The algebraic groupoid structure of the universal Picard-Vessiot ring, differential operators and Jet spaces.

Laiachi El Kaoutit (collaboration in part with José Gómez-Torrecillas)

> Universidad de Granada. Spain. kaoutit@ugr.es

Interfaces of Noncommutative Geometry with the Representation Theory of Hopf Algebras and Artin Algebras. Istanbul, August 2012.

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action.

It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions.

It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions. Essentially there are two types of this kind of classifications:

It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions. Essentially there are two types of this kind of classifications:

Classification Problem under:

It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions. Essentially there are two types of this kind of classifications:

Classification Problem under:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Group action

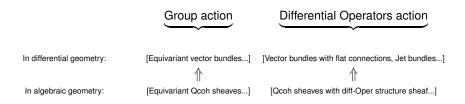
In differential geometry:

[Equivariant vector bundles...]

In algebraic geometry:

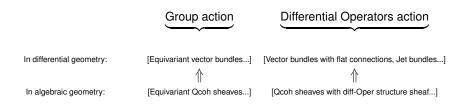
It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions. Essentially there are two types of this kind of classifications:

Classification Problem under:



It is a classical subject in algebra and geometry of classifying certain objects (or category) under some given action. In the most favourable cases one is restricted to a smaller class of those objects (full subcategory) and try to construct from it a universal algebraic 'gadget' which leads to all others solutions. Essentially there are two types of this kind of classifications:

Classification Problem under:



Galois-Grothendieck and Tannaka-Krein Reconstruction Theories.

Characterization Problem under Differential Operators actions.

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold. Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold. Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?



Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold.

Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?

Construct a certain algebraic object say  $\mathscr{V}(\mathcal{M})$  'with a rich structure' where we can identify the category  $\mathscr{VB}_{\mathit{fc}}(\mathcal{M})$  with some full subcategory of the category of representations of  $\mathscr{V}(\mathcal{M})$ .

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold.

Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?

Construct a certain algebraic object say  $\mathscr{V}(\mathcal{M})$  'with a rich structure' where we can identify the category  $\mathscr{VB}_{fc}(\mathcal{M})$  with some full subcategory of the category of representations of  $\mathscr{V}(\mathcal{M})$ . So first we should reformulate algebraically the above problem.

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold.

Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?

Construct a certain algebraic object say  $\mathscr{V}(\mathcal{M})$  'with a rich structure' where we can identify the category  $\mathscr{VB}_{tc}(\mathcal{M})$  with some full subcategory of the category of representations of  $\mathscr{V}(\mathcal{M})$ .

So first we should reformulate algebraically the above problem.

Algebraic problem. Take a commutative ring A (e.g.  $\mathcal{C}^{\infty}(\mathcal{M})$ ) and consider its *ring of differential operators*  $\text{Diff}(A) \odot$ . So we are asking about the characterization of (right) Diff(A)-modules whose restricted A-modules are finitely generated and projective.

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold.

Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?

Construct a certain algebraic object say  $\mathscr{V}(\mathcal{M})$  'with a rich structure' where we can identify the category  $\mathscr{VB}_{tc}(\mathcal{M})$  with some full subcategory of the category of representations of  $\mathscr{V}(\mathcal{M})$ .

So first we should reformulate algebraically the above problem.

Algebraic problem. Take a commutative ring A (e.g.  $\mathcal{C}^{\infty}(\mathcal{M})$ ) and consider its *ring of differential operators* **Diff**(A) • . So we are asking about the characterization of (right) **Diff**(A)-modules whose restricted A-modules are finitely generated and projective. This is clearly an algebraic geometry problem.

Characterization Problem under Differential Operators actions. Diff-Geometric problem. Let  $\mathcal{M}$  be a real smooth manifold.

Can we <u>characterize</u> the category of all real smooth vector bundles (of finite constant rank) over  $\mathcal{M}$  which are endowed within a flat connection? Notation:  $\mathscr{VB}_{fc}(\mathcal{M})$ .

Characterize, we mean what?

Construct a certain algebraic object say  $\mathscr{V}(\mathcal{M})$  'with a rich structure' where we can identify the category  $\mathscr{VB}_{tc}(\mathcal{M})$  with some full subcategory of the category of representations of  $\mathscr{V}(\mathcal{M})$ .

So first we should reformulate algebraically the above problem.

Algebraic problem. Take a commutative ring A (e.g.  $\mathcal{C}^{\infty}(\mathcal{M})$ ) and consider its *ring of differential operators* **Diff**(A) • . So we are asking about the characterization of (right) **Diff**(A)-modules whose restricted A-modules are finitely generated and projective.

This is clearly an algebraic geometry problem.

Alg-Geometric problem. Let  $\mathcal{X}$  be a ringed space, and consider its category of *differential operators sheaves*. Can we characterize the subcategory of locally free quasi-coherent sheaves on  $\mathcal{X}$  with differential operators structure sheaf?

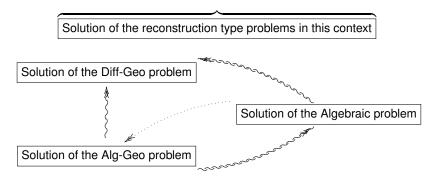
The strategy which we probably need to follow in attempting to solve the previous problems is given by the following graph:

The strategy which we probably need to follow in attempting to solve the previous problems is given by the following graph:

Solution of the reconstruction type problems in this context

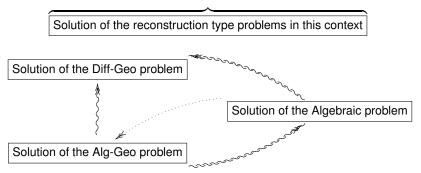
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The strategy which we probably need to follow in attempting to solve the previous problems is given by the following graph:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

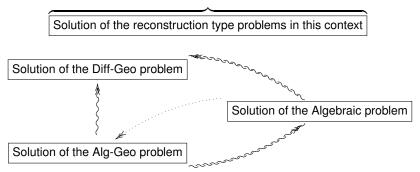
The strategy which we probably need to follow in attempting to solve the previous problems is given by the following graph:



Thus the central problem is the algebraic one, and of course the one which we need first to deal with.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The strategy which we probably need to follow in attempting to solve the previous problems is given by the following graph:



Thus the central problem is the algebraic one, and of course the one which we need first to deal with.

It seem that in general this is a difficult problem which probably may have a solution in the future. So for the moment may be we should first treat some very simplest example.





► The differential Galois theory over the affine line.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Duality between some Hopf algebroids.

- ► The differential Galois theory over the affine line.
- Duality between some Hopf algebroids.
- > The Hopf algebroid structure of the universal Picard-Vessiot ring.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ► The differential Galois theory over the affine line.
- Duality between some Hopf algebroids.
- ► The Hopf algebroid structure of the universal Picard-Vessiot ring.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Differential operators and Jet spaces.

Linear Diff-Equations over the affine line.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Linear Diff-Equations over the affine line. Consider the complex numbers affine line  $\mathbb{A}^1_{\mathbb{C}}$ . This is a regular affine algebraic variety. In particular, the ring  $\text{Diff}(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  coincides with *the derivations ring*  $\Delta(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  which is in this case the first Weyl algebra. This means that we have

$$\mathsf{Diff}(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \Delta(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \mathbb{C}[X][Y,\partial/\partial X],$$

with relation YX = XY + 1. Notation  $A := \mathbb{C}[X]$  and  $\mathcal{U} := A[Y, \partial]$ .

Linear Diff-Equations over the affine line. Consider the complex numbers affine line  $\mathbb{A}^1_{\mathbb{C}}$ . This is a regular affine algebraic variety. In particular, the ring  $\text{Diff}(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  coincides with *the derivations ring*  $\Delta(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  which is in this case the first Weyl algebra. This means that we have

$$\mathsf{Diff}(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \Delta(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \mathbb{C}[X][Y,\partial/\partial X],$$

with relation YX = XY + 1. Notation  $A := \mathbb{C}[X]$  and  $\mathcal{U} := A[Y, \partial]$ . The category which we are looking for, is then the following one

 $\mathcal{A}_{\mathcal{U}} = \{ M \in \mathsf{Mod}_{\mathcal{U}} | M \text{ is a free } A \text{-module of finite rank} \}$ 

together with the *fiber functor*  $\mathcal{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves.

Linear Diff-Equations over the affine line. Consider the complex numbers affine line  $\mathbb{A}^1_{\mathbb{C}}$ . This is a regular affine algebraic variety. In particular, the ring  $\text{Diff}(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  coincides with *the derivations ring*  $\Delta(\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}})$  which is in this case the first Weyl algebra. This means that we have

$$\mathsf{Diff}(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \Delta(\mathcal{O}_{\mathbb{A}^1_\mathbb{C}}) \ = \ \mathbb{C}[X][Y,\partial/\partial X],$$

with relation YX = XY + 1. Notation  $A := \mathbb{C}[X]$  and  $\mathcal{U} := A[Y, \partial]$ . The category which we are looking for, is then the following one

 $\mathcal{A}_{\mathcal{U}} = \{ M \in \mathsf{Mod}_{\mathcal{U}} | M \text{ is a free } A \text{-module of finite rank} \}$ 

together with the *fiber functor*  $\mathcal{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves.

Each object  $M \in A_{\mathcal{U}}$ , is then a *differential module* and one can associated to it a *linear differential matrix equation*. In this way  $A_{\mathcal{U}}$  is nothing but the set of all linear differential matrix equations over the affine line  $\mathbb{A}^1_{\mathbb{C}}$ .

The 'local' Differential Galois theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

*The 'local' Differential Galois theory.* Start with a differential module M with rank m, and consider the commutative polynomial ring on  $m^2$  indeterminate  $A[X_{ij}]$  with differential given by

 $\partial(X_{ij})_{1\leq i,j\leq m} := (X'_{ij})_{1\leq i,j\leq m} = mat(\partial_M)(X_{ij})_{1\leq i,j\leq m}.$ 

*The 'local' Differential Galois theory.* Start with a differential module M with rank m, and consider the commutative polynomial ring on  $m^2$  indeterminate  $A[X_{ij}]$  with differential given by

 $\partial(X_{ij})_{1\leq i,j\leq m} := (X'_{ij})_{1\leq i,j\leq m} = mat(\partial_M)(X_{ij})_{1\leq i,j\leq m}.$ 

*The Picard-Vessiot ring* of *M* is the simple differential ring  $A[X_{ij}, det_X^{-1}]/I_M$  where  $I_M$  is a maximal differential ideal (not necessarily a maximal ideal).

*The 'local' Differential Galois theory.* Start with a differential module M with rank m, and consider the commutative polynomial ring on  $m^2$  indeterminate  $A[X_{ij}]$  with differential given by

 $\partial(X_{ij})_{1\leq i,j\leq m} := (X'_{ij})_{1\leq i,j\leq m} = mat(\partial_M)(X_{ij})_{1\leq i,j\leq m}.$ 

*The Picard-Vessiot ring* of *M* is the simple differential ring  $A[X_{ij}, det_X^{-1}]/I_M$  where  $I_M$  is a maximal differential ideal (not necessarily a maximal ideal).

The affine algebraic group

$$\mathcal{G}_M := Spec_A(A[X_{ij}, det_X^{-1}]/I_M)$$

represented by the Picard-Vessiot ring of *M* is called *the Galois group* of the linear differential equation attached to *M*.

*The 'local' Differential Galois theory.* Start with a differential module M with rank m, and consider the commutative polynomial ring on  $m^2$  indeterminate  $A[X_{ij}]$  with differential given by

 $\partial(X_{ij})_{1\leq i,j\leq m} := (X'_{ij})_{1\leq i,j\leq m} = mat(\partial_M)(X_{ij})_{1\leq i,j\leq m}.$ 

*The Picard-Vessiot ring* of *M* is the simple differential ring  $A[X_{ij}, det_X^{-1}]/I_M$  where  $I_M$  is a maximal differential ideal (not necessarily a maximal ideal).

The affine algebraic group

$$\mathcal{G}_M := Spec_A(A[X_{ij}, det_X^{-1}]/I_M)$$

represented by the Picard-Vessiot ring of *M* is called *the Galois group* of the linear differential equation attached to *M*.

The 'local' (or classical) differential Galois theory says that there is a monoidal equivalence of categories

#### $\{\{M\}\} \simeq \operatorname{Rep}_0(\mathcal{G}_M),$

between the closed monoidal full subcategory of  $\mathcal{A}_{\mathcal{U}}$  'sub-generated' by M, and a full subcategory of the category of finite rank representations of  $\mathcal{G}_M$ .

#### The differential Galois theory over the affine line. The 'global' Differential Galois theory.

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{\longrightarrow} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \stackrel{>}{\Longrightarrow} \mathcal{V}$ .

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{>} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \xrightarrow{\longrightarrow} \mathcal{V}$ .

The ring  $\mathcal{V}$  is refereed to as the universal Picard-Vessiot ring of A.

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{>} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \stackrel{>}{\Longrightarrow} \mathcal{V}$ .

The ring  $\mathcal{V}$  is refereed to as the universal Picard-Vessiot ring of A. Questions.

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{\longrightarrow} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \stackrel{>}{\Longrightarrow} \mathcal{V}$ .

The ring  $\mathcal{V}$  is refereed to as the universal Picard-Vessiot ring of A. Questions.

 (i) Is there some relation between the first Weyl algebra U and the 'universal' ring V? ●

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{\longrightarrow} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \xrightarrow{\longrightarrow} \mathcal{V}$ .

The ring  $\mathcal{V}$  is refereed to as the universal Picard-Vessiot ring of A. Questions.

- (i) Is there some relation between the first Weyl algebra U and the 'universal' ring V? ●
- (ii) What is the meaning of being 'Galois' at the level of the groupoid (Spec(V), Spec(A))?

*The 'global' Differential Galois theory.* The category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is a symmetric monoidal rigid category with identity object the differential module *A*. Moreover, there is a fiber functor  $\mathscr{O} : \mathcal{A}_{\mathcal{U}} \to add(A)$  to the category of locally free quasi coherent sheaves. ( $\mathcal{A}$  is NOT a Tannakian category!).

Therefore (as we will see), there exists an affine algebraic groupoid

 $Spec_{\mathbb{C}}(\mathcal{V}) \xrightarrow{>} Spec_{\mathbb{C}}(A)$ 

equivalently a commutative Hopf algebroid  $A \xrightarrow{\longrightarrow} \mathcal{V}$ .

The ring  $\mathcal{V}$  is refereed to as the universal Picard-Vessiot ring of A. Questions.

- (i) Is there some relation between the first Weyl algebra U and the 'universal' ring V? ●
- (ii) What is the meaning of being 'Galois' at the level of the groupoid (Spec(V), Spec(A))?
- (iii) Is there some relation between the 'local' Galois groups  $\mathcal{G}_M$  and the groupoid  $Spec(\mathcal{V})$ ?

The reconstruction process and Galois corings.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

*The reconstruction process and Galois corings.* Fix a ground base filed  $\mathbb{K}$ . Let  $\omega : \mathcal{A} \to add(A_A)$  be a  $\mathbb{K}$ -linear functor, where  $\mathcal{A}$  is a  $\mathbb{K}$ -linear small category and A is a  $\mathbb{K}$ -algebra (referred to as a *fiber functor*). The image of an object P of  $\mathcal{A}$  under  $\omega$  will be denoted by P its self. We will use the following notations:

 $T_{PQ} = \operatorname{Hom}_{\mathcal{A}}(P,Q), \ T_{P} = T_{PP}, \ P^* = \operatorname{Hom}_{-\mathcal{A}}(P,A), \ \text{ for every } P,Q \in \mathcal{A}.$ 

*The reconstruction process and Galois corings.* Fix a ground base filed  $\mathbb{K}$ . Let  $\omega : \mathcal{A} \to add(A_A)$  be a  $\mathbb{K}$ -linear functor, where  $\mathcal{A}$  is a  $\mathbb{K}$ -linear small category and A is a  $\mathbb{K}$ -algebra (referred to as a *fiber functor*). The image of an object P of  $\mathcal{A}$  under  $\omega$  will be denoted by P its self. We will use the following notations:

 $T_{PQ} = \operatorname{Hom}_{\mathcal{A}}(P,Q), \ T_P = T_{PP}, \ P^* = \operatorname{Hom}_{-\mathcal{A}}(P,\mathcal{A}), \ \text{ for every } P,Q \in \mathcal{A}.$ 

The infinite comatrix A-coring associated to the fiber functor  $\omega : A \rightarrow add(A_A)$ , is the universal object:

$$\mathscr{R}(\mathcal{A}) = \int^{\mathcal{P} \in \mathcal{A}} \mathcal{P}^* \otimes_{\mathbb{K}} \mathcal{P} = rac{\left( \bigoplus_{\mathcal{P} \in \mathcal{A}} \mathcal{P}^* \otimes_{\mathcal{T}_{\mathcal{P}}} \mathcal{P} 
ight)}{\mathfrak{J}_{\mathcal{A}}},$$

where  $\mathfrak{J}_{\mathcal{A}}$  is the  $\mathbb{K}\text{-submodule}$  generated by the set

$$\left\{\boldsymbol{q}^* \otimes_{\mathcal{T}_{\mathcal{Q}}} \boldsymbol{t} \boldsymbol{p} - \boldsymbol{q}^* \boldsymbol{t} \otimes_{\mathcal{T}_{\mathcal{P}}} \boldsymbol{p}: \, \boldsymbol{q}^* \in \boldsymbol{Q}^*, \, \boldsymbol{p} \in \boldsymbol{P}, \, \boldsymbol{t} \in \mathcal{T}_{\mathcal{P} \mathcal{Q}}, \, \boldsymbol{P}, \boldsymbol{Q} \in \mathcal{A}\right\}.$$

The reconstruction process and Galois corings.

*The reconstruction process and Galois corings.* Let  $\mathfrak{C}$  be any *A*-coring, and take  $\mathcal{A}$  to be the category  $\mathcal{A}^{\mathfrak{C}}$  of all right  $\mathfrak{C}$ -comodules whose underlying right *A*-modules are finitely generated and projective. The fiber functor here is given by the restriction of the forgetful functor  $\mathscr{O}$  : Comod<sub> $\mathfrak{C}$ </sub>  $\to$  Mod<sub>A</sub>, that is,  $\mathscr{O}$  :  $\mathcal{A}^{\mathfrak{C}} \to add(A_A)$ . The category  $\mathcal{A}^{\mathfrak{C}}$  is referred to as the *right Cauchy category of*  $\mathfrak{C}$ .

*The reconstruction process and Galois corings.* Let  $\mathfrak{C}$  be any *A*-coring, and take  $\mathcal{A}$  to be the category  $\mathcal{A}^{\mathfrak{C}}$  of all right  $\mathfrak{C}$ -comodules whose underlying right *A*-modules are finitely generated and projective. The fiber functor here is given by the restriction of the forgetful functor  $\mathscr{O}$  : Comod<sub> $\mathfrak{C}$ </sub>  $\to$  Mod<sub>A</sub>, that is,  $\mathscr{O}$  :  $\mathcal{A}^{\mathfrak{C}} \to add(A_A)$ . The category  $\mathcal{A}^{\mathfrak{C}}$  is referred to as the *right Cauchy category of*  $\mathfrak{C}$ .

There is an A-corings morphism known as the canonical map:

$$\operatorname{can}_{\mathcal{A}^{\mathfrak{C}}}:\mathscr{R}(\mathcal{A}^{\mathfrak{C}})\longrightarrow\mathfrak{C},\ \left(\overline{p^{*}\otimes_{T_{P}}p}\longmapsto(p^{*}\otimes_{\mathcal{A}}\mathfrak{C})\circ\varrho_{P}(p)
ight).$$

*The reconstruction process and Galois corings.* Let  $\mathfrak{C}$  be any *A*-coring, and take  $\mathcal{A}$  to be the category  $\mathcal{A}^{\mathfrak{C}}$  of all right  $\mathfrak{C}$ -comodules whose underlying right *A*-modules are finitely generated and projective. The fiber functor here is given by the restriction of the forgetful functor  $\mathscr{O}$  : Comod<sub> $\mathfrak{C}$ </sub>  $\to$  Mod<sub>A</sub>, that is,  $\mathscr{O}$  :  $\mathcal{A}^{\mathfrak{C}} \to add(A_A)$ . The category  $\mathcal{A}^{\mathfrak{C}}$  is referred to as the *right Cauchy category of*  $\mathfrak{C}$ .

There is an A-corings morphism known as the canonical map:

$$\operatorname{can}_{\mathcal{A}^{\mathfrak{C}}}:\mathscr{R}(\mathcal{A}^{\mathfrak{C}})\longrightarrow\mathfrak{C},\ \left(\overline{p^{*}\otimes_{T_{P}}p}\longmapsto(p^{*}\otimes_{\mathcal{A}}\mathfrak{C})\circ\varrho_{\mathcal{P}}(p)\right).$$

We will use the following terminology. An *A*-coring  $\mathfrak{C}$  is said to be  $\mathcal{A}^{\mathfrak{C}}$ -*Galois coring* provided that  $\operatorname{can}_{\mathcal{A}^{\mathfrak{C}}}$  is an isomorphism of *A*-corings. This is the case, for instance when  $\operatorname{Comod}_{\mathfrak{C}}$  is an abelian category having  $\mathcal{A}^{\mathfrak{C}}$  as a set of generators, and this is exactly the situation in the coalgebra case (i.e. when  $\mathcal{A} = \mathbb{K}$ ).

Application to the finite dual of ring extensions.

Application to the finite dual of ring extensions. Starting with a ring extension  $\eta : A \to U$  and consider the category  $\mathcal{A}_{\mathcal{U}}$  of all right  $\mathcal{U}$ -modules which by scalars restriction are finitely generated and projective as right *A*-modules.

(ロ) (同) (三) (三) (三) (○) (○)

Application to the finite dual of ring extensions. Starting with a ring extension  $\eta : A \to U$  and consider the category  $\mathcal{A}_{\mathcal{U}}$  of all right  $\mathcal{U}$ -modules which by scalars restriction are finitely generated and projective as right *A*-modules.

The fiber functor is then the restriction of the forgetful functor  $\eta_* : Mod_{\mathcal{U}} \to Mod_A$ , that is,  $\eta_* : \mathcal{A}_{\mathcal{U}} \to add(A_A)$ . The associate *A*-coring  $\mathscr{R}(\mathcal{A}_{\mathcal{U}})$  is simply denoted by  $\mathcal{U}^\circ$ , and referred to as *the finite dual of the A-ring*  $\mathcal{U}$ .

Application to the finite dual of ring extensions. Starting with a ring extension  $\eta : A \to U$  and consider the category  $\mathcal{A}_{\mathcal{U}}$  of all right  $\mathcal{U}$ -modules which by scalars restriction are finitely generated and projective as right *A*-modules.

The fiber functor is then the restriction of the forgetful functor  $\eta_* : Mod_{\mathcal{U}} \to Mod_A$ , that is,  $\eta_* : \mathcal{A}_{\mathcal{U}} \to add(A_A)$ . The associate *A*-coring  $\mathscr{R}(\mathcal{A}_{\mathcal{U}})$  is simply denoted by  $\mathcal{U}^\circ$ , and referred to as *the finite dual of the A-ring*  $\mathcal{U}$ .

In case where  $A = \mathbb{K}$  is assumed to be a field and  $\mathcal{U}$  is a  $\mathbb{K}$ -algebra. Then  $\mathcal{U}^{\circ}$  is the maximal coalgebra contained in the linear dual  $\mathcal{U}^* = \operatorname{Hom}_{\mathbb{K}}(\mathcal{U}, \mathbb{K})$ . It is well know in this case that  $\mathcal{U}^{\circ}$  is a Hopf  $\mathbb{K}$ -algebra whenever  $\mathcal{U}$  it is.

Application to the finite dual of ring extensions. Starting with a ring extension  $\eta : A \to U$  and consider the category  $\mathcal{A}_{\mathcal{U}}$  of all right  $\mathcal{U}$ -modules which by scalars restriction are finitely generated and projective as right *A*-modules.

The fiber functor is then the restriction of the forgetful functor  $\eta_* : Mod_{\mathcal{U}} \to Mod_A$ , that is,  $\eta_* : \mathcal{A}_{\mathcal{U}} \to add(A_A)$ . The associate *A*-coring  $\mathscr{R}(\mathcal{A}_{\mathcal{U}})$  is simply denoted by  $\mathcal{U}^\circ$ , and referred to as *the finite dual of the A-ring*  $\mathcal{U}$ .

In case where  $A = \mathbb{K}$  is assumed to be a field and  $\mathcal{U}$  is a  $\mathbb{K}$ -algebra. Then  $\mathcal{U}^{\circ}$  is the maximal coalgebra contained in the linear dual  $\mathcal{U}^{*} = \operatorname{Hom}_{\mathbb{K}}(\mathcal{U}, \mathbb{K})$ . It is well know in this case that  $\mathcal{U}^{\circ}$  is a Hopf  $\mathbb{K}$ -algebra whenever  $\mathcal{U}$  it is.

The finite dual of  $\mathbb{K}$ -algebra is in fact *the topological dual of*  $\mathcal{U}$  with respect to the linear topology defined by the set of ideals of finite co-dimension, and where  $\mathbb{K}$  is endowed with the discrete topology. For instance, if  $\mathcal{U}$  is the first Weyl algebra, then it finite dual as  $\mathbb{C}$ -algebra is 0.

#### Duality between some Hopf algebroids. Bialgebroids.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

$$\mathbf{s}: \mathbf{A} \longrightarrow \mathcal{U}, \quad \mathbf{t}: \mathbf{A}^{op} \longrightarrow \mathcal{U}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

 $s: \textbf{\textit{A}} \longrightarrow \mathcal{U}, \quad t: \textbf{\textit{A}}^{op} \longrightarrow \mathcal{U}.$ 

The pair (A, U) is said to be a *right biagebroid* provided that its category of right U-modules is a monoidal category and the scalar restriction functor  $\mathcal{O}_r = (s \otimes t)_* : Mod_{\mathcal{U}} \to Mod_{A^e}$  is a strict monoidal functor.

(ロ) (同) (三) (三) (三) (○) (○)

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

 $s: \textbf{\textit{A}} \longrightarrow \mathcal{U}, \quad t: \textbf{\textit{A}}^{op} \longrightarrow \mathcal{U}.$ 

The pair (A, U) is said to be a *right biagebroid* provided that its category of right U-modules is a monoidal category and the scalar restriction functor  $\mathcal{O}_r = (s \otimes t)_* : Mod_{\mathcal{U}} \to Mod_{A^e}$  is a strict monoidal functor.

The category  $Mod_{\mathcal{U}}$  is left closed with left inner hom-functors

 $hom_{Mod_{\mathcal{U}}}(X, Y) := Hom_{-\mathcal{U}}(X \diamond \mathcal{U}, Y), \quad \diamond \text{ is the product of } Mod_{\mathcal{U}}.$ 

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

 $s: \textbf{\textit{A}} \longrightarrow \mathcal{U}, \quad t: \textbf{\textit{A}}^{op} \longrightarrow \mathcal{U}.$ 

The pair (A, U) is said to be a *right biagebroid* provided that its category of right U-modules is a monoidal category and the scalar restriction functor  $\mathcal{O}_r = (s \otimes t)_* : Mod_{\mathcal{U}} \to Mod_{A^e}$  is a strict monoidal functor.

The category  $Mod_{\mathcal{U}}$  is left closed with left inner hom-functors

 $\mathit{hom}_{\mathsf{Mod}_\mathcal{U}}(X,Y) := \operatorname{Hom}_{-\mathcal{U}}(X \diamond \mathcal{U},Y), \quad \diamond \text{ is the product of } \mathsf{Mod}_\mathcal{U}.$ 

Hopf algebroids.

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

 $s: \textbf{\textit{A}} \longrightarrow \mathcal{U}, \quad t: \textbf{\textit{A}}^{op} \longrightarrow \mathcal{U}.$ 

The pair (A, U) is said to be a *right biagebroid* provided that its category of right U-modules is a monoidal category and the scalar restriction functor  $\mathcal{O}_r = (s \otimes t)_* : Mod_{\mathcal{U}} \to Mod_{A^e}$  is a strict monoidal functor.

The category  $Mod_{\mathcal{U}}$  is left closed with left inner hom-functors

 $hom_{Mod_{\mathcal{U}}}(X, Y) := Hom_{-\mathcal{U}}(X \diamond \mathcal{U}, Y), \quad \diamond \text{ is the product of } Mod_{\mathcal{U}}.$ 

*Hopf algebroids.* A right *A*-bialgebroid  $\mathcal{U}$  is said to be a *right Hopf algebroid* provided that the functor  $\mathcal{O}_r$  preserves left inner-hom functors.

*Bialgebroids.* Let  $\mathcal{U}$  be an  $A^{e}$ -ring ( $A^{e} = A \otimes_{\mathbb{K}} A^{op}$  is the enveloping algebra of A) via the ring extension  $\eta : A^{e} \to \mathcal{U}$  whose *source* and *target* maps are resp. denoted by

 $s: \textbf{\textit{A}} \longrightarrow \mathcal{U}, \quad t: \textbf{\textit{A}}^{op} \longrightarrow \mathcal{U}.$ 

The pair (A, U) is said to be a *right biagebroid* provided that its category of right U-modules is a monoidal category and the scalar restriction functor  $\mathcal{O}_r = (s \otimes t)_* : Mod_{\mathcal{U}} \to Mod_{A^e}$  is a strict monoidal functor.

The category  $Mod_{\mathcal{U}}$  is left closed with left inner hom-functors

 $hom_{Mod_{\mathcal{U}}}(X, Y) := Hom_{-\mathcal{U}}(X \diamond \mathcal{U}, Y), \quad \diamond \text{ is the product of } Mod_{\mathcal{U}}.$ 

*Hopf algebroids.* A right *A*-bialgebroid  $\mathcal{U}$  is said to be a *right Hopf algebroid* provided that the functor  $\mathcal{O}_r$  preserves left inner-hom functors.

This is equivalent to say that the map defined by

 $\mathcal{T}: \mathcal{U} \otimes_{A^{op}} \mathcal{U} \to \mathcal{U} \Diamond \mathcal{U}, \text{ sending } u \otimes_{A^{op}} v \mapsto uv_1 \otimes_A v_2,$ 

is an isomorphism of right  $\mathcal{U}$ -modules.

Some examples of Hopf algebroids.

#### Some examples of Hopf algebroids.

We present some examples of (left, right) Hopf alegbroid, specially the ones with commutative base ring, which in fact will allowed us to establish a certain kind of duality between them. Here are the different types of Hopf algebroid in this class.

(ロ) (同) (三) (三) (三) (○) (○)

#### Some examples of Hopf algebroids.

We present some examples of (left, right) Hopf alegbroid, specially the ones with commutative base ring, which in fact will allowed us to establish a certain kind of duality between them. Here are the different types of Hopf algebroid in this class.

Affine algebraic groups: (A, U) is a commutative Hopf algebroid with s = t. (Even for this class no duality is known!)

(ロ) (同) (三) (三) (三) (○) (○)

#### Some examples of Hopf algebroids.

We present some examples of (left, right) Hopf alegbroid, specially the ones with commutative base ring, which in fact will allowed us to establish a certain kind of duality between them. Here are the different types of Hopf algebroid in this class.

Affine algebraic groups: (A, U) is a commutative Hopf algebroid with s = t. (Even for this class no duality is known!)

(ロ) (同) (三) (三) (三) (○) (○)

► Affine algebraic groupoids: (A, U) is a commutative Hopf algebroid.

#### Some examples of Hopf algebroids.

We present some examples of (left, right) Hopf alegbroid, specially the ones with commutative base ring, which in fact will allowed us to establish a certain kind of duality between them. Here are the different types of Hopf algebroid in this class.

- Affine algebraic groups: (A, U) is a commutative Hopf algebroid with s = t. (Even for this class no duality is known!)
- ► Affine algebraic groupoids: (A, U) is a commutative Hopf algebroid.
- Universal enveloping of Lie algebroids: (A, U) is a (left or right) co-commutative Hopf algebroid with s = t, and A ⊈ 𝔅(U) is not in the centre of U.

Lie algebroid and its associated Hopf algebroid.

#### Lie algebroid and its associated Hopf algebroid.

Assume that A is a commutative  $\mathbb{K}$ -algebra ( $\mathbb{Q} \subset \mathbb{K}$  is a ground field) and denote by  $\operatorname{Der}_{\mathbb{K}}(A)$  the Lie algebra of all  $\mathbb{K}$ -linear derivation of A.

(日) (日) (日) (日) (日) (日) (日)

#### Lie algebroid and its associated Hopf algebroid.

Assume that A is a commutative  $\mathbb{K}$ -algebra ( $\mathbb{Q} \subset \mathbb{K}$  is a ground field) and denote by  $\text{Der}_{\mathbb{K}}(A)$  the Lie algebra of all  $\mathbb{K}$ -linear derivation of A.

(日) (日) (日) (日) (日) (日) (日)

Consider *L* a Lie  $\mathbb{K}$ -algebra with a structure of *A*-module, and  $\omega : L \to \text{Der}_{\mathbb{K}}(A)$  a morphism of Lie  $\mathbb{K}$ -algebras.

#### Lie algebroid and its associated Hopf algebroid.

Assume that A is a commutative  $\mathbb{K}$ -algebra ( $\mathbb{Q} \subset \mathbb{K}$  is a ground field) and denote by  $\text{Der}_{\mathbb{K}}(A)$  the Lie algebra of all  $\mathbb{K}$ -linear derivation of A.

Consider *L* a Lie  $\mathbb{K}$ -algebra with a structure of *A*-module, and  $\omega : L \to \text{Der}_{\mathbb{K}}(A)$  a morphism of Lie  $\mathbb{K}$ -algebras.

Following Rinehart, the pair (A, L) is called *Lie-Rinehart algebra* with *anchor* map  $\omega$ , provided

(ロ) (同) (三) (三) (三) (○) (○)

$$(aX)(b) = a(X(b)) \qquad X \in L, a, b \in A,$$

#### Lie algebroid and its associated Hopf algebroid.

Assume that A is a commutative  $\mathbb{K}$ -algebra ( $\mathbb{Q} \subset \mathbb{K}$  is a ground field) and denote by  $\text{Der}_{\mathbb{K}}(A)$  the Lie algebra of all  $\mathbb{K}$ -linear derivation of A.

Consider *L* a Lie  $\mathbb{K}$ -algebra with a structure of *A*-module, and  $\omega : L \to \text{Der}_{\mathbb{K}}(A)$  a morphism of Lie  $\mathbb{K}$ -algebras.

Following Rinehart, the pair (A, L) is called *Lie-Rinehart algebra* with *anchor* map  $\omega$ , provided

$$(aX)(b) = a(X(b)) \quad X \in L, a, b \in A,$$

$$[X, aY] = a[X, Y] + X(a)Y \qquad X, Y \in L, a \in A.$$

(日) (日) (日) (日) (日) (日) (日)

where X(a) stands for  $\omega(X)(a)$ .

Lie algebroid and its associated Hopf algebroid.

Lie algebroid and its associated Hopf algebroid.

#### Example

Here are the basic examples which in fact stimulate the above general definition.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Lie algebroid and its associated Hopf algebroid.

### Example

Here are the basic examples which in fact stimulate the above general definition.

(ii) The pair  $(A, \text{Der}_{\mathbb{K}}(A))$  admits trivially a structure of (transitive) Lie-Rinehart algebra.

(ロ) (同) (三) (三) (三) (○) (○)

Lie algebroid and its associated Hopf algebroid.

#### Example

Here are the basic examples which in fact stimulate the above general definition.

- (ii) The pair  $(A, \text{Der}_{\mathbb{K}}(A))$  admits trivially a structure of (transitive) Lie-Rinehart algebra.
- (iiii) A *Lie algebroid* is a vector bundle  $\mathcal{E} \to \mathcal{M}$  over a smooth manifold, together with a map  $\omega : \mathcal{E} \to T\mathcal{M}$  of vector bundles and Lie structure [-, -] on the vector space  $\Gamma(\mathcal{E})$  of global smooth sections of  $\mathcal{E}$ , such that the induced map  $\Gamma(\omega) : \Gamma(\mathcal{E}) \to \Gamma(T\mathcal{M})$  is a Lie algebra homomorphism, and for all  $X, Y \in \Gamma(\mathcal{E})$  and any  $f \in \mathcal{C}^{\infty}(\mathcal{M})$  one has

$$[X, fY] = f[X, Y] + \Gamma(\omega)(X)(f)Y.$$

Then the pair  $(\mathcal{C}^{\infty}(\mathcal{M}), \Gamma(\mathcal{E}))$  is obviously a Lie-Rinehart algebra.

Lie algebroid and its associated Hopf algebroid.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Lie algebroid and its associated Hopf algebroid.

Associated to any Lie-Rinehart algebra (A, L), there is a universal object denoted by (A, VL) which is constructed as follows.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lie algebroid and its associated Hopf algebroid.

Associated to any Lie-Rinehart algebra (A, L), there is a universal object denoted by (A, VL) which is constructed as follows.

Let U(L) be the universal enveloping algebra of the Lie algebra L, and take the factor A-algebra of  $A \otimes_{\iota} U(L)$ :

$$\Pi: A \otimes_{\iota} U(L) \longrightarrow \mathcal{V}L := \frac{A \otimes_{\iota} U(L)}{\mathcal{J}_L}, \ \mathcal{J}_L := \langle a \otimes_{\iota} X - 1 \otimes_{\iota} aX \rangle_{a \in A, X \in L},$$

 $A \otimes_{\iota} U(L) := A \otimes_{\mathbb{K}} U(L)$  denotes the twisted *A*-algebra defined by the twisting map:  $\iota : U(L) \otimes_{\mathbb{K}} A \longrightarrow A \otimes_{\mathbb{K}} U(L)$  which sends

 $X \otimes a \longmapsto a \otimes X + X(a) \otimes 1$ , and  $1 \otimes a \longmapsto a \otimes 1$ .

(ロ) (同) (三) (三) (三) (○) (○)

Lie algebroid and its associated Hopf algebroid.

Associated to any Lie-Rinehart algebra (A, L), there is a universal object denoted by (A, VL) which is constructed as follows.

Let U(L) be the universal enveloping algebra of the Lie algebra L, and take the factor A-algebra of  $A \otimes_{\iota} U(L)$ :

$$\Pi: A \otimes_{\iota} U(L) \longrightarrow \mathcal{V}L := \frac{A \otimes_{\iota} U(L)}{\mathcal{J}_L}, \ \mathcal{J}_L := \langle a \otimes_{\iota} X - 1 \otimes_{\iota} aX \rangle_{a \in A, X \in L},$$

 $A \otimes_{\iota} U(L) := A \otimes_{\mathbb{K}} U(L)$  denotes the twisted *A*-algebra defined by the twisting map:  $\iota : U(L) \otimes_{\mathbb{K}} A \longrightarrow A \otimes_{\mathbb{K}} U(L)$  which sends

 $X \otimes a \longmapsto a \otimes X + X(a) \otimes 1$ , and  $1 \otimes a \longmapsto a \otimes 1$ .

The usual co-commutative Hopf  $\mathbb{K}$ -algebra structure of U(L) can be lifted to a structure of co-commutative right Hopf A-algebroid on  $\mathcal{V}L$ .

(日) (日) (日) (日) (日) (日) (日)

Lie algebroid and its associated Hopf algebroid.

Associated to any Lie-Rinehart algebra (A, L), there is a universal object denoted by (A, VL) which is constructed as follows.

Let U(L) be the universal enveloping algebra of the Lie algebra L, and take the factor A-algebra of  $A \otimes_{\iota} U(L)$ :

$$\Pi: A \otimes_{\iota} U(L) \longrightarrow \mathcal{V}L := \frac{A \otimes_{\iota} U(L)}{\mathcal{J}_L}, \ \mathcal{J}_L := \langle a \otimes_{\iota} X - 1 \otimes_{\iota} aX \rangle_{a \in A, X \in L},$$

 $A \otimes_{\iota} U(L) := A \otimes_{\mathbb{K}} U(L)$  denotes the twisted *A*-algebra defined by the twisting map:  $\iota : U(L) \otimes_{\mathbb{K}} A \longrightarrow A \otimes_{\mathbb{K}} U(L)$  which sends

 $X \otimes a \longmapsto a \otimes X + X(a) \otimes 1$ , and  $1 \otimes a \longmapsto a \otimes 1$ .

The usual co-commutative Hopf  $\mathbb{K}$ -algebra structure of U(L) can be lifted to a structure of co-commutative right Hopf *A*-algebroid on  $\mathcal{V}L$ .

#### Example

If we take  $A = \mathbb{C}[X]$ , and consider the Lie-Rinehart algebra  $(A, \text{Der}_{\mathbb{C}}(A))$ . Then it is easily checked that

$$\mathcal{V}\mathrm{Der}_{\mathbb{C}}(A) = \mathcal{U} = \mathbb{C}[X][Y, \partial/\partial X],$$

the first Weyl algebra.

Theorem Let (A, U) be a right bialgebroid and consider it finite dual  $U^{\circ}$  by using the source map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem Let (A, U) be a right bialgebroid and consider it finite dual  $U^{\circ}$  by using the source map.

 (i) Then (A,U°) admits a structure of left bialgebroid with a morphism of A<sup>e</sup>-rings ζ : U° → U\* (NOT in general injective).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem

Let (A, U) be a right bialgebroid and consider it finite dual  $U^{\circ}$  by using the source map.

- (i) Then (A, U°) admits a structure of left bialgebroid with a morphism of A<sup>e</sup>-rings ζ : U° → U\* (NOT in general injective).
- (ii) Assume that U is a co-commutative right Hopf algebroid over a commutative algebra A with s = t. Then (A, U°) is a commutative Hopf algebroid. Conversely, given a commutative Hopf algebroid (A, V). Then (A, V°) is a co-commutative right Hopf algebroid with s = t.

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let (A, U) be a right bialgebroid and consider it finite dual  $U^{\circ}$  by using the source map.

- (i) Then (A, U°) admits a structure of left bialgebroid with a morphism of A<sup>e</sup>-rings ζ : U° → U\* (NOT in general injective).
- (ii) Assume that U is a co-commutative right Hopf algebroid over a commutative algebra A with s = t. Then (A,U°) is a commutative Hopf algebroid. Conversely, given a commutative Hopf algebroid (A, V). Then (A, V°) is a co-commutative right Hopf algebroid with s = t.
- Over a commutative base ring and under certain assumptions, there is a duality between the category of right co-commutative Hopf algebroids, and the category of commutative Hopf algebroids.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let  $A = \mathbb{C}[X]$  and  $\mathcal{U} = A[Y, \partial/\partial X]$ . Since  $(A, \mathcal{U})$  is a co-commutative right Hopf algebroid. By the previous Theorem we have

(ロ) (同) (三) (三) (三) (○) (○)

Let  $A = \mathbb{C}[X]$  and  $\mathcal{U} = A[Y, \partial/\partial X]$ . Since  $(A, \mathcal{U})$  is a co-commutative right Hopf algebroid. By the previous Theorem we have

Corollary

The pair  $(A, U^{\circ})$  is a commutative Hopf algebroid or equivalently  $(Spec(U^{\circ}), Spec(A))$  is an affine algebraic groupoid. In particular,  $U^{\circ} = V$  is the universal Picard-Vessiot ring of A.

(ロ) (同) (三) (三) (三) (○) (○)

Let  $A = \mathbb{C}[X]$  and  $\mathcal{U} = A[Y, \partial/\partial X]$ . Since  $(A, \mathcal{U})$  is a co-commutative right Hopf algebroid. By the previous Theorem we have

Corollary

The pair  $(A, U^{\circ})$  is a commutative Hopf algebroid or equivalently  $(Spec(U^{\circ}), Spec(A))$  is an affine algebraic groupoid. In particular,  $U^{\circ} = V$  is the universal Picard-Vessiot ring of A.

Since the canonical map  $\zeta: \mathcal{U}^{\circ} \to \mathcal{U}^{*}$  is injective, where  $\mathcal{U}^{*}$  is the right *A*-linear dual of  $\mathcal{U}$  endowed with the convolution product. So, we have

Let  $A = \mathbb{C}[X]$  and  $\mathcal{U} = A[Y, \partial/\partial X]$ . Since  $(A, \mathcal{U})$  is a co-commutative right Hopf algebroid. By the previous Theorem we have

Corollary

The pair  $(A, U^{\circ})$  is a commutative Hopf algebroid or equivalently  $(Spec(U^{\circ}), Spec(A))$  is an affine algebraic groupoid. In particular,  $U^{\circ} = V$  is the universal Picard-Vessiot ring of A.

Since the canonical map  $\zeta : \mathcal{U}^{\circ} \to \mathcal{U}^{*}$  is injective, where  $\mathcal{U}^{*}$  is the right *A*-linear dual of  $\mathcal{U}$  endowed with the convolution product. So, we have

#### Corollary

Let  $A = \mathbb{C}[X]$  and  $\mathcal{U} = A[Y, \partial/\partial X]$  its differential operator algebra. Then the commutative Hopf algebroid  $(A, \mathcal{U}^\circ)$  is a Galois A-coring. In particular the category of differential modules  $\mathcal{A}_{\mathcal{U}}$  is isomorphic to the right Cauchy category  $\mathcal{A}^{\mathcal{U}^\circ}$  of  $\mathcal{U}^\circ$ .

The answer of the third question < is given as follows:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The answer of the third question < is given as follows:

Theorem

Let  $A = \mathbb{C}[X]$  be the coordinate ring of the affine line  $\mathbb{A}^1$  over the complex numbers, and  $\mathcal{U}$  its differential operators ring. Then

(ロ) (同) (三) (三) (三) (○) (○)

The answer of the third question < is given as follows:

Theorem Let  $A = \mathbb{C}[X]$  be the coordinate ring of the affine line  $\mathbb{A}^1$  over the complex numbers, and  $\mathcal{U}$  its differential operators ring. Then

 (i) For any differential module M, there is a Hopf ideal J<sub>M</sub> of the Hopf algebroid U°, such that

 $A[X_{ij}, det_X^{-1}]/I_M \cong \mathcal{U}^{\circ}/\mathcal{J}_M := \mathcal{U}_M^{\circ}$ 

is an isomorphism of differential Hopf A-algebras. Moreover, the associated affine algebraic group  $\mathcal{G}_M$  is homeomorphic to a closed subset of the topological space  $Spec(\mathcal{U}^\circ)$ .

The answer of the third question < is given as follows:

Theorem Let  $A = \mathbb{C}[X]$  be the coordinate ring of the affine line  $\mathbb{A}^1$  over the complex numbers, and  $\mathcal{U}$  its differential operators ring. Then

 (i) For any differential module M, there is a Hopf ideal J<sub>M</sub> of the Hopf algebroid U°, such that

 $A[X_{ij}, det_X^{-1}]/I_M \cong \mathcal{U}^{\circ}/\mathcal{J}_M := \mathcal{U}_M^{\circ}$ 

is an isomorphism of differential Hopf A-algebras. Moreover, the associated affine algebraic group  $\mathcal{G}_M$  is homeomorphic to a closed subset of the topological space  $Spec(\mathcal{U}^\circ)$ .

(ii) There is an open cover

$$Spec(\mathcal{U}^{\circ}) = \bigcup_{M \in \mathcal{A}_{\mathcal{U}}} (Spec(\mathcal{U}^{\circ}) \setminus Spec(\mathcal{U}^{\circ}_{M})).$$

Diff-Operators.

Diff-Operators. Let A be a commutative  $\mathbb{K}$ -algebra and P, Q are A-modules. For any linear map  $f \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$  and element  $a \in A$ , we set

 $\delta_a(f) = fa - af \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$ , sending  $p \mapsto f(ap) - af(p)$ .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Diff-Operators. Let A be a commutative  $\mathbb{K}$ -algebra and P, Q are A-modules. For any linear map  $f \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$  and element  $a \in A$ , we set

 $\delta_a(f) = fa - af \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$ , sending  $p \mapsto f(ap) - af(p)$ .

The space of *differential operators of order*  $k, k \ge 0$  is defined by

$$\operatorname{Diff}_k(\boldsymbol{P},\boldsymbol{Q}) = \left\{ f \in \operatorname{Hom}_{\mathbb{K}}(\boldsymbol{P},\boldsymbol{Q}) | \, \delta_{\boldsymbol{a}_o} \circ \cdots \circ \delta_{\boldsymbol{a}_k}(f) = \boldsymbol{0}, \, \forall \, \boldsymbol{a}_0, \cdots, \boldsymbol{a}_k \in \boldsymbol{A} \right\}$$

(ロ) (同) (三) (三) (三) (○) (○)

Diff-Operators. Let A be a commutative  $\mathbb{K}$ -algebra and P, Q are A-modules. For any linear map  $f \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$  and element  $a \in A$ , we set

 $\delta_a(f) = fa - af \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$ , sending  $p \mapsto f(ap) - af(p)$ .

The space of *differential operators of order*  $k, k \ge 0$  is defined by

$$\operatorname{Diff}_k(\boldsymbol{P},\boldsymbol{Q}) = \left\{ f \in \operatorname{Hom}_{\mathbb{K}}(\boldsymbol{P},\boldsymbol{Q}) | \, \delta_{\boldsymbol{a}_o} \circ \cdots \circ \delta_{\boldsymbol{a}_k}(f) = \boldsymbol{0}, \, \forall \, \boldsymbol{a}_0, \cdots, \boldsymbol{a}_k \in \boldsymbol{A} \right\}$$

There is a filtrated system inside  $\operatorname{Hom}_{\mathbb{K}}(P, Q)$ 

 $\operatorname{Diff}_0(P,Q) \subseteq \operatorname{Diff}_1(P,Q) \subseteq \cdots \subseteq \operatorname{Diff}_k(P,Q) \subseteq \operatorname{Diff}_{k+1}(P,Q) \subseteq \cdots$ 

A D F A 同 F A E F A E F A Q A

where  $\text{Diff}_0(P, Q) = \text{Hom}_A(P, Q)$ .

Diff-Operators. Let A be a commutative  $\mathbb{K}$ -algebra and P, Q are A-modules. For any linear map  $f \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$  and element  $a \in A$ , we set

 $\delta_a(f) = fa - af \in \operatorname{Hom}_{\mathbb{K}}(P, Q)$ , sending  $p \mapsto f(ap) - af(p)$ .

The space of *differential operators of order*  $k, k \ge 0$  is defined by

$$\operatorname{Diff}_k(\boldsymbol{P},\boldsymbol{Q}) \,=\, \Big\{f\in\operatorname{Hom}_{\mathbb{K}}(\boldsymbol{P},\boldsymbol{Q})|\, \delta_{\boldsymbol{a}_o}\circ\cdots\circ\delta_{\boldsymbol{a}_k}(f)=\boldsymbol{0},\,\forall\,\boldsymbol{a}_0,\cdots,\boldsymbol{a}_k\in\boldsymbol{A}\Big\}$$

There is a filtrated system inside  $\operatorname{Hom}_{\mathbb{K}}(P, Q)$ 

$$\operatorname{Diff}_0(P,Q) \subseteq \operatorname{Diff}_1(P,Q) \subseteq \cdots \subseteq \operatorname{Diff}_k(P,Q) \subseteq \operatorname{Diff}_{k+1}(P,Q) \subseteq \cdots$$

where  $\text{Diff}_0(P, Q) = \text{Hom}_A(P, Q)$ .

The composition of linear maps induces a *filtered*  $\mathbb{K}$ -algebra structure on the space  $\cup_{k>0} \text{Diff}_k(P, P)$ . In particular, we denote

$$\operatorname{Diff}(A) := \bigcup_{k \geq 0} \operatorname{Diff}_k(A, A)$$

and refer to as the differential operators ring of A

### Example

Let  $\mathcal{M}$  be a smooth manifolds and set  $A = \mathcal{C}^{\infty}(\mathcal{M})$ . The graded algebra  $\operatorname{gr}(\operatorname{Diff}(A))$  is isomorphic to the subalgebra of the algebra  $\mathcal{C}^{\infty}(T^*\mathcal{M})$  consisting of functions whose restriction of the fibers  $T_z^*\mathcal{M}$  of the cotangent bundle are polynomials.

(ロ) (同) (三) (三) (三) (○) (○)

### Example

Let  $\mathcal{M}$  be a smooth manifolds and set  $A = \mathcal{C}^{\infty}(\mathcal{M})$ . The graded algebra  $\operatorname{gr}(\operatorname{Diff}(A))$  is isomorphic to the subalgebra of the algebra  $\mathcal{C}^{\infty}(T^*\mathcal{M})$  consisting of functions whose restriction of the fibers  $T_z^*\mathcal{M}$  of the cotangent bundle are polynomials.

Jet spaces.



### Example

Let  $\mathcal{M}$  be a smooth manifolds and set  $A = \mathcal{C}^{\infty}(\mathcal{M})$ . The graded algebra  $\operatorname{gr}(\operatorname{Diff}(A))$  is isomorphic to the subalgebra of the algebra  $\mathcal{C}^{\infty}(T^*\mathcal{M})$  consisting of functions whose restriction of the fibers  $T_z^*\mathcal{M}$  of the cotangent bundle are polynomials.

*Jet spaces.* Let *P* be as before, for any  $k \ge 0$ , we denote by

$$\mu_k(\boldsymbol{P}) := \boldsymbol{\textit{span}}_{\mathbb{K}} \{ \delta^{\boldsymbol{a}_0} \circ \cdots \circ \delta^{\boldsymbol{a}_k} (\boldsymbol{a} \otimes_{\mathbb{K}} \boldsymbol{p}), \, \boldsymbol{a}_0, \cdots, \boldsymbol{a}_k \in \boldsymbol{A} \}$$

where  $\delta^r(a \otimes p) = a \otimes rp - ar \otimes p$ ,  $r \in A$ . The quotient A-bimodule

$$j_k: \boldsymbol{P} \to \boldsymbol{A} \otimes_{\mathbb{K}} \boldsymbol{P} \to \mathcal{J}^k(\boldsymbol{P}) := \frac{\boldsymbol{A} \otimes_{\mathbb{K}} \boldsymbol{P}}{\mu_k(\boldsymbol{P})},$$

is called the k-Jet space of P.

### Example

Let  $\mathcal{M}$  be a smooth manifolds and set  $A = \mathcal{C}^{\infty}(\mathcal{M})$ . The graded algebra  $\operatorname{gr}(\operatorname{Diff}(A))$  is isomorphic to the subalgebra of the algebra  $\mathcal{C}^{\infty}(T^*\mathcal{M})$  consisting of functions whose restriction of the fibers  $T_z^*\mathcal{M}$  of the cotangent bundle are polynomials.

*Jet spaces.* Let *P* be as before, for any  $k \ge 0$ , we denote by

$$\mu_k(\boldsymbol{P}) := \boldsymbol{\textit{span}}_{\mathbb{K}} \{ \delta^{\boldsymbol{a}_0} \circ \cdots \circ \delta^{\boldsymbol{a}_k} (\boldsymbol{a} \otimes_{\mathbb{K}} \boldsymbol{p}), \, \boldsymbol{a}_0, \cdots, \boldsymbol{a}_k \in \boldsymbol{A} \}$$

where  $\delta^r(a \otimes p) = a \otimes rp - ar \otimes p$ ,  $r \in A$ . The quotient A-bimodule

$$j_k: \boldsymbol{P} o \boldsymbol{A} \otimes_{\mathbb{K}} \boldsymbol{P} o \mathcal{J}^k(\boldsymbol{P}) := rac{\boldsymbol{A} \otimes_{\mathbb{K}} \boldsymbol{P}}{\mu_k(\boldsymbol{P})},$$

is called the *k-Jet space of P*. The reason of why this terminology, is Example

Let  $\mathcal{M}$  be a smooth manifolds and set  $A = \mathcal{C}^{\infty}(\mathcal{M})$ . Assume that  $P = \Gamma(\pi)$  the global smooth sections of some smooth vector bundle  $\pi : \mathcal{E} \to \mathcal{M}$ . Then there is a isomorphism of *A*-modules

 $\mathcal{J}^{k}(P) \cong \Gamma(J^{k}(\pi))$  where  $J^{k}(\pi)$  is the *k*-Jet bundle of  $\pi$ .

Duality between Diff-Operators and Jets.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Duality between Diff-Operators and Jets. For any pair of A-modules P, Q and every  $k \ge 0$ , we have a commutative diagram

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Thus the functor  $\text{Diff}_k(P, -)$  is represented by  $\mathcal{J}^k(P)$ .

Duality between Diff-Operators and Jets. For any pair of A-modules P, Q and every  $k \ge 0$ , we have a commutative diagram

Thus the functor  $\text{Diff}_k(P, -)$  is represented by  $\mathcal{J}^k(P)$ .

Since  $\{\mathcal{J}^k(A)\}_{k\geq 0}$  is an inverse system whose structural maps are  $\nu_{l,k} : \mathcal{J}^l(A) \to \mathcal{J}^k(A), l \leq k$ , with universal equalities  $\nu_{l,k} \circ j_l = j_k$ . We can consider the *the infinite Jet space* (or *the prolongation Jet*)

$$\mathcal{J}(\boldsymbol{A}) := \varprojlim_{k} \mathcal{J}^{k}(\boldsymbol{A}).$$

(日) (日) (日) (日) (日) (日) (日)

Duality between Diff-Operators and Jets. For any pair of A-modules P, Q and every  $k \ge 0$ , we have a commutative diagram

Thus the functor  $\text{Diff}_k(P, -)$  is represented by  $\mathcal{J}^k(P)$ .

Since  $\{\mathcal{J}^k(A)\}_{k\geq 0}$  is an inverse system whose structural maps are  $\nu_{l,k} : \mathcal{J}^l(A) \to \mathcal{J}^k(A), l \leq k$ , with universal equalities  $\nu_{l,k} \circ j_l = j_k$ . We can consider the *the infinite Jet space* (or *the prolongation Jet*)

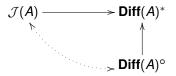
$$\mathcal{J}(\boldsymbol{A}) := \underset{k}{\varprojlim} \mathcal{J}^{k}(\boldsymbol{A}).$$

Using the above isomorphisms, we get

$$\mathsf{Diff}(A)^* \cong \varprojlim \operatorname{Hom}_{-A}(\mathsf{Diff}_k(A), A) \cong \varprojlim \left({}^*\mathcal{J}^k(A)\right)^*$$

(日) (日) (日) (日) (日) (日) (日)

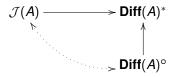
Therefore, there is a diagram of linear maps



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

Therefore, there is a diagram of linear maps

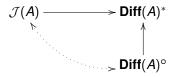


(ロ) (同) (三) (三) (三) (○) (○)

where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

Questions.

Therefore, there is a diagram of linear maps



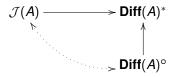
where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

#### Questions.

(i) Which structure then it have the prolongation Jet  $\mathcal{J}(A)$ ?

(ロ) (同) (三) (三) (三) (○) (○)

Therefore, there is a diagram of linear maps



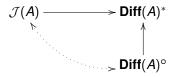
where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

Questions.

- (i) Which structure then it have the prolongation Jet  $\mathcal{J}(A)$ ?
- (ii) Is there some relation between the *A*-coring Diff(*A*)° and the prolongation Jet *J*(*A*)?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Therefore, there is a diagram of linear maps



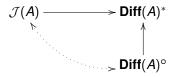
where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

Questions.

- (i) Which structure then it have the prolongation Jet  $\mathcal{J}(A)$ ?
- (ii) Is there some relation between the *A*-coring Diff(*A*)° and the prolongation Jet *J*(*A*)?

Before answering to these questions, let see an alternative description of  $\mathcal{J}(A)$ .

Therefore, there is a diagram of linear maps



where in the case  $A = \mathbb{C}[X]$  it is a diagram of algebra maps with injective vertical arrow.

Questions.

- (i) Which structure then it have the prolongation Jet  $\mathcal{J}(A)$ ?
- (ii) Is there some relation between the *A*-coring Diff(*A*)° and the prolongation Jet *J*(*A*)?

Before answering to these questions, let see an alternative description of  $\mathcal{J}(A)$ . Let us denote by  $\mathcal{K} := Ker(A \otimes_{\mathbb{K}} A \to A)$ , we are considering  $A \otimes_{\mathbb{K}} A$  as an augmented algebra over A. In fact  $(A, A \otimes_{\mathbb{K}} A)$  is a commutative Hopf algebroid.

So we can consider the  $\mathcal{K}$ -adic topology on  $A \otimes_{\mathbb{K}} A$ , and so its completion  $\widehat{A \otimes_{\mathbb{K}} A} = \lim_{\mathcal{K}^n} (\frac{A \otimes_{\mathbb{K}} A}{\mathcal{K}^n})$ . This is a *complete Hopf algebroids*, in the sense of Quillen.

So we can consider the  $\mathcal{K}$ -adic topology on  $A \otimes_{\mathbb{K}} A$ , and so its completion  $\widehat{A \otimes_{\mathbb{K}} A} = \lim_{\mathcal{K}^n} (\frac{A \otimes_{\mathbb{K}} A}{\mathcal{K}^n})$ . This is a *complete Hopf algebroids*, in the sense of Quillen.

Let *A* be a commutative  $\mathbb{K}$ -algebra. Then, for every  $k \ge 0$ , we have

$$\mathcal{J}^k(A) \cong rac{A \otimes_{\mathbb{K}} A}{\mathcal{K}^{k+1}}$$

(日) (日) (日) (日) (日) (日) (日)

In particular,  $\mathcal{J}(A) = A \otimes_{\mathbb{K}} A$ , and so  $\mathcal{J}(A)$  is a complete Hopf algebroids. This answer the first above question.

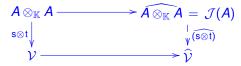
So we can consider the  $\mathcal{K}$ -adic topology on  $A \otimes_{\mathbb{K}} A$ , and so its completion  $\widehat{A \otimes_{\mathbb{K}} A} = \lim_{\mathcal{K}^n} (\frac{A \otimes_{\mathbb{K}} A}{\mathcal{K}^n})$ . This is a *complete Hopf algebroids*, in the sense of Quillen.

Let *A* be a commutative  $\mathbb{K}$ -algebra. Then, for every  $k \ge 0$ , we have

$$\mathcal{J}^k(\mathcal{A}) \cong rac{\mathcal{A} \otimes_{\mathbb{K}} \mathcal{A}}{\mathcal{K}^{k+1}}$$

In particular,  $\mathcal{J}(A) = A \otimes_{\mathbb{K}} A$ , and so  $\mathcal{J}(A)$  is a complete Hopf algebroids. This answer the first above question.

For any commutative Hopf algebroid (A, V), there is a commutative diagram



where the right hand vertical arrow is a morphism of complete Hopf algebroids.

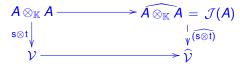
So we can consider the  $\mathcal{K}$ -adic topology on  $A \otimes_{\mathbb{K}} A$ , and so its completion  $\widehat{A \otimes_{\mathbb{K}} A} = \lim_{\mathcal{K}^n} (\frac{A \otimes_{\mathbb{K}} A}{\mathcal{K}^n})$ . This is a *complete Hopf algebroids*, in the sense of Quillen.

Let *A* be a commutative  $\mathbb{K}$ -algebra. Then, for every  $k \ge 0$ , we have

$$\mathcal{J}^k(A)\cong rac{A\otimes_{\mathbb{K}}A}{\mathcal{K}^{k+1}}$$

In particular,  $\mathcal{J}(A) = A \otimes_{\mathbb{K}} A$ , and so  $\mathcal{J}(A)$  is a complete Hopf algebroids. This answer the first above question.

For any commutative Hopf algebroid (A, V), there is a commutative diagram



where the right hand vertical arrow is a morphism of complete Hopf algebroids.

For  $A = \mathbb{C}[X]$ , is there an isomorphism  $\widehat{\text{Diff}(A)}^{\circ} \cong \mathcal{J}(A)$  of complete Hopf algebroids?



#### Hopf algebroid

- G. Böhm *Hopf algebroids*, Handbook of algebra, Vol. 6, North-Holland, Amsterdam, 2009, pp. 173–236.
- D. C. Ravenel, *Complex Cobordism and Stable Homotopy Groups of Spheres*. Pure and Applied Mathematics Series, Academic Press, San Diego, 1986.
- P. Schauenburg, *Bialgebras over noncommutative rings* and a structure theorem for Hopf bimodules, Appl. Categ. Structures 6 (1998), no. 2, 193–222.
- SGA 3: Schémas en groupes. Vol. 1, Propriétés générales des schémas en groupes. Lecture Notes in Mathematics 151. Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- M. Takeuchi, *Groups of algebras over A* ⊗ A, J. Math. Soc. Japan **29** (1977), no. 3, 459–492.



#### Reconstruction and Tannaka-Krein Duality

- A. Bruguières, *Théorie tannakienne non commutative*, Commun. in Algebra **22** (1994), 5817–5860.
- P. Deligne, Catégories tannakiennes. In The Grothendieck Festschrift (P. Cartier et al., eds), Progr. math., 87, vol. II, Birkhäuser, Boston, MA. 1990, pp. 111–195.
- A. Joyal and R. Street, An Introduction to Tannaka duality and quantum groups. In "Category Theory Proceedings, Comom 1990", Lecture Note in Math. Vol. 1488, pp. 411–492, Springer-Verlag, Berlin 1991.
- L. El Kaoutit and J. Gómez-Torrecillas, *Infinite comatrix corings*. IMRN, **39** (2004), 2017–2037.
- Phùng Hô Hai, Tannaka-Krein duality for Hopf algebroids, Israel J. Math. 167 (2008), 193–225.

#### 

#### Lie algebroids and Lie groupoids

- G. Rinehart, *Differential forms on general commutative algebras*, Trans. Amer. Math. Soc. **108** (1963), 195–222.
- K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Note Series 124. Cambridge University Press. 1987.
- K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids. London Math. Soc. Lecture Note Series 213. Cambridge University Press. 2005.

(ロ) (同) (三) (三) (三) (○) (○)

- J. Nestruev, *Smooth manifolds and observables*, Graduate Texts in Mathematics, vol. 220, Springer-Verlag, New York, 2003.
- A. M. Vinogradov, I. S. Krasil'shchik and V. V. Lychagin, *Geometry of Jet Spaces and Nonlinear Partial Differential Equations.* Gordon and Breach, New York, 1986.

### **Linear Differential Equations**

- S. C. Coutinho, A premier of algebraic D-modules. London Mathematical Society Student Text 33. Cambridge University Press. 1995.
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations. A Series of Comprehensive Studies in Mathematics, Vol. 328. Springer-Verlag, Berlin Heidelberg, 2003.