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Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid. Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid. Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid. Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid. Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid.

Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

Definition
Fix a ground base field k.

I Following Deligne, a k-groupoid scheme G = (G1,G0) is said to be
transitive, in the fpqc (fidèlment plate quasi-compacte) sense, if the
morphism

(s, t) : G1 −→ G0 ×
Spec(k)

G0

is a cover in this topology.

I In the Lie groupoids context, a Lie groupoid G = (G1,G0) is said to
be transitive if the smooth map (s, t) : G1 → G0 × G0 is a surjective
submersion.

These definitions are in fact geometric counterparts of the transitivity of
an abstract groupoid. Namely, recall that an abstract groupoid

G1

s //
t // G0
ιoo

is said to be transitive if the map (s, t) : G1 → G0 × G0 is surjective.



Preliminaries.

From a geometric point of view transitive groupoids are important objects.
Ehresmann: The theory of transitive Lie groupoids is equivalent to the
theory of principal fibre bundles

Even at the abstract level, transitive groupoids still enjoying very rich
structure, as the following equivalent conditions show:

I G is an (abstract) transitive groupoid;

I Any two objects of G are isomorphic;

I Any two isotropy groups of G are conjugated;

I G is (non canonically) isomorphic to an induced groupoid of the
form (S × G × S,S), for some group G and a set S;

I For every map ς : S → G0, the induced morphism of groupoids
φς : G ς → G is a weak equivalence;

I For every map ς : S → G0, the pull-back biset φς ∗(U (G )) is a
principal (G ,G ς)-biset.

More characterizations, involving finite dimensional k-representations of
G , are also possible to be proven.
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Motivations and overviews.

The main motivation of this research is to provide the geometric
counterparts of the previous characterizations of abstract transitive
groupoids.

That is, give analogous characterizations for geometrically transitive
affine k-groupoid schemes.

Definition (Bruguières)
An affine k-groupoid scheme H = (Spec(H),Spec(A)) is said to be
geometrically transitive (GT for short), if its underlying groupoid scheme
is transitive in the fpqc sense. Equivalently, the commutative Hopf
algebroid (A ,H) is said to be GT if the unit map

η = s ⊗k t : A ⊗k A −→ H

is a faithfully flat extension.

We will adopt the functorial point of view, that is a k-groupoid will be
though as a presheaf of groupoids on the category of affine k-schemes
Algop

k , implicitly endowed within the fp topology.
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Commutative Hopf algebroid: Definition and Examples.

A commutative Hopf algebroid is then a representable presheaf of
groupoids H : Algkop → Grpd:

Sets

Algkop H //

representable
++

representable

44

Grpd

This is determined by a pair of commutative k-algebras (A ,H) such that
for any object C inAlgk, we have in a functorial way, a groupoid structure

H (C) : Algk(H ,C)
s∗ //
t∗ // Algk(A ,C).ε∗oo

Equivalently, there are morphisms of k-algebras:

A
s //
t // Hεoo

source, target and identity arrow
sHt

∆ //
sHt ⊗A sHt,

composition
sHt

S //
tHs.

inverse arrow

satisfying the corresponding compatibility axioms of (the fibre) groupoid:
co-associativity, co-unitary and idempotency properties.
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Commutative Hopf algebroid: Definition and Examples.

Examples

I The presheaf of groupoids with fibres groups. This a k-group and
the associates Hopf algebroid is just a Hopf algebra.

I The presheaf of groupoids with fibres the groupoids of pairs. This is
a presheaf of the form A ×A //// Aoo , where A is a presheaf
represented by a certain algebra A. The associated Hopf algebroid
is then of the form (A ,A ⊗k A).

I The presheaf of groupoids whose fibres are action groupoids. This
is a presheaf of the form B ×A //// Aoo , where B is an affine
k-group (left) acting on A . The associated Hopf algebroid is then of
the form (A ,A ⊗k B), where B is the Hopf algebra representing B
and A the (right) B-comodule algebra representing A .

I The presheaf of groupoids whose fibres are the induced groupoids.
This is the presheaf of the form A ×B ×A //// Aoo , where B
and A are as before (but without action). For instance, if B = Gm is
the multiplicative k-group, then the associated Hopf algebroid is of
the form

(
A , (A ⊗k A)[X ,X−1]

)
.
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Commutative Hopf algebroid: Definition and Examples.

Definition
Let (A ,H) be a Hopf algebroid and H its associated presheaf. We say
that two objects of H are locally isomorphic provided that, for any
algebra C and two objects x, y ∈ A(C) := Algk(A ,C) (when A(C) , ∅),
there exists a faithfully flat extension p : C → C ′ and an arrow
g ∈ H(C ′) := Algk(H ,C) such that

p ◦ x = g ◦ s, and p ◦ y = g ◦ t.

Examples
All the following presheaves enjoy the above local property:

I The presheaf of groupoids with fibres the groupoids of pairs.

I The presheaf of groupoids whose fibres are action groupoids with
(local) transitive actions.

I The presheaf of groupoids whose fibres are the induced groupoids.

As we will see later on, two objects of any presheaf associated to a GT
Hopf algebroid are locally isomorphic.
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Morphisms between Hopf algebroids.

A morphism of Hopf algebroids: φ : (A ,H)→ (B ,K) is a pair of
k-algebra maps φ = (φ0, φ1) : (A ,H)→ (B ,K) which induces a
morphism

Φ := (φ∗1, φ
∗

0) : K −→H

between the associated presheaves of groupoids.

The base change morphism. Given an algebra map φ : A → B, then the
pair of algebras (B ,Hφ) := (B ,B ⊗A H ⊗A B) is a Hopf algebroid known
as the base change Hopf algebroid, and (φ, φ1) : (A ,H)→ (B ,Hφ) is a
morphism of Hopf algebroids, where

φ1 : H → Hφ, u 7→ 1B ⊗A u ⊗A 1B .

The induction functor φ
∗

: ComodH → ComodK associated to a
morphism of Hopf algebroid φ : (A ,H)→ (B ,K) is defined by

OH(−) ⊗A φ0
B : ComodH → ComodK .

This is by definition a monoidal symmetric functor.
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Isotropy Hopf alegbras and their conjugations.

Let (A ,H) be a flat Hopf algebroid with associated presheaf H .
Consider H (k) the characters groupoid of (A ,H) (with A(k) , ∅).
Fix an object x ∈ A(k) and consider the presheaf of groups

Hx : Algop
k −→ Grp, C −→H (C)x∗(1C ),

which assigns to any algebra C the the isotropy group H (C)x∗(1C ) of
x∗(1C) = 1C ◦ x ∈ A(C), where 1C : k→ C is the identity map of C.

Definition and Lemma
The presheaf Hx of isotropy groups, is represented by the Hopf
k-algebra (kx ,Hx), where Hx := kx ⊗A sHt ⊗A kx is the base change of
x : A → k. This algebra is called the isotropy Hopf algebra of (A ,H) at x.

Examples
I For a presheaf of groupoids of pairs (A ×A ,A ) there is only one

type of isotropy groups, namely, the presheaf of trivial groups. The
associated isotropy type Hopf algebra is then k.

I For the presheaf of groupoids (A × Gm ×A ,A ) there is also only
one type of isotropy groups, namely, Gm. Thus k[X ,X−1] is the
isotropy type Hopf algebra of (A , (A ⊗k A)[X ,X−1]).
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Isotropy Hopf alegbras and their conjugations.

Definition
Let x, y be two objects in H (k). We say that the isotropy Hopf algebras
(kx ,Hx) and (ky ,Hy) are conjugated, provided there is an isomorphism of
Hopf algebras g : (kx ,Hx)→ (ky ,Hy) such that the following diagram

(kx ,Hx)
g // (ky ,Hy)

(A ,H)
x

hh
y

66

is commutative up to a 2-isomorphism in the 2-category of flat Hopf
algebroids.

This means that there is an algebra map g : H → k such that

g ◦ s = x, g ◦ t = y, and u1
− ⊗A u1

0 ⊗A u1
+g(u2) = g(u1) ⊗A u2 ⊗A 1y ∈ Hy

where, by denoting z := g ◦ x : (A ,H)→ (ky ,Hy), we have

z0 = x and z1(u) = g(1x ⊗A u ⊗A 1x) := u− ⊗A u0 ⊗A u+.

for every u ∈ H (summations understood).
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Weak equivalences between Hopf algebroids.

Definition (Hovey-Strickland, Landweber)

I A morphism of flat Hopf algebroids φ : (A ,H)→ (B ,K) is said to
be a weak equivalence if the associated induction functor φ

∗
is an

equivalence of categories.

I An algebra map φ0 : A → B is said to be Landweber exact, if the
induced functor φ∗0 : ComodH → ModB is a an exact functor.

Two flat Hopf algebroids (A ,H) and (B ,K) are said to be weakly
equivalent if there is a third Hopf algebroid (C ,J) with diagram

(C ,J)

(A ,H)

66

(B ,K)

hh

of weak equivalences.
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Principal Bi-bundles between flat Hopf algebroids.

Let (A ,H) and (B ,K) be two flat Hopf algebroids. A left principal
(H ,K)-bundle is a three-tuple (P, α, β) where

P

A

α
88

B

βff

is a diagram of k-algebra, and P is an (H ,K)-bicomodule algebra, that
is, P is left H-comodule algebra via α and a right K -comodule algebra
via β, such that

• β is a faithfully flat extension;

• the canonical map

canH ,P : P ⊗B P −→ H ⊗A P,
(
p ⊗B q 7−→ p(−1) ⊗A p(0)q

)
is bijective.

Right principal bundles are similarly defined. A principal bi-bundles is
simoultaniously a left and right principal bundle.
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Principal Bi-bundles between flat Hopf algebroids.

Examples:

I Let (A ,H) be a flat Hopf algebroid. Then H is a left, as well as a
right principal (H ,H)-bundle, thus a principal bi-bundle. This
bundle is called the unite bundle and denoted by U (H).

I Given a morphism of flat Hopf algebroids φ : (A ,H)→ (B ,K), set
P := H ⊗A φ0

B with the k-algebra extensions

α : A → P, α(a) = s(a) ⊗A 1B , β : B → P, β(b) = 1H ⊗A b .

Then (P, α, β) is a left principal (H ,K)-bundle, called the trivial
bundle as it is the pull-back of the unit bundle φ∗(U (H)).

Left principal (H ,K)-bundles form a category, where each morphism is
an isomorphism, i.e. a groupoid. The cotensor product of left principal
bundles, is again a left principal bundle. Thus left principal bundles over
flat Hopf algebroids form a bicategory which in fact is a bigroupoid.
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The main result.

Theorem

Let (A ,H) be a commutative flat Hopf algebroid over a field k and H its
associated presheaf of groupoids. Assume that A , 0 and
H0(k) = Algk(A , k) , ∅.Then the following are equivalent:

I s ⊗ t : A ⊗ A → H is a faithfully flat extension;

I Any two objects of H are locally isomorphic;

I For any extension φ : A → B the extension α : A → Ht ⊗A φB,
a 7→ s(a) ⊗A 1B is faithfully flat;

I (A ,H) is geometrically transitive;

I For any extension φ : A → B, the associated canonical morphism
φ : (A ,H)→ (B ,Hφ) of Hopf algebroids is a weak equivalence,
where Hφ = B ⊗A H ⊗A B;

I For any extension φ : A → B, the associated trivial principal left
(H ,Hφ)-bundle H ⊗A B is a principal bi-bundle.
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Others results.

Corollary
Let (A ,H) be a flat Hopf algebroid as in the previous Theorem. Assume
that (A ,H) is geometrically transitive. Then

I Any two isotropic Hopf algebra are weakly equivalent.

I Any dualizable (right) H-comodule is locally free of constant rank.
Moreover, any right H-comodule is an inductive limit of dualizable
right H-comodules.

Furthermore, the following are equivalent:

1. The characters groupoid H (k) is transitive;

2. For any two object x, y in H (k), the algebras H ⊗A kx and H ⊗A ky

are isomorphic as left H-comodules algebras;

3. Any two isotropy Hopf algebra are conjugated.
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