Acta Mathematica Sinica, English Series Jan., 2012, Vol. 28, No. 1, pp. 195–204 Published online: December 15, 2011 DOI: 10.1007/s10114-012-9074-x Http://www.ActaMath.com

Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2012

On the Set of Grouplikes of a Coring

L. EL KAOUTIT

Departamento de Álgebra. Facultad de Educación y Humanidades, Universidad de Granada, El Greco Nº 10, E-51002 Ceuta, España E-mail: kaoutit@ugr.es

J. GÓMEZ-TORRECILLAS

Departamento de Álgebra. Facultad de Ciencias, Universidad de Granada, E18071 Granada, España E-mail: gomezj@ugr.es

Abstract We focus our attention to the set $\mathbf{Gr}(\mathfrak{C})$ of grouplike elements of a coring \mathfrak{C} over a ring A. We do some observations on the actions of the groups U(A) and $\mathbf{Aut}(\mathfrak{C})$ of units of A and of automorphisms of corings of \mathfrak{C} , respectively, on $\mathbf{Gr}(\mathfrak{C})$, and on the subset $\mathbf{Gal}(\mathfrak{C})$ of all Galois grouplike elements. Among them, we give conditions on \mathfrak{C} under which $\mathbf{Gal}(\mathfrak{C})$ is a group, in such a way that there is an exact sequence of groups $\{1\} \to U(A^g) \to U(A) \to \mathbf{Gal}(\mathfrak{C}) \to \{1\}$, where A^g is the subalgebra of coinvariants for some $g \in \mathbf{Gal}(\mathfrak{C})$.

Keywords Galois corings, division ring extensions, non-abelian cohomologyMR(2000) Subject Classification 16D20, 16K20, 16W30

1 Introduction

The concept of non-abelian cohomology of groups has been extended to the framework of Hopf algebras by Nuss and Wambst in [1, 2]. Given a Hopf algebra H, a right H-comodule algebra A, and a right Hopf (H - A)-module M, the first descent cohomology set $\mathscr{D}^1(H, M)$ of H with coefficients in M is defined in terms of all Hopf module structures on M. When $B \subseteq A$ is a G-Galois extension, where G is a finite group acting on A by automorphisms, then by [1, Proposition 2.5] there is an isomorphism of pointed sets $\mathscr{D}^1(K^G, M) \cong \mathscr{H}^1(G, \operatorname{Aut}(M_A))$, where the last stands for the first non-abelian cohomology set of G with coefficients in $\operatorname{Aut}(M_A)$ [3]. Here, K^G is the Hopf algebra of functions on the group G in a commutative base ring K. In [4], Brzeziński has shown that this descent cohomology can be satisfactorily extended to the framework of comodules over corings, introducing the first descent cohomology set $\mathscr{D}^1(\mathfrak{C}, M)$, where \mathfrak{C} is a coring over a ring A, and M is a right \mathfrak{C} -comodule. Since the definition of descent cohomology of [1] is a special case of [4, Definition 2.2], we know that there must be an interpretation of the aforementioned non-abelian cohomology set $\mathscr{H}^1(G, \operatorname{Aut}(M_A))$ in terms of descent cohomology of a coring with coefficients in a comodule. The first remark in this note

Received February 11, 2009, revised March 9, 2010, accepted October 8, 2010

Supported by grant MTM2007-61673 from the Ministerio de Educación y Ciencia of Spain, and P06-FQM-01889 from Junta de Andalucía

(see Theorem 2.7) gives such an interpretation, in the case M = A. Our approach uses the fact that the comodule structures on A over an A-coring \mathfrak{C} are parametrized by the set $\mathbf{Gr}(\mathfrak{C})$ of all grouplike elements of \mathfrak{C} [5]. We thus consider the particular case of [4, Definition 2.2] of the first descent cohomology set $\mathscr{D}^1(\mathfrak{C}, g)$ of the A-coring \mathfrak{C} at a grouplike element $g \in \mathbf{Gr}(\mathfrak{C})$ (see Definition 2.4).

We focus our attention to the set $\mathbf{Gr}(\mathfrak{C})$. We do some observations on the actions of the groups U(A) and $\mathbf{Aut}(\mathfrak{C})$ of units of A and of automorphisms of corings of \mathfrak{C} , respectively, on $\mathbf{Gr}(\mathfrak{C})$. Among them, let us mention that if $\mathscr{D}^1(\mathfrak{C},g) = \{1\}$, then $\mathbf{Aut}(\mathfrak{C})$ is isomorphic to a quotient group $U(A)_g/U(A^g)$, where A^g (see Definition 2.1) is the subring of g-coinvariants of A, and $U(A)_g$ is a subgroup of U(A) (see Corollary 3.4). We also give (see Theorem 3.6) conditions under which the set $\mathbf{Gal}(\mathfrak{C})$ of all Galois grouplike elements is a group, in such a way that there is an exact sequence of groups

$$\{1\} \to U(A^g) \to U(A) \to \operatorname{Gal}(\mathfrak{C}) \to \{1\}$$

We also give some conditions on $g \in \mathbf{Gal}(\mathfrak{C})$ to have that $\mathscr{D}^1(\mathfrak{C}, g) = \{1\}$. Our approach here makes use of the theory of cosemisimple corings developed in [6] and [7].

Some examples illustrate our results.

2 Grouplikes, Non-Abelian Cohomology and Descent Cohomology

Let $(\mathfrak{C}, \Delta_{\mathfrak{C}}, \varepsilon_{\mathfrak{C}})$ be a coring over a K-algebra A (K is a commutative ring). Thus, \mathfrak{C} is an A-bimodule, and $\Delta_{\mathfrak{C}} : \mathfrak{C} \to \mathfrak{C} \otimes_A \mathfrak{C}$ and $\varepsilon_{\mathfrak{C}} : \mathfrak{C} \to A$ are homomorphisms of A-bimodules subject to axioms of coassociativity and counitality: $(\mathfrak{C} \otimes_A \Delta_{\mathfrak{C}}) \circ \Delta_{\mathfrak{C}} = (\Delta_{\mathfrak{C}} \otimes_A \mathfrak{C}) \circ \Delta_{\mathfrak{C}}$ and $(\mathfrak{C} \otimes_A \varepsilon_{\mathfrak{C}}) \circ \Delta_{\mathfrak{C}} = (\varepsilon_{\mathfrak{C}} \otimes_A \mathfrak{C}) \circ \Delta_{\mathfrak{C}} = \mathfrak{C}$. A morphism of A-corings is an A-bilinear map $\varphi : \mathfrak{C} \to \mathfrak{C}'$ satisfying $\Delta_{\mathfrak{C}'} \circ \varphi = (\varphi \otimes_A \varphi) \circ \Delta_{\mathfrak{C}}$ and $\varepsilon_{\mathfrak{C}'} \circ \varphi = \varepsilon_{\mathfrak{C}}$.

A right \mathfrak{C} -comodule is a pair (M, ρ_M) consisting of a right A-module and a right A-linear map $\rho_M : M \to M \otimes_A \mathfrak{C}$, called right \mathfrak{C} -coaction, such that $(M \otimes_A \Delta_{\mathfrak{C}}) \circ \rho_M = (\rho_M \otimes_A \mathfrak{C}) \circ \rho_M$ and $(M \otimes_A \varepsilon_{\mathfrak{C}}) \circ \rho_M = M$. A morphism of right \mathfrak{C} -comodules $f : (M, \rho_M) \to (N, \rho_N)$ is a right A-linear map $f : M \to N$ such that $\rho_N \circ f = (f \otimes_A \mathfrak{C}) \circ \rho_M$. With these morphisms, right \mathfrak{C} -comodules form a category. Details on corings and their comodules are easily available in [8].

Definition 2.1 An element $g \in \mathfrak{C}$ is said to be a grouplike element if $\Delta_{\mathfrak{C}}(g) = g \otimes_A g$ and $\varepsilon_{\mathfrak{C}}(g) = 1$. The set of all grouplike elements of \mathfrak{C} will be denoted by $\mathbf{Gr}(\mathfrak{C})$. The subring of g-coinvariant elements is defined by

$$A^g = \{ a \in A \, | \, ag = ga \}.$$

Example 2.2 If $B \to A$ is any ring extension, and $A \otimes_B A$ is its associated Sweedler's Acoring with comultiplication $a \otimes_B a' \mapsto (a \otimes_B 1) \otimes_A (1 \otimes_B a')$ and counit the multiplication map $a \otimes_B a' \mapsto aa', a, a' \in A$, then it is clear that $1 \otimes_B 1 \in \mathbf{Gr}(A \otimes_B A)$. Given an SBN (Single Basis Number) ring A, then by [9, p. 113], there exist elements $a, a', b, b' \in A$ such that

$$ab + a'b' = 1$$
, $ba = b'a' = 1$ and $b'a = ba' = 0$.

Clearly $g = a \otimes_{\mathbb{Z}} b + a' \otimes_{\mathbb{Z}} b'$ is a grouplike element of the Sweedler A-coring $A \otimes_{\mathbb{Z}} A$.

Example 2.3 Consider a coring \mathfrak{C} (resp. \mathfrak{C}') over a ring A (resp. A'). Let $\rho : A \to A'$ be a homomorphism of rings, and consider a homomorphism of corings $\varphi : \mathfrak{C} \to \mathfrak{C}'$ in the sense

of [10]. This morphism restricts to a map $\varphi : \mathbf{Gr}(\mathfrak{C}) \to \mathbf{Gr}(\mathfrak{C}')$. Moreover, for each $g \in \mathbf{Gr}(\mathfrak{C})$, ρ induces a homomorphism of rings $\rho : A^g \to A'^{\varphi(g)}$.

It is known [5, Lemma 5.1] that there is a bijection between $\mathbf{Gr}(\mathfrak{C})$ and the set of all right \mathfrak{C} -coactions on the right module A_A . Let [g]A denote the right \mathfrak{C} -comodule structure defined on A by $g \in \mathbf{Gr}(\mathfrak{C})$. The right \mathfrak{C} -coaction $\rho_{[g]A} : [g]A \to [g]A \otimes_A \mathfrak{C} \cong \mathfrak{C}$ is given by sending $a \mapsto ga$. Conversely any right \mathfrak{C} -coaction ρ_A determines a unique element $\rho_A(1) \in \mathbf{Gr}(\mathfrak{C})$. A similar bijection exists taking left \mathfrak{C} -coactions on the left module $_AA$. We denote by A[g] the left \mathfrak{C} -comodule induced by $g \in \mathbf{Gr}(\mathfrak{C})$.

It is easily checked that the subring A^g of A can be identified with both rings of endomorphisms of the right \mathfrak{C} -comodule [g]A and of the left \mathfrak{C} -comodule A[g]. That is, $A^g =$ $\operatorname{End}([g]A_{\mathfrak{C}}) = \operatorname{End}(\mathfrak{C}A[g])$. In fact, for two grouplike elements $g, h \in \operatorname{Gr}(\mathfrak{C})$, we have

$$\operatorname{Hom}_{\mathfrak{C}}([g]A, [h]A) = \{ \alpha \in A \mid \alpha g = h\alpha \}.$$

Therefore, $[g]A \cong [h]A$ as right \mathfrak{C} -comodules if and only if g and h are *conjugated* in the sense that there exists $\alpha \in U(A)$ such that $h = \alpha g \alpha^{-1}$. These remarks suggest, in view of [4], the following definition, due to Brzeziński.

Definition 2.4 Consider the action of the group of units U(A) of A on $\mathbf{Gr}(\mathfrak{C})$

$$U(A) \times \mathbf{Gr}(\mathfrak{C}) \longrightarrow \mathbf{Gr}(\mathfrak{C})$$
$$(\alpha, g) \longmapsto \alpha g \alpha^{-1}.$$
(2.1)

Let $\overline{\mathbf{Gr}}(\mathfrak{C})$ denote the quotient set of $\mathbf{Gr}(\mathfrak{C})$ under the action (2.1). If $\mathbf{Gr}(\mathfrak{C})$ is not empty, then for each $g \in \mathbf{Gr}(\mathfrak{C})$ we can define the pointed set of descent 1-cocycles on \mathfrak{C} with coefficients in [g]A as

$$Z^1(\mathfrak{C}, [g]A) := (\mathbf{Gr}(\mathfrak{C}), g),$$

and the first cohomology pointed set of \mathfrak{C} with coefficients in [g]A as

$$\mathscr{D}^1(\mathfrak{C},[g]A) := (\overline{\mathbf{Gr}}(\mathfrak{C}),\overline{g}),$$

where (X, x) means a pointed set with a distinguished element $x \in X$. We shall use the simplified notations $Z^1(\mathfrak{C}, g)$ and $\mathscr{D}^1(\mathfrak{C}, g)$, respectively, and we will refer to them as the pointed set of descent 1-cocycles on \mathfrak{C} at g, and the first descent cohomology of \mathfrak{C} at g, respectively. The zeroth descent cohomology group of \mathfrak{C} at g is defined to be the group of \mathfrak{C} -comodules automorphisms of [g]A, and can be identified with the group of units $U(A^g)$ of the ring A^g , i.e.,

$$\mathscr{D}^0(\mathfrak{C},g) = U(A^g).$$

Our first aim is to exhibit a direct evidence of the fact that $\mathscr{D}^1(\mathfrak{C}, g)$ is a genuine version for corings of Serre's nonabelian cohomology of groups.

Example 2.5 Let G be a finite group acting by automorphisms on a ring A. Consider R = G * A the associated crossed product. As R is a free right A-module with basis G, its right dual $R^* = \text{Hom}_A(R, A)$ is an A-coring according to [11, Theorem 3.7] (with comultiplication and counit induced by the duals of the multiplication and the unit of the A-ring R). Our next aim is to establish a bijection between $\mathbf{Gr}(R^*)$ and the set of all non-abelian 1-cocycles $Z^1(G^{\text{op}}, U(A))$ in the sense of [3]. Of course here the action of the opposite group G^{op} on the

group U(A) is induced by the given action of the group G on the ring A. So we denote this action by α^x for every $\alpha \in U(A)$ and $x \in G^{\text{op}}$.

Proposition 2.6 The map Θ : $\mathbf{Gr}(R^*) \to Z^1(G^{\mathrm{op}}, U(A))$ which sends $h \in \mathbf{Gr}(R^*)$ to its restriction to G is a bijection. Under this bijection, the trivial 1-cocycle corresponds to the grouplike given by the trace map $\mathfrak{t} : R \to A$ defined by $\mathfrak{t}(\sum_{x \in G} xa_x) = \sum_{x \in G} a_x$. Moreover, $A^{\mathfrak{t}}$ coincides with the subring of the G-invariant elements of A.

Proof Let us denote by $\{x, x^*\}_{x \in G} \subseteq R \times R^*$ the finite dual basis of the right free A-module R_A given by G. The comultiplication and the counit of the A-coring R^* are defined as follows:

$$R^* \xrightarrow{\Delta} R^* \otimes_A R^* \qquad \qquad R^* \xrightarrow{\varepsilon} A$$
$$\varphi \longmapsto \sum_{x \in G} \varphi x \otimes_A x^*, \qquad \varphi \longmapsto \varphi(1_R).$$

where $\varphi x : R \to A$ sends $r \mapsto \varphi(xr)$. We have an isomorphism

$$\Upsilon: R^* \otimes_A R^* \longrightarrow (R \otimes_A R)^*, \quad \varphi \otimes_A \psi \longmapsto [r \otimes_A t \mapsto \varphi(\psi(r)t)].$$

Now, a right A-linear map $h: R \to A$ belongs to $\mathbf{Gr}(R^*)$ if and only if

$$h(1_R) = 1_A$$
 and $\sum_{x \in G} h \, x \otimes_A x^* = h \otimes_A h.$ (2.2)

So given $h \in \mathbf{Gr}(\mathbb{R}^*)$, and applying Υ to the second equality in (2.2), we obtain the equality $h(xy) = h(y)h(x)^y$, for every pair of elements $x, y \in G$. Taking $y = x^{-1}$, we get $h(x^{-1})h(x)^{x^{-1}} = 1_A = h(x)h(x^{-1})^x$, since $h(1_R) = 1_A$. Applying x to the equality

$$h(x^{-1})h(x)^{x^{-1}} = 1_A,$$

we obtain $h(x)h(x^{-1})^x = h(x^{-1})^x h(x) = 1_A$. That is, $h(x) \in U(A)$, for every $x \in G$. In conclusion, we have defined a map

$$\mathbf{Gr}(R^*) \xrightarrow{\Theta} Z^1(G^{\mathrm{op}}, U(A))$$
$$h \longmapsto [\Theta(h) : x \longmapsto h(x)].$$
(2.3)

It is clear that Θ is injective, since G is a basis for the right A-module R. Let us check that it is also surjectivity. Consider any 1-cocycle $f: G^{\text{op}} \to U(A)$, and define $\hat{f}: R \to A$ by sending $x * a \mapsto f(x)a$ for $x \in G$ and $a \in A$. Clearly \hat{f} is a right A-linear map, and $\varepsilon(\hat{f}) = \hat{f}(1_R) = f(\mathbf{e})1_A = f(\mathbf{e})$ (here \mathbf{e} is the neutral element of G). By the 1-cocycle condition on f, we know that $f(\mathbf{e}) = f(\mathbf{e})^2$, that is, $f(\mathbf{e}) = 1_A$ and so $\varepsilon(\hat{f}) = 1_A$. Now an easy computation using again the 1-cocycle condition shows that

$$\Upsilon\bigg(\sum_{x\in G}\widehat{f}x\otimes_A x^*\bigg)(y\otimes_A z)=\Upsilon(\widehat{f}\otimes_A \widehat{f})(y\otimes_A z),$$

for every pair of elements $y, z \in G$, which implies that $\Delta(\hat{f}) = \hat{f} \otimes_A \hat{f}$. Therefore, $\hat{f} \in \mathbf{Gr}(R^*)$. Obviously, we have $\Theta(\hat{f}) = f$, and this establishes the desired surjectivity. Clearly the distinguished 1-cocycle $\mathfrak{e} : G^{\mathrm{op}} \to U(A)$ sending $x \mapsto 1$ corresponds then to the grouplike element $\mathfrak{t} : R \to A$ defined by $\sum_{x \in G} xa_x \mapsto \sum_{x \in G} a_x$. The coinvariant ring $A^{\mathfrak{t}}$ coincides with the invariant subring of A with respect to the G-action, i.e., $A^{\mathfrak{t}} = \{a \in A \mid x(a) = a, \forall x \in G\}$. \Box

Recall from [3], that two 1-cocycles f and h are cohomologous if there exists $\alpha \in U(A)$ such that $f(x) = \alpha^{-1}h(x)\alpha^x$, for every $x \in G^{\text{op}}$. Using the bijection (2.3), we can easily check that two 1-cocycles are cohomologous if and only if their corresponding grouplike elements are conjugated. On the other hand, the equality $A^{\mathfrak{t}} = A^G$ clearly implies that $U(A^{\mathfrak{t}}) = U(A)^{G^{\text{op}}}$, where the latter stands for $\mathscr{H}^0(G^{\text{op}}, U(A))$ the zeroth non-abelian cohomology group as in [3]. Therefore, we deduce from Proposition 2.6:

Theorem 2.7 The map Θ of Proposition 2.6 induces an isomorphism of pointed sets

$$\mathscr{D}^1(R^*,\mathfrak{t})\cong\mathscr{H}^1(G^{\mathrm{op}},U(A)),$$

and there is an equality of groups

$$\mathscr{D}^0(R^*,\mathfrak{t}) = \mathscr{H}^0(G^{\mathrm{op}}, U(A)).$$

Remark 2.8 Since the coring R^* is finitely generated and projective as a left A-module, its category of right comodules is isomorphic to the category of right R-modules. Taking this into account, one can adapt the proof of Proposition 2.6 in order to show that for every right A^{t} -module N, there are an isomorphism of pointed sets

$$\mathscr{D}^1(R^*, N \otimes_{A^{\mathfrak{t}}} [\mathfrak{t}]A) \cong \mathscr{H}^1(G^{\mathrm{op}}, \operatorname{\mathbf{Aut}}_A(N \otimes_{A^{\mathfrak{t}}} A)),$$

and an equality of groups

$$\mathscr{D}^{0}(R^{*}, N \otimes_{A^{\mathfrak{t}}} [\mathfrak{t}]A) = \mathscr{H}^{0}(G^{\mathrm{op}}, \operatorname{\mathbf{Aut}}_{A}(N \otimes_{A^{\mathfrak{t}}} A)),$$

where for every right \mathfrak{C} -comodule M, $\mathscr{D}^{\bullet}(\mathfrak{C}, M)$ are defined as in [4], and $\operatorname{Aut}_A(M)$ is the group of all automorphisms of the underlying right A-module of M.

3 Groups Acting on Grouplikes

The maps defined in the following lemma will be used in the sequel where the role of the extension $B \to A$ will be played by the inclusions $A^g \subseteq A$, and where g runs $\mathbf{Gr}(\mathfrak{C})$ whenever $\mathbf{Gr}(\mathfrak{C}) \neq \emptyset$.

Lemma 3.1 Let $B \rightarrow A$ be any ring extension.

(a) Let $\alpha \in U(A)$ and consider the subring $\alpha^{-1}B\alpha$ of A. Then the map

$$\psi_{\alpha} : A \otimes_{B} A \longrightarrow A \otimes_{\alpha^{-1}B\alpha} A$$
$$a \otimes_{B} a' \longmapsto a\alpha \otimes_{\alpha^{-1}B\alpha} \alpha^{-1}a'$$

is an isomorphism of A-corings.

(b) The map

$$\psi_{-}: \{\alpha \in U(A) \mid \alpha^{-1}B\alpha = B\} \to \operatorname{Aut}(A \otimes_B A)$$

defines an anti-homomorphism of groups.

Proof (a) We only prove that ψ_{α} is a well-defined map. So, for every $a, a' \in A$ and $b \in B$, we have

$$\psi_{\alpha}(ab \otimes_{K} a') = ab\alpha \otimes_{\alpha^{-1}B\alpha} \alpha^{-1}a'$$
$$= a\alpha(\alpha^{-1}b\alpha) \otimes_{\alpha^{-1}B\alpha} a'$$
$$= a\alpha \otimes_{\alpha^{-1}B\alpha} (\alpha^{-1}b\alpha)\alpha^{-1}a'$$

$$= a\alpha \otimes_{\alpha^{-1}B\alpha} \alpha^{-1}ba' = \psi_{\alpha}(a \otimes_{K} ba'),$$

that is, ψ_{α} is a well-defined map.

(b) Straightforward.

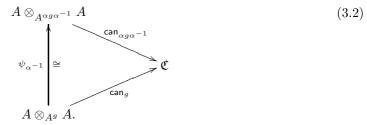
Every grouplike element $g \in \mathbf{Gr}(\mathfrak{C})$ of the A-coring \mathfrak{C} defines a *canonical morphism* of A-corings:

$$\mathsf{can}_q:A\otimes_{A^g}A o\mathfrak{C},\quad a\otimes_{A^g}a'\longmapsto aga'.$$

On the other hand, a straightforward computation shows that

$$A^{\alpha g \alpha^{-1}} = \alpha A^g \alpha^{-1}, \quad \text{for all } \alpha \in U(A).$$
(3.1)

Moreover, for every $\alpha \in U(A)$, we have the commutative diagram of homomorphisms of A-corings:



Recall from [5] that a grouplike $g \in \mathbf{Gr}(\mathfrak{C})$ is said to be *Galois* if can_g is bijective. It follows from diagram (3.2) that g is Galois if and only if $\alpha g \alpha^{-1}$ is Galois. Thus, if we denote by $\mathbf{Gal}(\mathfrak{C})$ the set of all Galois grouplike elements of \mathfrak{C} , then the action (2.1) restricts to an action

$$U(A) \times \mathbf{Gal}(\mathfrak{C}) \longrightarrow \mathbf{Gal}(\mathfrak{C})$$
$$(\alpha, g) \longmapsto \alpha g \alpha^{-1}.$$

The group $Aut(\mathfrak{C})$ of all A-coring automorphisms of \mathfrak{C} acts obviously on $Gr(\mathfrak{C})$:

$$\operatorname{Aut}(\mathfrak{C}) \times \operatorname{Gr}(\mathfrak{C}) \longrightarrow \operatorname{Gr}(\mathfrak{C})$$
$$(\varphi, g) \longmapsto \varphi \cdot g := \varphi(g). \tag{3.3}$$

Since every $\varphi \in Aut(\mathfrak{C})$ is, in particular, a homomorphism of A-bimodules, it follows that the actions (3.3) and (2.1) commute, that is,

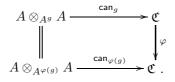
$$\varphi \cdot (\alpha \cdot g) = \alpha \cdot (\varphi \cdot g), \quad \forall g \in \mathbf{Gr}(\mathfrak{C}), \forall \alpha \in U(A), \forall \varphi \in \mathbf{Aut}(\mathfrak{C}).$$

The action (3.3) restricts to an action

$$\operatorname{Aut}(\mathfrak{C}) \times \operatorname{Gal}(\mathfrak{C}) \longrightarrow \operatorname{Gal}(\mathfrak{C})$$
$$(\varphi, g) \longmapsto \varphi(g), \tag{3.4}$$

as the following proposition shows.

Proposition 3.2 (1) For every element $g \in \mathbf{Gr}(\mathfrak{C})$ and $\varphi \in \mathbf{Aut}(\mathfrak{C})$, we have $A^g = A^{\varphi(g)}$. Moreover, the following diagram of morphisms of A-coring commutes:



Therefore, $g \in \operatorname{Gal}(\mathfrak{C})$ if and only if $\varphi(g) \in \operatorname{Gal}(\mathfrak{C})$.

(2) If $g,h \in \operatorname{Gal}(\mathfrak{C})$, then $A^g = A^h$ if and only if there exists $\varphi \in \operatorname{Aut}(\mathfrak{C})$ such that $\varphi(h) = g$.

Proof (1) We only prove that $A^g = A^{\varphi(g)}$. Start with an element $b \in A^g$, then $b\varphi(g) = \varphi(bg) = \varphi(gb) = \varphi(g)b$ because φ is a homomorphism of A-bimodules, which implies that $b \in A^{\varphi(g)}$. Thus

$$A^g \subseteq A^{\varphi(g)} \subseteq A^{\varphi^{-1}(\varphi(g))} = A^g.$$

(2) Assume that $A^g = A^h$ for $g, h \in \operatorname{Gal}(\mathfrak{C})$. Then $\varphi = \operatorname{can}_g \circ \operatorname{can}_h^{-1} \in \operatorname{Aut}(\mathfrak{C})$ and $\varphi(h) = g$. The converse follows from (1).

For every element $g \in \mathbf{Gr}(\mathfrak{C})$, we define

$$U(A)_{g} = \{ \alpha \in U(A) \, | \, \alpha A^{g} = A^{g} \alpha \} = \{ \alpha \in U(A) \, | \, A^{\alpha g \alpha^{-1}} = A^{g} \},$$

where in the second equality, we have used equation (3.1). It is clear that $U(A)_g$ is a subgroup of U(A) which contains the group of units $U(A^g)$ of the subring A^g .

Proposition 3.3 Let \mathfrak{C} be an A-coring.

- (a) For every element $g \in \mathbf{Gr}(\mathfrak{C})$, $U(A^g)$ is a normal subgroup of $U(A)_g$.
- (b) For every $g \in \mathbf{Gr}(\mathfrak{C})$ and $\beta \in U(A)$, we have

$$\beta U(A)_q \beta^{-1} = U(A)_{\beta q \beta^{-1}}.$$

(c) If $g \in \mathbf{Gal}(\mathfrak{C})$, then there exists an exact sequence of groups

$$\begin{split} 1 \to U(A^g) \to U(A)_g \xrightarrow{\phi_g} \mathbf{Aut}(\mathfrak{C}) \\ \alpha \longmapsto \mathrm{can}_g \circ \psi_{\alpha^{-1}} \circ \mathrm{can}_g^{-1}. \end{split}$$

(d) If $\operatorname{Gal}(\mathfrak{C})$ is non-empty and the action of U(A) on $\operatorname{Gal}(\mathfrak{C})$ is transitive, then, for every $g \in \operatorname{Gal}(\mathfrak{C})$, ϕ_q is surjective and, thus, we have an isomorphism of groups

$$\operatorname{Aut}(\mathfrak{C}) \cong U(A)_g/U(A^g).$$

Proof (a) Let β be an arbitrary element in $U(A)_g$. Given an element $\alpha \in U(A^g)$, by definition there exists $\gamma \in A^g$ such that $\beta \alpha \beta^{-1} = \gamma$, and so $\gamma \in U(A^g)$. Therefore, $\beta U(A^g)\beta^{-1} \subseteq U(A^g)$.

(b) It follows from the fact that $U(A)_g$ is the stabilizer in U(A) of A^g for the action by conjugation of U(A) on the set of all subalgebras of A.

(c) An element $\alpha \in U(A)_g$ is such that $\phi_g(\alpha) = 1$ if and only if $\operatorname{can}_g \circ \psi_{\alpha^{-1}} = \operatorname{can}_g$ if and only if $\operatorname{can}_g \circ \psi_{\alpha^{-1}}(1 \otimes_{A^g} 1) = \operatorname{can}_g(1 \otimes_{A^g} 1)$ if and only if $\alpha^{-1}g\alpha = g$ if and only if $\alpha \in U(A^g)$, and the exactness follows.

(d) Let $g \in \operatorname{Gal}(\mathfrak{C})$ and $\varphi \in \operatorname{Aut}(\mathfrak{C})$. Obviously, $\varphi(g) \in \operatorname{Gal}(\mathfrak{C})$ and, since $\operatorname{Gal}(\mathfrak{C}) = \{\beta g \beta^{-1} : \beta \in U(A)\}$, there exists $\alpha \in U(A)$ such that $\varphi(g) = \alpha^{-1} g \alpha$. We know that

$$A^g = A^{\varphi(g)} = A^{\alpha^{-1}g\alpha} = \alpha^{-1}A^g\alpha$$

that is, $\alpha \in U(A)_g$. Moreover, it is easily checked that $\phi_g(\alpha)(g) = \alpha^{-1}g\alpha$ and, since g generates \mathfrak{C} as an A-bimodule, this implies that $\varphi = \phi_g(\alpha)$. Therefore, ϕ_g is surjective. \Box

Corollary 3.4 If g is a Galois grouplike element of \mathfrak{C} such that $\mathscr{D}^1(\mathfrak{C},g) = \{1\}$, then

$$\operatorname{Aut}(\mathfrak{C}) \cong U(A)_g/U(A^g).$$

Remark 3.5 When A is commutative, Corollary 3.4 says that $Aut(\mathfrak{C})$ is the coGalois group of the extension $A^g \subseteq A$, see [12] for the case of field extensions.

Theorem 3.6 Let \mathfrak{C} be an A-coring such that there exists $g \in \operatorname{Gal}(\mathfrak{C})$ and the action of U(A) on $\operatorname{Gal}(\mathfrak{C})$ is transitive (e.g. $\mathscr{D}^1(\mathfrak{C}, g) = \{1\}$). The following statements are equivalent:

- (i) $U(A)_g = U(A)$ (i.e., $\alpha A^g = A^g \alpha$ for every $\alpha \in U(A)$);
- (ii) $U(A)_h = U(A)$ for every $h \in \mathbf{Gal}(\mathfrak{C})$;

(iii) the action of $\operatorname{Aut}(\mathfrak{C})$ on $\operatorname{Gal}(\mathfrak{C})$ is transitive. Furthermore, if one of these equivalent conditions is satisfied, then $A^h = A^g$ for every $h \in \operatorname{Gal}(\mathfrak{C})$, and the map $\xi_g : \operatorname{Aut}(\mathfrak{C}) \to \operatorname{Gal}(\mathfrak{C})$ defined by $\xi_g(\varphi) = \varphi(g)$ for $\varphi \in \operatorname{Aut}(\mathfrak{C})$ is bijective and, thus, $\operatorname{Gal}(\mathfrak{C})$ can be endowed with the structure of a group. Moreover, there exists a short exact sequence of groups

$$\{1\} \to U(A^g) \to U(A) \to \operatorname{\mathbf{Gal}}(\mathfrak{C}) \to \{1\}.$$

Proof (i) \Rightarrow (iii) By assumption, we have $U(A)_g = U(A)$. On the other hand, every grouplike is of the form $\alpha g \alpha^{-1}$ for some $\alpha \in U(A)$. Now, $\alpha g \alpha^{-1} = \phi_g(\alpha^{-1})(g)$, where $\phi_g(\alpha^{-1}) \in \operatorname{Aut}(\mathfrak{C})$ is given by Proposition 3.3 (c). This means that each grouplike element is in the orbit of gunder the action (3.3).

(iii) \Rightarrow (ii) Given $h \in \mathbf{Gal}(\mathfrak{C})$ and $\alpha \in U(A)$, we know from (3.2) that $\alpha h \alpha^{-1} \in \mathbf{Gal}(\mathfrak{C})$. Since the action of $\mathbf{Aut}(\mathfrak{C})$ on $\mathbf{Gal}(\mathfrak{C})$ is transitive, there is $\varphi \in \mathbf{Aut}(\mathfrak{C})$ such that $\varphi(h) = \alpha h \alpha^{-1}$. Proposition 3.2 (2) and equation (3.1) now give that

$$A^{h} = A^{\varphi(h)} = A^{\alpha h \alpha^{-1}} = \alpha A^{h} \alpha^{-1},$$

that is, $\alpha \in U(A)_h$.

Since (ii) \Rightarrow (i) is obvious, the proof of the equivalence between the three statements is done.

If $h \in \operatorname{Gal}(\mathfrak{C})$, then $A^h = A^{\varphi(g)} = A^g$ for some $\varphi \in \operatorname{Aut}(\mathfrak{C})$. On the other hand, it is clear from assumption that ξ_g is surjective. Since g, being Galois, generates \mathfrak{C} as an A-bimodule, it follows that the action of every automorphism of \mathfrak{C} on g determines it completely. Thus, ξ_g is injective. Finally, the short exact sequence of groups is given by Proposition 3.3 (c)–(d). \Box

A ring A is said to be a right invariant basis number ring (right IBN ring for short), if $A^{(n)} \cong A^{(m)}$ (direct sums of copies of A) as right A-modules for $n, m \in \mathbb{N}$ implies that n = m, see [9, p. 114]. An A-coring \mathfrak{C} is said to cosemisimple if $_{\mathcal{A}}\mathfrak{C}$ is a flat module and every right \mathfrak{C} -comodule is semisimple, equivalently, \mathfrak{C}_A is flat and every left \mathfrak{C} -comodule is semisimple. A simple cosemisimple coring is a cosemisimple coring with one type of simple right comodule or equivalently with one type of simple left comodule; see [7, Theorem 4.4] for a structure theorem of all cosemisimple coring \mathfrak{C} is Galois, that is, $\mathbf{Gr}(\mathfrak{C}) = \mathbf{Gal}(\mathfrak{C})$.

Theorem 3.7 Let \mathfrak{C} be an A-coring, and assume that there exists $g \in \operatorname{Gal}(\mathfrak{C})$. Assume that either A^g is a division ring and A is a right (or left) IBN ring, or A is a division ring. Then

$$\mathbf{Gr}(\mathfrak{C}) = \mathbf{Gal}(\mathfrak{C}) = \{ \alpha g \alpha^{-1} \mid \alpha \in U(A) \},\$$

and, in particular, $\mathscr{D}^1(\mathfrak{C}, g) = \{1\}.$

Proof Assume first that A^g is a division ring and A is left or right IBN. By [6, Theorem 4.4] (see also [7, Theorem 3.10, Proposition 4.2]), \mathfrak{C} is a simple cosemisimple A-coring and the functor $-\otimes_{A^g} [g]A : \operatorname{Mod}_{A^g} \to \operatorname{Comod}_{\mathfrak{C}}$ is an equivalence of categories. Thus, $[g]A \cong A^g \otimes_{A^g} [g]A$ is a simple right comodule. Given $h \in \operatorname{Gr}(\mathfrak{C})$, we have the right \mathfrak{C} -comodule [h]A. Since \mathfrak{C} is cosemisimple with a unique type of simple right comodule represented by [g]A, there is an isomorphism of right \mathfrak{C} -comodules $[h]A \cong ([g]A)^{(n)}$ (direct sum of copies of [g]A), for some non zero natural number n. This isomorphism is, in particular, an isomorphism of right free A-modules. Hence, n = 1 since A is a right IBN ring. Therefore, $[h]A \cong [g]A$, as comodules, which means that $h = \alpha g \alpha^{-1}$ for some $\alpha \in U(A)$, and we have done. In the case that A is a division ring, it is easy to show that A^g is a division ring. \Box

Corollary 3.8 Let $B \subseteq A$ be a ring extension, and $A \otimes_B A$ its canonical Sweedler's coring. (1) If B is a division ring and A is a right or left IBN ring, then

$$\mathbf{Gr}(A \otimes_B A) = \{ \alpha \otimes_B \alpha^{-1} \mid \alpha \in U(A) \}.$$

(2) If $B \subseteq A$ is an extension of division rings and $\alpha B = B\alpha$ for every $\alpha \in A$, then $\operatorname{Gr}(A \otimes_B A)$ is a group isomorphic to A^{\times}/B^{\times} .

Proof By [6, Proposition 4.2], $B = A^{1 \otimes_B 1}$. The corollary follows now from Theorem 3.7. \Box

Example 3.9 Let G be a finite group acting on a division ring A as in Example 2.5, and let T be the (division) subring of all G-invariant elements of A. We know that $T = A^{\mathfrak{t}}$. Assume that the trace map \mathfrak{t} is a Galois grouplike of R^* , where R = G * A. This means that $T \subseteq A$ is Galois in the sense that the canonical map $G * A \to \operatorname{End}(_T A)$ is bijective [13]. Then, by Theorems 2.7 and 3.7, $\mathscr{H}^1(G^{\mathrm{op}}, A^{\times}) = \{1\}$. This is a version of Hilbert's 90 theorem for division rings.

Remark 3.10 The condition $\alpha B = B\alpha$ for every $\alpha \in A$ in Corollary 3.8 is rather strong. An easy example is the following. Let $A = \mathbb{C}_q(X, Y)$ the (noncommutative) field of fractions of the complex quantum plane $\mathbb{C}_q[X, Y]$, and $B = \mathbb{C}(X)$, the field of complex rational functions in the variable X (here, $q \neq 1$ is a complex number). It is easy to show that $(1 + Y)B \neq B(1 + Y)$. In fact, $(1 + aY)B \neq B(1 + aY)$ for infinitely many $a \in \mathbb{C}^{\times}$. Of course, Corollary 3.8 says that $\mathscr{D}^1(\mathbb{C}_q(X, Y) \otimes_{\mathbb{C}(X)} \mathbb{C}_q(X, Y), 1 \otimes_{\mathbb{C}(X)} 1) = \{1\}$. Thus, \mathscr{D}^1 does not distinguish between the commutative case (q = 1), and the noncommutative case. We propose then the following definition: Given $g \in \mathbf{Gr}(\mathfrak{C})$, we define the *noncommutative first descent cohomology of* \mathfrak{C} at g as the set of orbits of the action of $U(A)_g$ on $\mathbf{Gr}(\mathfrak{C})$, notation $N^1(\mathfrak{C}, g)$. There is an obvious surjective map of pointed sets $N^1(\mathfrak{C}, g) \to \mathscr{D}^1(\mathfrak{C}, g)$.

Example 3.11 Let H be a Hopf algebra over a commutative ring K and consider any right Hcomodule algebra A with right coaction $\rho^A : A \to A \otimes_K H$ sending $a \mapsto a_{(0)} \otimes_K a_{(1)}$ (summation
understood). Endow $A \otimes_K H$ with the A-coring structure given in [8, Subsection 33.2]. Then $1_A \otimes_K 1_H$ is a grouplike of $A \otimes_K H$ and

$$B := A^{1_A \otimes_K 1_H} = \{ a \in A : \rho^A(a) = a \otimes_K 1 \}.$$

Moreover, $1_A \otimes_K 1_H$ is Galois if and only if $B \subseteq A$ is a Hopf–Galois *H*-extension. Brzeziński has pointed out [4, Subsection 2.6] that $\mathscr{D}^1(A \otimes_K H, 1_A \otimes_K 1_H) = \mathscr{D}^1(H, A)$, where the last one refers to the first descent cohomology set of *H* with coefficients in *A* defined in [1]. We get then the following consequences of Theorems 3.7 and 3.6: **Corollary 3.12** Let $B \subseteq A$ be a Hopf–Galois H-extension, and assume that A is left or right IBN. If B is a division ring, then $\mathscr{D}^1(H, A) = \{1\}$. If, in addition, $B\alpha = \alpha B$ for every $\alpha \in A$ (e.g., $B \subseteq \text{Center}(A)$), then

$$\mathbf{Gr}(A \otimes_K H) = \{ \alpha^{-1} \alpha_{(0)} \otimes_K \alpha_{(1)} : \alpha \in A^{\times} \}$$

is a group with the multiplication

$$(\alpha^{-1}\alpha_{(0)} \otimes_K \alpha_{(1)})(\beta^{-1}\beta_{(0)} \otimes_K \beta_{(1)}) = \beta^{-1}\alpha^{-1}\alpha_{(0)}\beta_{(0)} \otimes_K \alpha_{(1)}\beta_{(1)}.$$

We have the isomorphism of groups

$$U(A)/B^{\times} \xrightarrow{\cong} \mathbf{Gr}(A \otimes_K H), \quad \alpha B^{\times} \longmapsto \alpha^{-1} \alpha_{(0)} \otimes_K \alpha_{(1)}.$$

Example 3.13 A particular case of Example 3.11 occurs when $A = H^a$ the underlying algebra of H, and $\rho^H = \Delta$; the comultiplication of H. When K is a field, $A^{1\otimes_K 1} = K$ and, therefore, $\mathscr{D}^1(H, H^a) = \{1\}$ if H^a is an IBN ring. Moreover, in this case, $\mathbf{Gr}(H^a \otimes_K H)$ is a group with the multiplication given in Corollary 3.12. It is easy to check that the map

$$\mathbf{Gr}(H) \to \mathbf{Gr}(H^a \otimes_K H), \quad g \mapsto 1 \otimes_K g$$

is a monomorphism of groups. For instance, if $H = K[C_2]$ is the group algebra of the cyclic group C_2 of order 2 generated by an element **g**. Then the group of units of the ring H^a is described as follows:

$$U(H^a) = \{k + lg \mid k, l \in K, \text{ such that } k^2 - l^2 \neq 0\};$$

the inverse of $\alpha = k + l\mathbf{g} \in U(H^a)$ is given by the element $\alpha^{-1} = (k^2 - l^2)^{-1}(k - l\mathbf{g})$. Of course H^a is a right and left IBN ring, but not a division ring. Therefore, Corollary 3.12 gives a complete description of the group $\mathbf{Gr}(H^a \otimes_K H)$ which is

$$\{(k^2-l^2)^{-1}(k^2\otimes_K 1-kl\mathbf{g}\otimes_K 1-l^2\otimes_K \mathbf{g}+kl\mathbf{g}\otimes_K \mathbf{g})\,|\,k,l\in K,\text{ such that }k^2-l^2\neq 0\}.$$

References

- [1] Nuss, P., Wambst, M.: Non-abelian Hopf cohomology. J. Algebra, 312, 733-754 (2007)
- [2] Nuss, P., Wambst, M.: Non-abelian Hopf cohomology II The general case. J. Algebra, 319, 4621–4645 (2008)
- [3] Serre, J. P.: Corps Locaux, Deuxième edition, Hermann, Paris, 1968
- [4] Brzeziński, T.: Descent cohomology and corings. Commun. Algebra, 36, 1894–1900 (2008)
- [5] Brzeziński, T.: The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties. Alg. Rep. Theory, 5, 389–410 (2002)
- [6] El Kaoutit, L., Gómez-Torrecillas, J., Lobillo, F. J.: Semisimple corings. Alg. Collog., 11(4), 427-442 (2004)
- [7] El Kaoutit, L., Gómez-Torrecillas, J.: Comatrix corings: Galois corings, descent theory, and a structure theorem for cosemisimple corings. Math. Z., 244, 887–906 (2003)
- [8] Brzeziński, T., Wisbauer, R.: Corings and Comodules, LMS, Vol. 309, Cambridge University Press, 2003
- [9] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules, Springer-Verlag, New York, 1974
- [10] Gómez-Torrecillas, J.: Separable functors in corings. Int. J. Math. Math. Sci., 30, 203–225 (2002)
- [11] Sweedler, M.: The predual theorem to the Jacobson-Bourbaki theorem. Trans. Amer. Math. Soc., 213, 391–406 (1975)
- [12] Masuoka, A.: Cogalois theory for field extensions. J. Math. Soc. Japan, 41(4), 576–592 (1989)
- [13] Kanzaki, T.: On commutor rings and Galois theory of separable algebras. Osaka J. Math., 1, 103–115 (1964)