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Abstract We focus our attention to the set Gr(C) of grouplike elements of a coring C over a ring

A. We do some observations on the actions of the groups U(A) and Aut(C) of units of A and of

automorphisms of corings of C, respectively, on Gr(C), and on the subset Gal(C) of all Galois grouplike

elements. Among them, we give conditions on C under which Gal(C) is a group, in such a way that there

is an exact sequence of groups {1} → U(Ag) → U(A) → Gal(C) → {1}, where Ag is the subalgebra of

coinvariants for some g ∈ Gal(C).
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1 Introduction

The concept of non-abelian cohomology of groups has been extended to the framework of Hopf
algebras by Nuss and Wambst in [1, 2]. Given a Hopf algebra H, a right H-comodule algebra
A, and a right Hopf (H −A)-module M , the first descent cohomology set D1(H,M) of H with
coefficients in M is defined in terms of all Hopf module structures on M . When B ⊆ A is a
G-Galois extension, where G is a finite group acting on A by automorphisms, then by [1, Propo-
sition 2.5] there is an isomorphism of pointed sets D1(KG,M) ∼= H 1(G,Aut(MA)), where the
last stands for the first non-abelian cohomology set of G with coefficients in Aut(MA) [3].
Here, KG is the Hopf algebra of functions on the group G in a commutative base ring K.
In [4], Brzeziński has shown that this descent cohomology can be satisfactorily extended to the
framework of comodules over corings, introducing the first descent cohomology set D1(C,M),
where C is a coring over a ring A, and M is a right C-comodule. Since the definition of descent
cohomology of [1] is a special case of [4, Definition 2.2], we know that there must be an in-
terpretation of the aforementioned non-abelian cohomology set H 1(G,Aut(MA)) in terms of
descent cohomology of a coring with coefficients in a comodule. The first remark in this note
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196 El Kaoutit L. and Gómez-Torrecillas J.

(see Theorem 2.7) gives such an interpretation, in the case M = A. Our approach uses the fact
that the comodule structures on A over an A-coring C are parametrized by the set Gr(C) of
all grouplike elements of C [5]. We thus consider the particular case of [4, Definition 2.2] of the
first descent cohomology set D1(C, g) of the A-coring C at a grouplike element g ∈ Gr(C) (see
Definition 2.4).

We focus our attention to the set Gr(C). We do some observations on the actions of the
groups U(A) and Aut(C) of units of A and of automorphisms of corings of C, respectively, on
Gr(C). Among them, let us mention that if D1(C, g) = {1}, then Aut(C) is isomorphic to
a quotient group U(A)g/U(Ag), where Ag (see Definition 2.1) is the subring of g-coinvariants
of A, and U(A)g is a subgroup of U(A) (see Corollary 3.4). We also give (see Theorem 3.6)
conditions under which the set Gal(C) of all Galois grouplike elements is a group, in such a
way that there is an exact sequence of groups

{1} → U(Ag) → U(A) → Gal(C) → {1}.
We also give some conditions on g ∈ Gal(C) to have that D1(C, g) = {1}. Our approach here
makes use of the theory of cosemisimple corings developed in [6] and [7].

Some examples illustrate our results.

2 Grouplikes, Non-Abelian Cohomology and Descent Cohomology

Let (C,ΔC, εC) be a coring over a K–algebra A (K is a commutative ring). Thus, C is an
A-bimodule, and ΔC : C → C ⊗A C and εC : C → A are homomorphisms of A-bimodules
subject to axioms of coassociativity and counitality: (C ⊗A ΔC) ◦ ΔC = (ΔC ⊗A C) ◦ ΔC and
(C⊗A εC)◦ΔC = (εC⊗AC)◦ΔC = C. A morphism of A-corings is an A-bilinear map ϕ : C → C′

satisfying ΔC′ ◦ ϕ = (ϕ⊗A ϕ) ◦ ΔC and εC′ ◦ ϕ = εC.
A right C-comodule is a pair (M,ρM ) consisting of a right A-module and a right A-linear

map ρM : M →M ⊗A C, called right C-coaction, such that (M ⊗A ΔC) ◦ ρM = (ρM ⊗A C) ◦ ρM
and (M ⊗A εC) ◦ ρM = M . A morphism of right C-comodules f : (M,ρM ) → (N, ρN ) is a right
A-linear map f : M → N such that ρN ◦ f = (f ⊗A C) ◦ ρM . With these morphisms, right
C-comodules form a category. Details on corings and their comodules are easily available in [8].

Definition 2.1 An element g ∈ C is said to be a grouplike element if ΔC(g) = g ⊗A g and
εC(g) = 1. The set of all grouplike elements of C will be denoted by Gr(C). The subring of
g-coinvariant elements is defined by

Ag = {a ∈ A | ag = ga}.
Example 2.2 If B → A is any ring extension, and A ⊗B A is its associated Sweedler’s A-
coring with comultiplication a⊗B a′ �→ (a⊗B 1)⊗A (1⊗B a′) and counit the multiplication map
a ⊗B a′ �→ aa′, a, a′ ∈ A, then it is clear that 1 ⊗B 1 ∈ Gr(A ⊗B A). Given an SBN (Single
Basis Number) ring A, then by [9, p. 113], there exist elements a, a′, b, b′ ∈ A such that

ab+ a′b′ = 1, ba = b′a′ = 1 and b′a = ba′ = 0.

Clearly g = a⊗Z b+ a′ ⊗Z b
′ is a grouplike element of the Sweedler A-coring A⊗Z A.

Example 2.3 Consider a coring C (resp. C′) over a ring A (resp. A′). Let ρ : A → A′ be
a homomorphism of rings, and consider a homomorphism of corings ϕ : C → C′ in the sense



On the Set of Grouplikes of a Coring 197

of [10]. This morphism restricts to a map ϕ : Gr(C) → Gr(C′). Moreover, for each g ∈ Gr(C),
ρ induces a homomorphism of rings ρ : Ag → A′ϕ(g).

It is known [5, Lemma 5.1] that there is a bijection between Gr(C) and the set of all right
C-coactions on the right module AA. Let [g]A denote the right C-comodule structure defined
on A by g ∈ Gr(C). The right C-coaction ρ[g]A : [g]A → [g]A ⊗A C ∼= C is given by sending
a �→ ga. Conversely any right C-coaction ρA determines a unique element ρA(1) ∈ Gr(C). A
similar bijection exists taking left C-coactions on the left module AA. We denote by A[g] the
left C-comodule induced by g ∈ Gr(C).

It is easily checked that the subring Ag of A can be identified with both rings of endo-
morphisms of the right C-comodule [g]A and of the left C-comodule A[g]. That is, Ag =
End([g]AC) = End(CA[g]). In fact, for two grouplike elements g, h ∈ Gr(C), we have

HomC([g]A, [h]A) = {α ∈ A |αg = hα}.
Therefore, [g]A ∼= [h]A as right C-comodules if and only if g and h are conjugated in the sense
that there exists α ∈ U(A) such that h = αgα−1. These remarks suggest, in view of [4], the
following definition, due to Brzeziński.

Definition 2.4 Consider the action of the group of units U(A) of A on Gr(C)

U(A) × Gr(C) −→ Gr(C)

(α, g) �−→ αgα−1. (2.1)

Let Gr(C) denote the quotient set of Gr(C) under the action (2.1). If Gr(C) is not empty, then
for each g ∈ Gr(C) we can define the pointed set of descent 1-cocycles on C with coefficients
in [g]A as

Z1(C, [g]A) := (Gr(C), g),

and the first cohomology pointed set of C with coefficients in [g]A as

D1(C, [g]A) := (Gr(C), g),

where (X,x) means a pointed set with a distinguished element x ∈ X. We shall use the simplified
notations Z1(C, g) and D1(C, g), respectively, and we will refer to them as the pointed set of
descent 1-cocycles on C at g, and the first descent cohomology of C at g, respectively. The zeroth
descent cohomology group of C at g is defined to be the group of C-comodules automorphisms
of [g]A, and can be identified with the group of units U(Ag) of the ring Ag, i.e.,

D0(C, g) = U(Ag).

Our first aim is to exhibit a direct evidence of the fact that D1(C, g) is a genuine version
for corings of Serre’s nonabelian cohomology of groups.

Example 2.5 Let G be a finite group acting by automorphisms on a ring A. Consider
R = G∗A the associated crossed product. As R is a free right A-module with basis G, its right
dual R∗ = HomA(R, A) is an A-coring according to [11, Theorem 3.7] (with comultiplication
and counit induced by the duals of the multiplication and the unit of the A-ring R). Our
next aim is to establish a bijection between Gr(R∗) and the set of all non-abelian 1-cocycles
Z1(Gop, U(A)) in the sense of [3]. Of course here the action of the opposite group Gop on the
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group U(A) is induced by the given action of the group G on the ring A. So we denote this
action by αx for every α ∈ U(A) and x ∈ Gop.

Proposition 2.6 The map Θ : Gr(R∗) → Z1(Gop, U(A)) which sends h ∈ Gr(R∗) to its
restriction to G is a bijection. Under this bijection, the trivial 1-cocycle corresponds to the
grouplike given by the trace map t : R → A defined by t(

∑
x∈G xax) =

∑
x∈G ax. Moreover, At

coincides with the subring of the G-invariant elements of A.

Proof Let us denote by {x, x∗}x∈G ⊆ R×R∗ the finite dual basis of the right free A-module
RA given by G. The comultiplication and the counit of the A-coring R∗ are defined as follows:

R∗ Δ−→ R∗ ⊗A R∗ R∗ ε−→ A

ϕ �−→
∑

x∈G
ϕx⊗A x∗, ϕ �−→ ϕ(1R),

where ϕx : R→ A sends r �→ ϕ(xr). We have an isomorphism

Υ : R∗ ⊗A R∗ −→ (R⊗A R)∗, ϕ⊗A ψ �−→ [r ⊗A t �→ ϕ(ψ(r)t)].

Now, a right A-linear map h : R→ A belongs to Gr(R∗) if and only if

h(1R) = 1A and
∑

x∈G
hx⊗A x∗ = h⊗A h. (2.2)

So given h ∈ Gr(R∗), and applying Υ to the second equality in (2.2), we obtain the equal-
ity h(xy) = h(y)h(x)y, for every pair of elements x, y ∈ G. Taking y = x−1, we get
h(x−1)h(x)x

−1
= 1A = h(x)h(x−1)x, since h(1R) = 1A. Applying x to the equality

h(x−1)h(x)x
−1

= 1A,

we obtain h(x)h(x−1)x = h(x−1)xh(x) = 1A. That is, h(x) ∈ U(A), for every x ∈ G. In
conclusion, we have defined a map

Gr(R∗) Θ−→ Z1(Gop, U(A))

h �−→ [Θ(h) : x �−→ h(x)]. (2.3)

It is clear that Θ is injective, since G is a basis for the right A-module R. Let us check
that it is also surjectivity. Consider any 1-cocycle f : Gop → U(A), and define f̂ : R → A

by sending x ∗ a �→ f(x)a for x ∈ G and a ∈ A. Clearly f̂ is a right A-linear map, and
ε(f̂) = f̂(1R) = f(e)1A = f(e) (here e is the neutral element of G). By the 1-cocycle condition
on f , we know that f(e) = f(e)2, that is, f(e) = 1A and so ε(f̂) = 1A. Now an easy computation
using again the 1-cocycle condition shows that

Υ
( ∑

x∈G
f̂x⊗A x∗

)

(y ⊗A z) = Υ(f̂ ⊗A f̂)(y ⊗A z),

for every pair of elements y, z ∈ G, which implies that Δ(f̂) = f̂ ⊗A f̂ . Therefore, f̂ ∈
Gr(R∗). Obviously, we have Θ(f̂) = f , and this establishes the desired surjectivity. Clearly
the distinguished 1-cocycle e : Gop → U(A) sending x �→ 1 corresponds then to the grouplike
element t : R → A defined by

∑
x∈G xax �→ ∑

x∈G ax. The coinvariant ring At coincides with
the invariant subring of A with respect to theG-action, i.e., At = {a ∈ A |x(a) = a, ∀x ∈ G}. �
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Recall from [3], that two 1-cocycles f and h are cohomologous if there exists α ∈ U(A)
such that f(x) = α−1h(x)αx, for every x ∈ Gop. Using the bijection (2.3), we can easily check
that two 1-cocycles are cohomologous if and only if their corresponding grouplike elements are
conjugated. On the other hand, the equality At = AG clearly implies that U(At) = U(A)G

op
,

where the latter stands for H 0(Gop, U(A)) the zeroth non-abelian cohomology group as in [3].
Therefore, we deduce from Proposition 2.6:

Theorem 2.7 The map Θ of Proposition 2.6 induces an isomorphism of pointed sets

D1(R∗, t) ∼= H 1(Gop, U(A)),

and there is an equality of groups

D0(R∗, t) = H 0(Gop, U(A)).

Remark 2.8 Since the coring R∗ is finitely generated and projective as a left A-module, its
category of right comodules is isomorphic to the category of right R-modules. Taking this
into account, one can adapt the proof of Proposition 2.6 in order to show that for every right
At-module N , there are an isomorphism of pointed sets

D1(R∗, N ⊗At [t]A) ∼= H 1(Gop,AutA(N ⊗At A)),

and an equality of groups

D0(R∗, N ⊗At [t]A) = H 0(Gop,AutA(N ⊗At A)),

where for every right C-comodule M , D•(C,M) are defined as in [4], and AutA(M) is the group
of all automorphisms of the underlying right A-module of M .

3 Groups Acting on Grouplikes

The maps defined in the following lemma will be used in the sequel where the role of the
extension B → A will be played by the inclusions Ag ⊆ A, and where g runs Gr(C) whenever
Gr(C) �= ∅.
Lemma 3.1 Let B → A be any ring extension.

(a) Let α ∈ U(A) and consider the subring α−1Bα of A. Then the map

ψα : A⊗B A −→ A⊗α−1Bα A

a⊗B a′ �−→ aα⊗α−1Bα α
−1a′

is an isomorphism of A-corings.
(b) The map

ψ− : {α ∈ U(A) |α−1Bα = B} → Aut(A⊗B A)

defines an anti-homomorphism of groups.

Proof (a) We only prove that ψα is a well-defined map. So, for every a, a′ ∈ A and b ∈ B, we
have

ψα(ab⊗K a′) = abα⊗α−1Bα α
−1a′

= aα(α−1bα) ⊗α−1Bα a
′

= aα⊗α−1Bα (α−1bα)α−1a′
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= aα⊗α−1Bα α
−1ba′ = ψα(a⊗K ba′),

that is, ψα is a well-defined map.
(b) Straightforward. �
Every grouplike element g ∈ Gr(C) of the A-coring C defines a canonical morphism of

A-corings:
cang : A⊗Ag A→ C, a⊗Ag a′ �−→ aga′.

On the other hand, a straightforward computation shows that

Aαgα
−1

= αAgα−1, for all α ∈ U(A). (3.1)

Moreover, for every α ∈ U(A), we have the commutative diagram of homomorphisms of
A-corings:

A⊗Aαgα−1 A

canαgα−1

����������������

C

A⊗Ag A.

cang

�����������������

∼=ψα−1

��
(3.2)

Recall from [5] that a grouplike g ∈ Gr(C) is said to be Galois if cang is bijective. It follows
from diagram (3.2) that g is Galois if and only if αgα−1 is Galois. Thus, if we denote by Gal(C)
the set of all Galois grouplike elements of C, then the action (2.1) restricts to an action

U(A) × Gal(C) −→ Gal(C)

(α, g) �−→ αgα−1.

The group Aut(C) of all A-coring automorphisms of C acts obviously on Gr(C):

Aut(C) × Gr(C) −→ Gr(C)

(ϕ, g) �−→ ϕ · g := ϕ(g). (3.3)

Since every ϕ ∈ Aut(C) is, in particular, a homomorphism of A-bimodules, it follows that the
actions (3.3) and (2.1) commute, that is,

ϕ · (α · g) = α · (ϕ · g), ∀ g ∈ Gr(C), ∀α ∈ U(A), ∀ϕ ∈ Aut(C).

The action (3.3) restricts to an action

Aut(C) × Gal(C) −→ Gal(C)

(ϕ, g) �−→ ϕ(g), (3.4)

as the following proposition shows.

Proposition 3.2 (1) For every element g ∈ Gr(C) and ϕ ∈ Aut(C), we have Ag = Aϕ(g).
Moreover, the following diagram of morphisms of A-coring commutes :

A⊗Ag A
cang �� C

ϕ

��
A⊗Aϕ(g) A

canϕ(g) �� C .
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Therefore, g ∈ Gal(C) if and only if ϕ(g) ∈ Gal(C).
(2) If g, h ∈ Gal(C), then Ag = Ah if and only if there exists ϕ ∈ Aut(C) such that

ϕ(h) = g.

Proof (1) We only prove that Ag = Aϕ(g). Start with an element b ∈ Ag, then bϕ(g) =
ϕ(bg) = ϕ(gb) = ϕ(g)b because ϕ is a homomorphism of A-bimodules, which implies that
b ∈ Aϕ(g). Thus

Ag ⊆ Aϕ(g) ⊆ Aϕ
−1(ϕ(g)) = Ag.

(2) Assume that Ag = Ah for g, h ∈ Gal(C). Then ϕ = cang◦can−1
h ∈ Aut(C) and ϕ(h) = g.

The converse follows from (1). �
For every element g ∈ Gr(C), we define

U(A)g = {α ∈ U(A) |αAg = Agα} = {α ∈ U(A) |Aαgα−1
= Ag},

where in the second equality, we have used equation (3.1). It is clear that U(A)g is a subgroup
of U(A) which contains the group of units U(Ag) of the subring Ag.

Proposition 3.3 Let C be an A-coring.
(a) For every element g ∈ Gr(C), U(Ag) is a normal subgroup of U(A)g.
(b) For every g ∈ Gr(C) and β ∈ U(A), we have

βU(A)gβ−1 = U(A)βgβ−1 .

(c) If g ∈ Gal(C), then there exists an exact sequence of groups

1 → U(Ag) → U(A)g
φg−→ Aut(C)

α �−→ cang ◦ ψα−1 ◦ can−1
g .

(d) If Gal(C) is non-empty and the action of U(A) on Gal(C) is transitive, then, for every
g ∈ Gal(C), φg is surjective and, thus, we have an isomorphism of groups

Aut(C) ∼= U(A)g/U(Ag).

Proof (a) Let β be an arbitrary element in U(A)g. Given an element α ∈ U(Ag), by definition
there exists γ ∈ Ag such that βαβ−1 = γ, and so γ ∈ U(Ag). Therefore, βU(Ag)β−1 ⊆ U(Ag).

(b) It follows from the fact that U(A)g is the stabilizer in U(A) of Ag for the action by
conjugation of U(A) on the set of all subalgebras of A.

(c) An element α ∈ U(A)g is such that φg(α) = 1 if and only if cang ◦ ψα−1 = cang if and
only if cang ◦ψα−1(1⊗Ag 1) = cang(1⊗Ag 1) if and only if α−1gα = g if and only if α ∈ U(Ag),
and the exactness follows.

(d) Let g ∈ Gal(C) and ϕ ∈ Aut(C). Obviously, ϕ(g) ∈ Gal(C) and, since Gal(C) =
{βgβ−1 : β ∈ U(A)}, there exists α ∈ U(A) such that ϕ(g) = α−1gα. We know that

Ag = Aϕ(g) = Aα
−1gα = α−1Agα,

that is, α ∈ U(A)g. Moreover, it is easily checked that φg(α)(g) = α−1gα and, since g generates
C as an A-bimodule, this implies that ϕ = φg(α). Therefore, φg is surjective. �

Corollary 3.4 If g is a Galois grouplike element of C such that D1(C, g) = {1}, then

Aut(C) ∼= U(A)g/U(Ag).
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Remark 3.5 When A is commutative, Corollary 3.4 says that Aut(C) is the coGalois group
of the extension Ag ⊆ A, see [12] for the case of field extensions.

Theorem 3.6 Let C be an A-coring such that there exists g ∈ Gal(C) and the action of U(A)
on Gal(C) is transitive (e.g. D1(C, g) = {1}). The following statements are equivalent :

(i) U(A)g = U(A) (i.e., αAg = Agα for every α ∈ U(A));

(ii) U(A)h = U(A) for every h ∈ Gal(C);

(iii) the action of Aut(C) on Gal(C) is transitive. Furthermore, if one of these equivalent
conditions is satisfied, then Ah = Ag for every h ∈ Gal(C), and the map ξg : Aut(C) → Gal(C)
defined by ξg(ϕ) = ϕ(g) for ϕ ∈ Aut(C) is bijective and, thus, Gal(C) can be endowed with the
structure of a group. Moreover, there exists a short exact sequence of groups

{1} → U(Ag) → U(A) → Gal(C) → {1}.

Proof (i) ⇒ (iii) By assumption, we have U(A)g = U(A). On the other hand, every grouplike
is of the form αgα−1 for some α ∈ U(A). Now, αgα−1 = φg(α−1)(g), where φg(α−1) ∈ Aut(C)
is given by Proposition 3.3 (c). This means that each grouplike element is in the orbit of g
under the action (3.3).

(iii) ⇒ (ii) Given h ∈ Gal(C) and α ∈ U(A), we know from (3.2) that αhα−1 ∈ Gal(C).
Since the action of Aut(C) on Gal(C) is transitive, there is ϕ ∈ Aut(C) such that ϕ(h) =
αhα−1. Proposition 3.2 (2) and equation (3.1) now give that

Ah = Aϕ(h) = Aαhα
−1

= αAhα−1,

that is, α ∈ U(A)h.

Since (ii) ⇒ (i) is obvious, the proof of the equivalence between the three statements is
done.

If h ∈ Gal(C), then Ah = Aϕ(g) = Ag for some ϕ ∈ Aut(C). On the other hand, it is clear
from assumption that ξg is surjective. Since g, being Galois, generates C as an A-bimodule, it
follows that the action of every automorphism of C on g determines it completely. Thus, ξg is
injective. Finally, the short exact sequence of groups is given by Proposition 3.3 (c)–(d). �

A ring A is said to be a right invariant basis number ring (right IBN ring for short), if
A(n) ∼= A(m) (direct sums of copies of A) as right A-modules for n, m ∈ N implies that n = m,
see [9, p. 114]. An A-coring C is said to cosemisimple if AC is a flat module and every right
C-comodule is semisimple, equivalently, CA is flat and every left C-comodule is semisimple. A
simple cosemisimple coring is a cosemisimple coring with one type of simple right comodule or
equivalently with one type of simple left comodule; see [7, Therorem 4.4] for a structure theorem
of all cosemisimple corings over an arbitrary ring. By [6, Theorem 4.3], every grouplike of a
simple cosemisimple coring C is Galois, that is, Gr(C) = Gal(C).

Theorem 3.7 Let C be an A-coring, and assume that there exists g ∈ Gal(C). Assume that
either Ag is a division ring and A is a right (or left) IBN ring, or A is a division ring. Then

Gr(C) = Gal(C) = {αgα−1 |α ∈ U(A)},

and, in particular, D1(C, g) = {1}.
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Proof Assume first that Ag is a division ring andA is left or right IBN. By [6, Theorem 4.4] (see
also [7, Theorem 3.10, Proposition 4.2]), C is a simple cosemisimple A-coring and the functor
− ⊗Ag [g]A : ModAg → ComodC is an equivalence of categories. Thus, [g]A ∼= Ag ⊗Ag [g]A
is a simple right comodule. Given h ∈ Gr(C), we have the right C-comodule [h]A. Since C

is cosemisimple with a unique type of simple right comodule represented by [g]A, there is an
isomorphism of right C-comodules [h]A ∼= ([g]A)(n) (direct sum of copies of [g]A), for some
non zero natural number n. This isomorphism is, in particular, an isomorphism of right free
A-modules. Hence, n = 1 since A is a right IBN ring. Therefore, [h]A ∼= [g]A, as comodules,
which means that h = αgα−1 for some α ∈ U(A), and we have done. In the case that A is a
division ring, it is easy to show that Ag is a division ring. �

Corollary 3.8 Let B ⊆ A be a ring extension, and A⊗B A its canonical Sweedler’s coring.
(1) If B is a division ring and A is a right or left IBN ring, then

Gr(A⊗B A) = {α⊗B α−1 |α ∈ U(A)}.
(2) If B ⊆ A is an extension of division rings and αB = Bα for every α ∈ A, then

Gr(A⊗B A) is a group isomorphic to A×/B×.

Proof By [6, Proposition 4.2], B = A1⊗B1. The corollary follows now from Theorem 3.7. �

Example 3.9 Let G be a finite group acting on a division ring A as in Example 2.5, and let T
be the (division) subring of all G-invariant elements of A. We know that T = At. Assume that
the trace map t is a Galois grouplike of R∗, where R = G ∗A. This means that T ⊆ A is Galois
in the sense that the canonical map G ∗A→ End(TA) is bijective [13]. Then, by Theorems 2.7
and 3.7, H 1(Gop, A×) = {1}. This is a version of Hilbert’s 90 theorem for division rings.

Remark 3.10 The condition αB = Bα for every α ∈ A in Corollary 3.8 is rather strong. An
easy example is the following. Let A = Cq(X,Y ) the (noncommutative) field of fractions of the
complex quantum plane Cq[X,Y ], and B = C(X), the field of complex rational functions in the
variable X (here, q �= 1 is a complex number). It is easy to show that (1 + Y )B �= B(1 + Y ).
In fact, (1 + aY )B �= B(1 + aY ) for infinitely many a ∈ C

×. Of course, Corollary 3.8 says
that D1(Cq(X,Y ) ⊗C(X) Cq(X,Y ), 1 ⊗C(X) 1) = {1}. Thus, D1 does not distinguish between
the commutative case (q = 1), and the noncommutative case. We propose then the following
definition: Given g ∈ Gr(C), we define the noncommutative first descent cohomology of C at g
as the set of orbits of the action of U(A)g on Gr(C), notation N1(C, g). There is an obvious
surjective map of pointed sets N1(C, g) → D1(C, g).

Example 3.11 LetH be a Hopf algebra over a commutative ringK and consider any right H-
comodule algebra A with right coaction ρA : A→ A⊗KH sending a �→ a(0)⊗K a(1) (summation
understood). Endow A ⊗K H with the A-coring structure given in [8, Subsection 33.2]. Then
1A ⊗K 1H is a grouplike of A⊗K H and

B := A1A⊗K1H = {a ∈ A : ρA(a) = a⊗K 1}.
Moreover, 1A ⊗K 1H is Galois if and only if B ⊆ A is a Hopf–Galois H-extension. Brzeziński
has pointed out [4, Subsection 2.6] that D1(A ⊗K H, 1A ⊗K 1H) = D1(H,A), where the last
one refers to the the first descent cohomology set of H with coefficients in A defined in [1]. We
get then the following consequences of Theorems 3.7 and 3.6:
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Corollary 3.12 Let B ⊆ A be a Hopf–Galois H-extension, and assume that A is left or right
IBN. If B is a division ring, then D1(H,A) = {1}. If, in addition, Bα = αB for every α ∈ A

(e.g., B ⊆ Center(A)), then

Gr(A⊗K H) = {α−1α(0) ⊗K α(1) : α ∈ A×}
is a group with the multiplication

(α−1α(0) ⊗K α(1))(β−1β(0) ⊗K β(1)) = β−1α−1α(0)β(0) ⊗K α(1)β(1).

We have the isomorphism of groups

U(A)/B× ∼=−→ Gr(A⊗K H), αB× �−→ α−1α(0) ⊗K α(1).

Example 3.13 A particular case of Example 3.11 occurs when A = Ha the underlying algebra
of H, and ρH = Δ; the comultiplication of H. When K is a field, A1⊗K1 = K and, therefore,
D1(H,Ha) = {1} if Ha is an IBN ring. Moreover, in this case, Gr(Ha ⊗K H) is a group with
the multiplication given in Corollary 3.12. It is easy to check that the map

Gr(H) → Gr(Ha ⊗K H), g �→ 1 ⊗K g

is a monomorphism of groups. For instance, if H = K[C2] is the group algebra of the cyclic
group C2 of order 2 generated by an element g. Then the group of units of the ring Ha is
described as follows:

U(Ha) = {k + lg | k, l ∈ K, such that k2 − l2 �= 0};

the inverse of α = k + lg ∈ U(Ha) is given by the element α−1 = (k2 − l2)−1(k − lg). Of
course Ha is a right and left IBN ring, but not a division ring. Therefore, Corollary 3.12 gives
a complete description of the group Gr(Ha ⊗K H) which is

{(k2 − l2)−1(k2 ⊗K 1 − klg ⊗K 1 − l2 ⊗K g + klg ⊗K g) | k, l ∈ K, such that k2 − l2 �= 0}.
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