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Let A = C[X] be the polynomial algebra in one variable X over the
field of complex numbers, which we consider as the coordinate ring of
the affine complex line A.

A differential module over the differential algebra (A,0 := 9/0X) is a
finitely generated right A-module equipped with a C-linear map
0 : M — M such that

d(xa) = Ox.a+ 0a.x, forevery ae Aand x € M.

The linear map 9 is called the differential of M.
Every differential module is in fact free of finite rank as an

A-module.
To each differential module one can associate a linear differential
matrix equation: Denote by {eq, ..., en} any basis of M over A, the

differential 0 is then given by a matrix mat(M) = (a;) € Mn(A) such

that
m
86,‘ = — Z €;d;i.
Jj=1
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So if we identify an element y € M with its coordinate column in A™,
we have that

dy ¥
oy = o | —mat(M) |
0Ym Ym

Thus ker(9) is the solution space of the following linear differential
matrix equation:

i )zl
| = mamy |
Yim Ym

A morphism of differential modules f : (M,0) — (N, 9) is an A-linear
map f : M — N which commutes with differentials: 0o f = fo 0.
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The category Diff, of all differential modules, enjoys the following
properties:

» Itis a C-linear locally finite abelian category.
» Itis a rigid symmetric monoidal category. The tensor product of

two objects (M, 9), (N, 9) in Diff, is again a differential module
with differential:

d: M@, N — Ma,N, (a(x®Ay) = 9(x) ®Ay+x®Aa(y))

» The forgetful functor w : Diff, — proj(A) is strict monoidal
C-linear faithful exact functor. Moreover, we have an

isomorphism of C-algebras: Endpy, ((A, 8)) ~ C.

We denote by U := C[X][Y, %] the noncommutative ring of
differential operators of A, i.e., the first Weyl algebra.

As a (right) A-module, U is free with basis {Y"},cn, and with left
A-action given by the rule

oa
ay =Ya+ X for every a € A.
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The finite dual of the of first Weyl algebra

The algebra U is, up to isomorphisms, the universal enveloping
algebroid of the Lie-Rinehart algebra (A, Derc(A)) (the A-module of
global sections of the transitive Lie algebroid given by the tangent
bundle TAl).

The pair (A, U) is a co-commutative (right) Hopf algebroid and its
structure maps are given by:

A(Y) =12, Y+Y®,1, £(Y) =0, and Y- @,Y; = 10,Y—-Y®,1.

Furthermore, there is an isomorphism of symmetric monoidal
categories:
Diff, = mody
®

where mody is the full subcategory of the category of right U-modules
whose underlying A-modules are f.g.p. ones.

Applying Tannaka-Krein reconstruction process to the pair (Diff,, w),
leads to a commutative Hopf algebroid (A, U°): the finite dual of U.
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The finite dual as a subalgebra of the convolution
algebra

By the construction of U°, there is an equivalence of rigid symmetric
monoidal categories
mody =~ comodo
®

where comodys is the full subcategory of the category of
Ue-comodules whose underlying A-modules are f.g.p. ones.

Moreover, there is an injective (A ®. A)-algebra map
Uo ( C U*’
whose codomain is the right A-linear dual of U.

The algebra U* is the convolution algebra of the Hopf algebroid U,
which have a structure of complete commutative Hopf algebroid. In
this way the completion & Ue — U~ of ¢ becomes a morphism of
complete Hopf algebroids.

Following Kapranov’s result, the associated formal scheme of U*, can
be seen as the “formal integration” of the Lie algebroid (TA!, A).
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Fix a differential module M < Diff, with a dual basis {e&;, & }1<i<m-
There exist elements {f},<;;<n, dety € U°, whose image are the
following A-linear maps:

C(f)(u) = & (eiv),

C(detw)(u) = > (=1)9V e (€n(m) Uim) -+ € (€01 Ugt)),
G‘GSm

for every u € U. Additionally, the element dety, is invertible.
We denote by U, the (A @. A)-subalgebra of U° generated by the
elements {fj} <, < and dety, .

It turns out that U, is a sub Hopf algebroid of U°.
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The differential Galois groupoid of a differential module
Consider now the full subcategory (M) of Diff, of finite
sub-quotients differential modules of M.

An object (X, 9) of Diff, belongs to (M), if it is a quotient of the form
X = X2/ X1, where

X1 C X © @ Te(M), (TO0(M) = M, (M)

(finite direct sum). Since Diff, is an abelian category, a differential
module (X, 9) belongs to (M), if and only if it is a sub-object of an
object finitely generated by those T* "(M)’s.

Denote by

Wimy g (M) — proj(A)
the restriction of the fibre functor w, and by (A, Z((M))) its
associated commutative Hopf algebroid.

Then, the embedding (M), — Diff,, leads to the canonical morphism
of Hopf algberoids

(A Z((M)s)) — (A, U°).
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The differential Galois groupoid of a differential module
There is an isomorphism of finitely generated Hopf algebroids:
(A Z2((M)s)) = (A Up)

Thus, we have equivalences of rigid symmetric monoidal C-linear
abelian categories:

(M) = comodz(m);) = comodye, .

Let 77, : Alg. — Grpds be the presheaf of groupoids associated to the
Hopf algebroid (A, U,) and consider .7,(C) its fibre at Spec(C), that
is, the character groupoid of (A, Ug,)-

The algebraic groupoid #,(C) is referred to as the differential Galois
groupoid of the linear differential matrix equation attached to (M, 9).

Consider the following algebraic groupoid:

gm: Al x GLp(C) x Al =—2—— Al

pry— " C?

This is the induced groupoid of GL,,(C) along the map A! — {x}.
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There is a “monomorphism” of affine algebraic groupoids

Hy(C)——= 9.

In particular, any isotropy group of .7¢;,(C) is identified with a closed
sub-group of the algebraic group GL,(C).

Example

Let (M, 0) be a differential module whose underlying module

M = Am is a free A-module of rank one, endowed with the differential
matrix mat(M) = a € A, thatis, 9(m) = a(X)m. Then the Hopf
algebroid U;, is generated as an (A @. A)-algebra by the invertible
element dety. Thus U, is isomorphic to the Hopf algebroid

(A®c A)[T, T =2 Aw. C[T, T~ "] ®. A, which is the base extension
of the Hopf C-algebra C[T, T~'] (the coordinate algebra of the
multiplicative group).

Changing the differential 0 on that free one rank modules,
gives the “same” Hopf algebroid Ug,. The fact, is that this differential
0 of M do not induces a differential algebra structure on Ug,, but on a
certain quotient of this one.
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Let us fix a differential module (M, 0) with rank m, and consider as
above the category (M) . This category admits a tensor generator
(e.g., the differential module M & M*) and have a fibre functor over
Spec(A) # 0, namely, the forgetful functor w := wy(u),, -

By Deligne’s results, we know that there is a fiber functor over the

base field C:
W' M)y — vectc.

Following André’s approach, the existence of this fibre functor is a
crucial step in building up the Picard-Vessiot extension of (A, 9) for
the differential module (M, 9).

For any point x € A!, consider the associated isotropy Hopf
C-algebra U, , of the Hopf algebroid U, .
This is by definition the base extension Hopf algebra

(C, U5 =C,24 U, @4 C,),

where C, is C viewed as an A-algebra via the C-algebra map
x:A—C.
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Observe that (A, U;,)) is geometrically transitive flat Hopf algebroid
over C and that .7%,(C) # 0, which is a transitive groupoid.

This implies that the canonical Hopf algebroid extension
X: (A, Usy) = (C,U3,)
is a weak equivalence, which means that the induced functor
) O Comodu(oM) — ComodU(oM))X

establishes an equivalence of symmetric monoidal categories.

In this way we obtain a chain of symmetric monoidal C-linear faithful
and exact functors:

X [
w, : (M) ——— comodyo ———— comodye ~———— vect,
€ @~ Y — o= Y, x ’

where O is the forgetful functor.
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There is a point x € A! such that w’ = w,, up to a canonical natural
isomorphism. In particular, the extended fibre functor

W ®c A (M), — proj(A)

over A is naturally isomorphic to w. Therefore, we have isomorphisms
of Hopf algebroids:

(A 2(w)) = (A 2( @A) = (A Us,).
So far we have two fibred functors:
W= Wi, W @ At (M), — proj(A).

This leads to a principal bi-bundle (%Z(w,w’ @ A), o, 3) over Ug,,
where o, 3 : A — Z(w,w’ ®c A) are its structural algebra maps. This
is the (A ®. A)-algebra representing the bi-torsor Isom}_ ,(w, w’ ®c A).
This principal bi-bundle is (up to isomorphisms) the unit principal
bi-bundle % (U;,)) given by the Hopf algebroid U, its self.
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Let us consider the quotient algebra
Pi=U;, /(s —1)

by the Hopf ideal (s — t). This is the (total isotropy) Hopf A-algebra of
Ug,, with unit ¢ : A — P the algebra map induced from «, 3.

The algebra P admits a differential 8 : P — P, extracted from the
differential of M such that the map ¢ : (A,9) — (P, &) becomes a
morphism of differential algebras.

Denote by Aut, »,((P,d)) the group of differential A-algebra
automorphisms, that is, algebra automorphisms o : P — P such that
gotr=cranddoo =000d.

In this way, we obtain a functor valued in groups:

Aut,, , ((P,d)) : Alg, —> Grps, (c — At 000 (PR C, 8% C))),

whose fibre at Spec(C) is Aut, o) ((P, 9)).
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The differential algebra (P, @) enjoys the following more properties:

» (P, d) is a simple differential algebra;
» As an A-algebra P is generated by the entries of the matrix
F = (fj + (s — t))1<i.j<m and (dety ' + (s — t)) with differential
OF = mat(M) F.

That is, F is a fundamental matrix of solutions of the linear
differential matrix equation attached to (M, 9).

Furthermore, we have that
» there is an isomorphism

Aut, , ((P,8)) = Aut®(w)

of affine group schemes;

» the algebraic group Aut, ) ((P, d)) is isomorphic to each of the
isotropy groups of the algebraic differential Galois groupoid
,(C) attached to (M, 9).

The pair (P, 9) is the Picard-Vessiot extension of (A, 0) for (M, 9).



Thank you!



