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Motivations and overviews.

One of the main motivation of this research is to give an algebraic
counter part of the following geometric results:
Following Moerdijk and Mrčun:

I Lie groupoids with arrows the set of isomorphisms classes of (left)
principal bundles (also know as Hilsum-Skandalis maps) form a
category MGPD called a Morita category of Lie groupoids.
The composition is given by the tensor product of principal bundles,
that is, the orbit space of the associated fibred product, and the
identity arrows by the unit bundles.

I Two Lie groupoids are weakly equivalent if and only if they are
isomorphic in MGPD. Thus, two Lie groupoids are weakly equivalent
if and only if there is a principal bi-bundle connecting them.

I The trivial bundle construction defines a functor P : Gpd → MGPD
from the category of Lie groupoids to the Morita category of Lie
groupoids. This functor sends weak equivalences to isomorphisms.

I The pair (P ,MGPD) forms a universal solution: Any functor
F : Gpd → C which sends weak equivalences to isomorphisms,
factors uniquely through P .
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I Lie groupoids with arrows the set of isomorphisms classes of (left)
principal bundles (also know as Hilsum-Skandalis maps) form a
category MGPD called a Morita category of Lie groupoids.
The composition is given by the tensor product of principal bundles,
that is, the orbit space of the associated fibred product, and the
identity arrows by the unit bundles.

I Two Lie groupoids are weakly equivalent if and only if they are
isomorphic in MGPD. Thus, two Lie groupoids are weakly equivalent
if and only if there is a principal bi-bundle connecting them.

I The trivial bundle construction defines a functor P : Gpd → MGPD
from the category of Lie groupoids to the Morita category of Lie
groupoids. This functor sends weak equivalences to isomorphisms.

I The pair (P ,MGPD) forms a universal solution: Any functor
F : Gpd → C which sends weak equivalences to isomorphisms,
factors uniquely through P .



Motivations and overviews.
One of the main motivation of this research is to give an algebraic
counter part of the following geometric results:
Following Moerdijk and Mrčun:
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Commutative Hopf algebroid.

Fix a ground field k, and denote by Algk the category of commutative
k-algebras.

A commutative Hopf algebroid is a co-groupoid kind of object in the
category Algk. Specifically, this is a pair of commutative k-algebras
(A ,H) such that for any object C in Algk, we have in a functorial way, a
groupoid structure

H (C) : Algk(H ,C)
s∗ //
t∗ // Algk(A ,C).ε∗oo

Equivalently, there are morphisms of k-algebras:

A
s //
t // Hεoo

source, target and identity arrow
sHt

∆ //
sHt ⊗A sHt,

composition
sHt

S //
tHs.

inverse arrow

satisfying the corresponding compatibility axioms of (a local) groupoid:
co-associativity, co-unitary and idempotency properties.
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Morita Equivalent Hopf algebroids.

A right H-comdule is a pair (M, %) consisting of an A -module M and
A -linear map (coaction) % : M → M ⊗A H compatible with ∆ and ε.
Morphisms between right comodules (or colinear maps) are A -linear
maps compatible with the coactions.

The category of right comodules ComodH is a symmetric monoidal
category. The category of left H-comodules is analogously defined and it
is isomorphic via the antipode to the category of right comodules.
Bicomodules are left and right comodules with colinear coactions.

We say that (A ,H) is a flat Hopf alegebroid when sH (or Ht) is a flat
A -module. In this case, both extensions s and t are faithfully flat. The
category ComodH is a Grothendieck category if and only if (A ,H) is a
flat Hopf algebroid and the forgetful functor OH : ComodH → ModA is
exact.

Two flat Hopf algebroids are said to be Morita equivalent if their
categories of (right) comodules are equivalent as symmetric monoidal
categories.
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Weak equivalences between Hopf algebroids.

A morphism of Hopf algebroids: φ : (A ,H)→ (B ,K) is a pair of
k-algebra maps φ = (φ0, φ1):

φ0 : A → B , φ1 : H → K

such that, for any object C in Algk, the associated pair of maps

(
Algk(H ,C),Algk(A ,C)

) (φ∗1,C , φ
∗
0,C )

//
(
Algk(K ,C),Algk(B ,C)

)
H (C)

ΦC // K (C)

establishes, in a natural way, a morphism of groupoids, that is, a functor
between the underlying categories.

The induction functor φ
∗

: ComodH → ComodK associated to a
morphism of Hopf algebroid φ : (A ,H)→ (B ,K) is defined by

OH(−) ⊗A φ0
B : ComodH → ComodK .

This is by definition a monoidal symmetric functor.
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Weak equivalences between Hopf algebroids.

A morphism φ is said to be a weak equivalence if the associated
induction functor φ∗ is an equivalence of categories.

Two Hopf algebroids (A ,H) and (B ,K) are said to be weakly equivalent
if there is a third Hopf algebroid (C ,J) with diagram

(C ,J)

(A ,H)

66

(B ,K)

hh

of weak equivalences.

Obviously two flat Hopf algebroid which are weakly equivalent, they are
Morita equivalent. The converse was conjectured as follows by Mark
Hovey and Neil Strickland
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Principal Bi-bundles between flat Hopf algebroids.

To prove this conjecture we need the notion of principal bi-bundles.

Let (AH) and (B ,K) be two flat Hopf algebroids. A left principal
(H ,K)-bundle is a three-tuple (P, α, β) where

P

A

α
88

B

βff

is a diagram of k-algebras, and P is an (H ,K)-bicomodule algebra, that
is, P is left H-comodule algebra via α and a right K -comodule algebra
via β, such that

• β is a faithfully flat extension;

• the canonical map

canH ,P : P ⊗B P −→ H ⊗A P,
(
p ⊗B q 7−→ p(−1) ⊗A p(0)q

)
is bijective.

Right principal bundles are similarly defined. A principal bi-bundles is
simoultaniously a left and right principal bundle.
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Principal Bi-bundles between flat Hopf algebroids.

Examples:

I Let (A ,H) be a flat Hopf algebroid. Then H is a left, as well as a
right principal (H ,H)-bundle, thus a principal bi-bundle. This
bundle is called the unit bundle and denoted by U (H).

I Given a morphism of flat Hopf algebroids φ : (A ,H)→ (B ,K), set
P := H ⊗A φ0

B with the k-algebra extensions

α : A → P, α(a) = s(a) ⊗A 1B , β : B → P, β(b) = 1H ⊗A b .

Then (P, α, β) is a left principal (H ,K)-bundle, called the trivial
bundle as it is the pull-back of the unit bundle φ∗(U (H)).

Left principal (H ,K)-bundles form a category PB `(H ,K) where each
morphism is an isomorphism, i.e. a groupoid. The cotensor product of
left principal bundles, is again a left principal bundle. Thus left principal
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Principal Bi-bundles and weak equivalences.

Let (P, α, β) be an (H ,K)-bicomodule algebra over flat Hopf algebroids.
Then, the pair (P,Hs ⊗A P ⊗B sK) := (P,H X P Y K) admits a structure
of flat Hopf algebroid. Furthermore, there is a diagram

(P,H X P Y K)

(A ,H)

α=(α, α1) 55

(B ,K)

β=(β, β1)ii

of Hopf algebroids, where α1 and β1 are the obvious maps. This Hopf
algebroid is called the two-sided translation Hopf algebroid.

Furthermore,

I if (P, α, β) is a left principal (H ,K)-bundle, then α is a weak
equivalence.

I if (P, α, β) is a right principal (H ,K)-bundle, then β is a weak
equivalence.

I if (P, α, β) is a principal (H ,K)-bibundle, then both α and β are
weak equivalences. Therefore, (A ,H) and (B ,K) are weakly
equivalent.
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Principal Bi-bundles and weak equivalences.

The converse also hods true.

Two flat Hopf algebroids are weakly equivalent if and only if there is a
principal bi-bundle connecting them.

The converse can be seen as follows: Take two weakly equivalent flat
Hopf algebroids:

(A ,H)

ϕ ((

(B ,K)

ωvv
(C ,J)

Consider the trivial bundles ϕ∗(U (H)) and ω∗(U (K)). These are
principal bibundles, as ϕ and ω are weak equivalences, so that their
cotensor product P := ω∗(U (K))�J ϕ

∗(U (H)) is again a principal
(H ,K)-bibundle.
In this way this diagram is completed to the following one

(P,H X P Y K)

(A ,H)

ϕ **

α 44

(B ,K)

ωtt

βjj

(C ,J)
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Principal Bi-bundles and Morita equivalences.

Let (A ,H) and (B ,K) be two flat Hopf algebroids.

If (P, α, β) is a principal (H ,K)-bibundle, then the functor:

−�HP : ComodH −→ ComodK

is a symmetric monoidal equivalence of categories.

Conversely:

Let F : ComodH → ComodK be a symmetric monoidal equivalence of
categories, and consider F (H) as a k-algebra with the canonical algebra
extensions

F (H)

A

α
88

B � F (H)

β=F (t)ii

Then the three-tuple (F (H), α, β) is a principal (H ,K)-bibundle.
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The first main result.

Theorem

Let (A ,H) and (B ,K) be two flat Hopf algebroids. The following are
equivalent:

(1) (A ,H) and (B ,K) are Morita equivalent.

(2) There is a principal bibundle connecting (A ,H) and (B ,K).

(3) (A ,H) and (B ,K) are weakly equivalent.
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The second main result.

The 2-functor P : HAlgd −→ PB` cop from the 2-category of flat Hopf
algebroids to the conjugate of PB`, sends any 1-cell φ : (A ,H)→ (B ,K)
to its associated trivial left principal bundle P(φ) = H ⊗φ B.

A 1-cell φ in HAlgd is a weak equivalence if and only if P(φ) is an
invertible 1-cell in PB` cop, i.e., is part of an internal equivalence.

The pair (P ,PB`) is the universal solution with respect to this property:

Theorem

Let F : HAlgd → B be a 2-functor which sends weak equivalences to
invertible 1-cells. Then, up to isomorphism (of 2-functors), there is a
unique 2-functor F̃ such that the diagram

HAlgd

F ))

P // PB` cop

B

commutes up to an isomorphism of 2-functors.
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