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Abstract We give a characterization, in terms of Galois infinite comatrix corings,
of the corings that decompose as a direct sum of left comodules which are finitely
generated as left modules. Then we show that the associated rational functor is exact.
This is the case of a right semiperfect coring which is locally projective and whose
Galois comodule is a projective left unital module with superfluous radical.
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1 Introduction

When studying generalized module categories like Doi–Koppinen Hopf modules
or, more generally, entwined modules (see [6] or [3] for detailed accounts of
their fundamental properties), it is reasonable, after the observation that they are
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categories of comodules [4], to formulate our questions in terms of comodules over
corings. However, it happens often that the answer is given in terms of abstract
categorical concepts, which do not say much more on the concrete comodule algebra
or entwining structure we are dealing with. In a more favorable situation, we could
characterize categorical properties of the category of relative modules in terms of
structural properties of the associated coring. But, sometimes, the structure of the
corings is described in terms which have no direct relationship with the entwined al-
gebra and coalgebra. One example of the sketched situation is the following: assume
we want to study under which conditions the category M(�)C

A of entwined right
modules over an entwining structure (A, C)� for an algebra A and a coalgebra C has
a generating set of small projectives. Of course, when M(�)C

A is a Grothendieck
category, a first answer is given by Freyd’s theorem: it has to be equivalent to a
category of modules over a ring with enough idempotents. Looking at M(�)C

A as the
category of right comodules over a suitable coring [4], we have a characterization in
terms of infinite comatrix corings in [8, Theorem 2.7]. However, none of these results
give answers directly expressable in terms of A or C. In this paper, we describe a
class of A-corings for which there exists a generating set of small projective objects
for their category of right comodules. As a consequence, we will obtain that if C is
a right semiperfect coalgebra over a field, then M(�)C

A has a generating set of small
projective objects for every entwining structure (A, C)� (Corollary 2.3). Of course,
we think that the interest of our results go beyond the theory of entwined modules,
as the categories of comodules over corings deserve to be investigated in their
own right.

The idea comes from the theory of coalgebras. It is well known [17] that if C is
a coalgebra over a field, then C is right semiperfect (or, equivalently, its category
of right comodules ComodC has a generating set consisting of finite-dimensional
projectives) if and only if C decomposes as a direct sum of finite-dimensional left
subcomodules. We give a generalization of this characterization to the case of corings
over an arbitrary ring A (Theorem 2.2). It is then natural to try to understand right
semiperfect corings. This is done in Section 3. Our point of view here, in contrast
with [9] and [5], deliberatively avoids the assumption of conditions on the ground
ring A. Our approach rests upon the study of general semiperfect categories due to
Harada [15], and on the study of corings having a generating set of small projective
comodules developed in [8]. We also discuss the notion of a (right) local coring and
the exactness of the rational functor.

Notations and basic notions We work over a commutative ground base ring with 1
denoted by K. The letters A, B are reserved to denote associative K-algebras with
unit, which will referred to as rings. A module over a ring with unit means an unital
module, and all bimodules are assumed to be central K-bimodules. The category
of all right A-modules is denoted by ModA. A linear morphism acts on the left, so
some conventions should be established. That is, if A N is a left A-module then its
endomorphism ring End(A N) is considered as ring with the opposite multiplication
of the usual composition law. In this way N is an (A, End(A N))-bimodule. While, if
NA is a right A-module, then its endomorphism ring End(NA) has a multiplication
the usual composition, and N becomes obviously an (End(NA), A)-bimodule. For
any (B, A)-bimodule M, we consider in a canonical way its right and left dual
modules M∗ = Hom (MA , AA), ∗M = Hom (B M , B B) as (A, B)-bimodules.
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We will also consider some rings without unit. When this is the case will be clear
from the context.

For any category G, the notation X ∈ G means that X is an object of G, and the
identity morphism of any object will be represented by the object itself.

Recall from [20] that an A-coring is a three-tuple (C,�C, εC) consisting of an
A-bimodule C and two homomorphisms of A-bimodules

C

�C

�� C ⊗A C , C

εC

�� A

such that (�C ⊗A C) ◦ �C = (C ⊗A �C) ◦ �C and (εC ⊗A C) ◦ �C = (C ⊗A εC) ◦
�C = C. A homomorphism of A-corings is an A-bilinear map φ : C → C′ which
satisfies εC′ ◦ φ = εC and �C′ ◦ φ = (φ ⊗A φ) ◦ �C.

A right C-comodule is a pair (M, ρM) consisting of a right A-module M and a right
A-linear map ρM : M → M ⊗A C, called right C-coaction, such that (M ⊗A �C) ◦
ρM = (ρM ⊗A C) ◦ ρM and (M ⊗A εC) ◦ ρM = M. A morphism of right C-comodules
is a right A-linear map f : M → M′ satisfying ρM′ ◦ f = ( f ⊗A C) ◦ ρM. The
K-module of all homomorphisms of right C-comodules from a comodule MC to a
comodule M′

C
is denoted by HomC(M, M′). Right C-comodules and their morphisms

form a K-linear category ComodC which is a Grothendieck category provided AC

is a flat module, see [11, Section 1]. Left C-comodules and their morphisms are
symmetrically defined. If P is a right C-comodule such that PA is finitely generated
and projective (profinite, for short), then its right dual P∗ admits, in a natural
way, a structure of left C-comodule [3, 19.19]. The same arguments are pertinent
for left C-comodules. The natural isomorphism P ∼= ∗(P∗) of right A-modules is
in fact an isomorphism of C-comodules. Furthermore, if P and Q are two right
C-comodules profinite as right A-modules, then the right dual functor induces a
K-module isomorphism HomC(P, Q) ∼= HomC(Q∗, P∗).

2 Comatrix Corings and Corings with Decompositions

Let P be a set of profinite modules over a ring with unit A. Consider � = ⊕P∈P P
and, for each P ∈ P , let ιP : P → �, πP : � → P be, respectively, the canonical
inclusion and the canonical projection. Consider the set {uP = ιP ◦ πP : P ∈ P} of
orthogonal idempotents of End(�A), and let T be a unital subring of End(�A) that
contains the idempotents uP. Write

R =
⊕

P,Q

uQTuP,

a ring with enough idempotents. Its category of right unital R-modules is denoted
by ModR. Unital here means MR = M, for M a right R-module. Let us recall one
of the three constructions given in [8] for the (infinite) comatrix A-coring associated
to P an T (or R). We have now the (R, A)-bimodule � and the (A, R)-bimodule
�† = ⊕P∈AP∗. Both �† and � are unital R-modules. In the A-bimodule �† ⊗R � we
have that φ ⊗R x = 0 whenever φ ∈ P∗, x ∈ Q for P 
= Q. In this way, the formula

�(φ ⊗R x) =
∑

φ ⊗R eP,i ⊗A e∗
P,i ⊗R x (φ ∈ P∗, x ∈ P),
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where {eP,i, e∗
P,i} is a dual basis for the profinite right A-module P, determines a

comultiplication

� : �† ⊗R � �� �† ⊗R � ⊗A �† ⊗R �

which, according to [8, Proposition 5.2], endows �† ⊗R � with a structure of an
A-coring referred to as the infinite comatrix coring associated to the set P and the
ring R. Its counit is given by evaluation of the forms φ ∈ P∗ at the elements x ∈ P,
when P runs through P .

When P consists of right comodules over an A-coring C, we have that � =⊕
P∈P P is a right C-comodule. We consider then the infinite comatrix coring by

putting T = End(�C). We have that

R =
⊕

P,Q∈P
uQEnd(�C)uP

∼=
⊕

P,Q∈P
HomC (P , Q) (2.1)

It follows from [8, Lemma 4.7] and [8, diagram (5.12)] that there is a canonical
homomorphism of A-corings

can : �† ⊗R � → C, can(ϕ ⊗R x) = ϕ ⊗A C)ρ�(x), (2.2)

where ϕ ∈ �† acts on y ∈ � by evaluation in the obvious way.

Definition 2.1 The comodule � is said to be R − C-Galois if the canonical map can
is bijective.

Recall from [11, Section 2] that a three-tuple T = (C, B, 〈−, −〉) consisting of
an A-coring C, an A-ring B (i.e., B is an algebra extension of A) and a balanced
A-bilinear form 〈−, −〉 : C × B → A, is said to be a right rational pairing over A
provided

(1) βA : B → ∗C is a ring anti-homomorphism, where ∗C is the left dual convolution
ring of C defined in [20, Proposition 3.2], and

(2) αM is an injective map, for each right A-module M,

where α− and β− are the following natural transformations

βN : B ⊗A N �� Hom (AC , A N) ,

b ⊗A n �� [
c → 〈c, b〉n]

αM : M ⊗A C �� Hom (BA , MA)

m ⊗A c �� [
b → m〈c, b〉] .

Given a right rational pairing T = (C, B, 〈−, −〉) over A, we can define a functor
called the right rational functor as follows. An element m of a right B-module M
is called rational if there exists a set of right rational parameters {(ci, mi)} ⊆ C × M
such that mb = ∑

i mi〈ci, b〉, for all b ∈ B. The set of all rational elements in M is
denoted by RatT(M). As it was explained in [11, Section 2], the proofs detailed in
[12, Section 2] can be adapted in a straightforward way in order to get that RatT(M)

is a B-submodule of M and the assignment M → RatT(M) is a well defined functor

RatT : ModB → ModB,
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which is in fact a left exact preradical [19, Ch. VI]. Therefore, the full subcategory
RatT(ModB) of ModB whose objects are those B-modules M such that RatT(M) =
M is a closed subcategory. Furthermore, RatT(ModB) is a Grothendieck category
which is shown to be isomorphic to the category of right comodules ComodC as [11,
Theorem 2.6’] asserts (see also [1, Proposition 2.8]). We say that a set S of objects
of a Grothendieck category A is a generating set of A if the coproduct

⊕
X∈S X is a

generator of A.
We are ready to state and prove our main theorem.

Theorem 2.2 The following statements are equivalent for an A-coring C:

(i) C = ⊕
E∈E E, for a family of subcomodules E of CC such that A E is profinite for

every E ∈ E ;
(ii) AC is projective and there exists a generating set P of small projective objects

in ComodC such that the right comodule � = ⊕
P∈P P, considered as a left

module over R = ⊕
P,Q∈P HomC(P, Q), admits a decomposition as direct sum

of finitely generated R-submodules;
(iii) AC is projective and there exists a generating set P of ComodC, whose members

are profinite as right A-modules, such that � = ⊕
P∈P P admits, as a left

module over R = ⊕
P,Q∈P HomC(P, Q), a decomposition as direct sum of

finitely generated R-submodules;
(iv) AC is projective and there exists a set P of right C-comodules profinite as

right A-modules such that C is R − �-Galois for � = ⊕
P∈P P and R =⊕

P,Q∈P HomC(P, Q), and � admits, as a left R-module, a decomposition as
direct sum of finitely generated R-submodules.

Proof

(i) ⇒ (ii) Associated to the given decomposition of left comodules C = ⊕E∈E E,
there is a family of orthogonal idempotents {eE : E ∈ E} in End(CC),
where eE = ιE ◦ πE, for ιE : E → C the canonical injection and πE :
C → E the canonical projection for each E ∈ E . The ring End(CC)

is endowed with the multiplication opposite to the composition.
Since AC is projective we have the canonical rational pairing T =
(C, End(CC), 〈−, −〉), where 〈c, f 〉 = ε( f (c)), for c ∈ C, f ∈ End(CC).
Thus each right C-comodule admits a right End(CC)-action, and so is in
particular for the right C-comodules ∗ E, with E ∈ E .
Consider the set of right C-comodules P = {∗ E : E ∈ E} and the right
C-comodule � = ⊕E∈E ∗ E. Each of the maps

eEEnd(CC) �� HomC(E,C) ∼= ∗ E

eE f � �� ε ◦ f ◦ eE ◦ ιE

(2.3)

is an isomorphism of right End(CC)-modules, which means that each
eEEnd(CC) is actually a rational right End(CC)-module, and so a right
C-comodule. In this way, we get an isomorphism of right C-comodules

⊕

E∈E
eEEnd(CC) ∼=

⊕

E∈E

∗ E = �. (2.4)
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Since eEEnd(CC) is a small object in the category ComodC for every
E ∈ E , we deduce that

eEEnd(CC) =
⊕

F∈E
eEEnd(CC)eF . (2.5)

Consider in the ring End(�C) (with multiplication the usual compo-
sition), the set of idempotents u∗ E = ι∗ E ◦ π∗ E, for ι∗ E : ∗ E → � the
canonical injection and π∗ E : � → ∗ E the canonical projection for each
E ∈ E . We have the ring with enough orthogonal idempotents

R =
⊕

E, F ∈E
u∗ EEnd(�C)u∗ F .

Clearly we already have, for every pair of comodules E, F ∈ E , K-linear
isomorphisms

eEEnd(CC)eF
∼= HomC(E, F), (2.6)

u∗ EEnd(�C)u∗ F
∼= HomC(∗ F, ∗ E). (2.7)

Using Eqs. 2.6 and 2.7 we define, taking into account the canonical
K-linear isomorphism HomC(E, F) ∼= HomC(∗ F, ∗ E), an isomorphism

eEEnd(CC)eF
∼= u∗ EEnd(�C)u∗ F (2.8)

for each pair E, F ∈ E .
In view of equality (Eq. 2.5) and the family of isomorphisms (Eq. (2.8)),
we deduce a K-linear isomorphism

⊕

E ∈E
eEEnd(CC) ∼=

⊕

E ∈E
u∗ EEnd(�C)u∗ F = R (2.9)

Now, if we compose the isomorphisms given in Eqs. 2.4 and 2.9 we
get an isomorphism f : � −→ R. In order to give an explicit expres-
sion for the isomorphism f , we should take into account that the
inverse map of Eq. 2.4 is defined as follows: to each element θE ∈ ∗ E
it corresponds (C ⊗A θE) ◦ � ◦ eE ∈ eEEnd(CC). From this, given θ =∑

E ∈E θE ∈ ⊕E ∈E ∗ E = �, we get a map

f (θ) :
⊕

F ∈E

∗ F −→
⊕

F ∈E

∗ F

defined by

f (θ)

(
∑

F ∈E
ϕF

)
=

∑

E, F ∈E
ϕE ◦ πE ◦ (C ⊗A θE) ◦ � ◦ ιE,

(
∑

F ∈E
ϕF ∈

⊕

F ∈E

∗ F

)
(2.10)

Using the expression 2.10 we can easily show that f : � → R is in
fact a left R-module isomorphism. In particular, we deduce from the
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decomposition R = ⊕F ∈E Ru∗ F that R� admits a decomposition as
direct sum of finitely generated R-submodules.
Consider now the infinite comatrix coring �† ⊗R �, for �† =
⊕E ∈E (∗ E)∗. We have in fact an isomorphism �† ∼= C of left comodules.
A routine computation show that the following diagram

�† ⊗R �
can

��

�†⊗R f

��

C

�† ⊗R R
∼=

�� �†

∼=

��

is commutative, and so can is an isomorphism. Since R� is a faithfully
flat module because R� ∼= R R, we can apply [8, Theorem 5.7((iii) ⇒
(i))] to deduce that {∗ E : E ∈ E} is a generating set of a small projec-
tives for ComodC.

(ii) ⇒ (iii) This is clear, since each P ∈ P is, as right A-module, finitely generated
and projective (see [8, Theorem 5.7]).

(iii) ⇒ (iv) This is deduced from [8, Theorem 4.8] and [8, diagram (5.12)].
(iv) ⇒ (i) We can consider R as the (no unital) as a subring (without unit) of

End(�C) given by

R =
⊕

P, Q ∈E
uPEnd(�C)uQ,

where uP = ιP ◦ πP for πP : � → P (resp. ιP : P → �) is the canonical
projection (resp. injection). Consider the decomposition R� = ⊕i ∈ I�i

as direct sum of finitely generated R-submodules R�i. We have the fol-
lowing decomposition of the infinite comatrix coring as a left comodule

�† ⊗R � ∼=
⊕

i ∈ I

�† ⊗R �i (2.11)

For each i ∈ I there exists a presentation of the left R-module �i

Fi −→ �i −→ 0, (2.12)

where Fi = ⊕P ∈Pi Rup, with a finite subset Pi ⊂ P . Applying the func-
tor �† ⊗R − to the sequence 2.12, we obtain an exact sequence of left
A-modules

�† ⊗R Fi −→ �† ⊗R �i −→ 0. (2.13)

Since there is an A-module isomorphism

�† ⊗R Fi
∼= ⊕P ∈Pi P

∗

for each i ∈ I, we deduce from the sequence 2.13 that �† ⊗R �i is a
finitely generated A-module for each i ∈ I.
Since C is R − �-Galois, the map we have can : �† ⊗R � → C is an
isomorphism of an A-corings. Therefore, the decomposition in Eq. 2.11
can be transferred via can to a decomposition of CC = ⊕i ∈ I Ei as a
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direct sum of subcomodules which are finitely generated as left A-
modules. Each one of the Ei’s is of course a projective A-module as
AC is projective, and this finishes the proof. ��

According to [17, Theorem 10] a coalgebra C over a field admits a decomposition
as a direct sum of finite-dimensional left subcomodules if and only if ComodC has
a generating set of finite-dimensional projective right comodules (C is already right
semiperfect). Thus, in the coalgebra case, the condition on � in statement (ii) of
Theorem 2.2, namely that R� is a direct sum of finitely generated R-submodules,
may be deleted. We do not know if this is also the case for corings over a general ring
(for Quasi-Frobenius ground rings, the answer is positive [9, Theorem 3.5]). Note
that the additional condition on the left R-module structure of � cannot be avoided
in statement (iii) even in the coalgebra case, as there is a generating set for ComodC

of finite-dimensional comodules for any coalgebra C over a field. This is also the
case for statement (iv), since any coalgebra is R − �-Galois (by [8, Theorem 4.8] and
[8, diagram (5.12)]).

As an application of Theorem 2.2, we obtain the following remarkable fact
concerning the existence of enough projectives for categories of entwined modules.
For the definition of an entwining structure and a discussion of their properties and
their relationships with corings, we refer to [3].

Corollary 2.3 Let � : A ⊗ C → C ⊗ A be an entwining structure between an algebra
A and a coalgebra C over a commutative ring K. If C admits a decomposition as
a direct sum of left subcomodules profinite as K-modules (e.g., if K is a field and
C is right semiperfect), then the category of right entwined modules M(�)C

A has a
generating set of small projective objects.

Proof By [4, Proposition 2.2], A ⊗ C is endowed with the structure of an A-coring
such that ComodC is isomorphic to the category of right entwined A − C-modules.
The comultiplication on A ⊗ C is given by

A ⊗ C
A⊗�C

�� A ⊗ C ⊗ C ∼= A ⊗ C ⊗A A ⊗ C

so that every decomposition of C as direct sum of left C-comodules leads to such
a decomposition of the A-coring A ⊗ C. Obviously, if the direct summands in C are
profinite K-modules, then the corresponding direct summands of A ⊗ C are profinite
as left modules over A. Now, the Corollary is a consequence of Theorem 2.2. ��

Right semiperfect coalgebras over a field are characterized by the fact that the
rational functor Rat : ∗CMod → ∗CMod is exact [13, Theorem 3.3]. The exactness of
the rational functor associated to a general rational pairing in the context of corings
has been considered recently in [10]. The rational functor canonically associated
to a coring becomes exact for the corings characterized in Theorem 2.2, as the
following Proposition shows. The exactness of the rational functor was given in [3]
(see Remark 2.6 below).

Proposition 2.4 Let C be an A-coring admitting a direct sum decomposition C =⊕
E∈E E, for a family of subcomodules E of CC such that A E is profinite for every
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E ∈ E . Consider the canonical right rational pairing T = (C, End(CC), 〈−, −〉), and
denote by a := RatT

(
End(CC)End(CC)

)
the rational ideal. Then

(a) R is a right rational End(CC)-module injected in a.
(b) a is generated as a bimodule by {eE}E ∈E , that is a = ∑

E ∈E End(CC)eEEnd(CC),
and a is a pure left submodule of End(CC).

(c) The functor RatT : ModEnd(CC) → ModEnd(CC) is exact.

Proof

(a) Follows directly from the isomorphisms 2.3 and 2.9.
(b) From the isomorphisms 2.3 we get that

∑
E ∈E eEEnd(CC) is a rational right

ideal, which implies that
∑

E ∈E End(CC)eEEnd(CC) ⊆ a. Thus, we only need
to check the reciprocal inclusion. So let b ∈ a = RatT

(
End(CC)End(CC)

)
an

arbitrary element with a right rational system of parameters {(bi, ci)}i =1,··· ,n ⊆
End(CC) × C. Let E ′ ⊂ E be a finite subset such that ci ∈ ⊕E∈E ′ E for every
i = 1, . . . , n, and take e = ∑

E ∈E ′ eE. One easily checks that ci e = ci, for all
i = 1, · · · , n. Therefore,

b e =
∑

i

b i〈ci, e〉 =
∑

i

b iεC(ci e) =
∑

i

b iε(ci) = b , (2.14)

which gives the needed inclusion. Equation 2.14 also implies that a is a pure left
End(CC)-submodule of End(CC).

(c) In view of (b) and the equality Ca = C, we can apply [10, Theorem 1.2] to get
the exactness of the rational functor. ��

Example 2.5 (compare with [5, Example 5.2]) Let C be a cosemisimple A-coring.
By [11, Theorem 3.1], AC and CA are projective modules. So we can consider its
right canonical rational pairing T = (C, End(CC), 〈−, −〉). The structure Theorem
of cosemisimple corings [7, Theorem 4.4] implies that C is a direct sum of left
C-comodules where each of them is a finitely generated and projective left A-module.
Thus for a cosemisimple coring RatT has to be exact.

Remark 2.6 Under the anti-isomorphism of rings End(CC) ∼= ∗C the rational pairing
considered in Proposition 2.4 goes to a rational pairing ((∗C)op,C) that gives rise
to the “more usual” rational functor Rat : ∗CMod → ∗CMod considered for instance
in [3, Section 20], where its exactness was studied. In particular, one deduces from
[3, 20.8, 20.12] that Rat : ∗CMod → ∗CMod is exact whenever CC admits a direct
decomposition as assumed in Proposition 2.4. Their arguments run on a different
road than ours.

3 Local Corings and Semiperfect Corings

Let C be an A-coring such that its category ComodC of all right C-comodules is
a Grothendieck category. The coring C is said to be a right semiperfect coring if
every finitely generated right C-comodule has a projective cover. That is, C is right
semiperfect if and only if (by definition) ComodC is a Grothendieck semiperfect
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category in the sense of M. Harada [15, Section 3, page 334]. Following [18, page 347]
and [15, Section 1, page 330], a right C-comodule P is said to be a semiperfect right
comodule if PC is a projective comodule and every factor comodule of P has a
projective cover. A right C-comodule P is said to be a completely indecomposable
comodule if its endomorphisms ring End(PC) is a local ring (i.e., its quotient by the
Jacobson radical is a division ring).

Recall from [15, Corollary 1] that if A is a locally finitely generated Grothendieck
category, then A is semiperfect if and only if A has a generating set of completely
indecomposable projective objects. Of course, this result can be applied in particular
to ComodC, whenever it is a locally finitely generated Grothendieck category.

Remark 3.1 Assume that ComodC is a Grothendieck category. It seems to be an
open question if it is locally finitely generated. In the case when AC is locally
projective in the sense of [21], ComodC is isomorphic to the category of all
rational left ∗C-modules (by [1, Lemma 1.29] and [11, Theorem 2.6’]) and, therefore,
the set of all cyclic rational left ∗C-comodules generates the category of right
C-comodules. In fact, in this case, a right C-comodule is finitely generated if and
only if it is finitely generated as a right A-module (see, e.g., [9, Lemma 2.2]). Thus,
ComodC has a generating set of comodules that are finitely generated as right
A-modules, whenever AC is locally projective.

The following theorem is a consequence of [15, Corollary 2], [15, Theorem 3] and
[8, Theorem 5.7] (see also [14, Theorem 6.2]).

Theorem 3.2 Let C be an A-coring and P a set of right C-comodules. The following
statements are equivalent.

(i) AC is a flat module and P is a generating set of small completely indecomposable
projective comodules for ComodC;

(ii) AC is a flat module, ComodC has a generating set consisting of finitely generated
objects, C is a right semiperfect A-coring and P contains a set of representatives
of all semiperfect completely indecomposable right C-comodules;

(iii) each comodule in P is finitely generated and projective as a right A-module, C

is (R, �)-Galois, where � = ⊕
P∈P P and R = ⊕

P,Q∈P HomC (P , Q), R� is
faithfully flat, and End(PC) is a local ring for every P ∈ P .

Proof

(i) ⇒ (iii) This is a consequence of [8, Theorem 5.7].
(iii) ⇒ (ii) By [8, Theorem 5.7], AC is a flat module and − ⊗R � : ModR →

ComodC is an equivalence of categories. From Eq. 2.1 we get the
decomposition R = ⊕

P∈P uP R, and, since End(uP RR) ∼= uP RuP
∼=

End(PC) for every P ∈ P , we deduce that {uP R : P ∈ P} is a generating
set of completely indecomposable finitely generated projective objects
for ModR. Therefore, {uP R ⊗R � : P ∈ P} becomes a generating set
of completely indecomposable finitely generated projective objects
for ComodC. Now, uP R ⊗R � ∼= P as a right C-comodule, for every
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P ∈ P . This implies that P is a generating set of finitely generated
completely indecomposable projective comodules. By [15, Corollary 1],
C is right semiperfect. Now, if U is any completely indecomposable
projective right C-comodule, then U is an epimorphic image of a direct
sum of comodules in P . We get thus that U is isomorphic to a direct
summand of a sum of comodules in P . By the Krull-Schmidt-Azumaya
theorem, we obtain that U is isomorphic to one comodule in P .

(ii) ⇒ (i) From the proof of [15, Theorem 3], it follows that there is a set of
finitely generated projective completely indecomposable generators of
ComodC. This obviously implies that P is a generating set of projective
finitely generated indecomposable comodules. ��

Let us record some information deduced from Theorem 2.2 as a kind of “Structure
Theorem” of right semiperfect A-corings.

Corollary 3.3 Assume AC to be locally projective. Then C is right semiperfect if and
only if there is a set P of right C-comodules such that

1. Every P ∈ P is profinite as a right A-module,
2. C is R − �-Galois, where � = ⊕

P∈P P and R = ⊕
P,Q∈P HomC (P , Q),

3. R� is faithfully flat, and
4. End(PC) is a local ring, for every P ∈ P .

As mentioned before, a coalgebra over a field is right semiperfect if and only if
its rational functor is exact. This characterization has been extended to the case of
corings over QuasiFrobenius rings, see [9, Theorem 4.2], [5, Theorem 4.3], [3, 20.11].
For a general ground ring A, we obtain the following result.

Corollary 3.4 Let C be a right semiperfect A-coring such that AC is a locally projective
module. Consider the canonical right rational pairing T = (C, End(CC), 〈−, −〉) and
let � and R be as in Corollary 3.3. Assume that R� is projective and its Jacobson
radical Rad (R�) is a superfluous R-submodule of R�. Then the rational functor
RatT : ModEnd(CC) → ModEnd(CC) is exact.

Proof By Corollary 3.3, R = ⊕
P∈P uP R, where {uP : P ∈ P} is a set of orthogonal

local idempotents. By [16, Theorem 2], {RuP : P ∈ P} becomes a generating set of
completely indecomposable (finitely generated) projective objects for RMod. Since
R� is projective, it must be a direct summand of a direct sum of left R-modules of
the form RuP. Now, the non-unital version of [18, Theorem 5.5] gives that R� has
to be a direct sum modules of the form RuP. By Theorem 2.2, CC is a direct sum of
comodules, profinite as left A-modules. Proposition 2.4 gives the exactness of RatT .

��

Next, we deal with the case where P contains only one comodule. This naturally
leads to the notion of a local coring.

Definition 3.5 A right semiperfect A-coring C whose category of right comodules
has a unique (up to isomorphism) type of completely indecomposable semiperfect
comodule, will be called a right local coring.
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The following is the version of Theorem 3.2 for the case where P is a singleton.

Corollary 3.6 Let C be an A-coring and (�C, ρ�) a right C-comodule with endomor-
phism ring T = End(�C). The following statements are equivalent

(i) AC is a flat module and �C is a small completely indecomposable projective
generator in the category of right comodules ComodC;

(ii) AC is a flat module, the category ComodC is locally finitely generated, C is a right
local A-coring and �C the unique semiperfect completely indecomposable right
comodule (up to isomorphism);

(iii) �A is a finitely generated and projective module, C is T − �-Galois, T� is a
faithfully flat module, and T is a local ring.

Our last proposition gives a connection between right local corings and simple
cosemisimple corings. Every cosemisimple coring is a right and left semiperfect
coring by [11, Theorem 3.1]. A simple cosemisimple coring is a cosemisimple coring
with one type of simple right comodule, or equivalently, left comodule. The structure
of these corings was given in [7, Theorem 4.3].

Proposition 3.7 Let �A be a non zero finitely generated and projective right A-module
and T ⊆ S = End(�A) a local subring of its endomorphism ring such that T� is a
faithfully flat module. Consider the comatrix A-coring C := �∗ ⊗T �, and denote by
J the Jacobson radical of T, and by D := T/J the division factor ring. Then we have

(i) �/J� admits the structure of a simple right (�∗ ⊗T �)-comodule whose endo-
morphism ring is isomorphic to the division ring D, that is End((�/J�)C) ∼= D.

(ii) If (�/J�)A is a projective module, then the canonical map

can�/J� : (�/J�)∗ ⊗D (�/J�) �� �∗ ⊗T �

is a monomorphism of A-corings with domain a simple cosemisimple coring.
(iii) There is a short exact sequence of �∗ ⊗T �-bicomodules

0 �� �∗ ⊗T (J�) �� �∗ ⊗T � �� �∗ ⊗T D ⊗T � �� 0

whose cokernel is an A-coring without counit.
(iv) T S is a faithfully flat module and the canonical Sweedler S-coring S ⊗T S is

a right local S-coring with SS⊗T S the unique (up to isomorphism) semiperfect
completely indecomposable comodule.

Proof We first make some useful observations. Recall that � is a right C-comodule
with coaction ρ�(u) = ∑

i ui ⊗A u∗
i ⊗T u, for every u ∈ �, where {(ui, u∗

i )}i ⊆ � × �∗
is any finite dual basis for �A, while �∗ is a left C-comodule with coaction λ�∗(u∗) =∑

i u∗ ⊗T ui ⊗A u∗
i , for every u∗ ∈ �∗. It is clear that ρ� is left T-linear while λ�∗ is

right T-linear. Since T� is a faithfully flat module, [7, Theorem 3.10] implies that T =
End(�C) and − ⊗T � : ModT → ComodC is an equivalence of categories with in-
verse the cotensor functor −�C�∗ : ComodC → ModT . This means, by Corollary 3.6,
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that C is a right local A-coring with �C the unique type of semiperfect completely
indecomposable right comodule (up to isomorphisms).

(i) The right C-coaction of the right A-module �/J� is given by the functor
− ⊗T �, since �/J� ∼= D ⊗T � is an isomorphism of right A-modules. This
comodule is the image under the equivalence − ⊗T � of the simple right
T-module DT , so it is necessarily a simple right C-comodule. Its endomorphism
ring is computed using the following isomorphisms:

HomC (D ⊗T � , D ⊗T �) ∼= HomT

(
D, HomC (� , D ⊗T �)

)

∼= HomT

(
D, HomT

(
(��C�∗) , D

))

∼= HomT (D , D) ,

where we have used the adjunction −�C� � − ⊗T � in the second isomor-
phism and the right T-linear isomorphism ��C�∗ ∼= T in the last one.

(ii) Since (�/J�)A is a finitely generated and projective module, we can construct
the canonical map can�/J� . This map is a monomorphism by (i) and [2,
Theorem 3.1]. Finally, [7, Proposition 4.2] implies that (�/J�)∗ ⊗D (�/J�) is
simple cosemisimple A-coring, since D is already is division ring.

(iii) The stated sequence is obtained by applying − ⊗T � to the following short
exact sequence of right T-modules

0 �� �∗J �� �∗ �� �∗ ⊗T D �� 0.

This gives in fact an exact sequence of right C-comodules; the C-bicomodule
structure is then completed by the compatible left C-coaction of C�∗. The
C-bicomodule �∗ ⊗T D ⊗T � admits a coassociative comultiplication given by

� : �∗ ⊗T D ⊗T � �� (�∗ ⊗T D ⊗T �) ⊗A (�∗ ⊗T D ⊗T �)

u∗ ⊗T d ⊗T v
� �� ∑

i u∗ ⊗T d ⊗T ui ⊗A u∗
i ⊗T 1 ⊗T v.

(iv) This is an immediate consequence of [7, Theorem 3.10] and Corollary 3.6. ��
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3. Brzeziński, T., Wisbauer, R.: Corings and Comodules, LMS, vol. 309. Cambridge University

Press, Cambridge (2003)
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13. Gómez-Torrecillas, J., Năstăsescu, C.: Quasi-co-Frobenius coalgebras. J. Algebra 174, 909–923
(1995)

14. Gómez-Torrecillas, J., Vercruysse, J.: Comatrix corings and Galois comodules over firm rings.
Algebr. Represent. Theory 10, 271–306 (2007)

15. Harada, M.: Perfect categories I. Osaka J. Math. 10, 329–341 (1973)
16. Harada, M.: Perfect categories II. Osaka J. Math. 10, 343–355 (1973)
17. Lin, I.-P.: Semiperfect coalgebras. J. Algebra 49, 357–373 (1977)
18. Mares, E.A.: Semi-perfect modules. Math. Z. 82, 347–360 (1963)
19. Stenström, B.: Rings of Quotients. Springer, Berlin (1975)
20. Sweedler, M.E.: The predual theorem to the Jacobson-Bourbaki theorem. Trans. Amer. Math.

Soc. 213, 391–406 (1975)
21. Zimmermann-Huisgen, B.: Pure submodules of direct products of free modules. Math. Ann. 224,

233–245 (1976)


	Corings with Decomposition and Semiperfect Corings   
	Abstract
	Introduction
	Comatrix Corings and Corings with Decompositions
	Local Corings and Semiperfect Corings
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


