by - | - to the 
identity arrow of their tensor product; that is in the above notation, we have 

id((~.A) | id((~':A,) = (l~, A~) | 0~,, A~,) = (z~| A~Ok~,) = id((~ok~,.A| ). 

Consider the following four morphisms in CrgExt~ 

(~ : C) O~,pH ((~ :A) (z~'P~)> (~  : B) 

(~':  C') Oe"z~'l (~' :A') O~"SI (~ '  : B'), 

and put (p~ �9 p~, p~ �9 p~) | (P~, �9 Pr P~' �9 P~') = @~ek~', ~| By definition 
P~Q~' :(~ | @')| (B | B ' ) ~  @ | @' sends (e | e')| | b')~(eb)| (e'b'), 
where eb=p~ �9 p~(e | b)=e(o)~(e(1)b) and e'b' = p~, �9 pe,(e' | b')=elo)~'(eil)b'). 
That is 

-fi~| ((e | e') | (b @~ b')) = e(o)~(e(1)b) | e~o)e~'(e~l)b') 

=P~| �9 P~| | e') | (b | b')), 

for every e E @, e' ~ @', b ~ B, and b' ~ B'. Thus ~ |  = P~| * P~| 
On the other hand the map ~ |  is defined by the composition 

sending 

e @k e'l ' ((e(o)~(e(1)[~ | (elo)~'(eil)[~ |174 (e(1) [1] | e11)[1]), 

that is p~| @~ e') = p~| * p~| | e'), for every (e, e') ~ @ x ~'. Hence 
p~| = p~| �9 p~| Therefore, 

(p~ . p~,p~ * p~) | (p~' * p~,,p~' o p ~') = (p~| o p~| ~| o p~| ~') 

=(p~,p(~) O~ Or ~') o (p~,p~) O~ (pe,,p ~') 

o o 
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This shows that - | - is a covariant functor. The last assertion is obvious. 
For  the particular assertion, we only show that the associative iso- 

morphism 

a~,~, ~ : (((~ : A) | ((~': A')) | (~ :  C) ~ ((~: A) | (((5' : A') | (@: C)) 

is a natural isomorphism, and we will do it only for the first factor. Firstly, 
it is easily seen that two objects (((~ :A) |  :A')) | (@ : C) and 
((~ : A) | (((~' : A') | (@ : C)) define, via ~, the same coring in the category 
CrgExt~, where the coaction part in the corresponding identity map is 
A~,v~,~.  Now, let (p~, p~) : ((~ : A)  ~ ( ~  : B) be a morphism in CrgExt~. It 
remains to be shown that the following diagram 

( ( r  A) | (C �9 A')) | ( ~ ' C )  

( ( 9 -  B) �9 A')) -C) 

~'~"~ :~ ( r  | ( (C �9 A') @k (~"  C)) 

~'r ( 9  B) @~ ((C �9 A') | (~ �9 C)) 

is commutative. The bullet composition concerning the coaction component of 
the morphisms reads: 

A~ok~,| ~ . p(~Ok~')| = p~|174 . A~|174 

where p ( ~ ' ) o k ~  and p~| are defined by the equation (3.4) using the 
maps A~'ek~, A~, and Ae. If we denote S ( c )  = c [~ | C [1~, C C ~, then this 
equality is satisfied by the equation (3.2) if and only if, for every c E ~, c' E (~' 
and e c @, 

(C[018~(C[1](1)) @k C[1) Qk e(1)) @B~kA'@kC (C[1](2) Qk C12 ) | e(2)) 

(C(1)t~ (C(2) [0] ) Ct : (~k (1) Qk e(1)) @B@kA'| (C(2) [11 Qk C(2) | e(z)) 

The equality follows since ~ is a ((~, ~)-bicomodule. [] 

REMARK 3.2. Of course, we have a similar result for left coring exten- 
sions. That is, the category CrgExt~ whose objects are corings and 
morphisms are left coring extensions is also a monoidal category with the 
same unit k = (k : k). If  we denote by CrgExt  k the category whose objects 
are all corings and morphisms are the left and right (at the same time) 
coring extensions, then the study of CrgExt  k can be also posed, viewing it 
as a subcategory of both CrgExt~ and CrgExt~. Examples of morphisms in 
this subcategory are morphisms between corings with the same scalar base 
ring. 
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Finally, we will consider the ca tegory  of corings (5oring~a, whose objects 
are corings unders tood also as pairs ((5 :A) and morphisms are as in [6]; 
that  is, a morphism is a pair of maps (r : A ) - +  ( ~ : B ) ,  where  
~p :A -+ B is an algebra map and r : (5 + ~ is an A-bilinear map ( ~  is an 
A-bimodule by restriction of scalars) such that the following diagrams 
commute 

> ~ |  ~ - -  > A  

where (0.4, B : ~ | ~' ~ ~ | ~ is the obvious map associated to (0. The iden- 
tity arrow of an object ((5 : A) is id(~.A) = (ida, idA), and the composition law is 
componentwise composition. 

LEMMA 3.3. Le t  (r ~) : ((5 : A )  ~ ( ~  : B)  and  (r e') : ((5' : A') -~ (~ '  : B') 
are coring m o , T h i s m s .  Then  

, , : B | BI) (r | r  (p | ~ ) : ((5 | (5' : A | A t) --+ ( ~  | ~ '  

is also a coring morph i sm.  

PROOF. Analogous to that of [5, Proposici6n 1.1.20]. Obviously (p | e' is an 
algebra map. Since r and r are, respectively, A-bilinear and A'-bilinear, it is 
easily checked that r | r is A | A'-bilinear. The counit property of r | r is 
given by the following commutative diagram 

r |  r  , A |  A ~ 

0|162 

To prove the colinearity of r | r first denote the natural isomorphisms of 
Lemma 1.1 by ~ A '  and ~:B' to distinguish between the tensor product algebra 
A | A' and B | B'. With this notation, we can compute 
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r174 B.k B, o ((r | r |174 (r | r o zj(R%( ~, 

= (OA|174 B, o 4 f ~ '  o ((r | r Q%k (r174 r o (z~(~ | z~(s 

B ,B' =%,~ ,  o (&~ | <~,) o (r | r : ~_~| o (r | r 

where we have used the naturality of qZ:- and the colinearity of r and r This 
proves that r | r is a colinear map as required. [] 

PROPOSITION 3.4. Consider the category (So~in~ of all corings, and denote 
by h = (k : k) the trivial k-coring. The following 

(((~ : A), (~' : A')) > (~ | (~' : A | A') 

((r ~), (r #)) ~ (r | 4,  ~ | d) 

establishes a covariant bi-functor. Moreover, 

l~ | (~5 :A) ~ ((~ :A) and ((~ :A) | 1~ ~ (~ :A) 

are natural isomorphisms in (s In  particular, ~oring~ is a monoidal 
category with unit  k 

PROOF. Consequence of Lemma 3.3. [] 

REMARK 3.5. The relationship between morphisms in (~oring6 and those in 
CrgExt~ can be described as follows. Let  (r ~) : (~ : A) ~ ( ~  : B) be a morphism 
in ($orin.q~, and consider the B-coring B | ~ | B called the base ring exten- 
sion of (~, see [4, 17.2]. Denote by PB|174 : B @A ~ | B | B ~ B | '~ | B 
the right B-multiplication map, and define 

b | C @A b', ) b ~A C(1) QA r 

where At(c) = c(1) | C(2). It  is easily checked that the pair 

(PBe~AB , pBe~e~B) : (B | '~ | B : B)---~(~ : B) 

is a morphism in the category CrgExt~. 
In fact B @A ~ @a B is a fight and left coring extension of ~ .  That is to any 

morphism (r ~0) in (~ofin~q~, one can associate a morphism in the category 
CrgExt  k described in Remark 3.2. 
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REMARK 3.6. G. BShm kindly informed me that the monoidal structure in 
Proposition 3.4 can also be deduced by viewing (~oring~ as a sub-category of 
the monoidal bicategory of corings in the sense of [3]. Indeed, in the notation 
of [3, Section 4], if (Z, a) and (r ' ,  (7') are module-morphisms, respectively, in 
(~:B)?d(~:4) and (~,:B,)M(~,.A,) (tha t is 2-cells in the stated bicategory), then the 
tensor product (2; | Z', a | (7') is a module-morphism in 
(~@k~,:B|174 where the coring map 

(7 | : (Z  | 2;')* |174 ( ~  | ~ ' )  | ( z~ | Z')  ----* (~ | (~' 

is defined using the natural transformation of Lemma 1.1. However, we be- 
lieve that the proof of the fact that (7 | (7' is a coring morphism in Lemma 3.3 
is more direct than the bicategory considerations. 
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