# Picard-Vessiot extensions, differential Galois groupoids and Hopf algebroids 

Laiachi El Kaoutit

Universidad de Granada. Spain.<br>EmAIL: kaoutit@ugr.es<br>URL: https://www.ugr.es/~kaoutit/<br>(A talk based on arXiv: https://arxiv.org/pdf/1607.07633.pdf)

## ABSTRACT ASPECTS OF HIGHER REPRESENTATION THEORY.

Brussels, January $23^{\text {rd }}, 2019$.

The category of differential modules.

## The category of differential modules.

Let $A=\mathbb{C}[X]$ be the polynomial algebra in one variable $X$ over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}_{\mathrm{c}}^{1}$.

## The category of differential modules.

Let $A=\mathbb{C}[X]$ be the polynomial algebra in one variable $X$ over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}_{\mathrm{c}}^{1}$.
A differential module over the differential algebra $(A, \partial:=\partial / \partial X)$ is a finitely generated right $A$-module equipped with a $\mathbb{C}$-linear map
$\partial: M \rightarrow M$ such that

$$
\partial(x a)=\partial x \cdot a+\partial a \cdot x, \text { for every } a \in A \text { and } x \in M
$$

The linear map $\partial$ is called the differential of $M$.

## The category of differential modules.

Let $A=\mathbb{C}[X]$ be the polynomial algebra in one variable $X$ over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}_{\mathrm{c}}^{1}$.
A differential module over the differential algebra $(A, \partial:=\partial / \partial X)$ is a finitely generated right $A$-module equipped with a $\mathbb{C}$-linear map
$\partial: M \rightarrow M$ such that

$$
\partial(x a)=\partial x \cdot a+\partial a \cdot x, \text { for every } a \in A \text { and } x \in M
$$

The linear map $\partial$ is called the differential of $M$.
Note: Every differential module is in fact free of finite rank as an $A$-module.

## The category of differential modules.

Let $A=\mathbb{C}[X]$ be the polynomial algebra in one variable $X$ over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}_{\mathrm{c}}^{1}$.
A differential module over the differential algebra $(A, \partial:=\partial / \partial X)$ is a finitely generated right $A$-module equipped with a $\mathbb{C}$-linear map
$\partial: M \rightarrow M$ such that

$$
\partial(x a)=\partial x \cdot a+\partial a \cdot x, \text { for every } a \in A \text { and } x \in M
$$

The linear map $\partial$ is called the differential of $M$.
Note: Every differential module is in fact free of finite rank as an A-module.
To each differential module one can associate a linear differential matrix equation:

## The category of differential modules.

Let $A=\mathbb{C}[X]$ be the polynomial algebra in one variable $X$ over the field of complex numbers, which we consider as the coordinate ring of the affine complex line $\mathbb{A}_{\mathrm{c}}^{1}$.
A differential module over the differential algebra $(A, \partial:=\partial / \partial X)$ is a finitely generated right $A$-module equipped with a $\mathbb{C}$-linear map
$\partial: M \rightarrow M$ such that

$$
\partial(x a)=\partial x \cdot a+\partial a \cdot x, \text { for every } a \in A \text { and } x \in M
$$

The linear map $\partial$ is called the differential of $M$.
Note: Every differential module is in fact free of finite rank as an A-module.
To each differential module one can associate a linear differential matrix equation: Denote by $\left\{e_{1}, \ldots, e_{m}\right\}$ any basis of $M$ over $A$, the differential $\partial$ is then given by a matrix $\operatorname{mat}(M)=\left(a_{i j}\right) \in M_{m}(A)$ such that

$$
\partial e_{i}=-\sum_{j=1}^{m} e_{j} a_{j j} .
$$

The category of differential modules.

## The category of differential modules.

So if we identify an element $y \in M$ with its coordinate column in $A^{m}$, we have that

$$
\partial y=\left(\begin{array}{c}
\partial y_{1} \\
\vdots \\
\partial y_{m}
\end{array}\right)-\operatorname{mat}(M)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

## The category of differential modules.

So if we identify an element $y \in M$ with its coordinate column in $A^{m}$, we have that

$$
\partial y=\left(\begin{array}{c}
\partial y_{1} \\
\vdots \\
\partial y_{m}
\end{array}\right)-\operatorname{mat}(M)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Thus $\operatorname{ker}(\partial)$ is the solution space of the following linear differential matrix equation:

$$
\left(\begin{array}{c}
y_{1}^{\prime} \\
\vdots \\
y_{m}^{\prime}
\end{array}\right)=\operatorname{mat}(M)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

## The category of differential modules.

So if we identify an element $y \in M$ with its coordinate column in $A^{m}$, we have that

$$
\partial y=\left(\begin{array}{c}
\partial y_{1} \\
\vdots \\
\partial y_{m}
\end{array}\right)-\operatorname{mat}(M)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Thus $\operatorname{ker}(\partial)$ is the solution space of the following linear differential matrix equation:

$$
\left(\begin{array}{c}
y_{1}^{\prime} \\
\vdots \\
y_{m}^{\prime}
\end{array}\right)=\operatorname{mat}(M)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

A morphism of differential modules $f:(M, \partial) \rightarrow(N, \partial)$ is an $A$-linear map $f: M \rightarrow N$ which commutes with differentials: $\partial \circ f=f \circ \partial$.

The category of differential modules.

## The category of differential modules.

The category Diff ${ }_{A}$ of all differential modules, enjoys the following properties:

## The category of differential modules.

The category Diff ${ }_{A}$ of all differential modules, enjoys the following properties:

- It is a $\mathbb{C}$-linear locally finite abelian category.


## The category of differential modules.

The category Diff $_{A}$ of all differential modules, enjoys the following properties:

- It is a $\mathbb{C}$-linear locally finite abelian category.
- It is a rigid symmetric monoidal category. The tensor product of two objects $(M, \partial),(N, \partial)$ in Diff $_{A}$ is again a differential module with differential:

$$
\partial: M \otimes_{A} N \longrightarrow M \otimes_{A} N, \quad\left(\partial\left(x \otimes_{A} y\right)=\partial(x) \otimes_{A} y+x \otimes_{A} \partial(y)\right)
$$

## The category of differential modules.

The category Diff ${ }_{A}$ of all differential modules, enjoys the following properties:

- It is a $\mathbb{C}$-linear locally finite abelian category.
- It is a rigid symmetric monoidal category. The tensor product of two objects $(M, \partial),(N, \partial)$ in Diff $_{A}$ is again a differential module with differential:

$$
\partial: M \otimes_{A} N \longrightarrow M \otimes_{A} N, \quad\left(\partial\left(x \otimes_{A} y\right)=\partial(x) \otimes_{A} y+x \otimes_{A} \partial(y)\right)
$$

- The forgetful functor $\omega:$ Diff $_{A} \rightarrow \operatorname{proj}(A)$ is strict monoidal $\mathbb{C}$-linear faithful exact functor. Moreover, we have an isomorphism of $\mathbb{C}$-algebras: $\operatorname{End}_{\text {Diff }_{A}}((A, \partial)) \cong \mathbb{C}$.


## The category of differential modules.

The category Diff $_{A}$ of all differential modules, enjoys the following properties:

- It is a $\mathbb{C}$-linear locally finite abelian category.
- It is a rigid symmetric monoidal category. The tensor product of two objects $(M, \partial),(N, \partial)$ in Diff ${ }_{A}$ is again a differential module with differential:

$$
\partial: M \otimes_{A} N \longrightarrow M \otimes_{A} N, \quad\left(\partial\left(x \otimes_{A} y\right)=\partial(x) \otimes_{A} y+x \otimes_{A} \partial(y)\right)
$$

- The forgetful functor $\omega:$ Diff $_{A} \rightarrow \operatorname{proj}(A)$ is strict monoidal $\mathbb{C}$-linear faithful exact functor. Moreover, we have an isomorphism of $\mathbb{C}$-algebras: $\operatorname{End}_{\text {Ditif }_{A}}((A, \partial)) \cong \mathbb{C}$.
We denote by $U:=\mathbb{C}[X]\left[Y, \frac{\partial}{\partial X}\right]$ the noncommutative ring of differential operators of $A$, i.e., the first Weyl algebra.


## The category of differential modules.

The category Diff $_{A}$ of all differential modules, enjoys the following properties:

- It is a $\mathbb{C}$-linear locally finite abelian category.
- It is a rigid symmetric monoidal category. The tensor product of two objects $(M, \partial),(N, \partial)$ in Diff ${ }_{A}$ is again a differential module with differential:

$$
\partial: M \otimes_{A} N \longrightarrow M \otimes_{A} N, \quad\left(\partial\left(x \otimes_{A} y\right)=\partial(x) \otimes_{A} y+x \otimes_{A} \partial(y)\right)
$$

- The forgetful functor $\omega:$ Diff $_{A} \rightarrow \operatorname{proj}(A)$ is strict monoidal $\mathbb{C}$-linear faithful exact functor. Moreover, we have an isomorphism of $\mathbb{C}$-algebras: $\operatorname{End}_{\text {Ditit }_{A}}((A, \partial)) \cong \mathbb{C}$.
We denote by $U:=\mathbb{C}[X]\left[Y, \frac{\partial}{\partial X}\right]$ the noncommutative ring of differential operators of $A$, i.e., the first Weyl algebra.
As a (right) $A$-module, $U$ is free with basis $\left\{Y^{n}\right\}_{n \in \mathbb{N}}$, and with left $A$-action given by the rule

$$
a Y=Y a+\frac{\partial a}{\partial X}, \quad \text { for every } a \in A
$$

## The finite dual of the of first Weyl algebra

## The finite dual of the of first Weyl algebra

The algebra $U$ is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $\left(A, \operatorname{Der}_{\mathbb{C}}(A)\right.$ ) (the $A$-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T} \mathbb{A}_{\mathrm{c}}^{1}$ ).

## The finite dual of the of first Weyl algebra

The algebra $U$ is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $\left(A, \operatorname{Der}_{\mathbb{C}}(A)\right.$ ) (the $A$-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T} \mathbb{A}_{\mathrm{c}}^{1}$ ).
The pair $(A, U)$ is a co-commutative (right) Hopf algebroid and its structure maps are given by:

$$
\Delta(Y)=1 \otimes_{A} Y+Y \otimes_{A} 1, \quad \varepsilon(Y)=0, \text { and } Y_{-} \otimes_{A} Y_{+}=1 \otimes_{A} Y-Y \otimes_{A} 1 .
$$

## The finite dual of the of first Weyl algebra

The algebra $U$ is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $\left(A, \operatorname{Der}_{\mathbb{C}}(A)\right.$ ) (the $A$-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T} \mathbb{A}_{\mathrm{c}}^{1}$ ).
The pair $(A, U)$ is a co-commutative (right) Hopf algebroid and its structure maps are given by:
$\Delta(Y)=1 \otimes_{A} Y+Y \otimes_{A} 1, \quad \varepsilon(Y)=0$, and $Y_{-} \otimes_{A} Y_{+}=1 \otimes_{A} Y-Y \otimes_{A} 1$.
Furthermore, there is an isomorphism of symmetric monoidal categories:

$$
\operatorname{Diff}_{A} \cong \underset{\otimes}{\cong} \bmod U
$$

where $\bmod _{U}$ is the full subcategory of the category of right $U$-modules whose underlying $A$-modules are f.g.p. ones.

## The finite dual of the of first Weyl algebra

The algebra $U$ is, up to isomorphisms, the universal enveloping algebroid of the Lie-Rinehart algebra $\left(A, \operatorname{Der}_{\mathbb{C}}(A)\right.$ ) (the $A$-module of global sections of the transitive Lie algebroid given by the tangent bundle $\mathcal{T} \mathbb{A}_{\mathrm{c}}^{1}$ ).
The pair $(A, U)$ is a co-commutative (right) Hopf algebroid and its structure maps are given by:

$$
\Delta(Y)=1 \otimes_{A} Y+Y \otimes_{A} 1, \quad \varepsilon(Y)=0, \text { and } Y_{-} \otimes_{A} Y_{+}=1 \otimes_{A} Y-Y \otimes_{A} 1
$$

Furthermore, there is an isomorphism of symmetric monoidal categories:

$$
\operatorname{Diff}_{A} \cong \underset{\otimes}{\cong} \bmod U
$$

where $\bmod _{U}$ is the full subcategory of the category of right $U$-modules whose underlying $A$-modules are f.g.p. ones.
Applying Tannaka-Krein reconstruction process to the pair ( Diff $_{A}, \omega$ ), leads to a commutative Hopf algebroid $\left(A, U^{\circ}\right)$ : the finite dual of $U$.

The finite dual as a subalgebra of the convolution algebra

## The finite dual as a subalgebra of the convolution algebra

By the construction of $U^{\circ}$, there is an equivalence of rigid symmetric monoidal categories

$$
\bmod _{U} \underset{\otimes}{\simeq} \operatorname{comod} U^{\circ}
$$

where comod $U^{\circ}$ is the full subcategory of the category of $U^{\circ}$-comodules whose underlying $A$-modules are f.g.p. ones.

## The finite dual as a subalgebra of the convolution algebra

By the construction of $U^{\circ}$, there is an equivalence of rigid symmetric monoidal categories

$$
\bmod _{U} \underset{\otimes}{\simeq} \operatorname{comod}_{U \circ}
$$

where comod $U^{\circ}$ is the full subcategory of the category of $U^{\circ}$-comodules whose underlying $A$-modules are f.g.p. ones. Moreover, there is an injective $\left(A \otimes_{\mathbb{C}} A\right)$-algebra map

$$
U^{\circ} C \xrightarrow{\zeta} U^{*},
$$

whose codomain is the right $A$-linear dual of $U$.

## The finite dual as a subalgebra of the convolution algebra

By the construction of $U^{\circ}$, there is an equivalence of rigid symmetric monoidal categories

$$
\bmod _{U} \underset{\otimes}{\simeq} \operatorname{comod}_{U \circ}
$$

where comod $U^{\circ}$ is the full subcategory of the category of $U^{\circ}$-comodules whose underlying $A$-modules are f.g.p. ones.
Moreover, there is an injective $\left(A \otimes_{\mathbb{C}} A\right)$-algebra map

$$
U^{\circ} C \quad \zeta \quad U^{*},
$$

whose codomain is the right $A$-linear dual of $U$.
The algebra $U^{*}$ is the convolution algebra of the Hopf algebroid $U$, which have a structure of complete commutative Hopf algebroid. In this way the completion $\hat{\zeta}: \hat{U}^{\circ} \rightarrow U^{*}$ of $\zeta$ becomes a morphism of complete Hopf algebroids.

## The finite dual as a subalgebra of the convolution algebra

By the construction of $U^{\circ}$, there is an equivalence of rigid symmetric monoidal categories

$$
\bmod U \underset{\otimes}{\simeq} \operatorname{comod} U^{\circ}
$$

where comod $U^{\circ}$ is the full subcategory of the category of $U^{\circ}$-comodules whose underlying $A$-modules are f.g.p. ones.
Moreover, there is an injective $\left(A \otimes_{\mathbb{C}} A\right)$-algebra map

$$
U^{\circ} C \quad \zeta \quad U^{*},
$$

whose codomain is the right $A$-linear dual of $U$.
The algebra $U^{*}$ is the convolution algebra of the Hopf algebroid $U$, which have a structure of complete commutative Hopf algebroid. In this way the completion $\hat{\zeta}: \hat{U}^{\circ} \rightarrow U^{*}$ of $\zeta$ becomes a morphism of complete Hopf algebroids.
Following Kapranov's result, the associated formal scheme of $U^{*}$, can be seen as the "formal integration" of the Lie algebroid $\left(\mathcal{T} \mathbb{A}_{\mathrm{c}}^{1}, \mathbb{A}_{\mathrm{c}}^{1}\right)$.

## The differential Galois groupoid of a differential module

## The differential Galois groupoid of a differential module

Fix a differential module $M \in \operatorname{Diff}_{A}$ with a dual basis $\left\{\boldsymbol{e}_{i}, e_{i}^{*}\right\}_{1 \leq i \leq m}$. There exist elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}, \operatorname{det}_{M} \in U^{\circ}$, whose image are the following $A$-linear maps:

## The differential Galois groupoid of a differential module

Fix a differential module $M \in \operatorname{Diff}_{A}$ with a dual basis $\left\{\boldsymbol{e}_{i}, e_{i}^{*}\right\}_{1 \leq i \leq m}$. There exist elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}, \operatorname{det}_{M} \in U^{\circ}$, whose image are the following $A$-linear maps:

$$
\begin{aligned}
& \zeta\left(f_{i j}\right)(u)=e_{j}^{*}\left(e_{i} u\right) \\
& \quad \zeta\left(\operatorname{det}_{M}\right)(u)=\sum_{\sigma \in S_{m}}(-1)^{s g(\sigma)} e_{m}^{*}\left(e_{\sigma(m)} u_{(m)}\right) \cdots e_{1}^{*}\left(e_{\sigma(1)} u_{(1)}\right),
\end{aligned}
$$

for every $u \in U$. Additionally, the element $\operatorname{det}_{M}$ is invertible.

## The differential Galois groupoid of a differential module

Fix a differential module $M \in \operatorname{Diff}_{A}$ with a dual basis $\left\{\boldsymbol{e}_{i}, e_{i}^{*}\right\}_{1 \leq i \leq m}$. There exist elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}, \operatorname{det}_{M} \in U^{\circ}$, whose image are the following $A$-linear maps:

$$
\begin{aligned}
& \zeta\left(f_{i j}\right)(u)=e_{j}^{*}\left(e_{i} u\right) \\
& \quad \zeta\left(\operatorname{det}_{M}\right)(u)=\sum_{\sigma \in S_{m}}(-1)^{s g(\sigma)} e_{m}^{*}\left(e_{\sigma(m)} u_{(m)}\right) \cdots e_{1}^{*}\left(e_{\sigma(1)} u_{(1)}\right),
\end{aligned}
$$

for every $u \in U$. Additionally, the element $\operatorname{det}_{M}$ is invertible.
We denote by $U_{(M)}^{\circ}$ the $\left(A \otimes_{\mathbb{C}} A\right)$-subalgebra of $U^{\circ}$ generated by the elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}$ and $\operatorname{det}_{M}^{-1}$.

## The differential Galois groupoid of a differential module

Fix a differential module $M \in \operatorname{Diff}_{A}$ with a dual basis $\left\{\boldsymbol{e}_{i}, e_{i}^{*}\right\}_{1 \leq i \leq m}$. There exist elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}, \operatorname{det}_{M} \in U^{\circ}$, whose image are the following $A$-linear maps:

$$
\begin{aligned}
& \zeta\left(f_{i j}\right)(u)=e_{j}^{*}\left(e_{i} u\right) \\
& \quad \zeta\left(\operatorname{det}_{M}\right)(u)=\sum_{\sigma \in S_{m}}(-1)^{s g(\sigma)} e_{m}^{*}\left(e_{\sigma(m)} u_{(m)}\right) \cdots e_{1}^{*}\left(e_{\sigma(1)} u_{(1)}\right),
\end{aligned}
$$

for every $u \in U$. Additionally, the element $\operatorname{det}_{M}$ is invertible.
We denote by $U_{(M)}^{\circ}$ the $\left(A \otimes_{\mathbb{C}} A\right)$-subalgebra of $U^{\circ}$ generated by the elements $\left\{f_{i j}\right\}_{1 \leq i, j \leq m}$ and $\operatorname{det}_{M}^{-1}$.

It turns out that $U_{(M)}^{\circ}$ is a sub Hopf algebroid of $U^{\circ}$.

## The differential Galois groupoid of a differential module

## The differential Galois groupoid of a differential module

Consider now the full subcategory $\langle M\rangle_{\otimes}$ of Diff $_{A}$ of finite sub-quotients differential modules of $M$.

## The differential Galois groupoid of a differential module

Consider now the full subcategory $\langle M\rangle_{\otimes}$ of Diff $_{A}$ of finite sub-quotients differential modules of $M$.
An object $(X, \partial)$ of Diff $_{A}$ belongs to $\langle M\rangle_{\otimes}$ if it is a quotient of the form $X=X_{2} / X_{1}$, where

$$
X_{1} \subseteq X_{2} \subseteq \underset{l, k}{\oplus} T^{(k, l)}(M), \quad\left(T^{(k, l)}(M):=M^{\otimes k} \otimes_{A}\left(M^{*}\right)^{\otimes \prime}\right)
$$

(finite direct sum). Since Diff $_{A}$ is an abelian category, a differential module $(X, \partial)$ belongs to $\langle M\rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, l)}(M)$ 's.

## The differential Galois groupoid of a differential module

Consider now the full subcategory $\langle M\rangle_{\otimes}$ of Diff $_{A}$ of finite sub-quotients differential modules of $M$.
An object $(X, \partial)$ of Diff $_{A}$ belongs to $\langle M\rangle_{\otimes}$ if it is a quotient of the form $X=X_{2} / X_{1}$, where

$$
X_{1} \subseteq X_{2} \subseteq \underset{I, k}{\oplus} T^{(k, l)}(M), \quad\left(T^{(k, l)}(M):=M^{\otimes k} \otimes_{A}\left(M^{*}\right)^{\otimes \prime}\right)
$$

(finite direct sum). Since Diff $_{A}$ is an abelian category, a differential module $(X, \partial)$ belongs to $\langle M\rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, l)}(M)$ 's.
Denote by

$$
\omega_{\mid\langle M\rangle_{\otimes}}:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

the restriction of the fibre functor $\omega$, and by $\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right)$ its associated commutative Hopf algebroid.

## The differential Galois groupoid of a differential module

Consider now the full subcategory $\langle M\rangle_{\otimes}$ of Diff $_{A}$ of finite sub-quotients differential modules of $M$.
An object $(X, \partial)$ of Diff $_{A}$ belongs to $\langle M\rangle_{\otimes}$ if it is a quotient of the form $X=X_{2} / X_{1}$, where

$$
X_{1} \subseteq X_{2} \subseteq \underset{I, k}{\oplus} \boldsymbol{T}^{(k, l)}(M), \quad\left(T^{(k, l)}(M):=M^{\otimes k} \otimes_{A}\left(M^{*}\right)^{\otimes \prime}\right)
$$

(finite direct sum). Since Diff $_{A}$ is an abelian category, a differential module $(X, \partial)$ belongs to $\langle M\rangle_{\otimes}$ if and only if it is a sub-object of an object finitely generated by those $T^{(k, l)}(M)$ 's.
Denote by

$$
\omega_{\mid\langle M\rangle_{\otimes}}:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

the restriction of the fibre functor $\omega$, and by $\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right)$ its associated commutative Hopf algebroid.
Then, the embedding $\langle M\rangle_{\otimes} \hookrightarrow$ Diff $_{A}$, leads to the canonical morphism of Hopf algberoids

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \longrightarrow\left(A, U^{\circ}\right)
$$

## The differential Galois groupoid of a differential module

## The differential Galois groupoid of a differential module

There is an isomorphism of finitely generated Hopf algebroids:

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \cong\left(A, U_{(M)}^{\circ}\right)
$$

## The differential Galois groupoid of a differential module

There is an isomorphism of finitely generated Hopf algebroids:

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \cong\left(A, U_{(M)}^{\circ}\right)
$$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}$-linear abelian categories:

$$
\langle M\rangle_{\otimes} \underset{\otimes}{\simeq} \operatorname{comod}_{\mathscr{R}}\left(\langle M\rangle_{\otimes}\right) \underset{\otimes}{\simeq} \operatorname{comod}_{U_{(M)}^{\circ}}
$$

## The differential Galois groupoid of a differential module

There is an isomorphism of finitely generated Hopf algebroids:

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \cong\left(A, U_{(M)}^{\circ}\right)
$$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}$-linear abelian categories:

$$
\langle M\rangle_{\otimes} \underset{\otimes}{\simeq} \operatorname{comod}_{\mathscr{R}}\left(\langle M\rangle_{\otimes}\right) \simeq \operatorname{comod}_{U_{(M)}^{\circ}} .
$$

Let $\mathscr{H}_{M}: \operatorname{Alg}_{\mathrm{c}} \rightarrow$ Grpds be the presheaf of groupoids associated to the Hopf algebroid $\left(A, U_{(M)}^{\circ}\right)$ and consider $\mathscr{H}_{M}(\mathbb{C})$ its fibre at $\operatorname{Spec}(\mathbb{C})$, that is, the character groupoid of $\left(A, U_{(M)}^{\circ}\right)$.

## The differential Galois groupoid of a differential module

There is an isomorphism of finitely generated Hopf algebroids:

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \cong\left(A, U_{(M)}^{\circ}\right)
$$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}$-linear abelian categories:

$$
\langle M\rangle_{\otimes} \underset{\otimes}{\simeq} \operatorname{comod}_{\mathscr{R}\left(\langle M\rangle_{\otimes}\right)} \underset{\otimes}{\simeq} \operatorname{comod}_{U_{(M)}^{\circ}}
$$

Let $\mathscr{H}_{M}: \operatorname{Alg}_{\mathrm{c}} \rightarrow$ Grpds be the presheaf of groupoids associated to the Hopf algebroid $\left(A, U_{(M)}^{\circ}\right)$ and consider $\mathscr{H}_{M}(\mathbb{C})$ its fibre at $\operatorname{Spec}(\mathbb{C})$, that is, the character groupoid of $\left(A, U_{(M)}^{\circ}\right)$.
The algebraic groupoid $\mathscr{H}_{M}(\mathbb{C})$ is referred to as the differential Galois groupoid of the linear differential matrix equation attached to ( $M, \partial$ ).

## The differential Galois groupoid of a differential module

There is an isomorphism of finitely generated Hopf algebroids:

$$
\left(A, \mathscr{R}\left(\langle M\rangle_{\otimes}\right)\right) \cong\left(A, U_{(M)}^{\circ}\right)
$$

Thus, we have equivalences of rigid symmetric monoidal $\mathbb{C}$-linear abelian categories:

$$
\langle M\rangle_{\otimes} \simeq \underset{\otimes}{\simeq} \operatorname{comod}_{\mathscr{R}\left(\langle M\rangle_{\otimes}\right)} \underset{\otimes}{ } \operatorname{comod}_{(M)}^{\circ} .
$$

Let $\mathscr{H}_{M}: \operatorname{Alg}_{\mathrm{c}} \rightarrow$ Grpds be the presheaf of groupoids associated to the Hopf algebroid $\left(A, U_{(M)}^{\circ}\right)$ and consider $\mathscr{H}_{M}(\mathbb{C})$ its fibre at $\operatorname{Spec}(\mathbb{C})$, that is, the character groupoid of $\left(A, U_{(M)}^{\circ}\right)$.
The algebraic groupoid $\mathscr{H}_{M}(\mathbb{C})$ is referred to as the differential Galois groupoid of the linear differential matrix equation attached to ( $M, \partial$ ). Consider the following algebraic groupoid:

$$
\mathscr{G}^{m}: \mathbb{A}_{\mathrm{c}}^{1} \times G L_{m}(\mathbb{C}) \times \mathbb{A}_{\mathrm{c}}^{1} \underset{p_{1}}{r_{1} \leftrightarrows} \mathbb{A}_{\mathrm{c}}^{1}
$$

This is the induced groupoid of $G L_{m}(\mathbb{C})$ along the map $\mathbb{A}_{\mathrm{C}}^{1} \rightarrow\{*\}$.

## The differential Galois groupoid of a differential module

## The differential Galois groupoid of a differential module

There is a "monomorphism" of affine algebraic groupoids

$$
\mathscr{H}_{M}(\mathbb{C}) \longleftrightarrow \mathscr{G}^{m} .
$$

In particular, any isotropy group of $\mathscr{H}_{M}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $G L_{m}(\mathbb{C})$.

## The differential Galois groupoid of a differential module

There is a "monomorphism" of affine algebraic groupoids

$$
\mathscr{H}_{M}(\mathbb{C}) \stackrel{\left(\mathscr{G}^{m}\right.}{ }
$$

In particular, any isotropy group of $\mathscr{H}_{M}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $G L_{m}(\mathbb{C})$.

## Example

Let $(M, \partial)$ be a differential module whose underlying module $M=A . \mathfrak{m}$ is a free $A$-module of rank one, endowed with the differential matrix $\operatorname{mat}(M)=a \in A$, that is, $\partial(\mathfrak{m})=a(X) \mathfrak{m}$. Then the Hopf algebroid $U_{(M)}^{\circ}$ is generated as an $\left(A \otimes_{\mathrm{C}} A\right)$-algebra by the invertible element $\operatorname{det}_{M}$. Thus $U_{(M)}^{\circ}$ is isomorphic to the Hopf algebroid $\left(A \otimes_{\mathrm{C}} A\right)\left[T, T^{-1}\right] \cong A \otimes_{\mathbb{C}} \mathbb{C}\left[T, T^{-1}\right] \otimes_{\mathrm{C}} A$, which is the base extension of the Hopf $\mathbb{C}$-algebra $\mathbb{C}\left[T, T^{-1}\right]$ (the coordinate algebra of the multiplicative group).

## The differential Galois groupoid of a differential module

There is a "monomorphism" of affine algebraic groupoids

$$
\mathscr{H}_{M}(\mathbb{C}) \stackrel{\left(\mathscr{G}^{m}\right.}{ }
$$

In particular, any isotropy group of $\mathscr{H}_{M}(\mathbb{C})$ is identified with a closed sub-group of the algebraic group $G L_{m}(\mathbb{C})$.

## Example

Let $(M, \partial)$ be a differential module whose underlying module $M=A . \mathfrak{m}$ is a free $A$-module of rank one, endowed with the differential matrix $\operatorname{mat}(M)=a \in A$, that is, $\partial(\mathfrak{m})=a(X) \mathfrak{m}$. Then the Hopf algebroid $U_{(M)}^{\circ}$ is generated as an $\left(A \otimes_{C} A\right)$-algebra by the invertible element $\operatorname{det}_{M}$. Thus $U_{(M)}^{\circ}$ is isomorphic to the Hopf algebroid $\left(A \otimes_{\mathbb{C}} A\right)\left[T, T^{-1}\right] \cong A \otimes_{\mathbb{C}} \mathbb{C}\left[T, T^{-1}\right] \otimes_{\mathbb{C}} A$, which is the base extension of the Hopf $\mathbb{C}$-algebra $\mathbb{C}\left[T, T^{-1}\right]$ (the coordinate algebra of the multiplicative group).
Note: Changing the differential $\partial$ on that free one rank modules, gives the "same" Hopf algebroid $U_{(M)}^{\circ}$. The fact, is that this differential $\partial$ of $M$ do not induces a differential algebra structure on $U_{(M)}^{\circ}$, but on a certain quotient of this one.

The Picard-Vessiot extensions (after André)

## The Picard-Vessiot extensions (after André)

Let us fix a differential module $(M, \partial)$ with rank $m$, and consider as above the category $\langle M\rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^{*}$ ) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega:=\omega_{\mid\langle M\rangle_{\otimes}}$.

## The Picard-Vessiot extensions (after André)

Let us fix a differential module $(M, \partial)$ with rank $m$, and consider as above the category $\langle M\rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^{*}$ ) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega:=\omega_{\mid\langle M\rangle_{\otimes}}$.
By Deligne's results, we know that there is a fiber functor over the base field $\mathbb{C}$ :

$$
\omega^{\prime}:\langle M\rangle_{\otimes} \longrightarrow \text { vect }_{\mathbb{C}}
$$

## The Picard-Vessiot extensions (after André)

Let us fix a differential module $(M, \partial)$ with rank $m$, and consider as above the category $\langle M\rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^{*}$ ) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega:=\omega_{\mid\langle M\rangle_{\otimes}}$.
By Deligne's results, we know that there is a fiber functor over the base field $\mathbb{C}$ :

$$
\omega^{\prime}:\langle M\rangle_{\otimes} \longrightarrow \text { vect }_{\mathbb{C}} .
$$

Following Andrés approach, the existence of this fibre functor is a crucial step in building up the Picard-Vessiot extension of $(A, \partial)$ for the differential module $(M, \partial)$.

## The Picard-Vessiot extensions (after André)

Let us fix a differential module $(M, \partial)$ with rank $m$, and consider as above the category $\langle M\rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^{*}$ ) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega:=\omega_{\mid\langle M\rangle_{\otimes}}$.
By Deligne's results, we know that there is a fiber functor over the base field $\mathbb{C}$ :

$$
\omega^{\prime}:\langle M\rangle_{\otimes} \longrightarrow \text { vect }_{\mathbb{C}} .
$$

Following Andrés approach, the existence of this fibre functor is a crucial step in building up the Picard-Vessiot extension of $(A, \partial)$ for the differential module ( $M, \partial$ ).
For any point $x \in \mathbb{A}_{c}^{1}$, consider the associated isotropy Hopf $\mathbb{C}$-algebra $U_{(M), x}^{\circ}$ of the Hopf algebroid $U_{(M)}^{\circ}$.

## The Picard-Vessiot extensions (after André)

Let us fix a differential module $(M, \partial)$ with rank $m$, and consider as above the category $\langle M\rangle_{\otimes}$. This category admits a tensor generator (e.g., the differential module $M \oplus M^{*}$ ) and have a fibre functor over $\operatorname{Spec}(A) \neq \emptyset$, namely, the forgetful functor $\omega:=\omega_{\mid\langle M\rangle_{\otimes}}$.
By Deligne's results, we know that there is a fiber functor over the base field $\mathbb{C}$ :

$$
\omega^{\prime}:\langle M\rangle_{\otimes} \longrightarrow \text { vect }_{\mathbb{C}} .
$$

Following Andrés approach, the existence of this fibre functor is a crucial step in building up the Picard-Vessiot extension of $(A, \partial)$ for the differential module $(M, \partial)$.
For any point $x \in \mathbb{A}_{\mathbb{c}}^{1}$, consider the associated isotropy Hopf $\mathbb{C}$-algebra $U_{(M), x}^{\circ}$ of the Hopf algebroid $U_{(M)}^{\circ}$.
This is by definition the base extension Hopf algebra

$$
\left(\mathbb{C}, \cup_{(M), x}^{\circ}:=\mathbb{C}_{x} \otimes_{A} U_{(M)}^{\circ} \otimes_{A} \mathbb{C}_{x}\right),
$$

where $\mathbb{C}_{x}$ is $\mathbb{C}$ viewed as an $A$-algebra via the $\mathbb{C}$-algebra map $x: A \rightarrow \mathbb{C}$.

The Picard-Vessiot extensions

## The Picard-Vessiot extensions

Observe that $\left(A, U_{(M)}^{\circ}\right)$ is geometrically transitive flat Hopf algebroid over $\mathbb{C}$ and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.

## The Picard-Vessiot extensions

Observe that $\left(A, U_{(M)}^{\circ}\right)$ is geometrically transitive flat Hopf algebroid over $\mathbb{C}$ and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.
This implies that the canonical Hopf algebroid extension

$$
\mathbf{x}:\left(A, U_{(M)}^{\circ}\right) \rightarrow\left(\mathbb{C}, U_{(M), x}^{\circ}\right)
$$

is a weak equivalence, which means that the induced functor

$$
\mathbf{x}_{*}: \operatorname{Comod}_{U_{(M)}^{\circ}} \rightarrow \operatorname{Comod}_{U_{(M, x}^{\circ}}
$$

establishes an equivalence of symmetric monoidal categories.

## The Picard-Vessiot extensions

Observe that $\left(A, U_{(M)}^{\circ}\right)$ is geometrically transitive flat Hopf algebroid over $\mathbb{C}$ and that $\mathscr{H}_{M}(\mathbb{C}) \neq \emptyset$, which is a transitive groupoid.
This implies that the canonical Hopf algebroid extension

$$
\mathbf{x}:\left(A, U_{(M)}^{\circ}\right) \rightarrow\left(\mathbb{C}, U_{(M), x}^{\circ}\right)
$$

is a weak equivalence, which means that the induced functor

$$
\mathbf{x}_{*}: \operatorname{Comod}_{\mathcal{U}_{(M)}^{\circ}} \rightarrow \operatorname{Comod}_{\mathcal{U}_{(M), x}^{\circ}}
$$

establishes an equivalence of symmetric monoidal categories.
In this way we obtain a chain of symmetric monoidal $\mathbb{C}$-linear faithful and exact functors:

$$
\omega_{x}:\langle\boldsymbol{M}\rangle_{\otimes} \xrightarrow[\otimes-\simeq]{ } \operatorname{comod}_{U_{(M)}^{\circ}} \xrightarrow[\otimes-\simeq \simeq]{\mathbf{x}_{*}} \operatorname{comod}_{U_{(M), x}^{\circ}} \xrightarrow{\mathcal{O}} \operatorname{vect}_{\mathrm{C}},
$$

where $\mathcal{O}$ is the forgetful functor.

The Picard-Vessiot extensions

## The Picard-Vessiot extensions

There is a point $x \in \mathbb{A}_{\mathrm{C}}^{1}$ such that $\omega^{\prime}=\omega_{x}$, up to a canonical natural isomorphism. In particular, the extended fibre functor

$$
\omega^{\prime} \otimes_{\mathbb{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

over $A$ is naturally isomorphic to $\omega$. Therefore, we have isomorphisms of Hopf algebroids:

$$
(A, \mathscr{R}(\omega)) \cong\left(A, \mathscr{R}\left(\omega^{\prime} \otimes_{\mathrm{C}} A\right)\right) \cong\left(A, \cup_{(M)}^{\circ}\right) .
$$

## The Picard-Vessiot extensions

There is a point $x \in \mathbb{A}_{\mathbb{C}}^{1}$ such that $\omega^{\prime}=\omega_{x}$, up to a canonical natural isomorphism. In particular, the extended fibre functor

$$
\omega^{\prime} \otimes_{\mathrm{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

over $A$ is naturally isomorphic to $\omega$. Therefore, we have isomorphisms of Hopf algebroids:

$$
(A, \mathscr{R}(\omega)) \cong\left(A, \mathscr{R}\left(\omega^{\prime} \otimes_{\mathrm{C}} A\right)\right) \cong\left(A, \cup_{(M)}^{\circ}\right) .
$$

So far we have two fibred functors:

$$
\omega:=\omega_{\mid\langle M\rangle_{\otimes}}, \omega^{\prime} \otimes_{\mathrm{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

## The Picard-Vessiot extensions

There is a point $x \in \mathbb{A}_{\mathrm{C}}^{1}$ such that $\omega^{\prime}=\omega_{x}$, up to a canonical natural isomorphism. In particular, the extended fibre functor

$$
\omega^{\prime} \otimes_{\mathbb{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

over $A$ is naturally isomorphic to $\omega$. Therefore, we have isomorphisms of Hopf algebroids:

$$
(A, \mathscr{R}(\omega)) \cong\left(A, \mathscr{R}\left(\omega^{\prime} \otimes_{\mathrm{C}} A\right)\right) \cong\left(A, \cup_{(M)}^{\circ}\right) .
$$

So far we have two fibred functors:

$$
\omega:=\omega_{\mid\langle M\rangle \otimes}, \omega^{\prime} \otimes_{\mathbb{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

This leads to a principal bi-bundle $\left(\mathscr{R}\left(\omega, \omega^{\prime} \otimes_{\mathbb{C}} \boldsymbol{A}\right), \boldsymbol{\alpha}, \boldsymbol{\beta}\right)$ over $U_{(M)}^{\circ}$, where $\boldsymbol{\alpha}, \boldsymbol{\beta}: \boldsymbol{A} \rightarrow \mathscr{R}\left(\omega, \omega^{\prime} \otimes_{\mathbb{C}} \boldsymbol{A}\right)$ are its structural algebra maps. This is the $\left(A \otimes_{\mathbb{C}} A\right)$-algebra representing the bi-torsor $\underline{\operatorname{Isom}}_{A \otimes A}^{\otimes}\left(\omega, \omega^{\prime} \otimes_{\mathbb{C}} A\right)$.

## The Picard-Vessiot extensions

There is a point $x \in \mathbb{A}_{\mathrm{C}}^{1}$ such that $\omega^{\prime}=\omega_{x}$, up to a canonical natural isomorphism. In particular, the extended fibre functor

$$
\omega^{\prime} \otimes_{\mathbb{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

over $A$ is naturally isomorphic to $\omega$. Therefore, we have isomorphisms of Hopf algebroids:

$$
(A, \mathscr{R}(\omega)) \cong\left(A, \mathscr{R}\left(\omega^{\prime} \otimes_{\mathrm{C}} A\right)\right) \cong\left(A, \cup_{(M)}^{\circ}\right) .
$$

So far we have two fibred functors:

$$
\omega:=\omega_{\mid\langle M\rangle \otimes}, \omega^{\prime} \otimes_{\mathbb{C}} A:\langle M\rangle_{\otimes} \longrightarrow \operatorname{proj}(A)
$$

This leads to a principal bi-bundle $\left(\mathscr{R}\left(\omega, \omega^{\prime} \otimes_{\mathbb{C}} \boldsymbol{A}\right), \boldsymbol{\alpha}, \boldsymbol{\beta}\right)$ over $U_{(M)}^{\circ}$, where $\boldsymbol{\alpha}, \boldsymbol{\beta}: \boldsymbol{A} \rightarrow \mathscr{R}\left(\omega, \omega^{\prime} \otimes_{\mathbb{C}} \boldsymbol{A}\right)$ are its structural algebra maps. This is the $\left(A \otimes_{\mathrm{C}} A\right)$-algebra representing the bi-torsor $\operatorname{Isom}_{A \otimes A}^{\otimes}\left(\omega, \omega^{\prime} \otimes_{\mathrm{C}} A\right)$.
This principal bi-bundle is (up to isomorphisms) the unit principal bi-bundle $\mathscr{U}\left(U_{(M)}^{\circ}\right)$ given by the Hopf algebroid $U_{(M)}^{\circ}$ its self.

The Picard-Vessiot extensions

## The Picard-Vessiot extensions

Let us consider the quotient algebra

$$
\mathcal{P}:=U_{(M)}^{\circ} /\langle\mathrm{s}-\mathrm{t}\rangle
$$

by the Hopf ideal $\langle\mathrm{s}-\mathrm{t}\rangle$. This is the (total isotropy) Hopf $A$-algebra of $\bigcup_{(M)}^{\circ}$ with unit $\iota: A \rightarrow \mathcal{P}$ the algebra map induced from $\boldsymbol{\alpha}, \boldsymbol{\beta}$.

## The Picard-Vessiot extensions

Let us consider the quotient algebra

$$
\mathcal{P}:=U_{(M)}^{\circ} /\langle s-t\rangle
$$

by the Hopf ideal $\langle s-t\rangle$. This is the (total isotropy) Hopf $A$-algebra of $\bigcup_{(M)}^{\circ}$ with unit $\iota: A \rightarrow \mathcal{P}$ the algebra map induced from $\alpha, \boldsymbol{\beta}$.
The algebra $\mathcal{P}$ admits a differential $\boldsymbol{\partial}: \mathcal{P} \rightarrow \mathcal{P}$, extracted from the differential of $M$ such that the map $\iota:(A, \partial) \longrightarrow(\mathcal{P}, \partial)$ becomes a morphism of differential algebras.

## The Picard-Vessiot extensions

Let us consider the quotient algebra

$$
\mathcal{P}:=U_{(M)}^{\circ} /\langle\mathrm{s}-\mathrm{t}\rangle
$$

by the Hopf ideal $\langle\mathrm{s}-\mathrm{t}\rangle$. This is the (total isotropy) Hopf $A$-algebra of $\bigcup_{(M)}^{\circ}$ with unit $\iota: A \rightarrow \mathcal{P}$ the algebra map induced from $\alpha, \boldsymbol{\beta}$.
The algebra $\mathcal{P}$ admits a differential $\boldsymbol{\partial}: \mathcal{P} \rightarrow \mathcal{P}$, extracted from the differential of $M$ such that the map $\iota:(A, \partial) \longrightarrow(\mathcal{P}, \partial)$ becomes a morphism of differential algebras.
Denote by $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial}))$ the group of differential $A$-algebra automorphisms, that is, algebra automorphisms $\sigma: \mathcal{P} \rightarrow \mathcal{P}$ such that $\boldsymbol{\sigma} \circ \boldsymbol{\iota}=\boldsymbol{\iota}$ and $\boldsymbol{\partial} \circ \boldsymbol{\sigma}=\boldsymbol{\sigma} \circ \boldsymbol{\partial}$.

## The Picard-Vessiot extensions

Let us consider the quotient algebra

$$
\mathcal{P}:=U_{(M)}^{\circ} /\langle\mathrm{s}-\mathrm{t}\rangle
$$

by the Hopf ideal $\langle\mathrm{s}-\mathrm{t}\rangle$. This is the (total isotropy) Hopf $A$-algebra of $\bigcup_{(M)}^{\circ}$ with unit $\iota: A \rightarrow \mathcal{P}$ the algebra map induced from $\boldsymbol{\alpha}, \boldsymbol{\beta}$.
The algebra $\mathcal{P}$ admits a differential $\boldsymbol{\partial}: \mathcal{P} \rightarrow \mathcal{P}$, extracted from the differential of $M$ such that the map $\iota:(A, \partial) \longrightarrow(\mathcal{P}, \partial)$ becomes a morphism of differential algebras.
Denote by $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial}))$ the group of differential $A$-algebra automorphisms, that is, algebra automorphisms $\sigma: \mathcal{P} \rightarrow \mathcal{P}$ such that $\boldsymbol{\sigma} \circ \boldsymbol{\iota}=\boldsymbol{\iota}$ and $\boldsymbol{\partial} \circ \boldsymbol{\sigma}=\boldsymbol{\sigma} \circ \boldsymbol{\partial}$.
In this way, we obtain a functor valued in groups:

$$
\underline{\operatorname{Aut}}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial})): \operatorname{Alg}_{\mathrm{C}} \longrightarrow \operatorname{Grps}, \quad\left(C \longrightarrow \operatorname{Aut}_{(A \otimes C, \partial \otimes C)}((\mathcal{P} \otimes \boldsymbol{C}, \boldsymbol{\partial} \otimes \mathcal{C}))\right)
$$

whose fibre at $\operatorname{Spec}(\mathbb{C})$ is $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial}))$.

The Picard-Vessiot extensions

## The Picard-Vessiot extensions

The differential algebra $(\mathcal{P}, \boldsymbol{\partial})$ enjoys the following more properties:

## The Picard-Vessiot extensions

The differential algebra $(\mathcal{P}, \boldsymbol{\partial})$ enjoys the following more properties:

- $(\mathcal{P}, \boldsymbol{\partial})$ is a simple differential algebra;


## The Picard-Vessiot extensions

The differential algebra $(\mathcal{P}, \boldsymbol{\partial})$ enjoys the following more properties:

- $(\mathcal{P}, \boldsymbol{\partial})$ is a simple differential algebra;
- As an $A$-algebra $\mathcal{P}$ is generated by the entries of the matrix $F=\left(f_{i j}+\langle s-t\rangle\right)_{1 \leq i, j \leq m}$ and $\left(\operatorname{det}_{M}{ }^{-1}+\langle s-t\rangle\right)$ with differential

$$
\partial F=\operatorname{mat}(M) F
$$

That is, $F$ is a fundamental matrix of solutions of the linear differential matrix equation attached to $(M, \partial)$.

## The Picard-Vessiot extensions

The differential algebra ( $\mathcal{P}, \boldsymbol{\partial}$ ) enjoys the following more properties:

- $(\mathcal{P}, \partial)$ is a simple differential algebra;
- As an $A$-algebra $\mathcal{P}$ is generated by the entries of the matrix $F=\left(f_{i j}+\langle s-t\rangle\right)_{1 \leq i, j \leq m}$ and $\left(\operatorname{det}_{M}{ }^{-1}+\langle s-t\rangle\right)$ with differential

$$
\partial F=\operatorname{mat}(M) F
$$

That is, $F$ is a fundamental matrix of solutions of the linear differential matrix equation attached to $(M, \partial)$.

Furthermore, we have that

## The Picard-Vessiot extensions

The differential algebra ( $\mathcal{P}, \boldsymbol{\partial}$ ) enjoys the following more properties:

- $(\mathcal{P}, \partial)$ is a simple differential algebra;
- As an $A$-algebra $\mathcal{P}$ is generated by the entries of the matrix $F=\left(f_{i j}+\langle s-t\rangle\right)_{1 \leq i, j \leq m}$ and $\left(\operatorname{det}_{M}^{-1}+\langle s-t\rangle\right)$ with differential

$$
\partial F=\operatorname{mat}(M) F
$$

That is, $F$ is a fundamental matrix of solutions of the linear differential matrix equation attached to $(M, \partial)$.

Furthermore, we have that

- there is an isomorphism

$$
\underline{\operatorname{Aut}}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial})) \cong \underline{\operatorname{Aut}}^{\otimes}\left(\omega^{\prime}\right)
$$

of affine group schemes;

## The Picard-Vessiot extensions

The differential algebra ( $\mathcal{P}, \boldsymbol{\partial}$ ) enjoys the following more properties:

- $(\mathcal{P}, \partial)$ is a simple differential algebra;
- As an $A$-algebra $\mathcal{P}$ is generated by the entries of the matrix $F=\left(f_{i j}+\langle\mathbf{s}-\mathrm{t}\rangle\right)_{1 \leq i, j \leq m}$ and $\left(\operatorname{det}_{M}{ }^{-1}+\langle\mathbf{s}-\mathrm{t}\rangle\right)$ with differential

$$
\partial F=\operatorname{mat}(M) F
$$

That is, $F$ is a fundamental matrix of solutions of the linear differential matrix equation attached to $(M, \partial)$.

Furthermore, we have that

- there is an isomorphism

$$
\underline{\operatorname{Aut}}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial})) \cong \underline{\operatorname{Aut}}^{\otimes}\left(\omega^{\prime}\right)
$$

of affine group schemes;

- the algebraic group $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial}))$ is isomorphic to each of the isotropy groups of the algebraic differential Galois groupoid $\mathscr{H}_{M}(\mathbb{C})$ attached to $(M, \partial)$.


## The Picard-Vessiot extensions

The differential algebra ( $\mathcal{P}, \boldsymbol{\partial}$ ) enjoys the following more properties:

- $(\mathcal{P}, \boldsymbol{\partial})$ is a simple differential algebra;
- As an $A$-algebra $\mathcal{P}$ is generated by the entries of the matrix $F=\left(f_{i j}+\langle\mathbf{s}-\mathrm{t}\rangle\right)_{1 \leq i, j \leq m}$ and $\left(\operatorname{det}_{M}{ }^{-1}+\langle\mathbf{s}-\mathrm{t}\rangle\right)$ with differential

$$
\partial F=\operatorname{mat}(M) F
$$

That is, $F$ is a fundamental matrix of solutions of the linear differential matrix equation attached to $(M, \partial)$.

Furthermore, we have that

- there is an isomorphism

$$
\underline{\operatorname{Aut}}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial})) \cong \underline{\operatorname{Aut}}^{\otimes}\left(\omega^{\prime}\right)
$$

of affine group schemes;

- the algebraic group $\operatorname{Aut}_{(A, \partial)}((\mathcal{P}, \boldsymbol{\partial}))$ is isomorphic to each of the isotropy groups of the algebraic differential Galois groupoid $\mathscr{H}_{M}(\mathbb{C})$ attached to $(M, \partial)$.
The pair $(\mathcal{P}, \boldsymbol{\partial})$ is the Picard-Vessiot extension of $(A, \partial)$ for $(M, \partial)$.


## Thank you!

