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The context and the philosophy behind.

It is a classical subject in algebra and geometry of classifying certain
objects (or category) under some given action.

In the most favourable cases one is restricted to a smaller class of
those objects (full subcategory) and try to construct from it a universal

algebraic ’gadget’ which leads to all others solutions.
Essentially there are two types of this kind of classifications:

Classification Problem under:

Group action︸ ︷︷ ︸
In differential geometry: [Equivariant vector bundles...]

In algebraic geometry: [Equivariant Qcoh sheaves...]

KS

Differential Operators action︸ ︷︷ ︸
[Vector bundles with flat connections, Jet bundles...]

[Qcoh sheaves with diff-Oper structure sheaf...]

KS

Galois-Grothendieck and Tannaka-Krein Reconstruction Theories.
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Motivations and overviews.
Characterization Problem under Differential Operators actions.

Diff-Geometric problem. LetM be a real smooth manifold.
Can we characterize the category of all real smooth vector bundles
(of finite constant rank) overM which are endowed within a flat
connection? Notation: V Bfc(M).
Characterize, we mean what?
Construct a certain algebraic object say V (M) ’with a rich structure’
where we can identify the category V Bfc(M) with some full
subcategory of the category of representations of V (M).
So first we should reformulate algebraically the above problem.
Algebraic problem. Take a commutative ring A (e.g. C∞(M))
and consider its ring of differential operators Diff(A) . So we are
asking about the characterization of (right) Diff(A)-modules whose
restricted A-modules are finitely generated and projective.
This is clearly an algebraic geometry problem.
Alg-Geometric problem. Let X be a ringed space, and consider
its category of differential operators sheaves. Can we characterize
the subcategory of locally free quasi-coherent sheaves on X with
differential operators structure sheaf?
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Motivations and overviews.
The strategy which we probably need to follow in attempting to solve
the previous problems is given by the following graph:

︷ ︸︸ ︷
Solution of the reconstruction type problems in this context

Solution of the Diff-Geo problem

Solution of the Algebraic problem

nnnn

d$d$e%f&f&g'h(h(i)j*j*k+k+l,m-m-n.

zzzz
Solution of the Alg-Geo problem

OOOO O�
O�
O�
O�
O� :: ::

0p 1q 1q 2r 3s 3s 4t 4t 5u 6v 6v 7w 8x 8x 9y :z :z

Thus the central problem is the algebraic one, and of course the one
which we need first to deal with.

It seem that in general this is a difficult problem which probably may
have a solution in the future. So for the moment may be we should
first treat some very simplest example.
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The Plan.

I The differential Galois theory over the affine line.

I Duality between some Hopf algebroids.

I The Hopf algebroid structure of the universal Picard-Vessiot ring.

I Differential operators and Jet spaces.
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The differential Galois theory over the affine line.

Linear Diff-Equations over the affine line.

Consider the complex
numbers affine line A1

C. This is a regular affine algebraic variety. In
particular, the ring Diff(OA1

C
) coincides with the derivations ring

∆(OA1
C
) which is in this case the first Weyl algebra. This means that

we have
Diff(OA1

C
) = ∆(OA1

C
) = C[X ][Y , ∂/∂X ],

with relation YX = XY + 1. Notation A := C[X ] and U := A[Y , ∂].
The category which we are looking for, is then the following one

AU = {M ∈ ModU | M is a free A-module of finite rank}

together with the fiber functor O : AU → add(A) to the category of
locally free quasi coherent sheaves.
Each object M ∈ AU , is then a differential module and one can
associated to it a linear differential matrix equation. In this way AU is
nothing but the set of all linear differential matrix equations over the
affine line A1

C.
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The differential Galois theory over the affine line.
The ’local’ Differential Galois theory.

Start with a differential module
M with rank m, and consider the commutative polynomial ring on m2

indeterminate A[Xij ] with differential given by

∂(Xij )1≤,i,j≤m := (X ′ij )1≤,i,j≤m = mat(∂M)(Xij )1≤,i,j≤m.

The Picard-Vessiot ring of M is the simple differential ring
A[Xij ,det−1

X ]/IM where IM is a maximal differential ideal (not
necessarily a maximal ideal).
The affine algebraic group

GM := SpecA(A[Xij ,det−1
X ]/IM)

represented by the Picard-Vessiot ring of M is called the Galois group
of the linear differential equation attached to M.
The ’local’ (or classical) differential Galois theory says that there is a
monoidal equivalence of categories

{{M}} ' Rep0(GM),

between the closed monoidal full subcategory of AU ’sub-generated’
by M, and a full subcategory of the category of finite rank
representations of GM .
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The differential Galois theory over the affine line.
The ’global’ Differential Galois theory.

The category of differential
modules AU is a symmetric monoidal rigid category with identity
object the differential module A. Moreover, there is a fiber functor
O : AU → add(A) to the category of locally free quasi coherent
sheaves. (A is NOT a Tannakian category!).
Therefore (as we will see), there exists an affine algebraic groupoid

SpecC(V) //
//
SpecC(A)oo

equivalently a commutative Hopf algebroid A //
// Voo .

The ring V is refereed to as the universal Picard-Vessiot ring of A.
Questions.

(i) Is there some relation between the first Weyl algebra U and the
’universal’ ring V?

(ii) What is the meaning of being ’Galois’ at the level of the groupoid
(Spec(V),Spec(A))?

(iii) Is there some relation between the ’local’ Galois groups GM and
the groupoid Spec(V)?
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Duality between some Hopf algebroids.
The reconstruction process and Galois corings.

Fix a ground base
filed K. Let ω : A → add(AA) be a K-linear functor, where A is a
K-linear small category and A is a K-algebra (referred to as a fiber
functor). The image of an object P of A under ω will be denoted by P
its self. We will use the following notations:

TPQ = HomA(P,Q), TP = TPP , P∗ = Hom−A(P,A), for every P,Q ∈ A.

The infinite comatrix A-coring associated to the fiber functor
ω : A → add(AA), is the universal object:

R (A) =

∫ P ∈A
P∗ ⊗K P =

( ⊕
P∈A

P∗ ⊗TP P
)

JA
,

where JA is the K-submodule generated by the set{
q∗ ⊗TQ tp − q∗t ⊗TP p : q∗ ∈ Q∗, p ∈ P, t ∈ TPQ , P,Q ∈ A

}
.
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Duality between some Hopf algebroids.

The reconstruction process and Galois corings.

Let C be any
A-coring, and take A to be the category AC of all right C-comodules
whose underlying right A-modules are finitely generated and
projective. The fiber functor here is given by the restriction of the
forgetful functor O : ComodC → ModA, that is, O : AC → add(AA).
The category AC is referred to as the right Cauchy category of C.

There is an A-corings morphism known as the canonical map:

canAC : R(AC) −→ C,
(

p∗ ⊗TP p 7−→ (p∗ ⊗A C) ◦ %P(p)
)
.

We will use the following terminology. An A-coring C is said to be
AC-Galois coring provided that canAC is an isomorphism of
A-corings. This is the case, for instance when ComodC is an abelian
category having AC as a set of generators, and this is exactly the
situation in the coalgebra case (i.e. when A = K).
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Duality between some Hopf algebroids.

Application to the finite dual of ring extensions.

Starting with a ring
extension η : A→ U and consider the category AU of all right
U-modules which by scalars restriction are finitely generated and
projective as right A-modules.

The fiber functor is then the restriction of the forgetful functor
η∗ : ModU → ModA, that is, η∗ : AU → add(AA). The associate
A-coring R(AU ) is simply denoted by U◦, and referred to as the finite
dual of the A-ring U .

In case where A = K is assumed to be a field and U is a K-algebra.
Then U◦ is the maximal coalgebra contained in the linear dual
U∗ = HomK(U ,K). It is well know in this case that U◦ is a Hopf
K-algebra whenever U it is.

The finite dual of K-algebra is in fact the topological dual of U with
respect to the linear topology defined by the set of ideals of finite
co-dimension, and where K is endowed with the discrete topology.
For instance, if U is the first Weyl algebra, then it finite dual as
C-algebra is 0.
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Duality between some Hopf algebroids.
Bialgebroids.

Let U be an Ae-ring (Ae = A⊗K Aop is the enveloping
algebra of A) via the ring extension η : Ae → U whose source and
target maps are resp. denoted by

s : A −→ U , t : Aop −→ U .

The pair (A,U) is said to be a right biagebroid provided that its
category of right U-modules is a monoidal category and the scalar
restriction functor Or = (s⊗ t)∗ : ModU → ModAe is a strict monoidal
functor.
The category ModU is left closed with left inner hom-functors

homModU (X ,Y ) := Hom−U (X♦U ,Y ), ♦ is the product of ModU .

Hopf algebroids. A right A-bialgebroid U is said to be a right Hopf
algebroid provided that the functor Or preserves left inner-hom
functors.
This is equivalent to say that the map defined by

T : U ⊗Aop U → U♦U , sending u ⊗Aop v 7→ uv1 ⊗A v2,

is an isomorphism of right U-modules.
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Duality between some Hopf algebroids.

Some examples of Hopf algebroids.

We present some examples of (left, right) Hopf alegbroid, specially
the ones with commutative base ring, which in fact will allowed us to
establish a certain kind of duality between them. Here are the
different types of Hopf algebroid in this class.

I Affine algebraic groups: (A,U) is a commutative Hopf algebroid
with s = t. (Even for this class no duality is known!)

I Affine algebraic groupoids: (A,U) is a commutative Hopf
algebroid.

I Universal enveloping of Lie algebroids: (A,U) is a (left or right)
co-commutative Hopf algebroid with s = t, and A * Z (U) is not
in the centre of U .
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Duality between some Hopf algebroids.

Lie algebroid and its associated Hopf algebroid.

Assume that A is a commutative K-algebra (Q ⊂ K is a ground field)
and denote by DerK(A) the Lie algebra of all K-linear derivation of A.

Consider L a Lie K-algebra with a structure of A-module, and
ω : L→ DerK(A) a morphism of Lie K-algebras.

Following Rinehart, the pair (A,L) is called Lie-Rinehart algebra with
anchor map ω, provided

(aX )(b) = a(X (b)) X ∈ L, a,b ∈ A,

[X ,aY ] = a[X ,Y ] + X (a)Y X ,Y ∈ L,a ∈ A.

where X (a) stands for ω(X )(a).
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Duality between some Hopf algebroids.
Lie algebroid and its associated Hopf algebroid.

Example
Here are the basic examples which in fact stimulate the above
general definition.

(ii) The pair (A,DerK(A)) admits trivially a structure of (transitive)
Lie-Rinehart algebra.

(iiii) A Lie algebroid is a vector bundle E →M over a smooth
manifold, together with a map ω : E → TM of vector bundles
and Lie structure [−,−] on the vector space Γ(E) of global
smooth sections of E , such that the induced map
Γ(ω) : Γ(E)→ Γ(TM) is a Lie algebra homomorphism, and for
all X ,Y ∈ Γ(E) and any f ∈ C∞(M) one has

[X , fY ] = f [X ,Y ] + Γ(ω)(X )(f )Y .

Then the pair (C∞(M), Γ(E)) is obviously a Lie-Rinehart
algebra.
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Duality between some Hopf algebroids.
Lie algebroid and its associated Hopf algebroid.

Associated to any Lie-Rinehart algebra (A,L), there is a universal
object denoted by (A,VL) which is constructed as follows.
Let U(L) be the universal enveloping algebra of the Lie algebra L, and
take the factor A-algebra of A⊗ι U(L):

Π : A⊗ι U(L) −→ VL :=
A⊗ι U(L)

JL
, JL := 〈a⊗ι X − 1⊗ι aX 〉a∈A, X∈L,

A⊗ι U(L) := A⊗K U(L) denotes the twisted A-algebra defined by the
twisting map: ι : U(L)⊗K A −→ A⊗K U(L) which sends

X ⊗ a 7−→ a⊗ X + X (a)⊗ 1, and 1⊗ a 7−→ a⊗ 1.

The usual co-commutative Hopf K-algebra structure of U(L) can be
lifted to a structure of co-commutative right Hopf A-algebroid on VL.

Example
If we take A = C[X ], and consider the Lie-Rinehart algebra
(A,DerC(A)). Then it is easily checked that

VDerC(A) = U = C[X ][Y , ∂/∂X ],

the first Weyl algebra.
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Duality between some Hopf algebroids.

Theorem
Let (A,U) be a right bialgebroid and consider it finite dual U◦ by using
the source map.

(i) Then (A,U◦) admits a structure of left bialgebroid with a
morphism of Ae-rings ζ : U◦ → U∗ (NOT in general injective).

(ii) Assume that U is a co-commutative right Hopf algebroid over a
commutative algebra A with s = t. Then (A,U◦) is a
commutative Hopf algebroid. Conversely, given a commutative
Hopf algebroid (A,V). Then (A,V◦) is a co-commutative right
Hopf algebroid with s = t.

(iii) Over a commutative base ring and under certain assumptions,
there is a duality between the category of right co-commutative
Hopf algebroids, and the category of commutative Hopf
algebroids.
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The Hopf algebroid structure of the universal
Picard-Vessiot ring.

Let A = C[X ] and U = A[Y , ∂/∂X ]. Since (A,U) is a co-commutative
right Hopf algebroid. By the previous Theorem we have

Corollary
The pair (A,U◦) is a commutative Hopf algebroid or equivalently
(Spec(U◦),Spec(A)) is an affine algebraic groupoid. In particular,
U◦ = V is the universal Picard-Vessiot ring of A.

Since the canonical map ζ : U◦ → U∗ is injective, where U∗ is the
right A-linear dual of U endowed with the convolution product. So, we
have

Corollary
Let A = C[X ] and U = A[Y , ∂/∂X ] its differential operator algebra.
Then the commutative Hopf algebroid (A,U◦) is a Galois A-coring. In
particular the category of differential modules AU is isomorphic to the
right Cauchy category AU◦

of U◦.
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The Hopf algebroid structure of the universal
Picard-Vessiot ring.

The answer of the third question is given as follows:

Theorem
Let A = C[X ] be the coordinate ring of the affine line A1 over the
complex numbers, and U its differential operators ring. Then

(i) For any differential module M, there is a Hopf ideal JM of the
Hopf algebroid U◦, such that

A[Xij ,det−1
X ]/IM ∼= U◦/JM := U◦

M

is an isomorphism of differential Hopf A-algebras. Moreover, the
associated affine algebraic group GM is homeomorphic to a
closed subset of the topological space Spec(U◦).

(ii) There is an open cover

Spec(U◦) =
⋃

M ∈AU

(Spec(U◦) \ Spec(U◦
M)) .
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Differential operators and Jet spaces.
Diff-Operators.

Let A be a commutative K-algebra and P,Q are
A-modules. For any linear map f ∈ HomK(P,Q) and element a ∈ A,
we set

δa(f ) = fa− af ∈ HomK(P,Q), sending p 7→ f (ap)− af (p).

The space of differential operators of order k , k ≥ 0 is defined by

Diffk (P,Q) =
{

f ∈ HomK(P,Q)| δao ◦ · · · ◦ δak (f ) = 0, ∀a0, · · · ,ak ∈ A
}

There is a filtrated system inside HomK(P,Q)

Diff0(P,Q) ⊆ Diff1(P,Q) ⊆ · · · ⊆ Diffk (P,Q) ⊆ Diffk+1(P,Q) ⊆ · · ·

where Diff0(P,Q) = HomA(P,Q).
The composition of linear maps induces a filtered K-algebra structure
on the space ∪k≥0Diffk (P,P). In particular, we denote

Diff(A) := ∪k≥0Diffk (A,A)

and refer to as the differential operators ring of A.
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Differential operators and Jet spaces.
Example
LetM be a smooth manifolds and set A = C∞(M). The graded
algebra gr(Diff(A)) is isomorphic to the subalgebra of the algebra
C∞(T ∗M) consisting of functions whose restriction ot the fibers T ∗zM
of the cotangent bundle are polinomials.

Jet spaces. Let P be as before, for any k ≥ 0, we denote by

µk (P) := spanK {δa0 ◦ · · · ◦ δak (a⊗K p), a0, · · · ,ak ∈ A}
where δr (a⊗ p) = a⊗ rp − ar ⊗ p, r ∈ A. The quotient A-bimodule

jk : P → A⊗K P → J k (P) :=
A⊗K P
µk (P)

,

is called the k-Jet space of P. The reason of why this terminology, is

Example
LetM be a smooth manifolds and set A = C∞(M). Assume that
P = Γ(π) the global smooth sections of some smooth vector bundle
π : E →M. Then there is a isomorphism of A-modules

J k (P) ∼= Γ(Jk (π)) where Jk (π) is the k -Jet bundle of π.
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Differential operators and Jet spaces.
Duality between Diff-Operators and Jets.

For any pair of
A-modules P,Q and every k ≥ 0, we have a commutative diagram

HomK(P,Q)
∼= // HomA−(A⊗K P,Q)

Diffk (P,Q)
?�

OO

∼= //___ HomA−(J k (P),Q)
� ?

OO

Thus the functor Diffk (P,−) is represented by J k (P).
Since {J k (A)}k≥0 is an inverse system whose structural maps are
νl,k : J l (A)→ J k (A), l ≤ k , with universal equalities νl,k ◦ jl = jk . We
can consider the the infinite Jet space (or the prolongation Jet)

J (A) := lim←−
k
J k (A).

Using the above isomorphisms, we get

Diff(A)∗ ∼= lim←−Hom−A(Diffk (A),A) ∼= lim←−
(
∗J k (A)

)∗
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Differential operators and Jet spaces.
Therefore, there is a diagram of linear maps

J (A) //
ZZ

//

Diff(A)∗

Diff(A)◦

OO

where in the case A = C[X ] it is a diagram of algebra maps with
injective vertical arrow.

Questions.

(i) Which structure then it have the prolongation Jet J (A)?

(ii) Is there some relation between the A-coring Diff(A)◦ and the
prolongation Jet J (A)?

Before answering to these questions, let see an alternative
description of J (A). Let us denote by K := Ker(A⊗K A→ A), we are

considering A⊗K A as an augmented algebra over A. In fact
(A,A⊗K A) is a commutative Hopf algebroid.
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Differential operators and Jet spaces.
So we can consider the K-adic topology on A⊗K A, and so its
completion Â⊗K A = lim←−( A⊗KA

Kn ). This is a complete Hopf algebroids,
in the sense of Quillen.

Let A be a commutative K-algebra. Then, for every k ≥ 0, we have

J k (A) ∼=
A⊗K A
Kk+1

In particular, J (A) = Â⊗K A, and so J (A) is a complete Hopf
algebroids. This answer the first above question.
For any commutative Hopf algebroid (A,V), there is a commutative
diagram

A⊗K A //

s⊗t
��

Â⊗K A = J (A)

(̂s⊗t)���
�

V // V̂
where the right hand vertical arrow is a morphism of complete Hopf
algebroids.
For A = C[X ], is there an isomorphism ̂Diff(A)◦ ∼= J (A) of complete
Hopf algebroids?
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