Picard-Vessiot extensions, differential Galois groupoids and Hopf algebroids

Laiachi El Kaoutit

Universidad de Granada. Spain. EMAIL: kaoutit@ugr.es URL: https://www.ugr.es/~kaoutit/ (A talk based on arXiv: https://arxiv.org/pdf/1607.07633.pdf)

ABSTRACT ASPECTS OF HIGHER REPRESENTATION THEORY.

Brussels, January 23rd, 2019.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let $A = \mathbb{C}[X]$ be the polynomial algebra in one variable X over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}^1_{\mathbb{C}}$.

Let $A = \mathbb{C}[X]$ be the polynomial algebra in one variable X over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}^1_{\mathbb{C}}$.

A differential module over the differential algebra $(A, \partial := \partial/\partial X)$ is a finitely generated right A-module equipped with a \mathbb{C} -linear map $\partial : M \to M$ such that

 $\partial(xa) = \partial x \cdot a + \partial a \cdot x$, for every $a \in A$ and $x \in M$.

The linear map ∂ is called *the differential of M*.

Let $A = \mathbb{C}[X]$ be the polynomial algebra in one variable *X* over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}^1_{\mathbb{C}}$.

A differential module over the differential algebra $(A, \partial := \partial/\partial X)$ is a finitely generated right A-module equipped with a \mathbb{C} -linear map $\partial : M \to M$ such that

 $\partial(xa) = \partial x \cdot a + \partial a \cdot x$, for every $a \in A$ and $x \in M$.

The linear map ∂ is called *the differential of M*.

NOTE: Every differential module is in fact free of finite rank as an *A*-module.

Let $A = \mathbb{C}[X]$ be the polynomial algebra in one variable *X* over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}^1_{\mathbb{C}}$.

A differential module over the differential algebra $(A, \partial := \partial/\partial X)$ is a finitely generated right A-module equipped with a \mathbb{C} -linear map $\partial : M \to M$ such that

 $\partial(xa) = \partial x \cdot a + \partial a \cdot x$, for every $a \in A$ and $x \in M$.

The linear map ∂ is called *the differential of M*.

NOTE: Every differential module is in fact free of finite rank as an *A*-module.

To each differential module one can associate a *linear differential matrix equation*:

Let $A = \mathbb{C}[X]$ be the polynomial algebra in one variable X over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}^1_{\mathbb{C}}$.

A differential module over the differential algebra $(A, \partial := \partial/\partial X)$ is a finitely generated right A-module equipped with a \mathbb{C} -linear map $\partial : M \to M$ such that

 $\partial(xa) = \partial x \cdot a + \partial a \cdot x$, for every $a \in A$ and $x \in M$.

The linear map ∂ is called *the differential of M*.

NOTE: Every differential module is in fact free of finite rank as an *A*-module.

To each differential module one can associate a *linear differential matrix equation*: Denote by $\{e_1, \ldots, e_m\}$ any basis of M over A, the differential ∂ is then given by a matrix $mat(M) = (a_{ij}) \in M_m(A)$ such that

$$\partial \boldsymbol{e}_i = -\sum_{j=1}^m \boldsymbol{e}_j \boldsymbol{a}_{ji}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

So if we identify an element $y \in M$ with its coordinate column in A^m , we have that

$$\partial y = \begin{pmatrix} \partial y_1 \\ \vdots \\ \partial y_m \end{pmatrix} - mat(M) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

So if we identify an element $y \in M$ with its coordinate column in A^m , we have that

$$\partial y = \begin{pmatrix} \partial y_1 \\ \vdots \\ \partial y_m \end{pmatrix} - mat(M) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Thus $ker(\partial)$ is the solution space of the following *linear differential matrix equation*:

$$\left(\begin{array}{c} y_1'\\ \vdots\\ y_m' \end{array}\right) = mat(M) \left(\begin{array}{c} y_1\\ \vdots\\ y_m \end{array}\right).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

So if we identify an element $y \in M$ with its coordinate column in A^m , we have that

$$\partial y = \begin{pmatrix} \partial y_1 \\ \vdots \\ \partial y_m \end{pmatrix} - mat(M) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Thus $ker(\partial)$ is the solution space of the following *linear differential matrix equation*:

$$\left(\begin{array}{c} y_1'\\ \vdots\\ y_m' \end{array}\right) = mat(M) \left(\begin{array}{c} y_1\\ \vdots\\ y_m \end{array}\right).$$

A morphism of differential modules $f : (M, \partial) \to (N, \partial)$ is an A-linear map $f : M \to N$ which commutes with differentials: $\partial \circ f = f \circ \partial$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The category \mathbf{Diff}_{A} of all differential modules, enjoys the following properties:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The category **Diff**_A of all differential modules, enjoys the following properties:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► It is a C-linear locally finite abelian category.

The category \mathbf{Diff}_{A} of all differential modules, enjoys the following properties:

- It is a \mathbb{C} -linear locally finite abelian category.
- ► It is a rigid symmetric monoidal category. The tensor product of two objects (*M*, ∂), (*N*, ∂) in **Diff**_A is again a differential module with differential:

$$\partial: M \otimes_{\scriptscriptstyle{A}} N \longrightarrow M \otimes_{\scriptscriptstyle{A}} N, \quad \left(\partial(x \otimes_{\scriptscriptstyle{A}} y) = \partial(x) \otimes_{\scriptscriptstyle{A}} y + x \otimes_{\scriptscriptstyle{A}} \partial(y)\right)$$

(ロ) (同) (三) (三) (三) (○) (○)

The category \mathbf{Diff}_{A} of all differential modules, enjoys the following properties:

- ► It is a C-linear locally finite abelian category.
- ► It is a rigid symmetric monoidal category. The tensor product of two objects (*M*, ∂), (*N*, ∂) in **Diff**_A is again a differential module with differential:

$$\partial: M \otimes_{\scriptscriptstyle A} N \longrightarrow M \otimes_{\scriptscriptstyle A} N, \quad \left(\partial(x \otimes_{\scriptscriptstyle A} y) = \partial(x) \otimes_{\scriptscriptstyle A} y + x \otimes_{\scriptscriptstyle A} \partial(y)\right)$$

(ロ) (同) (三) (三) (三) (○) (○)

► The forgetful functor ω : $\text{Diff}_A \to \text{proj}(A)$ is strict monoidal \mathbb{C} -linear faithful exact functor. Moreover, we have an isomorphism of \mathbb{C} -algebras: $\text{End}_{\text{Diff}_A}((A, \partial)) \cong \mathbb{C}$.

The category \mathbf{Diff}_{A} of all differential modules, enjoys the following properties:

- ► It is a C-linear locally finite abelian category.
- ► It is a rigid symmetric monoidal category. The tensor product of two objects (*M*, ∂), (*N*, ∂) in **Diff**_A is again a differential module with differential:

$$\partial: M \otimes_{\scriptscriptstyle A} N \longrightarrow M \otimes_{\scriptscriptstyle A} N, \quad \left(\partial(x \otimes_{\scriptscriptstyle A} y) = \partial(x) \otimes_{\scriptscriptstyle A} y + x \otimes_{\scriptscriptstyle A} \partial(y)\right)$$

► The forgetful functor ω : $\text{Diff}_A \to \text{proj}(A)$ is strict monoidal \mathbb{C} -linear faithful exact functor. Moreover, we have an isomorphism of \mathbb{C} -algebras: $\text{End}_{\text{Diff}_A}((A, \partial)) \cong \mathbb{C}$.

We denote by $U := \mathbb{C}[X][Y, \frac{\partial}{\partial X}]$ the noncommutative *ring of differential operators* of *A*, i.e., the first Weyl algebra.

The category \mathbf{Diff}_{A} of all differential modules, enjoys the following properties:

- \blacktriangleright It is a $\mathbb C$ -linear locally finite abelian category.
- ► It is a rigid symmetric monoidal category. The tensor product of two objects (M, ∂), (N, ∂) in **Diff**_A is again a differential module with differential:

$$\partial: M \otimes_{\scriptscriptstyle A} N \longrightarrow M \otimes_{\scriptscriptstyle A} N, \quad \left(\partial(x \otimes_{\scriptscriptstyle A} y) = \partial(x) \otimes_{\scriptscriptstyle A} y + x \otimes_{\scriptscriptstyle A} \partial(y)\right)$$

► The forgetful functor ω : $\text{Diff}_A \to \text{proj}(A)$ is strict monoidal \mathbb{C} -linear faithful exact functor. Moreover, we have an isomorphism of \mathbb{C} -algebras: $\text{End}_{\text{Diff}_A}((A, \partial)) \cong \mathbb{C}$.

We denote by $U := \mathbb{C}[X][Y, \frac{\partial}{\partial X}]$ the noncommutative *ring of differential operators* of *A*, i.e., the first Weyl algebra. As a (right) *A*-module, *U* is free with basis $\{Y^n\}_{n \in \mathbb{N}}$, and with left *A*-action given by the rule

$$aY = Ya + \frac{\partial a}{\partial X}$$
, for every $a \in A$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The algebra U is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $(A, \text{Der}_{\mathbb{C}}(A))$ (the *A*-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T}\mathbb{A}^1_{\mathbb{C}}$).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

The algebra U is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $(A, \text{Der}_{\mathbb{C}}(A))$ (the *A*-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T}\mathbb{A}^1_{\mathbb{C}}$).

The pair (A, U) is a co-commutative (right) Hopf algebroid and its structure maps are given by:

 $\Delta(Y) = 1 \otimes_{\scriptscriptstyle A} Y + Y \otimes_{\scriptscriptstyle A} 1, \quad \varepsilon(Y) = 0, \text{ and } Y_- \otimes_{\scriptscriptstyle A} Y_+ = 1 \otimes_{\scriptscriptstyle A} Y - Y \otimes_{\scriptscriptstyle A} 1.$

(日) (日) (日) (日) (日) (日) (日)

The algebra U is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $(A, \text{Der}_{\mathbb{C}}(A))$ (the *A*-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T}\mathbb{A}^1_{\mathbb{C}}$).

The pair (A, U) is a co-commutative (right) Hopf algebroid and its structure maps are given by:

 $\Delta(Y) = 1 \otimes_{\scriptscriptstyle A} Y + Y \otimes_{\scriptscriptstyle A} 1, \quad \varepsilon(Y) = 0, \text{ and } Y_- \otimes_{\scriptscriptstyle A} Y_+ = 1 \otimes_{\scriptscriptstyle A} Y - Y \otimes_{\scriptscriptstyle A} 1.$

Furthermore, there is an isomorphism of symmetric monoidal categories:

 $\mathbf{Diff}_{A} \cong \operatorname{mod}_{U}$

where mod_U is the full subcategory of the category of right *U*-modules whose underlying *A*-modules are f.g.p. ones.

The algebra U is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $(A, \text{Der}_{\mathbb{C}}(A))$ (the *A*-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T}\mathbb{A}^1_{\mathbb{C}}$).

The pair (A, U) is a co-commutative (right) Hopf algebroid and its structure maps are given by:

 $\Delta(Y) = 1 \otimes_{\scriptscriptstyle A} Y + Y \otimes_{\scriptscriptstyle A} 1, \quad \varepsilon(Y) = 0, \text{ and } Y_- \otimes_{\scriptscriptstyle A} Y_+ = 1 \otimes_{\scriptscriptstyle A} Y - Y \otimes_{\scriptscriptstyle A} 1.$

Furthermore, there is an isomorphism of symmetric monoidal categories:

 $\mathbf{Diff}_{A} \cong \operatorname{mod}_{U}$

where mod_U is the full subcategory of the category of right *U*-modules whose underlying *A*-modules are f.g.p. ones.

Applying Tannaka-Krein reconstruction process to the pair (**Diff**_{*A*}, ω), leads to a commutative Hopf algebroid (*A*, *U*°): *the finite dual of U*.

By the construction of U° , there is an equivalence of rigid symmetric monoidal categories

 $\operatorname{mod}_U \simeq \operatorname{comod}_{U^\circ}$

(ロ) (同) (三) (三) (三) (○) (○)

where $comod_{U^{\circ}}$ is the full subcategory of the category of U° -comodules whose underlying *A*-modules are f.g.p. ones.

By the construction of U° , there is an equivalence of rigid symmetric monoidal categories

 $\operatorname{mod}_U \simeq \operatorname{comod}_{U^\circ}$

where $comod_{U^{\circ}}$ is the full subcategory of the category of U° -comodules whose underlying *A*-modules are f.g.p. ones. Moreover, there is an injective $(A \otimes_{\mathbb{C}} A)$ -algebra map

$$U^{\circ} \xrightarrow{\zeta} U^*,$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

whose codomain is the right A-linear dual of U.

By the construction of U° , there is an equivalence of rigid symmetric monoidal categories

 $\operatorname{mod}_U \simeq \operatorname{comod}_{U^\circ}$

where $comod_{U^{\circ}}$ is the full subcategory of the category of U° -comodules whose underlying *A*-modules are f.g.p. ones.

Moreover, there is an injective $(A \otimes_{\mathbb{C}} A)$ -algebra map

$$U^{\circ} \xrightarrow{\zeta} U^{*},$$

whose codomain is the right A-linear dual of U.

The algebra U^* is the convolution algebra of the Hopf algebroid U, which have a structure of complete commutative Hopf algebroid. In this way the completion $\hat{\zeta} : \hat{U}^{\circ} \to U^*$ of ζ becomes a morphism of complete Hopf algebroids.

By the construction of U° , there is an equivalence of rigid symmetric monoidal categories

 $\operatorname{mod}_U \simeq \operatorname{comod}_{U^\circ}$

where $comod_{U^{\circ}}$ is the full subcategory of the category of U° -comodules whose underlying *A*-modules are f.g.p. ones.

Moreover, there is an injective $(A \otimes_{\mathbb{C}} A)$ -algebra map

$$U^{\circ} \xrightarrow{\zeta} U^*,$$

whose codomain is the right A-linear dual of U.

The algebra U^* is the convolution algebra of the Hopf algebroid U, which have a structure of complete commutative Hopf algebroid. In this way the completion $\hat{\zeta} : \hat{U}^{\circ} \to U^*$ of ζ becomes a morphism of complete Hopf algebroids.

Following Kapranov's result, the associated formal scheme of U^* , can be seen as the "formal integration" of the Lie algebroid $(\mathcal{TA}^1_{\mathbb{C}}, \mathbb{A}^1_{\mathbb{C}})$.

(4日) (個) (主) (主) (三) の(の)

Fix a differential module $M \in \mathbf{Diff}_A$ with a dual basis $\{e_i, e_i^*\}_{1 \le i \le m}$. There exist elements $\{f_{ij}\}_{1 \le i,j \le m}$, $\det_M \in U^\circ$, whose image are the following *A*-linear maps:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fix a differential module $M \in \mathbf{Diff}_A$ with a dual basis $\{e_i, e_i^*\}_{1 \le i \le m}$. There exist elements $\{f_{ij}\}_{1 \le i,j \le m}$, $\det_M \in U^\circ$, whose image are the following *A*-linear maps:

$$\zeta(f_{ij})(u) = \boldsymbol{e}_{j}^{*}(\boldsymbol{e}_{i} u),$$

$$\zeta(\det_{M})(u) = \sum_{\sigma \in S_{m}} (-1)^{sg(\sigma)} \boldsymbol{e}_{m}^{*}(\boldsymbol{e}_{\sigma(m)} u_{(m)}) \cdots \boldsymbol{e}_{1}^{*}(\boldsymbol{e}_{\sigma(1)} u_{(1)}),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for every $u \in U$. Additionally, the element det_M is invertible.

Fix a differential module $M \in \mathbf{Diff}_A$ with a dual basis $\{e_i, e_i^*\}_{1 \le i \le m}$. There exist elements $\{f_{ij}\}_{1 \le i,j \le m}$, $\det_M \in U^\circ$, whose image are the following *A*-linear maps:

 $\zeta(f_{ij})(u) = e_j^*(e_i u),$

$$\zeta(\det_M)(u) = \sum_{\sigma \in S_m} (-1)^{sg(\sigma)} e_m^* (e_{\sigma(m)} u_{(m)}) \cdots e_1^* (e_{\sigma(1)} u_{(1)}),$$

for every $u \in U$. Additionally, the element \det_M is invertible. We denote by $U^{\circ}_{(M)}$ the $(A \otimes_{\mathbb{C}} A)$ -subalgebra of U° generated by the elements $\{f_{ij}\}_{1 \leq i, j \leq m}$ and \det_M^{-1} .

Fix a differential module $M \in \mathbf{Diff}_A$ with a dual basis $\{e_i, e_i^*\}_{1 \le i \le m}$. There exist elements $\{f_{ij}\}_{1 \le i,j \le m}$, $\det_M \in U^\circ$, whose image are the following *A*-linear maps:

$$\zeta(f_{ij})(u) = e_j^*(e_i u),$$

$$\zeta(\det_M)(u) = \sum_{\sigma \in S_m} (-1)^{sg(\sigma)} e_m^* (e_{\sigma(m)} u_{(m)}) \cdots e_1^* (e_{\sigma(1)} u_{(1)}),$$

for every $u \in U$. Additionally, the element \det_M is invertible. We denote by $U^{\circ}_{(M)}$ the $(A \otimes_{\mathbb{C}} A)$ -subalgebra of U° generated by the elements $\{f_{ij}\}_{1 \le i,j \le m}$ and \det_M^{-1} .

It turns out that $U^{\circ}_{(M)}$ is a sub Hopf algebroid of U° .

(4日) (個) (主) (主) (三) の(の)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Consider now the full subcategory $\langle M \rangle_{\otimes}$ of **Diff**_A of finite sub-quotients differential modules of *M*.

Consider now the full subcategory $\langle M \rangle_{\otimes}$ of **Diff**_A of finite sub-quotients differential modules of *M*.

An object (X, ∂) of **Diff**_A belongs to $\langle M \rangle_{\otimes}$ if it is a quotient of the form $X = X_2/X_1$, where

$$X_1 \subseteq X_2 \subseteq \underset{l,k}{\oplus} T^{\scriptscriptstyle (k,l)}(M), \quad \left(T^{\scriptscriptstyle (k,l)}(M) := M^{\otimes k} \otimes_{\scriptscriptstyle A} (M^*)^{\otimes l}\right)$$

(日) (日) (日) (日) (日) (日) (日)

(finite direct sum). Since **Diff**_{*A*} is an abelian category, a differential module (X, ∂) belongs to $\langle M \rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, l)}(M)$'s.

Consider now the full subcategory $\langle M \rangle_{\otimes}$ of **Diff**_A of finite sub-quotients differential modules of *M*.

An object (X, ∂) of **Diff**_A belongs to $\langle M \rangle_{\otimes}$ if it is a quotient of the form $X = X_2/X_1$, where

$$X_1 \subseteq X_2 \subseteq \underset{l,k}{\oplus} T^{\scriptscriptstyle (k,l)}(M), \quad \left(T^{\scriptscriptstyle (k,l)}(M) := M^{\otimes k} \otimes_{\scriptscriptstyle A} (M^*)^{\otimes l}\right)$$

(finite direct sum). Since **Diff**_{*A*} is an abelian category, a differential module (X, ∂) belongs to $\langle M \rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, l)}(M)$'s.

Denote by

$$\omega_{|\langle M\rangle_{\otimes}}:\langle M\rangle_{\otimes}\longrightarrow \operatorname{proj}(A)$$

(日) (日) (日) (日) (日) (日) (日)

the restriction of the fibre functor ω , and by $(A, \mathscr{R}(\langle M \rangle_{\otimes}))$ its associated commutative Hopf algebroid.

Consider now the full subcategory $\langle M \rangle_{\otimes}$ of **Diff**_A of finite sub-quotients differential modules of *M*.

An object (X, ∂) of **Diff**_A belongs to $\langle M \rangle_{\otimes}$ if it is a quotient of the form $X = X_2/X_1$, where

$$X_1 \subseteq X_2 \subseteq \underset{l,k}{\oplus} T^{\scriptscriptstyle (k,l)}(M), \quad \left(T^{\scriptscriptstyle (k,l)}(M) := M^{\otimes k} \otimes_{\scriptscriptstyle A} (M^*)^{\otimes l}\right)$$

(finite direct sum). Since **Diff**_{*A*} is an abelian category, a differential module (X, ∂) belongs to $\langle M \rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, i)}(M)$'s.

Denote by

$$\omega_{|\langle M\rangle_{\otimes}}:\langle M\rangle_{\otimes}\longrightarrow \operatorname{proj}(A)$$

the restriction of the fibre functor ω , and by $(A, \mathscr{R}(\langle M \rangle_{\otimes}))$ its associated commutative Hopf algebroid.

Then, the embedding $\langle M \rangle_{\otimes} \hookrightarrow \text{Diff}_{A}$, leads to the canonical morphism of Hopf algberoids

$$(A, \mathscr{R}(\langle M \rangle_{\otimes})) \longrightarrow (A, U^{\circ}).$$

(4日) (個) (主) (主) (三) の(の)

There is an isomorphism of finitely generated Hopf algebroids:

 $(A, \mathscr{R}(\langle M \rangle_{\otimes})) \cong (A, U^{\circ}_{\scriptscriptstyle{(M)}})$

There is an isomorphism of finitely generated Hopf algebroids:

 $(A, \mathscr{R}(\langle M \rangle_{\otimes})) \cong (A, U^{\circ}_{\scriptscriptstyle{(M)}})$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}\mbox{-linear}$ abelian categories:

$$\langle M \rangle_{\otimes} \simeq \operatorname{comod}_{\mathscr{R}(\langle M \rangle_{\otimes})} \simeq \operatorname{comod}_{U_{(M)}^{\circ}}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

There is an isomorphism of finitely generated Hopf algebroids:

 $(A, \mathscr{R}(\langle M \rangle_{\otimes})) \cong (A, U^{\circ}_{\scriptscriptstyle{(M)}})$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}\mbox{-linear}$ abelian categories:

$$\langle M \rangle_{\otimes} \simeq \operatorname{comod}_{\mathscr{R}(\langle M \rangle_{\otimes})} \simeq \operatorname{comod}_{U^{\mathsf{o}}_{(M)}}$$

Let \mathscr{H}_{M} : Alg_{\mathbb{C}} \to Grpds be the presheaf of groupoids associated to the Hopf algebroid ($A, U_{\scriptscriptstyle(\mathsf{M})}^{\circ}$) and consider $\mathscr{H}_{\mathsf{M}}(\mathbb{C})$ its fibre at Spec(\mathbb{C}), that is, the *character groupoid* of ($A, U_{\scriptscriptstyle(\mathsf{M})}^{\circ}$).

(日) (日) (日) (日) (日) (日) (日)

There is an isomorphism of finitely generated Hopf algebroids:

 $(A, \mathscr{R}(\langle M \rangle_{\otimes})) \cong (A, U^{\circ}_{\scriptscriptstyle{(M)}})$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}\mbox{-linear}$ abelian categories:

$$\langle M \rangle_{\otimes} \simeq \operatorname{comod}_{\mathscr{R}(\langle M \rangle_{\otimes})} \simeq \operatorname{comod}_{U^{\circ}_{(M)}}$$

Let \mathscr{H}_{M} : Alg_c \to Grpds be the presheaf of groupoids associated to the Hopf algebroid $(A, U_{(\mathsf{M})}^{\circ})$ and consider $\mathscr{H}_{\mathsf{M}}(\mathbb{C})$ its fibre at Spec(\mathbb{C}), that is, the *character groupoid* of $(A, U_{(\mathsf{M})}^{\circ})$.

The algebraic groupoid $\mathscr{H}_{M}(\mathbb{C})$ is referred to as the differential Galois groupoid of the linear differential matrix equation attached to (M, ∂) .

There is an isomorphism of finitely generated Hopf algebroids:

 $(A, \mathscr{R}(\langle M \rangle_{\otimes})) \cong (A, U^{\circ}_{\scriptscriptstyle{(M)}})$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}\mbox{-linear}$ abelian categories:

$$\langle M \rangle_{\otimes} \simeq \operatorname{comod}_{\mathscr{R}(\langle M \rangle_{\otimes})} \simeq \operatorname{comod}_{U^{\circ}_{(M)}}$$

Let \mathscr{H}_{M} : Alg_c \to Grpds be the presheaf of groupoids associated to the Hopf algebroid $(A, U_{(\mathsf{M})}^{\circ})$ and consider $\mathscr{H}_{\mathsf{M}}(\mathbb{C})$ its fibre at Spec(\mathbb{C}), that is, the *character groupoid* of $(A, U_{(\mathsf{M})}^{\circ})$.

The algebraic groupoid $\mathscr{H}_{M}(\mathbb{C})$ is referred to as the differential Galois groupoid of the linear differential matrix equation attached to (M, ∂) .

Consider the following algebraic groupoid:

$$\mathscr{G}^{m}: \quad \mathbb{A}^{1}_{\mathbb{C}} \times \operatorname{GL}_{m}(\mathbb{C}) \times \mathbb{A}^{1}_{\mathbb{C}} \xrightarrow{pr_{3} \longrightarrow}_{\iota} \mathbb{A}^{1}_{\mathbb{C}},$$

This is the induced groupoid of $GL_m(\mathbb{C})$ along the map $\mathbb{A}^1_{\mathbb{C}} \to \{*\}$.

(4日) (個) (主) (主) (三) の(の)

There is a "monomorphism" of affine algebraic groupoids

 $\mathscr{H}_{M}(\mathbb{C}) \hookrightarrow \mathscr{G}^{m}$.

(日) (日) (日) (日) (日) (日) (日)

In particular, any isotropy group of $\mathscr{H}_{\mathcal{M}}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $GL_{m}(\mathbb{C})$.

There is a "monomorphism" of affine algebraic groupoids

 $\mathscr{H}_{\mathsf{M}}(\mathbb{C}) \hookrightarrow \mathscr{G}^{\mathsf{m}}$.

In particular, any isotropy group of $\mathscr{H}_{\mathcal{M}}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $GL_{m}(\mathbb{C})$.

Example

Let (M, ∂) be a differential module whose underlying module M = A.m is a free *A*-module of rank one, endowed with the differential matrix $mat(M) = a \in A$, that is, $\partial(m) = a(X)m$. Then the Hopf algebroid $U^{\circ}_{(M)}$ is generated as an $(A \otimes_{\mathbb{C}} A)$ -algebra by the invertible element det_{*M*}. Thus $U^{\circ}_{(M)}$ is isomorphic to the Hopf algebroid $(A \otimes_{\mathbb{C}} A)[T, T^{-1}] \cong A \otimes_{\mathbb{C}} \mathbb{C}[T, T^{-1}] \otimes_{\mathbb{C}} A$, which is the base extension of the Hopf \mathbb{C} -algebra $\mathbb{C}[T, T^{-1}]$ (the coordinate algebra of the multiplicative group).

There is a "monomorphism" of affine algebraic groupoids

 $\mathscr{H}_{M}(\mathbb{C}) \hookrightarrow \mathscr{G}^{m}$.

In particular, any isotropy group of $\mathscr{H}_{\mathcal{M}}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $GL_{m}(\mathbb{C})$.

Example

Let (M, ∂) be a differential module whose underlying module M = A.m is a free *A*-module of rank one, endowed with the differential matrix $mat(M) = a \in A$, that is, $\partial(m) = a(X)m$. Then the Hopf algebroid $U_{(M)}^{\circ}$ is generated as an $(A \otimes_{\mathbb{C}} A)$ -algebra by the invertible element det_{*M*}. Thus $U_{(M)}^{\circ}$ is isomorphic to the Hopf algebroid $(A \otimes_{\mathbb{C}} A)[T, T^{-1}] \cong A \otimes_{\mathbb{C}} \mathbb{C}[T, T^{-1}] \otimes_{\mathbb{C}} A$, which is the base extension of the Hopf \mathbb{C} -algebra $\mathbb{C}[T, T^{-1}]$ (the coordinate algebra of the multiplicative group).

NOTE: Changing the differential ∂ on that free one rank modules, gives the "same" Hopf algebroid $U^{\circ}_{(M)}$. The fact, is that this differential ∂ of M do not induces a differential algebra structure on $U^{\circ}_{(M)}$, but on a certain quotient of this one.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Let us fix a differential module (M, ∂) with rank m, and consider as above the category $\langle M \rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^*$) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega := \omega_{|\langle M \rangle_{\otimes}}$.

Let us fix a differential module (M, ∂) with rank m, and consider as above the category $\langle M \rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^*$) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega := \omega_{|\langle M \rangle_{\otimes}}$.

By Deligne's results, we know that there is a fiber functor over the base field \mathbb{C} :

 $\omega': \langle M \rangle_{\otimes} \longrightarrow \operatorname{vect}_{\mathbb{C}}.$

Let us fix a differential module (M, ∂) with rank m, and consider as above the category $\langle M \rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^*$) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega := \omega_{|\langle M \rangle_{\otimes}}$.

By Deligne's results, we know that there is a fiber functor over the base field \mathbb{C} :

 $\omega': \langle M \rangle_{\otimes} \longrightarrow \operatorname{vect}_{\mathbb{C}}.$

Following André's approach, the existence of this fibre functor is a crucial step in building up the *Picard-Vessiot extension of* (A, ∂) *for the differential module* (M, ∂) .

Let us fix a differential module (M, ∂) with rank m, and consider as above the category $\langle M \rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^*$) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega := \omega_{|\langle M \rangle_{\otimes}}$.

By Deligne's results, we know that there is a fiber functor over the base field \mathbb{C} :

 $\omega': \langle M \rangle_{\otimes} \longrightarrow \operatorname{vect}_{\mathbb{C}}.$

Following André's approach, the existence of this fibre functor is a crucial step in building up the *Picard-Vessiot extension of* (A, ∂) for the differential module (M, ∂) .

For any point $x \in \mathbb{A}^1_{\mathbb{C}}$, consider the associated isotropy Hopf \mathbb{C} -algebra $U^{\circ}_{(M),x}$ of the Hopf algebroid $U^{\circ}_{(M)}$.

Let us fix a differential module (M, ∂) with rank m, and consider as above the category $\langle M \rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^*$) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega := \omega_{|\langle M \rangle_{\otimes}}$.

By Deligne's results, we know that there is a fiber functor over the base field \mathbb{C} :

 $\omega': \langle M \rangle_{\otimes} \longrightarrow \operatorname{vect}_{\mathbb{C}}.$

Following André's approach, the existence of this fibre functor is a crucial step in building up the *Picard-Vessiot extension of* (A, ∂) for the differential module (M, ∂) .

For any point $x \in \mathbb{A}^1_{\mathbb{C}}$, consider the associated isotropy Hopf \mathbb{C} -algebra $U^{\circ}_{(M),x}$ of the Hopf algebroid $U^{\circ}_{(M)}$. This is by definition the base extension Hopf algebra

$$(\mathbb{C}, U^{\mathrm{o}}_{\scriptscriptstyle{(M),x}} := \mathbb{C}_x \otimes_{\scriptscriptstyle{A}} U^{\mathrm{o}}_{\scriptscriptstyle{(M)}} \otimes_{\scriptscriptstyle{A}} \mathbb{C}_x),$$

where \mathbb{C}_x is \mathbb{C} viewed as an *A*-algebra via the \mathbb{C} -algebra map $x : A \to \mathbb{C}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Observe that $(A, U^{\circ}_{(M)})$ is *geometrically transitive* flat Hopf algebroid over \mathbb{C} and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.

Observe that $(A, U^{\circ}_{(M)})$ is *geometrically transitive* flat Hopf algebroid over \mathbb{C} and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.

This implies that the canonical Hopf algebroid extension

$$\mathbf{x}:(\mathbf{A}, \mathit{U}^{\circ}_{\scriptscriptstyle{(M)}})
ightarrow (\mathbb{C}, \mathit{U}^{\circ}_{\scriptscriptstyle{(M),\,x}})$$

is a weak equivalence, which means that the induced functor

 $\mathbf{x}_*: \operatorname{Comod}_{U^{\circ}_{(M)}} \to \operatorname{Comod}_{U^{\circ}_{(M),x}}$

establishes an equivalence of symmetric monoidal categories.

Observe that $(A, U^{\circ}_{(M)})$ is *geometrically transitive* flat Hopf algebroid over \mathbb{C} and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.

This implies that the canonical Hopf algebroid extension

$$\mathbf{x}:(\mathbf{A}, \mathit{U}^{\circ}_{\scriptscriptstyle{(M)}})
ightarrow (\mathbb{C}, \mathit{U}^{\circ}_{\scriptscriptstyle{(M),\,x}})$$

is a weak equivalence, which means that the induced functor

$$\mathbf{x}_*: \operatorname{Comod}_{U^{\circ}_{(M)}} \to \operatorname{Comod}_{U^{\circ}_{(M), x}}$$

establishes an equivalence of symmetric monoidal categories.

In this way we obtain a chain of symmetric monoidal $\mathbb C\text{-linear}$ faithful and exact functors:

$$\omega_{x}: \langle \boldsymbol{M} \rangle_{\otimes} \xrightarrow[\otimes -\simeq]{} \operatorname{comod}_{U_{(M)}^{\circ}} \xrightarrow{\mathbf{x}_{*}} \operatorname{comod}_{U_{(M),x}^{\circ}} \xrightarrow{\mathcal{O}} \operatorname{vect}_{\mathbb{C}},$$

where \mathcal{O} is the forgetful functor.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

There is a point $x \in \mathbb{A}^1_{\mathbb{C}}$ such that $\omega' = \omega_x$, up to a canonical natural isomorphism. In particular, the extended fibre functor

 $\omega' \otimes_{\mathbb{C}} \mathbf{A} : \langle \mathbf{M} \rangle_{\otimes} \longrightarrow \operatorname{proj}(\mathbf{A})$

over A is naturally isomorphic to ω . Therefore, we have isomorphisms of Hopf algebroids:

 $(A, \mathscr{R}(\omega)) \cong (A, \mathscr{R}(\omega' \otimes_{\mathbb{C}} A)) \cong (A, U^{\circ}_{(M)}).$

There is a point $x \in \mathbb{A}^1_{\mathbb{C}}$ such that $\omega' = \omega_x$, up to a canonical natural isomorphism. In particular, the extended fibre functor

 $\omega' \otimes_{\mathbb{C}} \mathbf{A} : \langle \mathbf{M} \rangle_{\otimes} \longrightarrow \operatorname{proj}(\mathbf{A})$

over A is naturally isomorphic to ω . Therefore, we have isomorphisms of Hopf algebroids:

$$(A, \mathscr{R}(\omega)) \cong (A, \mathscr{R}(\omega' \otimes_{\mathbb{C}} A)) \cong (A, U^{\circ}_{(M)}).$$

So far we have two fibred functors:

$$\omega := \omega_{|\langle M \rangle_{\otimes}}, \ \omega' \otimes_{\mathbb{C}} A : \langle M \rangle_{\otimes} \longrightarrow \operatorname{proj}(A).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

There is a point $x \in \mathbb{A}^1_{\mathbb{C}}$ such that $\omega' = \omega_x$, up to a canonical natural isomorphism. In particular, the extended fibre functor

 $\omega' \otimes_{\mathbb{C}} \boldsymbol{A} : \langle \boldsymbol{M} \rangle_{\otimes} \longrightarrow \operatorname{proj}(\boldsymbol{A})$

over A is naturally isomorphic to ω . Therefore, we have isomorphisms of Hopf algebroids:

$$(A, \mathscr{R}(\omega)) \cong (A, \mathscr{R}(\omega' \otimes_{\mathbb{C}} A)) \cong (A, U^{\circ}_{(M)}).$$

So far we have two fibred functors:

$$\omega := \omega_{|\langle M \rangle_{\otimes}}, \ \omega' \otimes_{\mathbb{C}} A : \langle M \rangle_{\otimes} \longrightarrow \operatorname{proj}(A).$$

This leads to a principal bi-bundle $(\mathscr{R}(\omega, \omega' \otimes_{\mathbb{C}} A), \alpha, \beta)$ over $U^{\circ}_{(M)}$, where $\alpha, \beta : A \to \mathscr{R}(\omega, \omega' \otimes_{\mathbb{C}} A)$ are its structural algebra maps. This is the $(A \otimes_{\mathbb{C}} A)$ -algebra representing the bi-torsor $\underline{\mathrm{Isom}}^{\otimes}_{A \otimes \alpha}(\omega, \omega' \otimes_{\mathbb{C}} A)$.

There is a point $x \in \mathbb{A}^1_{\mathbb{C}}$ such that $\omega' = \omega_x$, up to a canonical natural isomorphism. In particular, the extended fibre functor

 $\omega' \otimes_{\mathbb{C}} \boldsymbol{A} : \langle \boldsymbol{M} \rangle_{\otimes} \longrightarrow \operatorname{proj}(\boldsymbol{A})$

over A is naturally isomorphic to ω . Therefore, we have isomorphisms of Hopf algebroids:

$$(A, \mathscr{R}(\omega)) \cong (A, \mathscr{R}(\omega' \otimes_{\mathbb{C}} A)) \cong (A, U^{\circ}_{(M)}).$$

So far we have two fibred functors:

$$\omega := \omega_{|\langle M \rangle_{\otimes}}, \ \omega' \otimes_{\mathbb{C}} A : \langle M \rangle_{\otimes} \longrightarrow \operatorname{proj}(A).$$

This leads to a principal bi-bundle $(\mathscr{R}(\omega, \omega' \otimes_{\mathbb{C}} A), \alpha, \beta)$ over $U^{\circ}_{(M)}$, where $\alpha, \beta : A \to \mathscr{R}(\omega, \omega' \otimes_{\mathbb{C}} A)$ are its structural algebra maps. This is the $(A \otimes_{\mathbb{C}} A)$ -algebra representing the bi-torsor $\underline{\mathrm{Isom}}^{\otimes}_{A \otimes A}(\omega, \omega' \otimes_{\mathbb{C}} A)$. This principal bi-bundle is (up to isomorphisms) the unit principal bi-bundle $\mathscr{U}(U^{\circ}_{(M)})$ given by the Hopf algebroid $U^{\circ}_{(M)}$ its self.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Let us consider the quotient algebra

$$\mathcal{P} := U^{\circ}_{\scriptscriptstyle{(M)}}/\langle {f s}-{f t}
angle$$

by the Hopf ideal $\langle s - t \rangle$. This is the (total isotropy) Hopf *A*-algebra of $U^{\circ}_{(M)}$ with unit $\iota : A \to \mathcal{P}$ the algebra map induced from α, β .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let us consider the quotient algebra

$$\mathcal{P} := U^{\circ}_{\scriptscriptstyle{(M)}}/\langle {f s}-{f t}
angle$$

by the Hopf ideal $\langle s - t \rangle$. This is the (total isotropy) Hopf *A*-algebra of $U^{\circ}_{(M)}$ with unit $\iota : A \to \mathcal{P}$ the algebra map induced from α, β .

The algebra \mathcal{P} admits a differential $\partial : \mathcal{P} \to \mathcal{P}$, extracted from the differential of M such that the map $\iota : (A, \partial) \longrightarrow (\mathcal{P}, \partial)$ becomes a morphism of differential algebras.

(日) (日) (日) (日) (日) (日) (日)

Let us consider the quotient algebra

$$\mathcal{P} := U^{\mathsf{o}}_{\scriptscriptstyle{(M)}}/\langle \mathsf{s}-\mathsf{t}
angle$$

by the Hopf ideal $\langle s - t \rangle$. This is the (total isotropy) Hopf *A*-algebra of $U^{\circ}_{(M)}$ with unit $\iota : A \to \mathcal{P}$ the algebra map induced from α, β .

The algebra \mathcal{P} admits a differential $\partial : \mathcal{P} \to \mathcal{P}$, extracted from the differential of M such that the map $\iota : (A, \partial) \longrightarrow (\mathcal{P}, \partial)$ becomes a morphism of differential algebras.

Denote by $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \partial))$ the group of differential A-algebra automorphisms, that is, algebra automorphisms $\sigma : \mathcal{P} \to \mathcal{P}$ such that $\sigma \circ \iota = \iota$ and $\partial \circ \sigma = \sigma \circ \partial$.

Let us consider the quotient algebra

$$\mathcal{P} := U^{\mathsf{o}}_{\scriptscriptstyle{(M)}}/\langle \mathsf{s}-\mathsf{t}
angle$$

by the Hopf ideal $\langle s - t \rangle$. This is the (total isotropy) Hopf *A*-algebra of $U^{\circ}_{(M)}$ with unit $\iota : A \to \mathcal{P}$ the algebra map induced from α, β .

The algebra \mathcal{P} admits a differential $\partial : \mathcal{P} \to \mathcal{P}$, extracted from the differential of M such that the map $\iota : (A, \partial) \longrightarrow (\mathcal{P}, \partial)$ becomes a morphism of differential algebras.

Denote by $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \partial))$ the group of differential A-algebra automorphisms, that is, algebra automorphisms $\sigma : \mathcal{P} \to \mathcal{P}$ such that $\sigma \circ \iota = \iota$ and $\partial \circ \sigma = \sigma \circ \partial$.

In this way, we obtain a functor valued in groups:

$$\underline{\operatorname{Aut}}_{\scriptscriptstyle (A, \partial)}((\mathcal{P}, \partial)) : \operatorname{Alg}_{\mathbb{C}} \longrightarrow \operatorname{Grps}, \quad \Big(\mathcal{C} \longrightarrow \operatorname{Aut}_{\scriptscriptstyle (A \otimes \mathcal{C}, \ \partial \otimes \mathcal{C})}((\mathcal{P} \otimes \mathcal{C}, \partial \otimes \mathcal{C}))\Big),$$

whose fibre at $\operatorname{Spec}(\mathbb{C})$ is $\operatorname{Aut}_{\scriptscriptstyle (A, \partial)}((\mathcal{P}, \partial))$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• (\mathcal{P}, ∂) is a simple differential algebra;

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

- (\mathcal{P}, ∂) is a simple differential algebra;
- ► As an *A*-algebra \mathcal{P} is generated by the entries of the matrix $F = (f_{ij} + \langle \mathbf{s} \mathbf{t} \rangle)_{1 \le i, j \le m}$ and $(\det_M^{-1} + \langle \mathbf{s} \mathbf{t} \rangle)$ with differential

 $\partial F = mat(M) F.$

(日) (日) (日) (日) (日) (日) (日)

That is, *F* is a *fundamental matrix of solutions* of the linear differential matrix equation attached to (M, ∂) .

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

- (\mathcal{P}, ∂) is a simple differential algebra;
- ► As an *A*-algebra \mathcal{P} is generated by the entries of the matrix $F = (f_{ij} + \langle \mathbf{s} \mathbf{t} \rangle)_{1 \le i, j \le m}$ and $(\det_M^{-1} + \langle \mathbf{s} \mathbf{t} \rangle)$ with differential

 $\partial F = mat(M) F.$

(日) (日) (日) (日) (日) (日) (日)

That is, *F* is a *fundamental matrix of solutions* of the linear differential matrix equation attached to (M, ∂) .

Furthermore, we have that

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

- (\mathcal{P}, ∂) is a simple differential algebra;
- ► As an *A*-algebra \mathcal{P} is generated by the entries of the matrix $F = (f_{ij} + \langle \mathbf{s} \mathbf{t} \rangle)_{1 \le i, j \le m}$ and $(\det_M^{-1} + \langle \mathbf{s} \mathbf{t} \rangle)$ with differential

 $\partial F = mat(M) F.$

That is, *F* is a *fundamental matrix of solutions* of the linear differential matrix equation attached to (M, ∂) .

Furthermore, we have that

there is an isomorphism

 $\underline{\operatorname{Aut}}_{{}^{(A,\;\partial)}}\bigl((\mathcal{P},\boldsymbol{\partial})\bigr)\cong\underline{\operatorname{Aut}}^{\otimes}(\omega')$

(ロ) (同) (三) (三) (三) (○) (○)

of affine group schemes;

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

- (\mathcal{P}, ∂) is a simple differential algebra;
- ► As an *A*-algebra \mathcal{P} is generated by the entries of the matrix $F = (f_{ij} + \langle \mathbf{s} \mathbf{t} \rangle)_{1 \le i, j \le m}$ and $(\det_M^{-1} + \langle \mathbf{s} \mathbf{t} \rangle)$ with differential

 $\partial F = mat(M) F.$

That is, *F* is a *fundamental matrix of solutions* of the linear differential matrix equation attached to (M, ∂) .

Furthermore, we have that

there is an isomorphism

$$\underline{\operatorname{Aut}}_{{}^{(A,\ \partial)}}\bigl((\mathcal{P},\boldsymbol{\partial})\bigr)\cong\underline{\operatorname{Aut}}^{\otimes}(\omega')$$

of affine group schemes;

► the algebraic group Aut_(A, ∂)((P, ∂)) is isomorphic to each of the isotropy groups of the algebraic differential Galois groupoid *H*_M(ℂ) attached to (M, ∂).

The differential algebra (\mathcal{P}, ∂) enjoys the following more properties:

- (\mathcal{P}, ∂) is a simple differential algebra;
- ► As an *A*-algebra \mathcal{P} is generated by the entries of the matrix $F = (f_{ij} + \langle \mathbf{s} \mathbf{t} \rangle)_{1 \le i, j \le m}$ and $(\det_M^{-1} + \langle \mathbf{s} \mathbf{t} \rangle)$ with differential

 $\partial F = mat(M) F.$

That is, *F* is a *fundamental matrix of solutions* of the linear differential matrix equation attached to (M, ∂) .

Furthermore, we have that

there is an isomorphism

$$\underline{\operatorname{Aut}}_{{}^{(A,\ \partial)}}\bigl((\mathcal{P},\boldsymbol{\partial})\bigr)\cong\underline{\operatorname{Aut}}^{\otimes}(\omega')$$

of affine group schemes;

► the algebraic group Aut_(A, ∂)((P, ∂)) is isomorphic to each of the isotropy groups of the algebraic differential Galois groupoid *H*_M(ℂ) attached to (M, ∂).

The pair (\mathcal{P}, ∂) is the *Picard-Vessiot extension of* (A, ∂) for (M, ∂) .

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○