Transitive groupoids, principal bisets and weak equivalences.

Laiachi El Kaoutit

Universidad de Granada. Spain.
kaoutit@ugr.es
Ferrara Algebra Workshop 2015.
Ferrara September 2015.

Overviews.

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.
This was in fact used to study a class of Hopf algebroids termed geometrically transitive, which we will not appear in this talk.

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.
This was in fact used to study a class of Hopf algebroids termed geometrically transitive, which we will not appear in this talk.

A part from our particular interest in transitive groupoids:

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.
This was in fact used to study a class of Hopf algebroids termed geometrically transitive, which we will not appear in this talk.

A part from our particular interest in transitive groupoids: From a general point of view of differential geometry these groupoids are important objects, as Ehresmann's result shows:

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.
This was in fact used to study a class of Hopf algebroids termed geometrically transitive, which we will not appear in this talk.

A part from our particular interest in transitive groupoids: From a general point of view of differential geometry these groupoids are important objects, as Ehresmann's result shows: The theory of transitive Lie groupoids is equivalent to the theory of principal fibre bundles

Overviews.

As abstract groups play an important role in the theory of commutative Hopf algebras, abstract groupoids are a very useful tool in studying commutative Hopf algebroids.
The aim of this talk is to give a characterization of transitive groupoids in terms of weak equivalence and principal groupoids-bisets.
This was in fact used to study a class of Hopf algebroids termed geometrically transitive, which we will not appear in this talk.

A part from our particular interest in transitive groupoids: From a general point of view of differential geometry these groupoids are important objects, as Ehresmann's result shows: The theory of transitive Lie groupoids is equivalent to the theory of principal fibre bundles
Even at the abstract level, transitive groupoids still enjoying very rich structure, as we will see here.

Groupoids: Definitions and Examples.

Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism.

Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism.
That is, a pair of two sets $\mathscr{G}:=\left(G_{1}, G_{0}\right)$ with diagram

$$
G_{1} \rightleftarrows G_{0},
$$

where \mathfrak{s} and t are resp. the source and the target of a given arrow, and ι assigns to each object its identity arrow. All together with an associative and unital multiplication $G_{2}:=G_{15} x_{t} G_{1} \rightarrow G_{1}$ as well as a map $G_{1} \rightarrow G_{1}$ which associated to each arrow its inverse.

Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism.
That is, a pair of two sets $\mathscr{G}:=\left(G_{1}, G_{0}\right)$ with diagram

$$
G_{1} \rightleftarrows G_{0},
$$

where \mathfrak{s} and t are resp. the source and the target of a given arrow, and ι assigns to each object its identity arrow. All together with an associative and unital multiplication $G_{2}:=G_{15} \times_{t} G_{1} \rightarrow G_{1}$ as well as a map $G_{1} \rightarrow G_{1}$ which associated to each arrow its inverse. Given a groupoid \mathscr{G}, consider an object $x \in G_{0}$, the isotropy group of \mathscr{G} at x, is the group:

$$
\mathscr{G}^{x}:=\left\{g \in G_{1} \mid \mathfrak{s}(g)=\mathrm{t}(g)=x\right\} .
$$

Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism.
That is, a pair of two sets $\mathscr{G}:=\left(G_{1}, G_{0}\right)$ with diagram

$$
G_{1} \rightleftarrows G_{0},
$$

where \mathfrak{s} and t are resp. the source and the target of a given arrow, and ι assigns to each object its identity arrow. All together with an associative and unital multiplication $G_{2}:=G_{15} \times_{t} G_{1} \rightarrow G_{1}$ as well as a map $G_{1} \rightarrow G_{1}$ which associated to each arrow its inverse. Given a groupoid \mathscr{G}, consider an object $x \in G_{0}$, the isotropy group of \mathscr{G} at x, is the group:

$$
\mathscr{G}^{x}:=\left\{g \in G_{1} \mid \mathfrak{s}(g)=\mathrm{t}(g)=x\right\} .
$$

The orbit set of a groupoid \mathscr{G} is the quotient set of G_{0} by the following equivalence relation:
$x \sim y$, if and only if, there exists $g \in G_{1}$ with $\mathfrak{s}(g)=x, t(g)=y$.

Groupoids: Definitions and Examples.

A groupoid (or abstract groupoid) is a small category where each morphism is an isomorphism.
That is, a pair of two sets $\mathscr{G}:=\left(G_{1}, G_{0}\right)$ with diagram

$$
G_{1} \rightleftarrows G_{0}
$$

where \mathfrak{s} and t are resp. the source and the target of a given arrow, and ι assigns to each object its identity arrow. All together with an associative and unital multiplication $G_{2}:=G_{15} \times_{t} G_{1} \rightarrow G_{1}$ as well as a map $G_{1} \rightarrow G_{1}$ which associated to each arrow its inverse. Given a groupoid \mathscr{G}, consider an object $x \in G_{0}$, the isotropy group of \mathscr{G} at x, is the group:

$$
\mathscr{G}^{x}:=\left\{g \in G_{1} \mid \mathfrak{s}(g)=\mathrm{t}(g)=x\right\} .
$$

The orbit set of a groupoid \mathscr{G} is the quotient set of G_{0} by the following equivalence relation:
$x \sim y$, if and only if, there exists $g \in G_{1}$ with $\mathfrak{s}(g)=x, \mathrm{t}(g)=y$.
That is, the set $\pi_{0}(\mathscr{G})$ of all connected components of \mathscr{G}.

Groupoids: Definitions and Examples.

Groupoids: Definitions and Examples.

Next, we present several examples ordered by inclusion.

Groupoids: Definitions and Examples.

Next, we present several examples ordered by inclusion.

Example

- One can associated to a given set X the so called the groupoid of pairs, its set of arrows is defined by $G_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $\mathfrak{s}=p r_{2}$ and $t=p r_{1}$, the second and first projections, and the map of identity arrows is ι the diagonal map. The multiplication and the inverse maps are given by

$$
\left(x, x^{\prime}\right)\left(x^{\prime}, x^{\prime \prime}\right)=\left(x, x^{\prime \prime}\right), \quad \text { and } \quad\left(x, x^{\prime}\right)^{-1}=\left(x^{\prime}, x\right) .
$$

Groupoids: Definitions and Examples.

Next, we present several examples ordered by inclusion.

Example

- One can associated to a given set X the so called the groupoid of pairs, its set of arrows is defined by $\mathrm{G}_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $\mathfrak{s}=p r_{2}$ and $\mathrm{t}=p r_{1}$, the second and first projections, and the map of identity arrows is ι the diagonal map. The multiplication and the inverse maps are given by

$$
\left(x, x^{\prime}\right)\left(x^{\prime}, x^{\prime \prime}\right)=\left(x, x^{\prime \prime}\right), \quad \text { and } \quad\left(x, x^{\prime}\right)^{-1}=\left(x^{\prime}, x\right) .
$$

- Let $v: X \rightarrow Y$ be a map. Consider the fibre product $X_{v} X_{v} X$ as a
 $\mathfrak{s}=p r_{2}$ and $t=p r_{1}$, and the map of identity arrows is ι the diagonal map. The multiplication and the inverse are clear.

Groupoids: Definitions and Examples.

Next, we present several examples ordered by inclusion.

Example

- One can associated to a given set X the so called the groupoid of pairs, its set of arrows is defined by $\mathrm{G}_{1}=X \times X$ and the set of objects by $G_{0}=X$; the sourse and the target are $\mathfrak{s}=p r_{2}$ and $\mathrm{t}=p r_{1}$, the second and first projections, and the map of identity arrows is ι the diagonal map. The multiplication and the inverse maps are given by

$$
\left(x, x^{\prime}\right)\left(x^{\prime}, x^{\prime \prime}\right)=\left(x, x^{\prime \prime}\right), \quad \text { and } \quad\left(x, x^{\prime}\right)^{-1}=\left(x^{\prime}, x\right) .
$$

- Let $v: X \rightarrow Y$ be a map. Consider the fibre product $X_{v} X_{v} X$ as a
 $\mathfrak{s}=p r_{2}$ and $t=p r_{1}$, and the map of identity arrows is ι the diagonal map. The multiplication and the inverse are clear.
- Assume that $\mathcal{R} \subseteq X \times X$ is an equivalence relation on the set X. One can construct a groupoid $\mathcal{R} \rightleftarrows ⿺ 辶 \rho_{1}^{2} \Longrightarrow$, with structure maps as before. This is an important class of groupoids known as the groupoid of equivalence relation.

Groupoids: Definitions and Examples.

How group theory fits in groupoids?

Groupoids: Definitions and Examples.

How group theory fits in groupoids?
Example

- Any group G can be considered as a groupoid by taking $G_{1}=G$ and $G_{0}=\{*\}$ (a set with one element).

Groupoids: Definitions and Examples.

How group theory fits in groupoids?

Example

- Any group G can be considered as a groupoid by taking $G_{1}=G$ and $G_{0}=\{*\}$ (a set with one element).
- Now if X is a right G-set with action $\rho: X \times G \rightarrow X$, then one can define the so called the action groupoid: $X \times G \underset{\leftrightharpoons}{\leftrightarrows} X$, the source and the target are $\mathfrak{s}=\rho$ and $\mathrm{t}=p r_{1}$, the identity map sends $x \mapsto(x, e)=t_{x}$, where e is the identity element of the group G.

Groupoids: Definitions and Examples.

How group theory fits in groupoids?
Example

- Any group G can be considered as a groupoid by taking $G_{1}=G$ and $G_{0}=\{*\}$ (a set with one element).
- Now if X is a right G-set with action $\rho: X \times G \rightarrow X$, then one can define the so called the action groupoid: $X \times G \Longrightarrow X$, the source and the target are $\mathfrak{s}=\rho$ and $\mathrm{t}=p r_{1}$, the identity map sends $x \mapsto(x, e)=\iota_{x}$, where e is the identity element of the group G.
The multiplication is given by $(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x, g g^{\prime}\right)$, whenever $x g=x^{\prime}$:

The inverse is defined by $(x, g)^{-1}=\left(x g, g^{-1}\right)$.

Groupoids: Definitions and Examples.

A more interesting for our purposes, and a bit elaborated example, is the following.

Groupoids: Definitions and Examples.

A more interesting for our purposes, and a bit elaborated example, is the following.

Example

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid and $\varsigma: X \rightarrow G_{0}$ any map. Consider the following pair of sets: $G^{{ }^{s}}{ }_{1}:=X_{\zeta} \times_{t} G_{1}{ }^{5} \times_{5} X$ and $G^{s_{0}}:=X$, where

$$
X_{\varsigma} \times_{t} G_{1 s} x_{\varsigma} X=\left\{\left(x, g, x^{\prime}\right) \in X \times G_{1} \times X \mid \varsigma(x)=t(g), \varsigma\left(x^{\prime}\right)=\mathfrak{s}(g)\right\}
$$

Groupoids: Definitions and Examples.

A more interesting for our purposes, and a bit elaborated example, is the following.

Example

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid and $\varsigma: X \rightarrow G_{0}$ any map. Consider the following pair of sets: $G^{{ }^{s}}{ }_{1}:=X_{5} \times_{t} G_{1,} \times_{5} X$ and $G^{s}{ }_{0}:=X$, where

$$
X_{\varsigma} x_{t} G_{1} x_{\varsigma} X=\left\{\left(x, g, x^{\prime}\right) \in X \times G_{1} \times X \mid \varsigma(x)=t(g), \varsigma\left(x^{\prime}\right)=\mathfrak{s}(g)\right\} .
$$

The pair $\mathscr{G}^{s}=\left(G^{\varsigma}{ }_{1}, G^{s}{ }_{0}\right)$ is a groupoid, with structure maps:

$$
\mathfrak{s}=p r_{3}, \quad t=p r_{1}, \quad \iota_{x}=\left(\varsigma(x), \iota_{\varsigma(x)}, \varsigma(x)\right), \text { for every } x \in X
$$

The multiplication is defined by

$$
(x, g, y)\left(x^{\prime}, g^{\prime}, y^{\prime}\right)=\left(x, g g^{\prime}, y^{\prime}\right)
$$

whenever $y=x^{\prime}$, and the inverse is given by $(x, g, y)^{-1}=\left(y, g^{-1}, x\right)$.

Groupoids: Definitions and Examples.

A more interesting for our purposes, and a bit elaborated example, is the following.

Example

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid and $\varsigma: X \rightarrow G_{0}$ any map. Consider the following pair of sets: $G^{{ }^{s}}{ }_{1}:=X_{5} \times_{t} G_{1,} \times_{5} X$ and $G^{s}{ }_{0}:=X$, where

$$
X_{\varsigma} x_{t} G_{1} x_{\varsigma} X=\left\{\left(x, g, x^{\prime}\right) \in X \times G_{1} \times X \mid \varsigma(x)=t(g), \varsigma\left(x^{\prime}\right)=\mathfrak{s}(g)\right\} .
$$

The pair $\mathscr{G}^{s}=\left(G^{s}{ }_{1}, G^{s}{ }_{0}\right)$ is a groupoid, with structure maps:

$$
\mathfrak{s}=p r_{3}, \quad \mathrm{t}=p r_{1}, \quad \iota_{x}=\left(\varsigma(x), \iota_{\varsigma(x)}, \varsigma(x)\right), \text { for every } x \in X
$$

The multiplication is defined by

$$
(x, g, y)\left(x^{\prime}, g^{\prime}, y^{\prime}\right)=\left(x, g g^{\prime}, y^{\prime}\right)
$$

whenever $y=x^{\prime}$, and the inverse is given by $(x, g, y)^{-1}=\left(y, g^{-1}, x\right)$.
The groupoid \mathscr{G}^{5} is known as the induced groupoid of \mathscr{G} by the map ς, or the pull-back groupoid of \mathscr{G} along ς with the canonical morphism $\phi^{s}: \mathscr{G}^{s} \rightarrow \mathscr{G}$ of groupoids, given by the second projection.

Groupoids: Definitions and Examples.

Groupoids: Definitions and Examples.

A particular and important example of an induced groupoid is the one when \mathscr{G} is a groupoid with one object, that is, a group.

Groupoids: Definitions and Examples.

A particular and important example of an induced groupoid is the one when \mathscr{G} is a groupoid with one object, that is, a group. In this case, to any group G and a set X, one can associated the groupoid $(X \times G \times X, X)$, as the induced groupoid of $(G,\{*\})$ by the map *: $X \rightarrow\{*\}$.

Groupoids: Definitions and Examples.

A particular and important example of an induced groupoid is the one when \mathscr{G} is a groupoid with one object, that is, a group. In this case, to any group G and a set X, one can associated the groupoid $(X \times G \times X, X)$, as the induced groupoid of $(G,\{*\})$ by the map *: $X \rightarrow\{*\}$.
A morphism of groupoids is a functor between the underlying categories.

Groupoids: Definitions and Examples.

A particular and important example of an induced groupoid is the one when \mathscr{G} is a groupoid with one object, that is, a group. In this case, to any group G and a set X, one can associated the groupoid $(X \times G \times X, X)$, as the induced groupoid of $(G,\{*\})$ by the map *: $X \rightarrow\{*\}$.
A morphism of groupoids is a functor between the underlying categories.
Any morphism $\phi: \mathscr{H} \rightarrow \mathscr{G}$ of groupoids factors through the canonical morphism $\mathscr{G}^{\phi}{ }^{\phi_{0}} \rightarrow \mathscr{G}$, that is we have the following (strict) commutative diagram

of groupoids, where $\phi_{0}^{\prime}=i d_{\mathscr{H}_{0}}$ and

$$
\phi_{1}^{\prime}: H_{1} \longrightarrow G^{\phi_{0}}{ }_{1}, \quad\left(h \longmapsto\left(\mathrm{t}(h), \phi_{1}(h), \mathfrak{s}(h)\right)\right) .
$$

Transitive Groupoids：Definition and Examples

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.
- \mathscr{G} has only one connected component.

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.
- \mathscr{G} has only one connected component.
- \mathscr{G} is isomorphic (in a non canonical way) to an induced groupoid of the form $(X \times G \times X, X)$.

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.
- \mathscr{G} has only one connected component.
- \mathscr{G} is isomorphic (in a non canonical way) to an induced groupoid of the form $(X \times G \times X, X)$.
A groupoid which satisfies one of the above conditions is called transitive.

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.
- \mathscr{G} has only one connected component.
- \mathscr{G} is isomorphic (in a non canonical way) to an induced groupoid of the form $(X \times G \times X, X)$.
A groupoid which satisfies one of the above conditions is called transitive.
The last condition is shown as follows:

Transitive Groupoids: Definition and Examples

Let $\mathscr{G}=\left(G_{1}, G_{0}\right)$ be a groupoid. Then the following are equivalent:

- The cartesian product of the source and the target

$$
(\mathfrak{s}, \mathrm{t}): G_{1} \longrightarrow G_{0} \times G_{0}
$$

is a surjective map.

- Any two isotropy groups of \mathscr{G} are conjugated.
- \mathscr{G} has only one connected component.
- \mathscr{G} is isomorphic (in a non canonical way) to an induced groupoid of the form $(X \times G \times X, X)$.
A groupoid which satisfies one of the above conditions is called transitive. The last condition is shown as follows: Given a groupoid \mathscr{G} satisfying the first condition. Fix an object $x \in G_{0}$ with isotropy group \mathscr{G}^{\times}and choose a family of arrows $\left\{f_{y}\right\}_{y \in G_{0}}$ such that $f_{y} \in \mathrm{t}^{-1}(\{x\})$ and $\mathfrak{s}\left(f_{y}\right)=y$, for $y \neq x$ while $f_{x}=\iota(x)$, for $y=x$. In this way the morphism

$$
\phi^{\times}: \mathscr{G} \xrightarrow{\cong}\left(G_{0} \times \mathscr{G}^{\times} \times G_{0}, G_{0}\right), \quad\left((g, z) \longmapsto\left(\left(\mathfrak{s}(g), f_{t(g)} g f_{s(g)}^{-1}, t(g)\right), z\right)\right)
$$

establishes an isomorphism of groupoids.

Transitive Groupoids：Definition and Examples

Transitive Groupoids: Definition and Examples

Example

- Any groupoid with one object (i.e. a group) is obviously transitive.

Transitive Groupoids: Definition and Examples

Example

- Any groupoid with one object (i.e. a group) is obviously transitive.
- The groupoid of pair is clearly transitive, as well as any induced groupoid of the form $(X \times G \times X, X)$.

Transitive Groupoids: Definition and Examples

Example

- Any groupoid with one object (i.e. a group) is obviously transitive.
- The groupoid of pair is clearly transitive, as well as any induced groupoid of the form $(X \times G \times X, X)$.
- If a group G acts transitively on a set X, then the associated action groupoid is by construction transitive.

Transitive Groupoids: Definition and Examples

Example

- Any groupoid with one object (i.e. a group) is obviously transitive.
- The groupoid of pair is clearly transitive, as well as any induced groupoid of the form $(X \times G \times X, X)$.
- If a group G acts transitively on a set X, then the associated action groupoid is by construction transitive.
Explicitly, let X be a right G-set whose G-action is transitive, that is, the set of orbits is a one element set. Thus, for every pair of elements $x, y \in X$ there exists $g \in G$ such that $y=x g$. This means that the map $X \times G \rightarrow X \times X,(x, g) \mapsto(x, x g)$ is a surjective, and so the action groupoid $(X \times G, X)$ is transitive.

Weak equivalences between Groupoids.

Weak equivalences between Groupoids.

A morphism of groupoids $\phi: \mathscr{H} \rightarrow \mathscr{G}$ is said to be a weak equivalence if it satisfies the following two conditions:

Weak equivalences between Groupoids.

A morphism of groupoids $\phi: \mathscr{H} \rightarrow \mathscr{G}$ is said to be a weak equivalence if it satisfies the following two conditions:
(WE-1) The composition map $G_{1} \times_{\phi_{0}} H_{0} \xrightarrow{p_{1}} G_{1} \xrightarrow{t} G_{0}$ is surjective.

Weak equivalences between Groupoids.

A morphism of groupoids $\phi: \mathscr{H} \rightarrow \mathscr{G}$ is said to be a weak equivalence if it satisfies the following two conditions:
(WE-1) The composition map $G_{1} \times_{\phi_{0}} H_{0} \xrightarrow{p_{1}} G_{1} \xrightarrow{t} G_{0}$ is surjective.
(WE-2) The following diagram is cartesian

Weak equivalences between Groupoids.

A morphism of groupoids $\phi: \mathscr{H} \rightarrow \mathscr{G}$ is said to be a weak equivalence if it satisfies the following two conditions:
(WE-1) The composition map $G_{1} \times_{\phi_{0}} H_{0} \xrightarrow{p_{1}} G_{1} \xrightarrow{t} G_{0}$ is surjective.
(WE-2) The following diagram is cartesian

Both properties classically characterize functors which define equivalences of categories.

Weak equivalences between Groupoids.

A morphism of groupoids $\phi: \mathscr{H} \rightarrow \mathscr{G}$ is said to be a weak equivalence if it satisfies the following two conditions:
(WE-1) The composition map $G_{1} \times_{\phi_{0}} H_{0} \xrightarrow{p_{1}} G_{1} \xrightarrow{t} G_{0}$ is surjective.
(WE-2) The following diagram is cartesian

Both properties classically characterize functors which define equivalences of categories.
Two groupoids \mathscr{G} and \mathscr{H} are said to be weakly equivalent, if there is a third groupoid \mathscr{K} and a diagram of weak equivalences :

Principal Groupoids Bi-Sets (or bitorsors).

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{\star} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{+} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

satisfying the following conditions

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{\star} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

satisfying the following conditions

1. $\mathfrak{s}(g)=\varsigma(x g)$, for any $x \in X$ and $g \in G_{1}$ with $\varsigma(x)=t(g)$.

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{\star} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

satisfying the following conditions

1. $\mathfrak{s}(g)=\varsigma(x g)$, for any $x \in X$ and $g \in G_{1}$ with $\varsigma(x)=t(g)$.
2. $x \iota_{s(x)}=x$, for every $x \in X$.

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{\star} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

satisfying the following conditions

1. $\mathfrak{s}(g)=\varsigma(x g)$, for any $x \in X$ and $g \in G_{1}$ with $\varsigma(x)=t(g)$.
2. $x l_{\varsigma(x)}=x$, for every $x \in X$.
3. $(x g) h=x(g h)$, for every $x \in X, g, h \in G_{1}$ with $\varsigma(x)=t(g)$ and $\mathrm{t}(\mathrm{h})=\mathrm{s}(\mathrm{g})$.

Principal Groupoids Bi-Sets (or bitorsors).

The following definition is a natural generalization, to the context of groupoids, of the usual notion of group-set.

Definition

Given a groupoid \mathscr{G} and a map $\varsigma: X \rightarrow G_{0}$. We say that (X, ς) is a right \mathscr{G}-set, if there is a map: the action

$$
\rho: X_{\varsigma} \times_{+} G_{1} \longrightarrow X, \text { sending }(x, g) \longmapsto x g
$$

satisfying the following conditions

1. $\mathfrak{s}(g)=\varsigma(x g)$, for any $x \in X$ and $g \in G_{1}$ with $\varsigma(x)=t(g)$.
2. $x l_{\varsigma}(x)=x$, for every $x \in X$.
3. $(x g) h=x(g h)$, for every $x \in X, g, h \in G_{1}$ with $\varsigma(x)=t(g)$ and $\mathrm{t}(\mathrm{h})=\mathfrak{s}(\mathrm{g})$.

A left action is analogously defined by interchanging the source with the target. Obviously, any groupoid \mathscr{G} acts over itself on both sides by using the regular action: $G_{1}, \times_{t} G_{1} \rightarrow G_{1}$. That is, $\left(G_{1}, \mathfrak{s}\right)$ is a right \mathscr{G}-set and $\left(G_{1}, t\right)$ is a left \mathscr{G}-set with this action.

Principal Groupoids Bi-Sets (or bitorsors).

Principal Groupoids Bi-Sets (or bitorsors).

Let (X, ς) be a right \mathscr{G}-set, and consider the pair of sets

$$
x \rtimes \mathscr{G}:=\left(x_{\varsigma} x_{t} G_{1}, x\right)
$$

as a groupoid with structure maps

$$
\mathfrak{s}=\rho, \quad \mathrm{t}=p r_{1}, \quad \iota_{x}=\left(x, \iota_{\mathcal{S}}(x)\right) .
$$

The multiplication and the inverse maps are defined by

$$
(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x, g g^{\prime}\right), \quad \text { and }(x, g)^{-1}=\left(x g, g^{-1}\right)
$$

Principal Groupoids Bi-Sets (or bitorsors).

Let (X, ς) be a right \mathscr{G}-set, and consider the pair of sets

$$
x \rtimes \mathscr{G}:=\left(x_{s} x_{t} G_{1}, x\right)
$$

as a groupoid with structure maps

$$
\mathfrak{s}=\rho, \quad \mathrm{t}=p r_{1}, \quad \iota_{x}=\left(x, \iota_{\varsigma}(x)\right) .
$$

The multiplication and the inverse maps are defined by

$$
(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x, g g^{\prime}\right), \quad \text { and }(x, g)^{-1}=\left(x g, g^{-1}\right)
$$

The groupoid $X \rtimes \mathscr{G}$ is known as the right translation groupoid of X by \mathscr{G}, and there is a canonical morphism $X \rtimes \mathscr{G} \rightarrow \mathscr{G}$ of groupoids, given by the second projection.

Principal Groupoids Bi-Sets (or bitorsors).

Let (X, ς) be a right \mathscr{G}-set, and consider the pair of sets

$$
x \rtimes \mathscr{G}:=\left(x_{\varsigma} x_{t} G_{1}, x\right)
$$

as a groupoid with structure maps

$$
\mathfrak{s}=\rho, \quad \mathrm{t}=p r_{1}, \quad \iota_{x}=\left(x, \iota_{\varsigma}(x)\right) .
$$

The multiplication and the inverse maps are defined by

$$
(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x, g g^{\prime}\right), \quad \text { and }(x, g)^{-1}=\left(x g, g^{-1}\right)
$$

The groupoid $X \rtimes \mathscr{G}$ is known as the right translation groupoid of X by \mathscr{G}, and there is a canonical morphism $X \rtimes \mathscr{G} \rightarrow \mathscr{G}$ of groupoids, given by the second projection.

Given a right \mathscr{G}-set (X, ς), the orbit set X / \mathscr{G} of (X, ς) is the orbit set of the translation groupoid $X \rtimes \mathscr{G}$. For instance, if $\mathscr{G}=(X \times G, X)$ is an action groupoid, then obviously the orbit set of this groupoid coincides with the classical set X / G of orbits of X.

Principal Groupoids Bi-Sets (or bitorsors).

Principal Groupoids Bi-Sets (or bitorsors).

Let \mathscr{G} and \mathscr{H} be two groupoids and $(X, \varsigma, \vartheta)$ a triple consisting of a set X and two maps $\varsigma: X \rightarrow G_{0}, \quad \vartheta: X \rightarrow H_{0}$.

Definition

The triple $(X, \varsigma, \vartheta)$ is said to be an $(\mathscr{H}, \mathscr{G})$-biset if there is a left \mathscr{H}-action $\lambda: H_{1,} \times{ }_{\vartheta} X \rightarrow X$ and right \mathscr{G}-action $\rho: X_{\varsigma} \times{ }_{\star} G_{1} \rightarrow X$ such that

Principal Groupoids Bi-Sets (or bitorsors).

Let \mathscr{G} and \mathscr{H} be two groupoids and $(X, \varsigma, \vartheta)$ a triple consisting of a set X and two maps $\varsigma: X \rightarrow G_{0}, \quad \vartheta: X \rightarrow H_{0}$.

Definition

The triple $(X, \varsigma, \vartheta)$ is said to be an $(\mathscr{H}, \mathscr{G})$-biset if there is a left \mathscr{H}-action $\lambda: H_{1,} \times{ }_{\vartheta} X \rightarrow X$ and right \mathscr{G}-action $\rho: X_{5} \times_{t} G_{1} \rightarrow X$ such that

- For any $x \in X, h \in H_{1}, g \in G_{1}$ with $\vartheta(x)=s(h)$ and $\varsigma(x)=\mathrm{t}(g)$, we have $\vartheta(x g)=\vartheta(x)$ an $\varsigma(h x)=\varsigma(x)$.

Principal Groupoids Bi-Sets (or bitorsors).

Let \mathscr{G} and \mathscr{H} be two groupoids and $(X, \varsigma, \vartheta)$ a triple consisting of a set X and two maps $\varsigma: X \rightarrow G_{0}, \quad \vartheta: X \rightarrow H_{0}$.

Definition

The triple $(X, \varsigma, \vartheta)$ is said to be an $(\mathscr{H}, \mathscr{G})$-biset if there is a left \mathscr{H}-action $\lambda: H_{1,} \times{ }_{\vartheta} X \rightarrow X$ and right \mathscr{G}-action $\rho: X_{\varsigma} \times_{t} G_{1} \rightarrow X$ such that

- For any $x \in X, h \in H_{1}, g \in G_{1}$ with $\vartheta(x)=\mathfrak{s}(h)$ and $\varsigma(x)=\mathrm{t}(g)$, we have $\vartheta(x g)=\vartheta(x)$ an $\varsigma(h x)=\varsigma(x)$.
- For any $x \in X, h \in H_{1}$ and $g \in G_{1}$ with $\varsigma(x)=\mathrm{t}(g), \vartheta(x)=\mathfrak{s}(h)$, we have $h(x g)=(h x) g$.

The two sided translation groupoid associated to a given (\mathscr{H}, \mathscr{G})-biset $(X, \varsigma, \vartheta)$ is defined to be the groupoid $\mathscr{H} \ltimes X \rtimes \mathscr{G}$ whose set of objects is X and set of arrows is $H_{1,3} X_{9} X_{5} \times_{5} G_{1}$. The structure maps are:

$$
\mathfrak{s}(h, x, g)=x, \quad \mathrm{t}(h, x, g)=h x g^{-1} \quad \text { and } \iota_{x}=\left(\iota_{\vartheta(x)}, x, \iota_{s(x)}\right) .
$$

The multiplication and the inverse are given by:

$$
(h, x, g)\left(h^{\prime}, x^{\prime}, g^{\prime}\right)=\left(h h^{\prime}, x^{\prime}, g g^{\prime}\right), \quad(h, x, g)^{-1}=\left(h^{-1}, h x g^{-1}, g^{-1}\right)
$$

Principal Groupoids Bi-Sets (or bitorsors).

Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given (\mathscr{H}, \mathscr{G})-biset ($X, \varsigma, \vartheta)$), there are to canonical morphism of groupoids:

$$
\begin{array}{rlrl}
\Sigma: \mathscr{H} \ltimes X \rtimes \mathscr{G} & \rightarrow \mathscr{G}, & ((h, x, g), y) & \mapsto(g, \varsigma(y)), \\
\Theta: \mathscr{H} \ltimes x \rtimes \mathscr{G} \longrightarrow \mathscr{H}, & ((h, x, g), y) \mapsto(h, \vartheta(y)) .
\end{array}
$$

Definition
Let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given $(\mathscr{H}, \mathscr{G})$-biset $(X, \varsigma, \vartheta)$, there are to canonical morphism of groupoids:

$$
\begin{array}{rlrl}
\Sigma: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{G}, & & ((h, x, g), y) & \longmapsto(g, \varsigma(y)), \\
\Theta: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{H}, & & ((h, x, g), y) \longmapsto(h, \vartheta(y)) .
\end{array}
$$

Definition
Let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset. We say that $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset if it satisfies the following conditions:

Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given $(\mathscr{H}, \mathscr{G})$-biset $(X, \varsigma, \vartheta)$, there are to canonical morphism of groupoids:

$$
\begin{array}{rlrl}
\Sigma: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{G}, & & ((h, x, g), y) & \longmapsto(g, \varsigma(y)), \\
\Theta: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{H}, & & ((h, x, g), y) \longmapsto(h, \vartheta(y)) .
\end{array}
$$

Definition
Let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset. We say that $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset if it satisfies the following conditions:

- $\varsigma: X \rightarrow G_{0}$ is surjective;

Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given $(\mathscr{H}, \mathscr{G})$-biset $(X, \varsigma, \vartheta)$, there are to canonical morphism of groupoids:

$$
\begin{array}{rlrl}
\Sigma: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{G}, & & ((h, x, g), y) \longmapsto(g, \varsigma(y)), \\
\Theta: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{H}, & ((h, x, g), y) \longmapsto(h, \vartheta(y)) .
\end{array}
$$

Definition

Let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset. We say that $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset if it satisfies the following conditions:

- $\varsigma: X \rightarrow G_{0}$ is surjective;
- The canonical map $\nabla: H_{1,} \times_{\vartheta} X \longrightarrow X_{\varsigma} \times_{\varsigma} X, \quad((h, x) \longmapsto(h x, x))$ is bijective.

Analogously one defines right principal ($\mathscr{H}, \mathscr{G})$-biset. A principal (\mathscr{H}, \mathscr{G})-biset is both left and right principal biset.

Principal Groupoids Bi-Sets (or bitorsors).

Associated to a given $(\mathscr{H}, \mathscr{G})$-biset $(X, \varsigma, \vartheta)$, there are to canonical morphism of groupoids:

$$
\begin{array}{rlrl}
\Sigma: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{G}, & & ((h, x, g), y) \longmapsto(g, \varsigma(y)), \\
\Theta: \mathscr{H} \ltimes X \rtimes \mathscr{G} \longrightarrow \mathscr{H}, & ((h, x, g), y) \longmapsto(h, \vartheta(y)) .
\end{array}
$$

Definition

Let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset. We say that $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset if it satisfies the following conditions:

- $\varsigma: X \rightarrow G_{0}$ is surjective;
- The canonical map $\nabla: H_{1,} \times_{\vartheta} X \longrightarrow X_{5} \times_{\varsigma} X, \quad((h, x) \longmapsto(h x, x))$ is bijective.

Analogously one defines right principal ($\mathscr{H}, \mathscr{G})$-biset. A principal (\mathscr{H}, \mathscr{G})-biset is both left and right principal biset.
For instance, $\left(G_{1}, \mathrm{t}, \mathfrak{s}\right)$ is a left and right principal $(\mathscr{G}, \mathscr{G})$-biset, known as the unit principal biset, which we denote by $\mathscr{U}(\mathscr{G})$.

Principal Groupoids Bi-Sets (or bitorsors).

Principal Groupoids Bi-Sets (or bitorsors).

More examples of left principal biset can be performed, as in the geometric case, by pulling back other left principal biset.

Principal Groupoids Bi-Sets (or bitorsors).

More examples of left principal biset can be performed, as in the geometric case, by pulling back other left principal biset.

Precisely, assume we are given $(X, \varsigma, \vartheta)$ a left principal $(\mathscr{H}, \mathscr{G})$-biset, and let $\psi: \mathscr{K} \rightarrow \mathscr{G}$ be a morphism of groupoids. Consider the set $Y:=X_{\vartheta} \times{ }_{\psi_{0}} K_{0}$ together with the maps $p r_{2}: Y \rightarrow K_{0}$ and $\widetilde{\varsigma}:=\varsigma \circ p r_{1}: Y \rightarrow H_{0}$.

Principal Groupoids Bi-Sets (or bitorsors).

More examples of left principal biset can be performed, as in the geometric case, by pulling back other left principal biset.

Precisely, assume we are given $(X, \varsigma, \vartheta)$ a left principal $(\mathscr{H}, \mathscr{G})$-biset, and let $\psi: \mathscr{K} \rightarrow \mathscr{G}$ be a morphism of groupoids. Consider the set $Y:=X_{\vartheta} \times{ }_{\psi_{0}} K_{0}$ together with the maps $p r_{2}: Y \rightarrow K_{0}$ and $\widetilde{\varsigma}:=\varsigma \circ p r_{1}: Y \rightarrow H_{0}$.
Then the triple $\left(Y, \widetilde{\varsigma}, p r_{2}\right)$ is an $(\mathscr{H}, \mathscr{K})$-biset with actions

$$
\begin{array}{ll}
H_{1 s} x_{\varphi} Y \longrightarrow Y, & (h,(x, u)) \longmapsto(h x, u) \\
Y_{\bar{\varphi}} x_{t} K_{1} \longrightarrow Y, & ((x, u), f) \longmapsto\left(x \psi_{1}(f), s(f)\right)
\end{array}
$$

which is actually a left principal $(\mathscr{H}, \mathscr{K})$-biset, and known as the pull-back principal biset of $(X, \varsigma, \vartheta)$; we denote it by $\psi^{*}((X, \varsigma, \vartheta))$.

Principal Groupoids Bi-Sets (or bitorsors).

More examples of left principal biset can be performed, as in the geometric case, by pulling back other left principal biset.

Precisely, assume we are given $(X, \varsigma, \vartheta)$ a left principal ($\mathscr{H}, \mathscr{G})$-biset, and let $\psi: \mathscr{K} \rightarrow \mathscr{G}$ be a morphism of groupoids. Consider the set $Y:=X_{\vartheta} \times{ }_{\psi_{0}} K_{0}$ together with the maps $p r_{2}: Y \rightarrow K_{0}$ and $\widetilde{\varsigma}:=\varsigma \circ p r_{1}: Y \rightarrow H_{0}$.
Then the triple $\left(Y, \widetilde{\varsigma}, p r_{2}\right)$ is an $(\mathscr{H}, \mathscr{K})$-biset with actions

$$
\begin{array}{ll}
H_{1 s} x_{\varphi} Y \longrightarrow Y, & (h,(x, u)) \longmapsto(h x, u) \\
Y_{\bar{\varphi}} x_{t} K_{1} \longrightarrow Y, & ((x, u), f) \longmapsto\left(x \psi_{1}(f), s(f)\right)
\end{array}
$$

which is actually a left principal (\mathscr{H}, \mathscr{K})-biset, and known as the pull-back principal biset of $(X, \varsigma, \vartheta)$; we denote it by $\psi^{*}((X, \varsigma, \vartheta))$.

A left principal biset is called a trivial left principal biset if it is the pull-back of the unit left principal biset, that is, of the form $\psi^{*}(\mathscr{U}(\mathscr{G}))$ for some morphism of groupoids $\psi: \mathscr{K} \rightarrow \mathscr{G}$.

Preliminary results.

Preliminary results.

Proposition

Let \mathscr{G} and \mathscr{H} be two groupoids, and let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

Preliminary results.

Proposition

Let \mathscr{G} and \mathscr{H} be two groupoids, and let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

- Any morphism between left principal $(\mathscr{H}, \mathscr{G})$-bisets, is an isomorphism.

Preliminary results.

Proposition

Let \mathscr{G} and \mathscr{H} be two groupoids, and let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

- Any morphism between left principal $(\mathscr{H}, \mathscr{G})$-bisets, is an isomorphism.
- If $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset, then the map ς induces a bijection between the orbit set X / \mathscr{H} and the set of objects G_{0}.

Preliminary results.

Proposition

Let \mathscr{G} and \mathscr{H} be two groupoids, and let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

- Any morphism between left principal $(\mathscr{H}, \mathscr{G})$-bisets, is an isomorphism.
- If $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset, then the map ς induces a bijection between the orbit set X / \mathscr{H} and the set of objects G_{0}.
- If $(X, \varsigma, \vartheta)$ is a principal ($\mathscr{H}, \mathscr{G})$-biset, then the canonical morphisms of groupoids

are weak equivalences.

Preliminary results.

Proposition

Let \mathscr{G} and \mathscr{H} be two groupoids, and let $(X, \varsigma, \vartheta)$ be an $(\mathscr{H}, \mathscr{G})$-biset.

- Any morphism between left principal $(\mathscr{H}, \mathscr{G})$-bisets, is an isomorphism.
- If $(X, \varsigma, \vartheta)$ is a left principal $(\mathscr{H}, \mathscr{G})$-biset, then the map ς induces a bijection between the orbit set X / \mathscr{H} and the set of objects G_{0}.
- If $(X, \varsigma, \vartheta)$ is a principal ($\mathscr{H}, \mathscr{G})$-biset, then the canonical morphisms of groupoids

are weak equivalences.
In particular, \mathscr{G} and \mathscr{H} are weakly equivalent.

The main result．

$$
\text { 4ロ } \downarrow 4 \text { 包〉4 三 }
$$

The main result.

Theorem
Let \mathscr{G} be an abstract groupoid. Then the following are equivalent:

The main result.

Theorem
Let \mathscr{G} be an abstract groupoid. Then the following are equivalent:

- For every map s: $X \rightarrow G_{0}$, the induced morphism of groupoids $\phi^{s}: \mathscr{G}^{\varsigma} \rightarrow \mathscr{G}$ is a weak equivalence;

The main result.

Theorem
Let \mathscr{G} be an abstract groupoid. Then the following are equivalent:

- For every map s: $X \rightarrow G_{0}$, the induced morphism of groupoids $\phi^{s}: \mathscr{G}^{s} \rightarrow \mathscr{G}$ is a weak equivalence;
- \mathscr{G} is a transitive groupoid;

The main result.

Theorem
Let \mathscr{G} be an abstract groupoid. Then the following are equivalent:

- For every map s : $X \rightarrow G_{0}$, the induced morphism of groupoids $\phi^{s}: \mathscr{G}^{s} \rightarrow \mathscr{G}$ is a weak equivalence;
- \mathscr{G} is a transitive groupoid;
- For every map $\varsigma: X \rightarrow G_{0}$, the pull-back biset $\phi^{s^{*}}(\mathscr{U}(\mathscr{G}))$ is a principal ($\left.\mathscr{G}_{\mathscr{G}} \mathscr{G}^{5}\right)$-biset.

References

(A. Bruguières, Thèorie Tannakienne non commutative, Commun. in Algebra 22 (1994), 5817-5860.

國 P. Deligne, Catégories tannakiennes. In The Grothendieck Festschrift (P. Cartier et al., eds), Progr. math., 87, vol. II, Birkhäuser, Boston, MA. 1990, pp. 111-195.

- P. Cartier, Groupoïdes de Lie et leurs Algèbroïdes. Séminaire Bourbaki 60° année, 2007-2008, num. 987, 165-196.
園 M. Hovey and N. Strickland, Comodules and Landweber exact homology theories. Adv. Math. 192 (2005), no. 2, 427-456.
L. El Kaoutit and N. Kowalzig, Morita theory for Hopf algebroids, principal bibundles and weak equivalences. arXiv.math:1407.7461v2.

