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Overviews.

As abstract groups play an important role in the theory of commutative
Hopf algebras, abstract groupoids are a very useful tool in studying
commutative Hopf algebroids.

The aim of this talk is to give a characterization of transitive groupoids in
terms of weak equivalence and principal groupoids-bisets.

This was in fact used to study a class of Hopf algebroids termed
geometrically transitive, which we will not appear in this talk.

A part from our particular interest in transitive groupoids: From a general
point of view of differential geometry these groupoids are important
objects, as Ehresmann’s result shows: The theory of transitive Lie
groupoids is equivalent to the theory of principal fibre bundles

Even at the abstract level, transitive groupoids still enjoying very rich
structure, as we will see here.
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Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each
morphism is an isomorphism.
That is, a pair of two sets G := (G1,G0) with diagram

G1
s //
t // G0ιoo ,

where s and t are resp. the source and the target of a given arrow,
and ι assigns to each object its identity arrow. All together with an
associative and unital multiplication G2 := G1 s× t G1 → G1 as well
as a map G1 → G1 which associated to each arrow its inverse.
Given a groupoid G , consider an object x ∈ G0, the isotropy group
of G at x, is the group:

G x :=
{
g ∈ G1| s(g) = t(g) = x

}
.

The orbit set of a groupoid G is the quotient set of G0 by the
following equivalence relation:

x ∼ y, if and only if, there exists g ∈ G1 with s(g) = x, t(g) = y.

That is, the set π0(G ) of all connected components of G .
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Groupoids: Definitions and Examples.

Next, we present several examples ordered by inclusion.

Example
I One can associated to a given set X the so called the groupoid of

pairs, its set of arrows is defined by G1 = X × X and the set of
objects by G0 = X ; the sourse and the target are s = pr2 and
t = pr1, the second and first projections, and the map of identity
arrows is ι the diagonal map. The multiplication and the inverse
maps are given by

(x, x′) (x′, x′′) = (x, x′′), and (x, x′)−1 = (x′, x).

I Let ν : X → Y be a map. Consider the fibre product X ν× ν X as a
set of arrows of the groupoid X ν× ν X

pr2 //
pr1 // X ,ιoo where as before

s = pr2 and t = pr1, and the map of identity arrows is ι the diagonal
map. The multiplication and the inverse are clear.

I Assume that R ⊆ X × X is an equivalence relation on the set X .
One can construct a groupoid R

pr2 //
pr1 // X ,ιoo with structure maps

as before. This is an important class of groupoids known as the
groupoid of equivalence relation.
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Groupoids: Definitions and Examples.
How group theory fits in groupoids?

Example
I Any group G can be considered as a groupoid by taking G1 = G

and G0 = {∗} (a set with one element).

I Now if X is a right G-set with action ρ : X × G → X , then one can
define the so called the action groupoid: X × G

ρ //
pr1 // X ,ιoo the

source and the target are s = ρ and t = pr1, the identity map sends
x 7→ (x, e) = ιx , where e is the identity element of the group G.

The multiplication is given by (x, g)(x′, g′) = (x, gg′), whenever
xg = x′:

x(gg′) = x′g′

(x′ , g′)

**

(x, gg′)

55x′ = xg

(x, g)

'' x

The inverse is defined by (x, g)−1 = (xg, g−1).
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Groupoids: Definitions and Examples.
A more interesting for our purposes, and a bit elaborated example,
is the following.

Example
Let G = (G1,G0) be a groupoid and ς : X → G0 any map. Consider the
following pair of sets: G ς

1 := X ς× t G1 s× ς X and G ς
0 := X , where

X ς× t G1 s× ς X =
{
(x, g, x′) ∈ X × G1 × X | ς(x) = t(g), ς(x′) = s(g)

}
.

The pair G ς = (Gς
1,Gς

0) is a groupoid, with structure maps:

s = pr3, t = pr1, ιx = (ς(x), ις(x), ς(x)), for every x ∈ X .

The multiplication is defined by

(x, g, y) (x′, g′, y′) = (x, gg′, y′),

whenever y = x′, and the inverse is given by (x, g, y)−1 = (y, g−1, x).

The groupoid G ς is known as the induced groupoid of G by the map ς, or
the pull-back groupoid of G along ς with the canonical morphism
φς : G ς → G of groupoids, given by the second projection.
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Groupoids: Definitions and Examples.

A particular and important example of an induced groupoid is the
one when G is a groupoid with one object, that is, a group.
In this case, to any group G and a set X , one can associated the
groupoid (X ×G × X ,X), as the induced groupoid of (G, {∗}) by the
map ∗ : X → {∗}.
A morphism of groupoids is a functor between the underlying
categories.
Any morphism φ : H → G of groupoids factors through the
canonical morphism G φ0 → G , that is we have the following (strict)
commutative diagram

H
φ //

φ′ ##

G

G φ0

<<

of groupoids, where φ′0 = idH0
and

φ′1 : H1 −→ Gφ0
1,

(
h 7−→

(
t(h), φ1(h), s(h)

))
.
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A morphism of groupoids is a functor between the underlying
categories.

Any morphism φ : H → G of groupoids factors through the
canonical morphism G φ0 → G , that is we have the following (strict)
commutative diagram

H
φ //

φ′ ##

G

G φ0

<<

of groupoids, where φ′0 = idH0
and

φ′1 : H1 −→ Gφ0
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(
h 7−→

(
t(h), φ1(h), s(h)
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Transitive Groupoids: Definition and Examples

Let G = (G1,G0) be a groupoid. Then the following are equivalent:

I The cartesian product of the source and the target

(s, t) : G1 −→ G0 × G0

is a surjective map.

I Any two isotropy groups of G are conjugated.

I G has only one connected component.

I G is isomorphic (in a non canonical way) to an induced groupoid of
the form (X × G × X ,X).

A groupoid which satisfies one of the above conditions is called transitive.
The last condition is shown as follows: Given a groupoid G satisfying the
first condition. Fix an object x ∈ G0 with isotropy group G x and choose a
family of arrows {fy}y ∈G0

such that fy ∈ t
−1({x}) and s(fy) = y, for y , x

while fx = ι(x), for y = x. In this way the morphism

φx : G
�
−→ (G0 × G x × G0,G0),

(
(g, z) 7−→

((
s(g), ft(g) g f−1

s(g), t(g)
)
, z

))
establishes an isomorphism of groupoids.
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Transitive Groupoids: Definition and Examples

Example

I Any groupoid with one object (i.e. a group) is obviously
transitive.

I The groupoid of pair is clearly transitive, as well as any
induced groupoid of the form (X × G × X ,X).

I If a group G acts transitively on a set X , then the associated
action groupoid is by construction transitive.

Explicitly, let X be a right G-set whose G-action is transitive,
that is, the set of orbits is a one element set. Thus, for every
pair of elements x, y ∈ X there exists g ∈ G such that y = xg.
This means that the map X ×G → X × X , (x, g) 7→ (x, xg) is a
surjective, and so the action groupoid (X × G,X) is transitive.
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Weak equivalences between Groupoids.

A morphism of groupoids φ : H → G is said to be a weak equivalence if
it satisfies the following two conditions:

(WE-1) The composition map G1 s× φ0
H0

pr1 // G1
t // G0 is surjective.

(WE-2) The following diagram is cartesian

H1

(s,t)

��

φ1 // G1

(s,t)

��
H0 × H0

φ0×φ0 // G0 × G0

Both properties classically characterize functors which define
equivalences of categories.
Two groupoids G and H are said to be weakly equivalent, if there is a
third groupoid K and a diagram of weak equivalences :

K

''xx
G H .
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Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of
groupoids, of the usual notion of group-set.

Definition
Given a groupoid G and a map ς : X → G0. We say that (X , ς) is a right
G -set, if there is a map: the action

ρ : X ς× t G1 −→ X , sending (x, g) 7−→ xg,

satisfying the following conditions

1. s(g) = ς(xg), for any x ∈ X and g ∈ G1 with ς(x) = t(g).

2. xις(x) = x, for every x ∈ X .

3. (xg)h = x(gh), for every x ∈ X , g, h ∈ G1 with ς(x) = t(g) and
t(h) = s(g).

A left action is analogously defined by interchanging the source with the
target. Obviously, any groupoid G acts over itself on both sides by using
the regular action: G1 s× t G1 → G1. That is, (G1, s) is a right G -set and
(G1, t) is a left G -set with this action.
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Principal Groupoids Bi-Sets (or bitorsors).

Let (X , ς) be a right G -set, and consider the pair of sets

X Y G :=
(
X ς× t G1,X

)
as a groupoid with structure maps

s = ρ, t = pr1, ιx = (x, ις(x)).

The multiplication and the inverse maps are defined by

(x, g)(x′, g′) = (x, gg′), and (x, g)−1 = (xg, g−1).

The groupoid X Y G is known as the right translation groupoid of X by G ,
and there is a canonical morphism X Y G → G of groupoids, given by
the second projection.

Given a right G -set (X , ς), the orbit set X/G of (X , ς) is the orbit set of
the translation groupoid X Y G . For instance, if G = (X × G,X) is an
action groupoid, then obviously the orbit set of this groupoid coincides
with the classical set X/G of orbits of X .
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Let G and H be two groupoids and (X , ς, ϑ) a triple consisting of a set X
and two maps ς : X → G0, ϑ : X → H0.

Definition
The triple (X , ς, ϑ) is said to be an (H ,G )-biset if there is a left H -action
λ : H1 s× ϑ X → X and right G -action ρ : X ς× t G1 → X such that

I For any x ∈ X , h ∈ H1, g ∈ G1 with ϑ(x) = s(h) and ς(x) = t(g), we
have ϑ(xg) = ϑ(x) an ς(hx) = ς(x).

I For any x ∈ X , h ∈ H1 and g ∈ G1 with ς(x) = t(g), ϑ(x) = s(h), we
have h(xg) = (hx)g.

The two sided translation groupoid associated to a given (H ,G )-biset
(X , ς, ϑ) is defined to be the groupoid H X X Y G whose set of objects
is X and set of arrows is H1 s× ϑ X ς× s G1. The structure maps are:

s(h, x, g) = x, t(h, x, g) = hxg−1 and ιx = (ιϑ(x), x, ις(x)).

The multiplication and the inverse are given by:

(h, x, g)(h′, x′, g′) = (hh′, x′, gg′), (h, x, g)−1 = (h−1, hxg−1, g−1).
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Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given (H ,G )-biset (X , ς, ϑ), there are to canonical
morphism of groupoids:

Σ : H X X Y G −→ G ,
(
(h, x, g), y

)
7−→

(
g, ς(y)

)
,

Θ : H X X Y G −→H ,
(
(h, x, g), y

)
7−→

(
h, ϑ(y)

)
.

Definition
Let (X , ς, ϑ) be an (H ,G )-biset. We say that (X , ς, ϑ) is a left principal
(H ,G )-biset if it satisfies the following conditions:

I ς : X → G0 is surjective;

I The canonical map ∇ : H1 s× ϑ X −→ X ς× ς X ,
(
(h, x) 7−→ (hx, x)

)
is bijective.

Analogously one defines right principal (H ,G )-biset. A principal
(H ,G )-biset is both left and right principal biset.
For instance, (G1, t, s) is a left and right principal (G ,G )-biset, known as
the unit principal biset, which we denote by U (G ).
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Principal Groupoids Bi-Sets (or bitorsors).

More examples of left principal biset can be performed, as in the
geometric case, by pulling back other left principal biset.

Precisely, assume we are given (X , ς, ϑ) a left principal (H ,G )-biset,
and let ψ : K → G be a morphism of groupoids. Consider the set
Y := X ϑ× ψ0

K0 together with the maps pr2 : Y → K0 and
ς̃ := ς ◦ pr1 : Y → H0.
Then the triple (Y , ς̃, pr2) is an (H ,K )-biset with actions

H1 s× ϕ Y −→ Y ,
(
h, (x, u)

)
7−→

(
hx, u

)
Y ϕ̃× t K1 −→ Y ,

(
(x, u), f

)
7−→

(
xψ1(f), s(f)

)
which is actually a left principal (H ,K )-biset, and known as the
pull-back principal biset of (X , ς, ϑ); we denote it by ψ∗

(
(X , ς, ϑ)

)
.

A left principal biset is called a trivial left principal biset if it is the
pull-back of the unit left principal biset, that is, of the form ψ∗(U (G )) for
some morphism of groupoids ψ : K → G .
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Preliminary results.

Proposition
Let G and H be two groupoids, and let (X , ς, ϑ) be an (H ,G )-biset.

I Any morphism between left principal (H ,G )-bisets, is an
isomorphism.

I If (X , ς, ϑ) is a left principal (H ,G )-biset, then the map ς induces a
bijection between the orbit set X/H and the set of objects G0.

I If (X , ς, ϑ) is a principal (H ,G )-biset, then the canonical
morphisms of groupoids

H X X Y G
Θ

vv
Σ

((
H G

are weak equivalences.

In particular, G and H are weakly equivalent.
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The main result.

Theorem
Let G be an abstract groupoid. Then the following are equivalent:

I For every map ς : X → G0, the induced morphism of groupoids
φς : G ς → G is a weak equivalence;

I G is a transitive groupoid;

I For every map ς : X → G0, the pull-back biset φς ∗(U (G )) is a
principal (G ,G ς)-biset.
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